Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * balloc.c |
| 3 | * |
| 4 | * PURPOSE |
| 5 | * Block allocation handling routines for the OSTA-UDF(tm) filesystem. |
| 6 | * |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 7 | * COPYRIGHT |
| 8 | * This file is distributed under the terms of the GNU General Public |
| 9 | * License (GPL). Copies of the GPL can be obtained from: |
| 10 | * ftp://prep.ai.mit.edu/pub/gnu/GPL |
| 11 | * Each contributing author retains all rights to their own work. |
| 12 | * |
| 13 | * (C) 1999-2001 Ben Fennema |
| 14 | * (C) 1999 Stelias Computing Inc |
| 15 | * |
| 16 | * HISTORY |
| 17 | * |
| 18 | * 02/24/99 blf Created. |
| 19 | * |
| 20 | */ |
| 21 | |
| 22 | #include "udfdecl.h" |
| 23 | |
| 24 | #include <linux/quotaops.h> |
| 25 | #include <linux/buffer_head.h> |
| 26 | #include <linux/bitops.h> |
| 27 | |
| 28 | #include "udf_i.h" |
| 29 | #include "udf_sb.h" |
| 30 | |
| 31 | #define udf_clear_bit(nr,addr) ext2_clear_bit(nr,addr) |
| 32 | #define udf_set_bit(nr,addr) ext2_set_bit(nr,addr) |
| 33 | #define udf_test_bit(nr, addr) ext2_test_bit(nr, addr) |
| 34 | #define udf_find_first_one_bit(addr, size) find_first_one_bit(addr, size) |
| 35 | #define udf_find_next_one_bit(addr, size, offset) find_next_one_bit(addr, size, offset) |
| 36 | |
| 37 | #define leBPL_to_cpup(x) leNUM_to_cpup(BITS_PER_LONG, x) |
| 38 | #define leNUM_to_cpup(x,y) xleNUM_to_cpup(x,y) |
| 39 | #define xleNUM_to_cpup(x,y) (le ## x ## _to_cpup(y)) |
| 40 | #define uintBPL_t uint(BITS_PER_LONG) |
| 41 | #define uint(x) xuint(x) |
| 42 | #define xuint(x) __le ## x |
| 43 | |
| 44 | extern inline int find_next_one_bit (void * addr, int size, int offset) |
| 45 | { |
| 46 | uintBPL_t * p = ((uintBPL_t *) addr) + (offset / BITS_PER_LONG); |
| 47 | int result = offset & ~(BITS_PER_LONG-1); |
| 48 | unsigned long tmp; |
| 49 | |
| 50 | if (offset >= size) |
| 51 | return size; |
| 52 | size -= result; |
| 53 | offset &= (BITS_PER_LONG-1); |
| 54 | if (offset) |
| 55 | { |
| 56 | tmp = leBPL_to_cpup(p++); |
| 57 | tmp &= ~0UL << offset; |
| 58 | if (size < BITS_PER_LONG) |
| 59 | goto found_first; |
| 60 | if (tmp) |
| 61 | goto found_middle; |
| 62 | size -= BITS_PER_LONG; |
| 63 | result += BITS_PER_LONG; |
| 64 | } |
| 65 | while (size & ~(BITS_PER_LONG-1)) |
| 66 | { |
| 67 | if ((tmp = leBPL_to_cpup(p++))) |
| 68 | goto found_middle; |
| 69 | result += BITS_PER_LONG; |
| 70 | size -= BITS_PER_LONG; |
| 71 | } |
| 72 | if (!size) |
| 73 | return result; |
| 74 | tmp = leBPL_to_cpup(p); |
| 75 | found_first: |
| 76 | tmp &= ~0UL >> (BITS_PER_LONG-size); |
| 77 | found_middle: |
| 78 | return result + ffz(~tmp); |
| 79 | } |
| 80 | |
| 81 | #define find_first_one_bit(addr, size)\ |
| 82 | find_next_one_bit((addr), (size), 0) |
| 83 | |
| 84 | static int read_block_bitmap(struct super_block * sb, |
| 85 | struct udf_bitmap *bitmap, unsigned int block, unsigned long bitmap_nr) |
| 86 | { |
| 87 | struct buffer_head *bh = NULL; |
| 88 | int retval = 0; |
| 89 | kernel_lb_addr loc; |
| 90 | |
| 91 | loc.logicalBlockNum = bitmap->s_extPosition; |
| 92 | loc.partitionReferenceNum = UDF_SB_PARTITION(sb); |
| 93 | |
| 94 | bh = udf_tread(sb, udf_get_lb_pblock(sb, loc, block)); |
| 95 | if (!bh) |
| 96 | { |
| 97 | retval = -EIO; |
| 98 | } |
| 99 | bitmap->s_block_bitmap[bitmap_nr] = bh; |
| 100 | return retval; |
| 101 | } |
| 102 | |
| 103 | static int __load_block_bitmap(struct super_block * sb, |
| 104 | struct udf_bitmap *bitmap, unsigned int block_group) |
| 105 | { |
| 106 | int retval = 0; |
| 107 | int nr_groups = bitmap->s_nr_groups; |
| 108 | |
| 109 | if (block_group >= nr_groups) |
| 110 | { |
| 111 | udf_debug("block_group (%d) > nr_groups (%d)\n", block_group, nr_groups); |
| 112 | } |
| 113 | |
| 114 | if (bitmap->s_block_bitmap[block_group]) |
| 115 | return block_group; |
| 116 | else |
| 117 | { |
| 118 | retval = read_block_bitmap(sb, bitmap, block_group, block_group); |
| 119 | if (retval < 0) |
| 120 | return retval; |
| 121 | return block_group; |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | static inline int load_block_bitmap(struct super_block * sb, |
| 126 | struct udf_bitmap *bitmap, unsigned int block_group) |
| 127 | { |
| 128 | int slot; |
| 129 | |
| 130 | slot = __load_block_bitmap(sb, bitmap, block_group); |
| 131 | |
| 132 | if (slot < 0) |
| 133 | return slot; |
| 134 | |
| 135 | if (!bitmap->s_block_bitmap[slot]) |
| 136 | return -EIO; |
| 137 | |
| 138 | return slot; |
| 139 | } |
| 140 | |
| 141 | static void udf_bitmap_free_blocks(struct super_block * sb, |
| 142 | struct inode * inode, |
| 143 | struct udf_bitmap *bitmap, |
| 144 | kernel_lb_addr bloc, uint32_t offset, uint32_t count) |
| 145 | { |
| 146 | struct udf_sb_info *sbi = UDF_SB(sb); |
| 147 | struct buffer_head * bh = NULL; |
| 148 | unsigned long block; |
| 149 | unsigned long block_group; |
| 150 | unsigned long bit; |
| 151 | unsigned long i; |
| 152 | int bitmap_nr; |
| 153 | unsigned long overflow; |
| 154 | |
| 155 | down(&sbi->s_alloc_sem); |
| 156 | if (bloc.logicalBlockNum < 0 || |
| 157 | (bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)) |
| 158 | { |
| 159 | udf_debug("%d < %d || %d + %d > %d\n", |
| 160 | bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count, |
| 161 | UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)); |
| 162 | goto error_return; |
| 163 | } |
| 164 | |
| 165 | block = bloc.logicalBlockNum + offset + (sizeof(struct spaceBitmapDesc) << 3); |
| 166 | |
| 167 | do_more: |
| 168 | overflow = 0; |
| 169 | block_group = block >> (sb->s_blocksize_bits + 3); |
| 170 | bit = block % (sb->s_blocksize << 3); |
| 171 | |
| 172 | /* |
| 173 | * Check to see if we are freeing blocks across a group boundary. |
| 174 | */ |
| 175 | if (bit + count > (sb->s_blocksize << 3)) |
| 176 | { |
| 177 | overflow = bit + count - (sb->s_blocksize << 3); |
| 178 | count -= overflow; |
| 179 | } |
| 180 | bitmap_nr = load_block_bitmap(sb, bitmap, block_group); |
| 181 | if (bitmap_nr < 0) |
| 182 | goto error_return; |
| 183 | |
| 184 | bh = bitmap->s_block_bitmap[bitmap_nr]; |
| 185 | for (i=0; i < count; i++) |
| 186 | { |
| 187 | if (udf_set_bit(bit + i, bh->b_data)) |
| 188 | { |
| 189 | udf_debug("bit %ld already set\n", bit + i); |
| 190 | udf_debug("byte=%2x\n", ((char *)bh->b_data)[(bit + i) >> 3]); |
| 191 | } |
| 192 | else |
| 193 | { |
| 194 | if (inode) |
| 195 | DQUOT_FREE_BLOCK(inode, 1); |
| 196 | if (UDF_SB_LVIDBH(sb)) |
| 197 | { |
| 198 | UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] = |
| 199 | cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+1); |
| 200 | } |
| 201 | } |
| 202 | } |
| 203 | mark_buffer_dirty(bh); |
| 204 | if (overflow) |
| 205 | { |
| 206 | block += count; |
| 207 | count = overflow; |
| 208 | goto do_more; |
| 209 | } |
| 210 | error_return: |
| 211 | sb->s_dirt = 1; |
| 212 | if (UDF_SB_LVIDBH(sb)) |
| 213 | mark_buffer_dirty(UDF_SB_LVIDBH(sb)); |
| 214 | up(&sbi->s_alloc_sem); |
| 215 | return; |
| 216 | } |
| 217 | |
| 218 | static int udf_bitmap_prealloc_blocks(struct super_block * sb, |
| 219 | struct inode * inode, |
| 220 | struct udf_bitmap *bitmap, uint16_t partition, uint32_t first_block, |
| 221 | uint32_t block_count) |
| 222 | { |
| 223 | struct udf_sb_info *sbi = UDF_SB(sb); |
| 224 | int alloc_count = 0; |
| 225 | int bit, block, block_group, group_start; |
| 226 | int nr_groups, bitmap_nr; |
| 227 | struct buffer_head *bh; |
| 228 | |
| 229 | down(&sbi->s_alloc_sem); |
| 230 | if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition)) |
| 231 | goto out; |
| 232 | |
| 233 | if (first_block + block_count > UDF_SB_PARTLEN(sb, partition)) |
| 234 | block_count = UDF_SB_PARTLEN(sb, partition) - first_block; |
| 235 | |
| 236 | repeat: |
| 237 | nr_groups = (UDF_SB_PARTLEN(sb, partition) + |
| 238 | (sizeof(struct spaceBitmapDesc) << 3) + (sb->s_blocksize * 8) - 1) / (sb->s_blocksize * 8); |
| 239 | block = first_block + (sizeof(struct spaceBitmapDesc) << 3); |
| 240 | block_group = block >> (sb->s_blocksize_bits + 3); |
| 241 | group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); |
| 242 | |
| 243 | bitmap_nr = load_block_bitmap(sb, bitmap, block_group); |
| 244 | if (bitmap_nr < 0) |
| 245 | goto out; |
| 246 | bh = bitmap->s_block_bitmap[bitmap_nr]; |
| 247 | |
| 248 | bit = block % (sb->s_blocksize << 3); |
| 249 | |
| 250 | while (bit < (sb->s_blocksize << 3) && block_count > 0) |
| 251 | { |
| 252 | if (!udf_test_bit(bit, bh->b_data)) |
| 253 | goto out; |
| 254 | else if (DQUOT_PREALLOC_BLOCK(inode, 1)) |
| 255 | goto out; |
| 256 | else if (!udf_clear_bit(bit, bh->b_data)) |
| 257 | { |
| 258 | udf_debug("bit already cleared for block %d\n", bit); |
| 259 | DQUOT_FREE_BLOCK(inode, 1); |
| 260 | goto out; |
| 261 | } |
| 262 | block_count --; |
| 263 | alloc_count ++; |
| 264 | bit ++; |
| 265 | block ++; |
| 266 | } |
| 267 | mark_buffer_dirty(bh); |
| 268 | if (block_count > 0) |
| 269 | goto repeat; |
| 270 | out: |
| 271 | if (UDF_SB_LVIDBH(sb)) |
| 272 | { |
| 273 | UDF_SB_LVID(sb)->freeSpaceTable[partition] = |
| 274 | cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count); |
| 275 | mark_buffer_dirty(UDF_SB_LVIDBH(sb)); |
| 276 | } |
| 277 | sb->s_dirt = 1; |
| 278 | up(&sbi->s_alloc_sem); |
| 279 | return alloc_count; |
| 280 | } |
| 281 | |
| 282 | static int udf_bitmap_new_block(struct super_block * sb, |
| 283 | struct inode * inode, |
| 284 | struct udf_bitmap *bitmap, uint16_t partition, uint32_t goal, int *err) |
| 285 | { |
| 286 | struct udf_sb_info *sbi = UDF_SB(sb); |
| 287 | int newbit, bit=0, block, block_group, group_start; |
| 288 | int end_goal, nr_groups, bitmap_nr, i; |
| 289 | struct buffer_head *bh = NULL; |
| 290 | char *ptr; |
| 291 | int newblock = 0; |
| 292 | |
| 293 | *err = -ENOSPC; |
| 294 | down(&sbi->s_alloc_sem); |
| 295 | |
| 296 | repeat: |
| 297 | if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition)) |
| 298 | goal = 0; |
| 299 | |
| 300 | nr_groups = bitmap->s_nr_groups; |
| 301 | block = goal + (sizeof(struct spaceBitmapDesc) << 3); |
| 302 | block_group = block >> (sb->s_blocksize_bits + 3); |
| 303 | group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); |
| 304 | |
| 305 | bitmap_nr = load_block_bitmap(sb, bitmap, block_group); |
| 306 | if (bitmap_nr < 0) |
| 307 | goto error_return; |
| 308 | bh = bitmap->s_block_bitmap[bitmap_nr]; |
| 309 | ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start); |
| 310 | |
| 311 | if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) |
| 312 | { |
| 313 | bit = block % (sb->s_blocksize << 3); |
| 314 | |
| 315 | if (udf_test_bit(bit, bh->b_data)) |
| 316 | { |
| 317 | goto got_block; |
| 318 | } |
| 319 | end_goal = (bit + 63) & ~63; |
| 320 | bit = udf_find_next_one_bit(bh->b_data, end_goal, bit); |
| 321 | if (bit < end_goal) |
| 322 | goto got_block; |
| 323 | ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF, sb->s_blocksize - ((bit + 7) >> 3)); |
| 324 | newbit = (ptr - ((char *)bh->b_data)) << 3; |
| 325 | if (newbit < sb->s_blocksize << 3) |
| 326 | { |
| 327 | bit = newbit; |
| 328 | goto search_back; |
| 329 | } |
| 330 | newbit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, bit); |
| 331 | if (newbit < sb->s_blocksize << 3) |
| 332 | { |
| 333 | bit = newbit; |
| 334 | goto got_block; |
| 335 | } |
| 336 | } |
| 337 | |
| 338 | for (i=0; i<(nr_groups*2); i++) |
| 339 | { |
| 340 | block_group ++; |
| 341 | if (block_group >= nr_groups) |
| 342 | block_group = 0; |
| 343 | group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); |
| 344 | |
| 345 | bitmap_nr = load_block_bitmap(sb, bitmap, block_group); |
| 346 | if (bitmap_nr < 0) |
| 347 | goto error_return; |
| 348 | bh = bitmap->s_block_bitmap[bitmap_nr]; |
| 349 | if (i < nr_groups) |
| 350 | { |
| 351 | ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start); |
| 352 | if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) |
| 353 | { |
| 354 | bit = (ptr - ((char *)bh->b_data)) << 3; |
| 355 | break; |
| 356 | } |
| 357 | } |
| 358 | else |
| 359 | { |
| 360 | bit = udf_find_next_one_bit((char *)bh->b_data, sb->s_blocksize << 3, group_start << 3); |
| 361 | if (bit < sb->s_blocksize << 3) |
| 362 | break; |
| 363 | } |
| 364 | } |
| 365 | if (i >= (nr_groups*2)) |
| 366 | { |
| 367 | up(&sbi->s_alloc_sem); |
| 368 | return newblock; |
| 369 | } |
| 370 | if (bit < sb->s_blocksize << 3) |
| 371 | goto search_back; |
| 372 | else |
| 373 | bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, group_start << 3); |
| 374 | if (bit >= sb->s_blocksize << 3) |
| 375 | { |
| 376 | up(&sbi->s_alloc_sem); |
| 377 | return 0; |
| 378 | } |
| 379 | |
| 380 | search_back: |
| 381 | for (i=0; i<7 && bit > (group_start << 3) && udf_test_bit(bit - 1, bh->b_data); i++, bit--); |
| 382 | |
| 383 | got_block: |
| 384 | |
| 385 | /* |
| 386 | * Check quota for allocation of this block. |
| 387 | */ |
| 388 | if (inode && DQUOT_ALLOC_BLOCK(inode, 1)) |
| 389 | { |
| 390 | up(&sbi->s_alloc_sem); |
| 391 | *err = -EDQUOT; |
| 392 | return 0; |
| 393 | } |
| 394 | |
| 395 | newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) - |
| 396 | (sizeof(struct spaceBitmapDesc) << 3); |
| 397 | |
| 398 | if (!udf_clear_bit(bit, bh->b_data)) |
| 399 | { |
| 400 | udf_debug("bit already cleared for block %d\n", bit); |
| 401 | goto repeat; |
| 402 | } |
| 403 | |
| 404 | mark_buffer_dirty(bh); |
| 405 | |
| 406 | if (UDF_SB_LVIDBH(sb)) |
| 407 | { |
| 408 | UDF_SB_LVID(sb)->freeSpaceTable[partition] = |
| 409 | cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1); |
| 410 | mark_buffer_dirty(UDF_SB_LVIDBH(sb)); |
| 411 | } |
| 412 | sb->s_dirt = 1; |
| 413 | up(&sbi->s_alloc_sem); |
| 414 | *err = 0; |
| 415 | return newblock; |
| 416 | |
| 417 | error_return: |
| 418 | *err = -EIO; |
| 419 | up(&sbi->s_alloc_sem); |
| 420 | return 0; |
| 421 | } |
| 422 | |
| 423 | static void udf_table_free_blocks(struct super_block * sb, |
| 424 | struct inode * inode, |
| 425 | struct inode * table, |
| 426 | kernel_lb_addr bloc, uint32_t offset, uint32_t count) |
| 427 | { |
| 428 | struct udf_sb_info *sbi = UDF_SB(sb); |
| 429 | uint32_t start, end; |
| 430 | uint32_t nextoffset, oextoffset, elen; |
| 431 | kernel_lb_addr nbloc, obloc, eloc; |
| 432 | struct buffer_head *obh, *nbh; |
| 433 | int8_t etype; |
| 434 | int i; |
| 435 | |
| 436 | down(&sbi->s_alloc_sem); |
| 437 | if (bloc.logicalBlockNum < 0 || |
| 438 | (bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)) |
| 439 | { |
| 440 | udf_debug("%d < %d || %d + %d > %d\n", |
| 441 | bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count, |
| 442 | UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)); |
| 443 | goto error_return; |
| 444 | } |
| 445 | |
| 446 | /* We do this up front - There are some error conditions that could occure, |
| 447 | but.. oh well */ |
| 448 | if (inode) |
| 449 | DQUOT_FREE_BLOCK(inode, count); |
| 450 | if (UDF_SB_LVIDBH(sb)) |
| 451 | { |
| 452 | UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] = |
| 453 | cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+count); |
| 454 | mark_buffer_dirty(UDF_SB_LVIDBH(sb)); |
| 455 | } |
| 456 | |
| 457 | start = bloc.logicalBlockNum + offset; |
| 458 | end = bloc.logicalBlockNum + offset + count - 1; |
| 459 | |
| 460 | oextoffset = nextoffset = sizeof(struct unallocSpaceEntry); |
| 461 | elen = 0; |
| 462 | obloc = nbloc = UDF_I_LOCATION(table); |
| 463 | |
| 464 | obh = nbh = NULL; |
| 465 | |
| 466 | while (count && (etype = |
| 467 | udf_next_aext(table, &nbloc, &nextoffset, &eloc, &elen, &nbh, 1)) != -1) |
| 468 | { |
| 469 | if (((eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits)) == |
| 470 | start)) |
| 471 | { |
| 472 | if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits)) |
| 473 | { |
| 474 | count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); |
| 475 | start += ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); |
| 476 | elen = (etype << 30) | (0x40000000 - sb->s_blocksize); |
| 477 | } |
| 478 | else |
| 479 | { |
| 480 | elen = (etype << 30) | |
| 481 | (elen + (count << sb->s_blocksize_bits)); |
| 482 | start += count; |
| 483 | count = 0; |
| 484 | } |
| 485 | udf_write_aext(table, obloc, &oextoffset, eloc, elen, obh, 1); |
| 486 | } |
| 487 | else if (eloc.logicalBlockNum == (end + 1)) |
| 488 | { |
| 489 | if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits)) |
| 490 | { |
| 491 | count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); |
| 492 | end -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); |
| 493 | eloc.logicalBlockNum -= |
| 494 | ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); |
| 495 | elen = (etype << 30) | (0x40000000 - sb->s_blocksize); |
| 496 | } |
| 497 | else |
| 498 | { |
| 499 | eloc.logicalBlockNum = start; |
| 500 | elen = (etype << 30) | |
| 501 | (elen + (count << sb->s_blocksize_bits)); |
| 502 | end -= count; |
| 503 | count = 0; |
| 504 | } |
| 505 | udf_write_aext(table, obloc, &oextoffset, eloc, elen, obh, 1); |
| 506 | } |
| 507 | |
| 508 | if (nbh != obh) |
| 509 | { |
| 510 | i = -1; |
| 511 | obloc = nbloc; |
| 512 | udf_release_data(obh); |
| 513 | atomic_inc(&nbh->b_count); |
| 514 | obh = nbh; |
| 515 | oextoffset = 0; |
| 516 | } |
| 517 | else |
| 518 | oextoffset = nextoffset; |
| 519 | } |
| 520 | |
| 521 | if (count) |
| 522 | { |
| 523 | /* NOTE: we CANNOT use udf_add_aext here, as it can try to allocate |
| 524 | a new block, and since we hold the super block lock already |
| 525 | very bad things would happen :) |
| 526 | |
| 527 | We copy the behavior of udf_add_aext, but instead of |
| 528 | trying to allocate a new block close to the existing one, |
| 529 | we just steal a block from the extent we are trying to add. |
| 530 | |
| 531 | It would be nice if the blocks were close together, but it |
| 532 | isn't required. |
| 533 | */ |
| 534 | |
| 535 | int adsize; |
| 536 | short_ad *sad = NULL; |
| 537 | long_ad *lad = NULL; |
| 538 | struct allocExtDesc *aed; |
| 539 | |
| 540 | eloc.logicalBlockNum = start; |
| 541 | elen = EXT_RECORDED_ALLOCATED | |
| 542 | (count << sb->s_blocksize_bits); |
| 543 | |
| 544 | if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT) |
| 545 | adsize = sizeof(short_ad); |
| 546 | else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG) |
| 547 | adsize = sizeof(long_ad); |
| 548 | else |
| 549 | { |
| 550 | udf_release_data(obh); |
| 551 | udf_release_data(nbh); |
| 552 | goto error_return; |
| 553 | } |
| 554 | |
| 555 | if (nextoffset + (2 * adsize) > sb->s_blocksize) |
| 556 | { |
| 557 | char *sptr, *dptr; |
| 558 | int loffset; |
| 559 | |
| 560 | udf_release_data(obh); |
| 561 | obh = nbh; |
| 562 | obloc = nbloc; |
| 563 | oextoffset = nextoffset; |
| 564 | |
| 565 | /* Steal a block from the extent being free'd */ |
| 566 | nbloc.logicalBlockNum = eloc.logicalBlockNum; |
| 567 | eloc.logicalBlockNum ++; |
| 568 | elen -= sb->s_blocksize; |
| 569 | |
| 570 | if (!(nbh = udf_tread(sb, |
| 571 | udf_get_lb_pblock(sb, nbloc, 0)))) |
| 572 | { |
| 573 | udf_release_data(obh); |
| 574 | goto error_return; |
| 575 | } |
| 576 | aed = (struct allocExtDesc *)(nbh->b_data); |
| 577 | aed->previousAllocExtLocation = cpu_to_le32(obloc.logicalBlockNum); |
| 578 | if (nextoffset + adsize > sb->s_blocksize) |
| 579 | { |
| 580 | loffset = nextoffset; |
| 581 | aed->lengthAllocDescs = cpu_to_le32(adsize); |
| 582 | if (obh) |
| 583 | sptr = UDF_I_DATA(inode) + nextoffset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode) - adsize; |
| 584 | else |
| 585 | sptr = obh->b_data + nextoffset - adsize; |
| 586 | dptr = nbh->b_data + sizeof(struct allocExtDesc); |
| 587 | memcpy(dptr, sptr, adsize); |
| 588 | nextoffset = sizeof(struct allocExtDesc) + adsize; |
| 589 | } |
| 590 | else |
| 591 | { |
| 592 | loffset = nextoffset + adsize; |
| 593 | aed->lengthAllocDescs = cpu_to_le32(0); |
| 594 | sptr = (obh)->b_data + nextoffset; |
| 595 | nextoffset = sizeof(struct allocExtDesc); |
| 596 | |
| 597 | if (obh) |
| 598 | { |
| 599 | aed = (struct allocExtDesc *)(obh)->b_data; |
| 600 | aed->lengthAllocDescs = |
| 601 | cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize); |
| 602 | } |
| 603 | else |
| 604 | { |
| 605 | UDF_I_LENALLOC(table) += adsize; |
| 606 | mark_inode_dirty(table); |
| 607 | } |
| 608 | } |
| 609 | if (UDF_SB_UDFREV(sb) >= 0x0200) |
| 610 | udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1, |
| 611 | nbloc.logicalBlockNum, sizeof(tag)); |
| 612 | else |
| 613 | udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1, |
| 614 | nbloc.logicalBlockNum, sizeof(tag)); |
| 615 | switch (UDF_I_ALLOCTYPE(table)) |
| 616 | { |
| 617 | case ICBTAG_FLAG_AD_SHORT: |
| 618 | { |
| 619 | sad = (short_ad *)sptr; |
| 620 | sad->extLength = cpu_to_le32( |
| 621 | EXT_NEXT_EXTENT_ALLOCDECS | |
| 622 | sb->s_blocksize); |
| 623 | sad->extPosition = cpu_to_le32(nbloc.logicalBlockNum); |
| 624 | break; |
| 625 | } |
| 626 | case ICBTAG_FLAG_AD_LONG: |
| 627 | { |
| 628 | lad = (long_ad *)sptr; |
| 629 | lad->extLength = cpu_to_le32( |
| 630 | EXT_NEXT_EXTENT_ALLOCDECS | |
| 631 | sb->s_blocksize); |
| 632 | lad->extLocation = cpu_to_lelb(nbloc); |
| 633 | break; |
| 634 | } |
| 635 | } |
| 636 | if (obh) |
| 637 | { |
| 638 | udf_update_tag(obh->b_data, loffset); |
| 639 | mark_buffer_dirty(obh); |
| 640 | } |
| 641 | else |
| 642 | mark_inode_dirty(table); |
| 643 | } |
| 644 | |
| 645 | if (elen) /* It's possible that stealing the block emptied the extent */ |
| 646 | { |
| 647 | udf_write_aext(table, nbloc, &nextoffset, eloc, elen, nbh, 1); |
| 648 | |
| 649 | if (!nbh) |
| 650 | { |
| 651 | UDF_I_LENALLOC(table) += adsize; |
| 652 | mark_inode_dirty(table); |
| 653 | } |
| 654 | else |
| 655 | { |
| 656 | aed = (struct allocExtDesc *)nbh->b_data; |
| 657 | aed->lengthAllocDescs = |
| 658 | cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize); |
| 659 | udf_update_tag(nbh->b_data, nextoffset); |
| 660 | mark_buffer_dirty(nbh); |
| 661 | } |
| 662 | } |
| 663 | } |
| 664 | |
| 665 | udf_release_data(nbh); |
| 666 | udf_release_data(obh); |
| 667 | |
| 668 | error_return: |
| 669 | sb->s_dirt = 1; |
| 670 | up(&sbi->s_alloc_sem); |
| 671 | return; |
| 672 | } |
| 673 | |
| 674 | static int udf_table_prealloc_blocks(struct super_block * sb, |
| 675 | struct inode * inode, |
| 676 | struct inode *table, uint16_t partition, uint32_t first_block, |
| 677 | uint32_t block_count) |
| 678 | { |
| 679 | struct udf_sb_info *sbi = UDF_SB(sb); |
| 680 | int alloc_count = 0; |
| 681 | uint32_t extoffset, elen, adsize; |
| 682 | kernel_lb_addr bloc, eloc; |
| 683 | struct buffer_head *bh; |
| 684 | int8_t etype = -1; |
| 685 | |
| 686 | if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition)) |
| 687 | return 0; |
| 688 | |
| 689 | if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT) |
| 690 | adsize = sizeof(short_ad); |
| 691 | else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG) |
| 692 | adsize = sizeof(long_ad); |
| 693 | else |
| 694 | return 0; |
| 695 | |
| 696 | down(&sbi->s_alloc_sem); |
| 697 | extoffset = sizeof(struct unallocSpaceEntry); |
| 698 | bloc = UDF_I_LOCATION(table); |
| 699 | |
| 700 | bh = NULL; |
| 701 | eloc.logicalBlockNum = 0xFFFFFFFF; |
| 702 | |
| 703 | while (first_block != eloc.logicalBlockNum && (etype = |
| 704 | udf_next_aext(table, &bloc, &extoffset, &eloc, &elen, &bh, 1)) != -1) |
| 705 | { |
| 706 | udf_debug("eloc=%d, elen=%d, first_block=%d\n", |
| 707 | eloc.logicalBlockNum, elen, first_block); |
| 708 | ; /* empty loop body */ |
| 709 | } |
| 710 | |
| 711 | if (first_block == eloc.logicalBlockNum) |
| 712 | { |
| 713 | extoffset -= adsize; |
| 714 | |
| 715 | alloc_count = (elen >> sb->s_blocksize_bits); |
| 716 | if (inode && DQUOT_PREALLOC_BLOCK(inode, alloc_count > block_count ? block_count : alloc_count)) |
| 717 | alloc_count = 0; |
| 718 | else if (alloc_count > block_count) |
| 719 | { |
| 720 | alloc_count = block_count; |
| 721 | eloc.logicalBlockNum += alloc_count; |
| 722 | elen -= (alloc_count << sb->s_blocksize_bits); |
| 723 | udf_write_aext(table, bloc, &extoffset, eloc, (etype << 30) | elen, bh, 1); |
| 724 | } |
| 725 | else |
| 726 | udf_delete_aext(table, bloc, extoffset, eloc, (etype << 30) | elen, bh); |
| 727 | } |
| 728 | else |
| 729 | alloc_count = 0; |
| 730 | |
| 731 | udf_release_data(bh); |
| 732 | |
| 733 | if (alloc_count && UDF_SB_LVIDBH(sb)) |
| 734 | { |
| 735 | UDF_SB_LVID(sb)->freeSpaceTable[partition] = |
| 736 | cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count); |
| 737 | mark_buffer_dirty(UDF_SB_LVIDBH(sb)); |
| 738 | sb->s_dirt = 1; |
| 739 | } |
| 740 | up(&sbi->s_alloc_sem); |
| 741 | return alloc_count; |
| 742 | } |
| 743 | |
| 744 | static int udf_table_new_block(struct super_block * sb, |
| 745 | struct inode * inode, |
| 746 | struct inode *table, uint16_t partition, uint32_t goal, int *err) |
| 747 | { |
| 748 | struct udf_sb_info *sbi = UDF_SB(sb); |
| 749 | uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF; |
| 750 | uint32_t newblock = 0, adsize; |
| 751 | uint32_t extoffset, goal_extoffset, elen, goal_elen = 0; |
| 752 | kernel_lb_addr bloc, goal_bloc, eloc, goal_eloc; |
| 753 | struct buffer_head *bh, *goal_bh; |
| 754 | int8_t etype; |
| 755 | |
| 756 | *err = -ENOSPC; |
| 757 | |
| 758 | if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT) |
| 759 | adsize = sizeof(short_ad); |
| 760 | else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG) |
| 761 | adsize = sizeof(long_ad); |
| 762 | else |
| 763 | return newblock; |
| 764 | |
| 765 | down(&sbi->s_alloc_sem); |
| 766 | if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition)) |
| 767 | goal = 0; |
| 768 | |
| 769 | /* We search for the closest matching block to goal. If we find a exact hit, |
| 770 | we stop. Otherwise we keep going till we run out of extents. |
| 771 | We store the buffer_head, bloc, and extoffset of the current closest |
| 772 | match and use that when we are done. |
| 773 | */ |
| 774 | |
| 775 | extoffset = sizeof(struct unallocSpaceEntry); |
| 776 | bloc = UDF_I_LOCATION(table); |
| 777 | |
| 778 | goal_bh = bh = NULL; |
| 779 | |
| 780 | while (spread && (etype = |
| 781 | udf_next_aext(table, &bloc, &extoffset, &eloc, &elen, &bh, 1)) != -1) |
| 782 | { |
| 783 | if (goal >= eloc.logicalBlockNum) |
| 784 | { |
| 785 | if (goal < eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits)) |
| 786 | nspread = 0; |
| 787 | else |
| 788 | nspread = goal - eloc.logicalBlockNum - |
| 789 | (elen >> sb->s_blocksize_bits); |
| 790 | } |
| 791 | else |
| 792 | nspread = eloc.logicalBlockNum - goal; |
| 793 | |
| 794 | if (nspread < spread) |
| 795 | { |
| 796 | spread = nspread; |
| 797 | if (goal_bh != bh) |
| 798 | { |
| 799 | udf_release_data(goal_bh); |
| 800 | goal_bh = bh; |
| 801 | atomic_inc(&goal_bh->b_count); |
| 802 | } |
| 803 | goal_bloc = bloc; |
| 804 | goal_extoffset = extoffset - adsize; |
| 805 | goal_eloc = eloc; |
| 806 | goal_elen = (etype << 30) | elen; |
| 807 | } |
| 808 | } |
| 809 | |
| 810 | udf_release_data(bh); |
| 811 | |
| 812 | if (spread == 0xFFFFFFFF) |
| 813 | { |
| 814 | udf_release_data(goal_bh); |
| 815 | up(&sbi->s_alloc_sem); |
| 816 | return 0; |
| 817 | } |
| 818 | |
| 819 | /* Only allocate blocks from the beginning of the extent. |
| 820 | That way, we only delete (empty) extents, never have to insert an |
| 821 | extent because of splitting */ |
| 822 | /* This works, but very poorly.... */ |
| 823 | |
| 824 | newblock = goal_eloc.logicalBlockNum; |
| 825 | goal_eloc.logicalBlockNum ++; |
| 826 | goal_elen -= sb->s_blocksize; |
| 827 | |
| 828 | if (inode && DQUOT_ALLOC_BLOCK(inode, 1)) |
| 829 | { |
| 830 | udf_release_data(goal_bh); |
| 831 | up(&sbi->s_alloc_sem); |
| 832 | *err = -EDQUOT; |
| 833 | return 0; |
| 834 | } |
| 835 | |
| 836 | if (goal_elen) |
| 837 | udf_write_aext(table, goal_bloc, &goal_extoffset, goal_eloc, goal_elen, goal_bh, 1); |
| 838 | else |
| 839 | udf_delete_aext(table, goal_bloc, goal_extoffset, goal_eloc, goal_elen, goal_bh); |
| 840 | udf_release_data(goal_bh); |
| 841 | |
| 842 | if (UDF_SB_LVIDBH(sb)) |
| 843 | { |
| 844 | UDF_SB_LVID(sb)->freeSpaceTable[partition] = |
| 845 | cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1); |
| 846 | mark_buffer_dirty(UDF_SB_LVIDBH(sb)); |
| 847 | } |
| 848 | |
| 849 | sb->s_dirt = 1; |
| 850 | up(&sbi->s_alloc_sem); |
| 851 | *err = 0; |
| 852 | return newblock; |
| 853 | } |
| 854 | |
| 855 | inline void udf_free_blocks(struct super_block * sb, |
| 856 | struct inode * inode, |
| 857 | kernel_lb_addr bloc, uint32_t offset, uint32_t count) |
| 858 | { |
| 859 | uint16_t partition = bloc.partitionReferenceNum; |
| 860 | |
| 861 | if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) |
| 862 | { |
| 863 | return udf_bitmap_free_blocks(sb, inode, |
| 864 | UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap, |
| 865 | bloc, offset, count); |
| 866 | } |
| 867 | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) |
| 868 | { |
| 869 | return udf_table_free_blocks(sb, inode, |
| 870 | UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table, |
| 871 | bloc, offset, count); |
| 872 | } |
| 873 | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) |
| 874 | { |
| 875 | return udf_bitmap_free_blocks(sb, inode, |
| 876 | UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap, |
| 877 | bloc, offset, count); |
| 878 | } |
| 879 | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) |
| 880 | { |
| 881 | return udf_table_free_blocks(sb, inode, |
| 882 | UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table, |
| 883 | bloc, offset, count); |
| 884 | } |
| 885 | else |
| 886 | return; |
| 887 | } |
| 888 | |
| 889 | inline int udf_prealloc_blocks(struct super_block * sb, |
| 890 | struct inode * inode, |
| 891 | uint16_t partition, uint32_t first_block, uint32_t block_count) |
| 892 | { |
| 893 | if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) |
| 894 | { |
| 895 | return udf_bitmap_prealloc_blocks(sb, inode, |
| 896 | UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap, |
| 897 | partition, first_block, block_count); |
| 898 | } |
| 899 | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) |
| 900 | { |
| 901 | return udf_table_prealloc_blocks(sb, inode, |
| 902 | UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table, |
| 903 | partition, first_block, block_count); |
| 904 | } |
| 905 | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) |
| 906 | { |
| 907 | return udf_bitmap_prealloc_blocks(sb, inode, |
| 908 | UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap, |
| 909 | partition, first_block, block_count); |
| 910 | } |
| 911 | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) |
| 912 | { |
| 913 | return udf_table_prealloc_blocks(sb, inode, |
| 914 | UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table, |
| 915 | partition, first_block, block_count); |
| 916 | } |
| 917 | else |
| 918 | return 0; |
| 919 | } |
| 920 | |
| 921 | inline int udf_new_block(struct super_block * sb, |
| 922 | struct inode * inode, |
| 923 | uint16_t partition, uint32_t goal, int *err) |
| 924 | { |
| 925 | if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) |
| 926 | { |
| 927 | return udf_bitmap_new_block(sb, inode, |
| 928 | UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap, |
| 929 | partition, goal, err); |
| 930 | } |
| 931 | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) |
| 932 | { |
| 933 | return udf_table_new_block(sb, inode, |
| 934 | UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table, |
| 935 | partition, goal, err); |
| 936 | } |
| 937 | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) |
| 938 | { |
| 939 | return udf_bitmap_new_block(sb, inode, |
| 940 | UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap, |
| 941 | partition, goal, err); |
| 942 | } |
| 943 | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) |
| 944 | { |
| 945 | return udf_table_new_block(sb, inode, |
| 946 | UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table, |
| 947 | partition, goal, err); |
| 948 | } |
| 949 | else |
| 950 | { |
| 951 | *err = -EIO; |
| 952 | return 0; |
| 953 | } |
| 954 | } |