blob: fb7d649437af82b72aa6b47620174543ac9d0d2e [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001------------------------------------------------------------------------------
2 T H E /proc F I L E S Y S T E M
3------------------------------------------------------------------------------
4/proc/sys Terrehon Bowden <terrehon@pacbell.net> October 7 1999
5 Bodo Bauer <bb@ricochet.net>
6
72.4.x update Jorge Nerin <comandante@zaralinux.com> November 14 2000
Shen Feng760df932009-04-02 16:57:20 -07008move /proc/sys Shen Feng <shen@cn.fujitsu.com> April 1 2009
Linus Torvalds1da177e2005-04-16 15:20:36 -07009------------------------------------------------------------------------------
10Version 1.3 Kernel version 2.2.12
11 Kernel version 2.4.0-test11-pre4
12------------------------------------------------------------------------------
13
14Table of Contents
15-----------------
16
17 0 Preface
18 0.1 Introduction/Credits
19 0.2 Legal Stuff
20
21 1 Collecting System Information
22 1.1 Process-Specific Subdirectories
23 1.2 Kernel data
24 1.3 IDE devices in /proc/ide
25 1.4 Networking info in /proc/net
26 1.5 SCSI info
27 1.6 Parallel port info in /proc/parport
28 1.7 TTY info in /proc/tty
29 1.8 Miscellaneous kernel statistics in /proc/stat
Shen Feng760df932009-04-02 16:57:20 -070030 1.9 Ext4 file system parameters
Linus Torvalds1da177e2005-04-16 15:20:36 -070031
32 2 Modifying System Parameters
Shen Feng760df932009-04-02 16:57:20 -070033
34 3 Per-Process Parameters
35 3.1 /proc/<pid>/oom_adj - Adjust the oom-killer score
36 3.2 /proc/<pid>/oom_score - Display current oom-killer score
37 3.3 /proc/<pid>/io - Display the IO accounting fields
38 3.4 /proc/<pid>/coredump_filter - Core dump filtering settings
39 3.5 /proc/<pid>/mountinfo - Information about mounts
40
Linus Torvalds1da177e2005-04-16 15:20:36 -070041
42------------------------------------------------------------------------------
43Preface
44------------------------------------------------------------------------------
45
460.1 Introduction/Credits
47------------------------
48
49This documentation is part of a soon (or so we hope) to be released book on
50the SuSE Linux distribution. As there is no complete documentation for the
51/proc file system and we've used many freely available sources to write these
52chapters, it seems only fair to give the work back to the Linux community.
53This work is based on the 2.2.* kernel version and the upcoming 2.4.*. I'm
54afraid it's still far from complete, but we hope it will be useful. As far as
55we know, it is the first 'all-in-one' document about the /proc file system. It
56is focused on the Intel x86 hardware, so if you are looking for PPC, ARM,
57SPARC, AXP, etc., features, you probably won't find what you are looking for.
58It also only covers IPv4 networking, not IPv6 nor other protocols - sorry. But
59additions and patches are welcome and will be added to this document if you
60mail them to Bodo.
61
62We'd like to thank Alan Cox, Rik van Riel, and Alexey Kuznetsov and a lot of
63other people for help compiling this documentation. We'd also like to extend a
64special thank you to Andi Kleen for documentation, which we relied on heavily
65to create this document, as well as the additional information he provided.
66Thanks to everybody else who contributed source or docs to the Linux kernel
67and helped create a great piece of software... :)
68
69If you have any comments, corrections or additions, please don't hesitate to
70contact Bodo Bauer at bb@ricochet.net. We'll be happy to add them to this
71document.
72
73The latest version of this document is available online at
74http://skaro.nightcrawler.com/~bb/Docs/Proc as HTML version.
75
76If the above direction does not works for you, ypu could try the kernel
77mailing list at linux-kernel@vger.kernel.org and/or try to reach me at
78comandante@zaralinux.com.
79
800.2 Legal Stuff
81---------------
82
83We don't guarantee the correctness of this document, and if you come to us
84complaining about how you screwed up your system because of incorrect
85documentation, we won't feel responsible...
86
87------------------------------------------------------------------------------
88CHAPTER 1: COLLECTING SYSTEM INFORMATION
89------------------------------------------------------------------------------
90
91------------------------------------------------------------------------------
92In This Chapter
93------------------------------------------------------------------------------
94* Investigating the properties of the pseudo file system /proc and its
95 ability to provide information on the running Linux system
96* Examining /proc's structure
97* Uncovering various information about the kernel and the processes running
98 on the system
99------------------------------------------------------------------------------
100
101
102The proc file system acts as an interface to internal data structures in the
103kernel. It can be used to obtain information about the system and to change
104certain kernel parameters at runtime (sysctl).
105
106First, we'll take a look at the read-only parts of /proc. In Chapter 2, we
107show you how you can use /proc/sys to change settings.
108
1091.1 Process-Specific Subdirectories
110-----------------------------------
111
112The directory /proc contains (among other things) one subdirectory for each
113process running on the system, which is named after the process ID (PID).
114
115The link self points to the process reading the file system. Each process
116subdirectory has the entries listed in Table 1-1.
117
118
119Table 1-1: Process specific entries in /proc
120..............................................................................
David Rientjesb813e932007-05-06 14:49:24 -0700121 File Content
122 clear_refs Clears page referenced bits shown in smaps output
123 cmdline Command line arguments
124 cpu Current and last cpu in which it was executed (2.4)(smp)
125 cwd Link to the current working directory
126 environ Values of environment variables
127 exe Link to the executable of this process
128 fd Directory, which contains all file descriptors
129 maps Memory maps to executables and library files (2.4)
130 mem Memory held by this process
131 root Link to the root directory of this process
132 stat Process status
133 statm Process memory status information
134 status Process status in human readable form
135 wchan If CONFIG_KALLSYMS is set, a pre-decoded wchan
Ken Chen2ec220e2008-11-10 11:26:08 +0300136 stack Report full stack trace, enable via CONFIG_STACKTRACE
David Rientjesb813e932007-05-06 14:49:24 -0700137 smaps Extension based on maps, the rss size for each mapped file
Linus Torvalds1da177e2005-04-16 15:20:36 -0700138..............................................................................
139
140For example, to get the status information of a process, all you have to do is
141read the file /proc/PID/status:
142
143 >cat /proc/self/status
144 Name: cat
145 State: R (running)
146 Pid: 5452
147 PPid: 743
148 TracerPid: 0 (2.4)
149 Uid: 501 501 501 501
150 Gid: 100 100 100 100
151 Groups: 100 14 16
152 VmSize: 1112 kB
153 VmLck: 0 kB
154 VmRSS: 348 kB
155 VmData: 24 kB
156 VmStk: 12 kB
157 VmExe: 8 kB
158 VmLib: 1044 kB
159 SigPnd: 0000000000000000
160 SigBlk: 0000000000000000
161 SigIgn: 0000000000000000
162 SigCgt: 0000000000000000
163 CapInh: 00000000fffffeff
164 CapPrm: 0000000000000000
165 CapEff: 0000000000000000
166
167
168This shows you nearly the same information you would get if you viewed it with
169the ps command. In fact, ps uses the proc file system to obtain its
170information. The statm file contains more detailed information about the
Kees Cook18d96772007-07-15 23:40:38 -0700171process memory usage. Its seven fields are explained in Table 1-2. The stat
172file contains details information about the process itself. Its fields are
173explained in Table 1-3.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700174
175
176Table 1-2: Contents of the statm files (as of 2.6.8-rc3)
177..............................................................................
178 Field Content
179 size total program size (pages) (same as VmSize in status)
180 resident size of memory portions (pages) (same as VmRSS in status)
181 shared number of pages that are shared (i.e. backed by a file)
182 trs number of pages that are 'code' (not including libs; broken,
183 includes data segment)
184 lrs number of pages of library (always 0 on 2.6)
185 drs number of pages of data/stack (including libs; broken,
186 includes library text)
187 dt number of dirty pages (always 0 on 2.6)
188..............................................................................
189
Kees Cook18d96772007-07-15 23:40:38 -0700190
191Table 1-3: Contents of the stat files (as of 2.6.22-rc3)
192..............................................................................
193 Field Content
194 pid process id
195 tcomm filename of the executable
196 state state (R is running, S is sleeping, D is sleeping in an
197 uninterruptible wait, Z is zombie, T is traced or stopped)
198 ppid process id of the parent process
199 pgrp pgrp of the process
200 sid session id
201 tty_nr tty the process uses
202 tty_pgrp pgrp of the tty
203 flags task flags
204 min_flt number of minor faults
205 cmin_flt number of minor faults with child's
206 maj_flt number of major faults
207 cmaj_flt number of major faults with child's
208 utime user mode jiffies
209 stime kernel mode jiffies
210 cutime user mode jiffies with child's
211 cstime kernel mode jiffies with child's
212 priority priority level
213 nice nice level
214 num_threads number of threads
Leonardo Chiquitto2e01e002008-02-03 16:17:16 +0200215 it_real_value (obsolete, always 0)
Kees Cook18d96772007-07-15 23:40:38 -0700216 start_time time the process started after system boot
217 vsize virtual memory size
218 rss resident set memory size
219 rsslim current limit in bytes on the rss
220 start_code address above which program text can run
221 end_code address below which program text can run
222 start_stack address of the start of the stack
223 esp current value of ESP
224 eip current value of EIP
225 pending bitmap of pending signals (obsolete)
226 blocked bitmap of blocked signals (obsolete)
227 sigign bitmap of ignored signals (obsolete)
228 sigcatch bitmap of catched signals (obsolete)
229 wchan address where process went to sleep
230 0 (place holder)
231 0 (place holder)
232 exit_signal signal to send to parent thread on exit
233 task_cpu which CPU the task is scheduled on
234 rt_priority realtime priority
235 policy scheduling policy (man sched_setscheduler)
236 blkio_ticks time spent waiting for block IO
237..............................................................................
238
239
Linus Torvalds1da177e2005-04-16 15:20:36 -07002401.2 Kernel data
241---------------
242
243Similar to the process entries, the kernel data files give information about
244the running kernel. The files used to obtain this information are contained in
Kees Cook18d96772007-07-15 23:40:38 -0700245/proc and are listed in Table 1-4. Not all of these will be present in your
Linus Torvalds1da177e2005-04-16 15:20:36 -0700246system. It depends on the kernel configuration and the loaded modules, which
247files are there, and which are missing.
248
Kees Cook18d96772007-07-15 23:40:38 -0700249Table 1-4: Kernel info in /proc
Linus Torvalds1da177e2005-04-16 15:20:36 -0700250..............................................................................
251 File Content
252 apm Advanced power management info
253 buddyinfo Kernel memory allocator information (see text) (2.5)
254 bus Directory containing bus specific information
255 cmdline Kernel command line
256 cpuinfo Info about the CPU
257 devices Available devices (block and character)
258 dma Used DMS channels
259 filesystems Supported filesystems
260 driver Various drivers grouped here, currently rtc (2.4)
261 execdomains Execdomains, related to security (2.4)
262 fb Frame Buffer devices (2.4)
263 fs File system parameters, currently nfs/exports (2.4)
264 ide Directory containing info about the IDE subsystem
265 interrupts Interrupt usage
266 iomem Memory map (2.4)
267 ioports I/O port usage
268 irq Masks for irq to cpu affinity (2.4)(smp?)
269 isapnp ISA PnP (Plug&Play) Info (2.4)
270 kcore Kernel core image (can be ELF or A.OUT(deprecated in 2.4))
271 kmsg Kernel messages
272 ksyms Kernel symbol table
273 loadavg Load average of last 1, 5 & 15 minutes
274 locks Kernel locks
275 meminfo Memory info
276 misc Miscellaneous
277 modules List of loaded modules
278 mounts Mounted filesystems
279 net Networking info (see text)
280 partitions Table of partitions known to the system
Randy Dunlap8b607562007-05-09 07:19:14 +0200281 pci Deprecated info of PCI bus (new way -> /proc/bus/pci/,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700282 decoupled by lspci (2.4)
283 rtc Real time clock
284 scsi SCSI info (see text)
285 slabinfo Slab pool info
Keika Kobayashid3d64df2009-06-17 16:25:55 -0700286 softirqs softirq usage
Linus Torvalds1da177e2005-04-16 15:20:36 -0700287 stat Overall statistics
288 swaps Swap space utilization
289 sys See chapter 2
290 sysvipc Info of SysVIPC Resources (msg, sem, shm) (2.4)
291 tty Info of tty drivers
292 uptime System uptime
293 version Kernel version
294 video bttv info of video resources (2.4)
Eric Dumazeta47a1262008-07-23 21:27:38 -0700295 vmallocinfo Show vmalloced areas
Linus Torvalds1da177e2005-04-16 15:20:36 -0700296..............................................................................
297
298You can, for example, check which interrupts are currently in use and what
299they are used for by looking in the file /proc/interrupts:
300
301 > cat /proc/interrupts
302 CPU0
303 0: 8728810 XT-PIC timer
304 1: 895 XT-PIC keyboard
305 2: 0 XT-PIC cascade
306 3: 531695 XT-PIC aha152x
307 4: 2014133 XT-PIC serial
308 5: 44401 XT-PIC pcnet_cs
309 8: 2 XT-PIC rtc
310 11: 8 XT-PIC i82365
311 12: 182918 XT-PIC PS/2 Mouse
312 13: 1 XT-PIC fpu
313 14: 1232265 XT-PIC ide0
314 15: 7 XT-PIC ide1
315 NMI: 0
316
317In 2.4.* a couple of lines where added to this file LOC & ERR (this time is the
318output of a SMP machine):
319
320 > cat /proc/interrupts
321
322 CPU0 CPU1
323 0: 1243498 1214548 IO-APIC-edge timer
324 1: 8949 8958 IO-APIC-edge keyboard
325 2: 0 0 XT-PIC cascade
326 5: 11286 10161 IO-APIC-edge soundblaster
327 8: 1 0 IO-APIC-edge rtc
328 9: 27422 27407 IO-APIC-edge 3c503
329 12: 113645 113873 IO-APIC-edge PS/2 Mouse
330 13: 0 0 XT-PIC fpu
331 14: 22491 24012 IO-APIC-edge ide0
332 15: 2183 2415 IO-APIC-edge ide1
333 17: 30564 30414 IO-APIC-level eth0
334 18: 177 164 IO-APIC-level bttv
335 NMI: 2457961 2457959
336 LOC: 2457882 2457881
337 ERR: 2155
338
339NMI is incremented in this case because every timer interrupt generates a NMI
340(Non Maskable Interrupt) which is used by the NMI Watchdog to detect lockups.
341
342LOC is the local interrupt counter of the internal APIC of every CPU.
343
344ERR is incremented in the case of errors in the IO-APIC bus (the bus that
345connects the CPUs in a SMP system. This means that an error has been detected,
346the IO-APIC automatically retry the transmission, so it should not be a big
347problem, but you should read the SMP-FAQ.
348
Joe Korty38e760a2007-10-17 18:04:40 +0200349In 2.6.2* /proc/interrupts was expanded again. This time the goal was for
350/proc/interrupts to display every IRQ vector in use by the system, not
351just those considered 'most important'. The new vectors are:
352
353 THR -- interrupt raised when a machine check threshold counter
354 (typically counting ECC corrected errors of memory or cache) exceeds
355 a configurable threshold. Only available on some systems.
356
357 TRM -- a thermal event interrupt occurs when a temperature threshold
358 has been exceeded for the CPU. This interrupt may also be generated
359 when the temperature drops back to normal.
360
361 SPU -- a spurious interrupt is some interrupt that was raised then lowered
362 by some IO device before it could be fully processed by the APIC. Hence
363 the APIC sees the interrupt but does not know what device it came from.
364 For this case the APIC will generate the interrupt with a IRQ vector
365 of 0xff. This might also be generated by chipset bugs.
366
367 RES, CAL, TLB -- rescheduling, call and TLB flush interrupts are
368 sent from one CPU to another per the needs of the OS. Typically,
369 their statistics are used by kernel developers and interested users to
Matt LaPlante19f59462009-04-27 15:06:31 +0200370 determine the occurrence of interrupts of the given type.
Joe Korty38e760a2007-10-17 18:04:40 +0200371
372The above IRQ vectors are displayed only when relevent. For example,
373the threshold vector does not exist on x86_64 platforms. Others are
374suppressed when the system is a uniprocessor. As of this writing, only
375i386 and x86_64 platforms support the new IRQ vector displays.
376
377Of some interest is the introduction of the /proc/irq directory to 2.4.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700378It could be used to set IRQ to CPU affinity, this means that you can "hook" an
379IRQ to only one CPU, or to exclude a CPU of handling IRQs. The contents of the
Max Krasnyansky18404752008-05-29 11:02:52 -0700380irq subdir is one subdir for each IRQ, and two files; default_smp_affinity and
381prof_cpu_mask.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700382
383For example
384 > ls /proc/irq/
385 0 10 12 14 16 18 2 4 6 8 prof_cpu_mask
Max Krasnyansky18404752008-05-29 11:02:52 -0700386 1 11 13 15 17 19 3 5 7 9 default_smp_affinity
Linus Torvalds1da177e2005-04-16 15:20:36 -0700387 > ls /proc/irq/0/
388 smp_affinity
389
Max Krasnyansky18404752008-05-29 11:02:52 -0700390smp_affinity is a bitmask, in which you can specify which CPUs can handle the
391IRQ, you can set it by doing:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700392
Max Krasnyansky18404752008-05-29 11:02:52 -0700393 > echo 1 > /proc/irq/10/smp_affinity
394
395This means that only the first CPU will handle the IRQ, but you can also echo
3965 which means that only the first and fourth CPU can handle the IRQ.
397
398The contents of each smp_affinity file is the same by default:
399
400 > cat /proc/irq/0/smp_affinity
Linus Torvalds1da177e2005-04-16 15:20:36 -0700401 ffffffff
402
Max Krasnyansky18404752008-05-29 11:02:52 -0700403The default_smp_affinity mask applies to all non-active IRQs, which are the
404IRQs which have not yet been allocated/activated, and hence which lack a
405/proc/irq/[0-9]* directory.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700406
Max Krasnyansky18404752008-05-29 11:02:52 -0700407prof_cpu_mask specifies which CPUs are to be profiled by the system wide
408profiler. Default value is ffffffff (all cpus).
Linus Torvalds1da177e2005-04-16 15:20:36 -0700409
410The way IRQs are routed is handled by the IO-APIC, and it's Round Robin
411between all the CPUs which are allowed to handle it. As usual the kernel has
412more info than you and does a better job than you, so the defaults are the
413best choice for almost everyone.
414
415There are three more important subdirectories in /proc: net, scsi, and sys.
416The general rule is that the contents, or even the existence of these
417directories, depend on your kernel configuration. If SCSI is not enabled, the
418directory scsi may not exist. The same is true with the net, which is there
419only when networking support is present in the running kernel.
420
421The slabinfo file gives information about memory usage at the slab level.
422Linux uses slab pools for memory management above page level in version 2.2.
423Commonly used objects have their own slab pool (such as network buffers,
424directory cache, and so on).
425
426..............................................................................
427
428> cat /proc/buddyinfo
429
430Node 0, zone DMA 0 4 5 4 4 3 ...
431Node 0, zone Normal 1 0 0 1 101 8 ...
432Node 0, zone HighMem 2 0 0 1 1 0 ...
433
434Memory fragmentation is a problem under some workloads, and buddyinfo is a
435useful tool for helping diagnose these problems. Buddyinfo will give you a
436clue as to how big an area you can safely allocate, or why a previous
437allocation failed.
438
439Each column represents the number of pages of a certain order which are
440available. In this case, there are 0 chunks of 2^0*PAGE_SIZE available in
441ZONE_DMA, 4 chunks of 2^1*PAGE_SIZE in ZONE_DMA, 101 chunks of 2^4*PAGE_SIZE
442available in ZONE_NORMAL, etc...
443
444..............................................................................
445
446meminfo:
447
448Provides information about distribution and utilization of memory. This
449varies by architecture and compile options. The following is from a
45016GB PIII, which has highmem enabled. You may not have all of these fields.
451
452> cat /proc/meminfo
453
454
455MemTotal: 16344972 kB
456MemFree: 13634064 kB
457Buffers: 3656 kB
458Cached: 1195708 kB
459SwapCached: 0 kB
460Active: 891636 kB
461Inactive: 1077224 kB
462HighTotal: 15597528 kB
463HighFree: 13629632 kB
464LowTotal: 747444 kB
465LowFree: 4432 kB
466SwapTotal: 0 kB
467SwapFree: 0 kB
468Dirty: 968 kB
469Writeback: 0 kB
Miklos Szeredib88473f2008-04-30 00:54:39 -0700470AnonPages: 861800 kB
Linus Torvalds1da177e2005-04-16 15:20:36 -0700471Mapped: 280372 kB
Miklos Szeredib88473f2008-04-30 00:54:39 -0700472Slab: 284364 kB
473SReclaimable: 159856 kB
474SUnreclaim: 124508 kB
475PageTables: 24448 kB
476NFS_Unstable: 0 kB
477Bounce: 0 kB
478WritebackTmp: 0 kB
Linus Torvalds1da177e2005-04-16 15:20:36 -0700479CommitLimit: 7669796 kB
480Committed_AS: 100056 kB
Linus Torvalds1da177e2005-04-16 15:20:36 -0700481VmallocTotal: 112216 kB
482VmallocUsed: 428 kB
483VmallocChunk: 111088 kB
484
485 MemTotal: Total usable ram (i.e. physical ram minus a few reserved
486 bits and the kernel binary code)
487 MemFree: The sum of LowFree+HighFree
488 Buffers: Relatively temporary storage for raw disk blocks
489 shouldn't get tremendously large (20MB or so)
490 Cached: in-memory cache for files read from the disk (the
491 pagecache). Doesn't include SwapCached
492 SwapCached: Memory that once was swapped out, is swapped back in but
493 still also is in the swapfile (if memory is needed it
494 doesn't need to be swapped out AGAIN because it is already
495 in the swapfile. This saves I/O)
496 Active: Memory that has been used more recently and usually not
497 reclaimed unless absolutely necessary.
498 Inactive: Memory which has been less recently used. It is more
499 eligible to be reclaimed for other purposes
500 HighTotal:
501 HighFree: Highmem is all memory above ~860MB of physical memory
502 Highmem areas are for use by userspace programs, or
503 for the pagecache. The kernel must use tricks to access
504 this memory, making it slower to access than lowmem.
505 LowTotal:
506 LowFree: Lowmem is memory which can be used for everything that
Matt LaPlante3f6dee92006-10-03 22:45:33 +0200507 highmem can be used for, but it is also available for the
Linus Torvalds1da177e2005-04-16 15:20:36 -0700508 kernel's use for its own data structures. Among many
509 other things, it is where everything from the Slab is
510 allocated. Bad things happen when you're out of lowmem.
511 SwapTotal: total amount of swap space available
512 SwapFree: Memory which has been evicted from RAM, and is temporarily
513 on the disk
514 Dirty: Memory which is waiting to get written back to the disk
515 Writeback: Memory which is actively being written back to the disk
Miklos Szeredib88473f2008-04-30 00:54:39 -0700516 AnonPages: Non-file backed pages mapped into userspace page tables
Linus Torvalds1da177e2005-04-16 15:20:36 -0700517 Mapped: files which have been mmaped, such as libraries
Adrian Bunke82443c2006-01-10 00:20:30 +0100518 Slab: in-kernel data structures cache
Miklos Szeredib88473f2008-04-30 00:54:39 -0700519SReclaimable: Part of Slab, that might be reclaimed, such as caches
520 SUnreclaim: Part of Slab, that cannot be reclaimed on memory pressure
521 PageTables: amount of memory dedicated to the lowest level of page
522 tables.
523NFS_Unstable: NFS pages sent to the server, but not yet committed to stable
524 storage
525 Bounce: Memory used for block device "bounce buffers"
526WritebackTmp: Memory used by FUSE for temporary writeback buffers
Linus Torvalds1da177e2005-04-16 15:20:36 -0700527 CommitLimit: Based on the overcommit ratio ('vm.overcommit_ratio'),
528 this is the total amount of memory currently available to
529 be allocated on the system. This limit is only adhered to
530 if strict overcommit accounting is enabled (mode 2 in
531 'vm.overcommit_memory').
532 The CommitLimit is calculated with the following formula:
533 CommitLimit = ('vm.overcommit_ratio' * Physical RAM) + Swap
534 For example, on a system with 1G of physical RAM and 7G
535 of swap with a `vm.overcommit_ratio` of 30 it would
536 yield a CommitLimit of 7.3G.
537 For more details, see the memory overcommit documentation
538 in vm/overcommit-accounting.
539Committed_AS: The amount of memory presently allocated on the system.
540 The committed memory is a sum of all of the memory which
541 has been allocated by processes, even if it has not been
542 "used" by them as of yet. A process which malloc()'s 1G
543 of memory, but only touches 300M of it will only show up
544 as using 300M of memory even if it has the address space
545 allocated for the entire 1G. This 1G is memory which has
546 been "committed" to by the VM and can be used at any time
547 by the allocating application. With strict overcommit
548 enabled on the system (mode 2 in 'vm.overcommit_memory'),
549 allocations which would exceed the CommitLimit (detailed
550 above) will not be permitted. This is useful if one needs
551 to guarantee that processes will not fail due to lack of
552 memory once that memory has been successfully allocated.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700553VmallocTotal: total size of vmalloc memory area
554 VmallocUsed: amount of vmalloc area which is used
Matt LaPlante19f59462009-04-27 15:06:31 +0200555VmallocChunk: largest contiguous block of vmalloc area which is free
Linus Torvalds1da177e2005-04-16 15:20:36 -0700556
Eric Dumazeta47a1262008-07-23 21:27:38 -0700557..............................................................................
558
559vmallocinfo:
560
561Provides information about vmalloced/vmaped areas. One line per area,
562containing the virtual address range of the area, size in bytes,
563caller information of the creator, and optional information depending
564on the kind of area :
565
566 pages=nr number of pages
567 phys=addr if a physical address was specified
568 ioremap I/O mapping (ioremap() and friends)
569 vmalloc vmalloc() area
570 vmap vmap()ed pages
571 user VM_USERMAP area
572 vpages buffer for pages pointers was vmalloced (huge area)
573 N<node>=nr (Only on NUMA kernels)
574 Number of pages allocated on memory node <node>
575
576> cat /proc/vmallocinfo
5770xffffc20000000000-0xffffc20000201000 2101248 alloc_large_system_hash+0x204 ...
578 /0x2c0 pages=512 vmalloc N0=128 N1=128 N2=128 N3=128
5790xffffc20000201000-0xffffc20000302000 1052672 alloc_large_system_hash+0x204 ...
580 /0x2c0 pages=256 vmalloc N0=64 N1=64 N2=64 N3=64
5810xffffc20000302000-0xffffc20000304000 8192 acpi_tb_verify_table+0x21/0x4f...
582 phys=7fee8000 ioremap
5830xffffc20000304000-0xffffc20000307000 12288 acpi_tb_verify_table+0x21/0x4f...
584 phys=7fee7000 ioremap
5850xffffc2000031d000-0xffffc2000031f000 8192 init_vdso_vars+0x112/0x210
5860xffffc2000031f000-0xffffc2000032b000 49152 cramfs_uncompress_init+0x2e ...
587 /0x80 pages=11 vmalloc N0=3 N1=3 N2=2 N3=3
5880xffffc2000033a000-0xffffc2000033d000 12288 sys_swapon+0x640/0xac0 ...
589 pages=2 vmalloc N1=2
5900xffffc20000347000-0xffffc2000034c000 20480 xt_alloc_table_info+0xfe ...
591 /0x130 [x_tables] pages=4 vmalloc N0=4
5920xffffffffa0000000-0xffffffffa000f000 61440 sys_init_module+0xc27/0x1d00 ...
593 pages=14 vmalloc N2=14
5940xffffffffa000f000-0xffffffffa0014000 20480 sys_init_module+0xc27/0x1d00 ...
595 pages=4 vmalloc N1=4
5960xffffffffa0014000-0xffffffffa0017000 12288 sys_init_module+0xc27/0x1d00 ...
597 pages=2 vmalloc N1=2
5980xffffffffa0017000-0xffffffffa0022000 45056 sys_init_module+0xc27/0x1d00 ...
599 pages=10 vmalloc N0=10
Linus Torvalds1da177e2005-04-16 15:20:36 -0700600
Keika Kobayashid3d64df2009-06-17 16:25:55 -0700601..............................................................................
602
603softirqs:
604
605Provides counts of softirq handlers serviced since boot time, for each cpu.
606
607> cat /proc/softirqs
608 CPU0 CPU1 CPU2 CPU3
609 HI: 0 0 0 0
610 TIMER: 27166 27120 27097 27034
611 NET_TX: 0 0 0 17
612 NET_RX: 42 0 0 39
613 BLOCK: 0 0 107 1121
614 TASKLET: 0 0 0 290
615 SCHED: 27035 26983 26971 26746
616 HRTIMER: 0 0 0 0
617 RCU: 1678 1769 2178 2250
618
619
Linus Torvalds1da177e2005-04-16 15:20:36 -07006201.3 IDE devices in /proc/ide
621----------------------------
622
623The subdirectory /proc/ide contains information about all IDE devices of which
624the kernel is aware. There is one subdirectory for each IDE controller, the
625file drivers and a link for each IDE device, pointing to the device directory
626in the controller specific subtree.
627
628The file drivers contains general information about the drivers used for the
629IDE devices:
630
631 > cat /proc/ide/drivers
632 ide-cdrom version 4.53
633 ide-disk version 1.08
634
635More detailed information can be found in the controller specific
636subdirectories. These are named ide0, ide1 and so on. Each of these
Kees Cook18d96772007-07-15 23:40:38 -0700637directories contains the files shown in table 1-5.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700638
639
Kees Cook18d96772007-07-15 23:40:38 -0700640Table 1-5: IDE controller info in /proc/ide/ide?
Linus Torvalds1da177e2005-04-16 15:20:36 -0700641..............................................................................
642 File Content
643 channel IDE channel (0 or 1)
644 config Configuration (only for PCI/IDE bridge)
645 mate Mate name
646 model Type/Chipset of IDE controller
647..............................................................................
648
649Each device connected to a controller has a separate subdirectory in the
Kees Cook18d96772007-07-15 23:40:38 -0700650controllers directory. The files listed in table 1-6 are contained in these
Linus Torvalds1da177e2005-04-16 15:20:36 -0700651directories.
652
653
Kees Cook18d96772007-07-15 23:40:38 -0700654Table 1-6: IDE device information
Linus Torvalds1da177e2005-04-16 15:20:36 -0700655..............................................................................
656 File Content
657 cache The cache
658 capacity Capacity of the medium (in 512Byte blocks)
659 driver driver and version
660 geometry physical and logical geometry
661 identify device identify block
662 media media type
663 model device identifier
664 settings device setup
665 smart_thresholds IDE disk management thresholds
666 smart_values IDE disk management values
667..............................................................................
668
669The most interesting file is settings. This file contains a nice overview of
670the drive parameters:
671
672 # cat /proc/ide/ide0/hda/settings
673 name value min max mode
674 ---- ----- --- --- ----
675 bios_cyl 526 0 65535 rw
676 bios_head 255 0 255 rw
677 bios_sect 63 0 63 rw
678 breada_readahead 4 0 127 rw
679 bswap 0 0 1 r
680 file_readahead 72 0 2097151 rw
681 io_32bit 0 0 3 rw
682 keepsettings 0 0 1 rw
683 max_kb_per_request 122 1 127 rw
684 multcount 0 0 8 rw
685 nice1 1 0 1 rw
686 nowerr 0 0 1 rw
687 pio_mode write-only 0 255 w
688 slow 0 0 1 rw
689 unmaskirq 0 0 1 rw
690 using_dma 0 0 1 rw
691
692
6931.4 Networking info in /proc/net
694--------------------------------
695
696The subdirectory /proc/net follows the usual pattern. Table 1-6 shows the
697additional values you get for IP version 6 if you configure the kernel to
698support this. Table 1-7 lists the files and their meaning.
699
700
701Table 1-6: IPv6 info in /proc/net
702..............................................................................
703 File Content
704 udp6 UDP sockets (IPv6)
705 tcp6 TCP sockets (IPv6)
706 raw6 Raw device statistics (IPv6)
707 igmp6 IP multicast addresses, which this host joined (IPv6)
708 if_inet6 List of IPv6 interface addresses
709 ipv6_route Kernel routing table for IPv6
710 rt6_stats Global IPv6 routing tables statistics
711 sockstat6 Socket statistics (IPv6)
712 snmp6 Snmp data (IPv6)
713..............................................................................
714
715
716Table 1-7: Network info in /proc/net
717..............................................................................
718 File Content
719 arp Kernel ARP table
720 dev network devices with statistics
721 dev_mcast the Layer2 multicast groups a device is listening too
722 (interface index, label, number of references, number of bound
723 addresses).
724 dev_stat network device status
725 ip_fwchains Firewall chain linkage
726 ip_fwnames Firewall chain names
727 ip_masq Directory containing the masquerading tables
728 ip_masquerade Major masquerading table
729 netstat Network statistics
730 raw raw device statistics
731 route Kernel routing table
732 rpc Directory containing rpc info
733 rt_cache Routing cache
734 snmp SNMP data
735 sockstat Socket statistics
736 tcp TCP sockets
737 tr_rif Token ring RIF routing table
738 udp UDP sockets
739 unix UNIX domain sockets
740 wireless Wireless interface data (Wavelan etc)
741 igmp IP multicast addresses, which this host joined
742 psched Global packet scheduler parameters.
743 netlink List of PF_NETLINK sockets
744 ip_mr_vifs List of multicast virtual interfaces
745 ip_mr_cache List of multicast routing cache
746..............................................................................
747
748You can use this information to see which network devices are available in
749your system and how much traffic was routed over those devices:
750
751 > cat /proc/net/dev
752 Inter-|Receive |[...
753 face |bytes packets errs drop fifo frame compressed multicast|[...
754 lo: 908188 5596 0 0 0 0 0 0 [...
755 ppp0:15475140 20721 410 0 0 410 0 0 [...
756 eth0: 614530 7085 0 0 0 0 0 1 [...
757
758 ...] Transmit
759 ...] bytes packets errs drop fifo colls carrier compressed
760 ...] 908188 5596 0 0 0 0 0 0
761 ...] 1375103 17405 0 0 0 0 0 0
762 ...] 1703981 5535 0 0 0 3 0 0
763
764In addition, each Channel Bond interface has it's own directory. For
765example, the bond0 device will have a directory called /proc/net/bond0/.
766It will contain information that is specific to that bond, such as the
767current slaves of the bond, the link status of the slaves, and how
768many times the slaves link has failed.
769
7701.5 SCSI info
771-------------
772
773If you have a SCSI host adapter in your system, you'll find a subdirectory
774named after the driver for this adapter in /proc/scsi. You'll also see a list
775of all recognized SCSI devices in /proc/scsi:
776
777 >cat /proc/scsi/scsi
778 Attached devices:
779 Host: scsi0 Channel: 00 Id: 00 Lun: 00
780 Vendor: IBM Model: DGHS09U Rev: 03E0
781 Type: Direct-Access ANSI SCSI revision: 03
782 Host: scsi0 Channel: 00 Id: 06 Lun: 00
783 Vendor: PIONEER Model: CD-ROM DR-U06S Rev: 1.04
784 Type: CD-ROM ANSI SCSI revision: 02
785
786
787The directory named after the driver has one file for each adapter found in
788the system. These files contain information about the controller, including
789the used IRQ and the IO address range. The amount of information shown is
790dependent on the adapter you use. The example shows the output for an Adaptec
791AHA-2940 SCSI adapter:
792
793 > cat /proc/scsi/aic7xxx/0
794
795 Adaptec AIC7xxx driver version: 5.1.19/3.2.4
796 Compile Options:
797 TCQ Enabled By Default : Disabled
798 AIC7XXX_PROC_STATS : Disabled
799 AIC7XXX_RESET_DELAY : 5
800 Adapter Configuration:
801 SCSI Adapter: Adaptec AHA-294X Ultra SCSI host adapter
802 Ultra Wide Controller
803 PCI MMAPed I/O Base: 0xeb001000
804 Adapter SEEPROM Config: SEEPROM found and used.
805 Adaptec SCSI BIOS: Enabled
806 IRQ: 10
807 SCBs: Active 0, Max Active 2,
808 Allocated 15, HW 16, Page 255
809 Interrupts: 160328
810 BIOS Control Word: 0x18b6
811 Adapter Control Word: 0x005b
812 Extended Translation: Enabled
813 Disconnect Enable Flags: 0xffff
814 Ultra Enable Flags: 0x0001
815 Tag Queue Enable Flags: 0x0000
816 Ordered Queue Tag Flags: 0x0000
817 Default Tag Queue Depth: 8
818 Tagged Queue By Device array for aic7xxx host instance 0:
819 {255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255}
820 Actual queue depth per device for aic7xxx host instance 0:
821 {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
822 Statistics:
823 (scsi0:0:0:0)
824 Device using Wide/Sync transfers at 40.0 MByte/sec, offset 8
825 Transinfo settings: current(12/8/1/0), goal(12/8/1/0), user(12/15/1/0)
826 Total transfers 160151 (74577 reads and 85574 writes)
827 (scsi0:0:6:0)
828 Device using Narrow/Sync transfers at 5.0 MByte/sec, offset 15
829 Transinfo settings: current(50/15/0/0), goal(50/15/0/0), user(50/15/0/0)
830 Total transfers 0 (0 reads and 0 writes)
831
832
8331.6 Parallel port info in /proc/parport
834---------------------------------------
835
836The directory /proc/parport contains information about the parallel ports of
837your system. It has one subdirectory for each port, named after the port
838number (0,1,2,...).
839
840These directories contain the four files shown in Table 1-8.
841
842
843Table 1-8: Files in /proc/parport
844..............................................................................
845 File Content
846 autoprobe Any IEEE-1284 device ID information that has been acquired.
847 devices list of the device drivers using that port. A + will appear by the
848 name of the device currently using the port (it might not appear
849 against any).
850 hardware Parallel port's base address, IRQ line and DMA channel.
851 irq IRQ that parport is using for that port. This is in a separate
852 file to allow you to alter it by writing a new value in (IRQ
853 number or none).
854..............................................................................
855
8561.7 TTY info in /proc/tty
857-------------------------
858
859Information about the available and actually used tty's can be found in the
860directory /proc/tty.You'll find entries for drivers and line disciplines in
861this directory, as shown in Table 1-9.
862
863
864Table 1-9: Files in /proc/tty
865..............................................................................
866 File Content
867 drivers list of drivers and their usage
868 ldiscs registered line disciplines
869 driver/serial usage statistic and status of single tty lines
870..............................................................................
871
872To see which tty's are currently in use, you can simply look into the file
873/proc/tty/drivers:
874
875 > cat /proc/tty/drivers
876 pty_slave /dev/pts 136 0-255 pty:slave
877 pty_master /dev/ptm 128 0-255 pty:master
878 pty_slave /dev/ttyp 3 0-255 pty:slave
879 pty_master /dev/pty 2 0-255 pty:master
880 serial /dev/cua 5 64-67 serial:callout
881 serial /dev/ttyS 4 64-67 serial
882 /dev/tty0 /dev/tty0 4 0 system:vtmaster
883 /dev/ptmx /dev/ptmx 5 2 system
884 /dev/console /dev/console 5 1 system:console
885 /dev/tty /dev/tty 5 0 system:/dev/tty
886 unknown /dev/tty 4 1-63 console
887
888
8891.8 Miscellaneous kernel statistics in /proc/stat
890-------------------------------------------------
891
892Various pieces of information about kernel activity are available in the
893/proc/stat file. All of the numbers reported in this file are aggregates
894since the system first booted. For a quick look, simply cat the file:
895
896 > cat /proc/stat
Leonardo Chiquittob68f2c3a2007-10-20 03:03:38 +0200897 cpu 2255 34 2290 22625563 6290 127 456 0
898 cpu0 1132 34 1441 11311718 3675 127 438 0
899 cpu1 1123 0 849 11313845 2614 0 18 0
Linus Torvalds1da177e2005-04-16 15:20:36 -0700900 intr 114930548 113199788 3 0 5 263 0 4 [... lots more numbers ...]
901 ctxt 1990473
902 btime 1062191376
903 processes 2915
904 procs_running 1
905 procs_blocked 0
Keika Kobayashid3d64df2009-06-17 16:25:55 -0700906 softirq 183433 0 21755 12 39 1137 231 21459 2263
Linus Torvalds1da177e2005-04-16 15:20:36 -0700907
908The very first "cpu" line aggregates the numbers in all of the other "cpuN"
909lines. These numbers identify the amount of time the CPU has spent performing
910different kinds of work. Time units are in USER_HZ (typically hundredths of a
911second). The meanings of the columns are as follows, from left to right:
912
913- user: normal processes executing in user mode
914- nice: niced processes executing in user mode
915- system: processes executing in kernel mode
916- idle: twiddling thumbs
917- iowait: waiting for I/O to complete
918- irq: servicing interrupts
919- softirq: servicing softirqs
Leonardo Chiquittob68f2c3a2007-10-20 03:03:38 +0200920- steal: involuntary wait
Linus Torvalds1da177e2005-04-16 15:20:36 -0700921
922The "intr" line gives counts of interrupts serviced since boot time, for each
923of the possible system interrupts. The first column is the total of all
924interrupts serviced; each subsequent column is the total for that particular
925interrupt.
926
927The "ctxt" line gives the total number of context switches across all CPUs.
928
929The "btime" line gives the time at which the system booted, in seconds since
930the Unix epoch.
931
932The "processes" line gives the number of processes and threads created, which
933includes (but is not limited to) those created by calls to the fork() and
934clone() system calls.
935
936The "procs_running" line gives the number of processes currently running on
937CPUs.
938
939The "procs_blocked" line gives the number of processes currently blocked,
940waiting for I/O to complete.
941
Keika Kobayashid3d64df2009-06-17 16:25:55 -0700942The "softirq" line gives counts of softirqs serviced since boot time, for each
943of the possible system softirqs. The first column is the total of all
944softirqs serviced; each subsequent column is the total for that particular
945softirq.
946
Theodore Ts'o37515fa2008-10-09 23:21:54 -0400947
Alex Tomasc9de5602008-01-29 00:19:52 -05009481.9 Ext4 file system parameters
949------------------------------
Alex Tomasc9de5602008-01-29 00:19:52 -0500950
Theodore Ts'o37515fa2008-10-09 23:21:54 -0400951Information about mounted ext4 file systems can be found in
952/proc/fs/ext4. Each mounted filesystem will have a directory in
953/proc/fs/ext4 based on its device name (i.e., /proc/fs/ext4/hdc or
954/proc/fs/ext4/dm-0). The files in each per-device directory are shown
955in Table 1-10, below.
Alex Tomasc9de5602008-01-29 00:19:52 -0500956
Theodore Ts'o37515fa2008-10-09 23:21:54 -0400957Table 1-10: Files in /proc/fs/ext4/<devname>
958..............................................................................
959 File Content
960 mb_groups details of multiblock allocator buddy cache of free blocks
961 mb_history multiblock allocation history
Theodore Ts'o37515fa2008-10-09 23:21:54 -0400962..............................................................................
Alex Tomasc9de5602008-01-29 00:19:52 -0500963
Linus Torvalds1da177e2005-04-16 15:20:36 -0700964
965------------------------------------------------------------------------------
966Summary
967------------------------------------------------------------------------------
968The /proc file system serves information about the running system. It not only
969allows access to process data but also allows you to request the kernel status
970by reading files in the hierarchy.
971
972The directory structure of /proc reflects the types of information and makes
973it easy, if not obvious, where to look for specific data.
974------------------------------------------------------------------------------
975
976------------------------------------------------------------------------------
977CHAPTER 2: MODIFYING SYSTEM PARAMETERS
978------------------------------------------------------------------------------
979
980------------------------------------------------------------------------------
981In This Chapter
982------------------------------------------------------------------------------
983* Modifying kernel parameters by writing into files found in /proc/sys
984* Exploring the files which modify certain parameters
985* Review of the /proc/sys file tree
986------------------------------------------------------------------------------
987
988
989A very interesting part of /proc is the directory /proc/sys. This is not only
990a source of information, it also allows you to change parameters within the
991kernel. Be very careful when attempting this. You can optimize your system,
992but you can also cause it to crash. Never alter kernel parameters on a
993production system. Set up a development machine and test to make sure that
994everything works the way you want it to. You may have no alternative but to
995reboot the machine once an error has been made.
996
997To change a value, simply echo the new value into the file. An example is
998given below in the section on the file system data. You need to be root to do
999this. You can create your own boot script to perform this every time your
1000system boots.
1001
1002The files in /proc/sys can be used to fine tune and monitor miscellaneous and
1003general things in the operation of the Linux kernel. Since some of the files
1004can inadvertently disrupt your system, it is advisable to read both
1005documentation and source before actually making adjustments. In any case, be
1006very careful when writing to any of these files. The entries in /proc may
1007change slightly between the 2.1.* and the 2.2 kernel, so if there is any doubt
1008review the kernel documentation in the directory /usr/src/linux/Documentation.
1009This chapter is heavily based on the documentation included in the pre 2.2
1010kernels, and became part of it in version 2.2.1 of the Linux kernel.
1011
Shen Feng760df932009-04-02 16:57:20 -07001012Please see: Documentation/sysctls/ directory for descriptions of these
Peter W Morrealedb0fb182009-01-15 13:50:42 -08001013entries.
Andrew Morton9d0243b2006-01-08 01:00:39 -08001014
Shen Feng760df932009-04-02 16:57:20 -07001015------------------------------------------------------------------------------
1016Summary
1017------------------------------------------------------------------------------
1018Certain aspects of kernel behavior can be modified at runtime, without the
1019need to recompile the kernel, or even to reboot the system. The files in the
1020/proc/sys tree can not only be read, but also modified. You can use the echo
1021command to write value into these files, thereby changing the default settings
1022of the kernel.
1023------------------------------------------------------------------------------
Andrew Morton9d0243b2006-01-08 01:00:39 -08001024
Shen Feng760df932009-04-02 16:57:20 -07001025------------------------------------------------------------------------------
1026CHAPTER 3: PER-PROCESS PARAMETERS
1027------------------------------------------------------------------------------
Linus Torvalds1da177e2005-04-16 15:20:36 -07001028
Shen Feng760df932009-04-02 16:57:20 -070010293.1 /proc/<pid>/oom_adj - Adjust the oom-killer score
Jan-Frode Myklebustd7ff0db2006-09-29 01:59:45 -07001030------------------------------------------------------
1031
David Rientjes2ff05b22009-06-16 15:32:56 -07001032This file can be used to adjust the score used to select which processes should
1033be killed in an out-of-memory situation. The oom_adj value is a characteristic
1034of the task's mm, so all threads that share an mm with pid will have the same
1035oom_adj value. A high value will increase the likelihood of this process being
1036killed by the oom-killer. Valid values are in the range -16 to +15 as
1037explained below and a special value of -17, which disables oom-killing
1038altogether for threads sharing pid's mm.
Jan-Frode Myklebustd7ff0db2006-09-29 01:59:45 -07001039
Evgeniy Polyakov9e9e3cb2009-01-29 14:25:09 -08001040The process to be killed in an out-of-memory situation is selected among all others
1041based on its badness score. This value equals the original memory size of the process
1042and is then updated according to its CPU time (utime + stime) and the
1043run time (uptime - start time). The longer it runs the smaller is the score.
1044Badness score is divided by the square root of the CPU time and then by
1045the double square root of the run time.
1046
1047Swapped out tasks are killed first. Half of each child's memory size is added to
1048the parent's score if they do not share the same memory. Thus forking servers
1049are the prime candidates to be killed. Having only one 'hungry' child will make
1050parent less preferable than the child.
1051
David Rientjes2ff05b22009-06-16 15:32:56 -07001052/proc/<pid>/oom_adj cannot be changed for kthreads since they are immune from
1053oom-killing already.
1054
Evgeniy Polyakov9e9e3cb2009-01-29 14:25:09 -08001055/proc/<pid>/oom_score shows process' current badness score.
1056
1057The following heuristics are then applied:
1058 * if the task was reniced, its score doubles
1059 * superuser or direct hardware access tasks (CAP_SYS_ADMIN, CAP_SYS_RESOURCE
1060 or CAP_SYS_RAWIO) have their score divided by 4
1061 * if oom condition happened in one cpuset and checked task does not belong
1062 to it, its score is divided by 8
1063 * the resulting score is multiplied by two to the power of oom_adj, i.e.
1064 points <<= oom_adj when it is positive and
1065 points >>= -(oom_adj) otherwise
1066
1067The task with the highest badness score is then selected and its children
1068are killed, process itself will be killed in an OOM situation when it does
1069not have children or some of them disabled oom like described above.
1070
Shen Feng760df932009-04-02 16:57:20 -070010713.2 /proc/<pid>/oom_score - Display current oom-killer score
Jan-Frode Myklebustd7ff0db2006-09-29 01:59:45 -07001072-------------------------------------------------------------
1073
Jan-Frode Myklebustd7ff0db2006-09-29 01:59:45 -07001074This file can be used to check the current score used by the oom-killer is for
1075any given <pid>. Use it together with /proc/<pid>/oom_adj to tune which
1076process should be killed in an out-of-memory situation.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001077
Roland Kletzingf9c99462007-03-05 00:30:54 -08001078
Shen Feng760df932009-04-02 16:57:20 -070010793.3 /proc/<pid>/io - Display the IO accounting fields
Roland Kletzingf9c99462007-03-05 00:30:54 -08001080-------------------------------------------------------
1081
1082This file contains IO statistics for each running process
1083
1084Example
1085-------
1086
1087test:/tmp # dd if=/dev/zero of=/tmp/test.dat &
1088[1] 3828
1089
1090test:/tmp # cat /proc/3828/io
1091rchar: 323934931
1092wchar: 323929600
1093syscr: 632687
1094syscw: 632675
1095read_bytes: 0
1096write_bytes: 323932160
1097cancelled_write_bytes: 0
1098
1099
1100Description
1101-----------
1102
1103rchar
1104-----
1105
1106I/O counter: chars read
1107The number of bytes which this task has caused to be read from storage. This
1108is simply the sum of bytes which this process passed to read() and pread().
1109It includes things like tty IO and it is unaffected by whether or not actual
1110physical disk IO was required (the read might have been satisfied from
1111pagecache)
1112
1113
1114wchar
1115-----
1116
1117I/O counter: chars written
1118The number of bytes which this task has caused, or shall cause to be written
1119to disk. Similar caveats apply here as with rchar.
1120
1121
1122syscr
1123-----
1124
1125I/O counter: read syscalls
1126Attempt to count the number of read I/O operations, i.e. syscalls like read()
1127and pread().
1128
1129
1130syscw
1131-----
1132
1133I/O counter: write syscalls
1134Attempt to count the number of write I/O operations, i.e. syscalls like
1135write() and pwrite().
1136
1137
1138read_bytes
1139----------
1140
1141I/O counter: bytes read
1142Attempt to count the number of bytes which this process really did cause to
1143be fetched from the storage layer. Done at the submit_bio() level, so it is
1144accurate for block-backed filesystems. <please add status regarding NFS and
1145CIFS at a later time>
1146
1147
1148write_bytes
1149-----------
1150
1151I/O counter: bytes written
1152Attempt to count the number of bytes which this process caused to be sent to
1153the storage layer. This is done at page-dirtying time.
1154
1155
1156cancelled_write_bytes
1157---------------------
1158
1159The big inaccuracy here is truncate. If a process writes 1MB to a file and
1160then deletes the file, it will in fact perform no writeout. But it will have
1161been accounted as having caused 1MB of write.
1162In other words: The number of bytes which this process caused to not happen,
1163by truncating pagecache. A task can cause "negative" IO too. If this task
1164truncates some dirty pagecache, some IO which another task has been accounted
1165for (in it's write_bytes) will not be happening. We _could_ just subtract that
1166from the truncating task's write_bytes, but there is information loss in doing
1167that.
1168
1169
1170Note
1171----
1172
1173At its current implementation state, this is a bit racy on 32-bit machines: if
1174process A reads process B's /proc/pid/io while process B is updating one of
1175those 64-bit counters, process A could see an intermediate result.
1176
1177
1178More information about this can be found within the taskstats documentation in
1179Documentation/accounting.
1180
Shen Feng760df932009-04-02 16:57:20 -070011813.4 /proc/<pid>/coredump_filter - Core dump filtering settings
Kawai, Hidehirobb901102007-07-19 01:48:31 -07001182---------------------------------------------------------------
1183When a process is dumped, all anonymous memory is written to a core file as
1184long as the size of the core file isn't limited. But sometimes we don't want
1185to dump some memory segments, for example, huge shared memory. Conversely,
1186sometimes we want to save file-backed memory segments into a core file, not
1187only the individual files.
1188
1189/proc/<pid>/coredump_filter allows you to customize which memory segments
1190will be dumped when the <pid> process is dumped. coredump_filter is a bitmask
1191of memory types. If a bit of the bitmask is set, memory segments of the
1192corresponding memory type are dumped, otherwise they are not dumped.
1193
KOSAKI Motohiroe575f112008-10-18 20:27:08 -07001194The following 7 memory types are supported:
Kawai, Hidehirobb901102007-07-19 01:48:31 -07001195 - (bit 0) anonymous private memory
1196 - (bit 1) anonymous shared memory
1197 - (bit 2) file-backed private memory
1198 - (bit 3) file-backed shared memory
Hidehiro Kawaib261dfe2008-09-13 02:33:10 -07001199 - (bit 4) ELF header pages in file-backed private memory areas (it is
1200 effective only if the bit 2 is cleared)
KOSAKI Motohiroe575f112008-10-18 20:27:08 -07001201 - (bit 5) hugetlb private memory
1202 - (bit 6) hugetlb shared memory
Kawai, Hidehirobb901102007-07-19 01:48:31 -07001203
1204 Note that MMIO pages such as frame buffer are never dumped and vDSO pages
1205 are always dumped regardless of the bitmask status.
1206
KOSAKI Motohiroe575f112008-10-18 20:27:08 -07001207 Note bit 0-4 doesn't effect any hugetlb memory. hugetlb memory are only
1208 effected by bit 5-6.
1209
1210Default value of coredump_filter is 0x23; this means all anonymous memory
1211segments and hugetlb private memory are dumped.
Kawai, Hidehirobb901102007-07-19 01:48:31 -07001212
1213If you don't want to dump all shared memory segments attached to pid 1234,
KOSAKI Motohiroe575f112008-10-18 20:27:08 -07001214write 0x21 to the process's proc file.
Kawai, Hidehirobb901102007-07-19 01:48:31 -07001215
KOSAKI Motohiroe575f112008-10-18 20:27:08 -07001216 $ echo 0x21 > /proc/1234/coredump_filter
Kawai, Hidehirobb901102007-07-19 01:48:31 -07001217
1218When a new process is created, the process inherits the bitmask status from its
1219parent. It is useful to set up coredump_filter before the program runs.
1220For example:
1221
1222 $ echo 0x7 > /proc/self/coredump_filter
1223 $ ./some_program
1224
Shen Feng760df932009-04-02 16:57:20 -070012253.5 /proc/<pid>/mountinfo - Information about mounts
Ram Pai2d4d4862008-03-27 13:06:25 +01001226--------------------------------------------------------
1227
1228This file contains lines of the form:
1229
123036 35 98:0 /mnt1 /mnt2 rw,noatime master:1 - ext3 /dev/root rw,errors=continue
1231(1)(2)(3) (4) (5) (6) (7) (8) (9) (10) (11)
1232
1233(1) mount ID: unique identifier of the mount (may be reused after umount)
1234(2) parent ID: ID of parent (or of self for the top of the mount tree)
1235(3) major:minor: value of st_dev for files on filesystem
1236(4) root: root of the mount within the filesystem
1237(5) mount point: mount point relative to the process's root
1238(6) mount options: per mount options
1239(7) optional fields: zero or more fields of the form "tag[:value]"
1240(8) separator: marks the end of the optional fields
1241(9) filesystem type: name of filesystem of the form "type[.subtype]"
1242(10) mount source: filesystem specific information or "none"
1243(11) super options: per super block options
1244
1245Parsers should ignore all unrecognised optional fields. Currently the
1246possible optional fields are:
1247
1248shared:X mount is shared in peer group X
1249master:X mount is slave to peer group X
Miklos Szeredi97e7e0f2008-03-27 13:06:26 +01001250propagate_from:X mount is slave and receives propagation from peer group X (*)
Ram Pai2d4d4862008-03-27 13:06:25 +01001251unbindable mount is unbindable
1252
Miklos Szeredi97e7e0f2008-03-27 13:06:26 +01001253(*) X is the closest dominant peer group under the process's root. If
1254X is the immediate master of the mount, or if there's no dominant peer
1255group under the same root, then only the "master:X" field is present
1256and not the "propagate_from:X" field.
1257
Ram Pai2d4d4862008-03-27 13:06:25 +01001258For more information on mount propagation see:
1259
1260 Documentation/filesystems/sharedsubtree.txt
1261