blob: 08469ec05850602d16235ccaa66e470d025ba9ac [file] [log] [blame]
Chris Masone02119d2008-09-05 16:13:11 -04001/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include "ctree.h"
21#include "transaction.h"
22#include "disk-io.h"
23#include "locking.h"
24#include "print-tree.h"
25#include "compat.h"
Christoph Hellwigb2950862008-12-02 09:54:17 -050026#include "tree-log.h"
Chris Masone02119d2008-09-05 16:13:11 -040027
28/* magic values for the inode_only field in btrfs_log_inode:
29 *
30 * LOG_INODE_ALL means to log everything
31 * LOG_INODE_EXISTS means to log just enough to recreate the inode
32 * during log replay
33 */
34#define LOG_INODE_ALL 0
35#define LOG_INODE_EXISTS 1
36
37/*
38 * stages for the tree walking. The first
39 * stage (0) is to only pin down the blocks we find
40 * the second stage (1) is to make sure that all the inodes
41 * we find in the log are created in the subvolume.
42 *
43 * The last stage is to deal with directories and links and extents
44 * and all the other fun semantics
45 */
46#define LOG_WALK_PIN_ONLY 0
47#define LOG_WALK_REPLAY_INODES 1
48#define LOG_WALK_REPLAY_ALL 2
49
50static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
51 struct btrfs_root *root, struct inode *inode,
52 int inode_only);
53
54/*
55 * tree logging is a special write ahead log used to make sure that
56 * fsyncs and O_SYNCs can happen without doing full tree commits.
57 *
58 * Full tree commits are expensive because they require commonly
59 * modified blocks to be recowed, creating many dirty pages in the
60 * extent tree an 4x-6x higher write load than ext3.
61 *
62 * Instead of doing a tree commit on every fsync, we use the
63 * key ranges and transaction ids to find items for a given file or directory
64 * that have changed in this transaction. Those items are copied into
65 * a special tree (one per subvolume root), that tree is written to disk
66 * and then the fsync is considered complete.
67 *
68 * After a crash, items are copied out of the log-tree back into the
69 * subvolume tree. Any file data extents found are recorded in the extent
70 * allocation tree, and the log-tree freed.
71 *
72 * The log tree is read three times, once to pin down all the extents it is
73 * using in ram and once, once to create all the inodes logged in the tree
74 * and once to do all the other items.
75 */
76
77/*
78 * btrfs_add_log_tree adds a new per-subvolume log tree into the
79 * tree of log tree roots. This must be called with a tree log transaction
80 * running (see start_log_trans).
81 */
Christoph Hellwigb2950862008-12-02 09:54:17 -050082static int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
Chris Masone02119d2008-09-05 16:13:11 -040083 struct btrfs_root *root)
84{
85 struct btrfs_key key;
86 struct btrfs_root_item root_item;
87 struct btrfs_inode_item *inode_item;
88 struct extent_buffer *leaf;
89 struct btrfs_root *new_root = root;
90 int ret;
91 u64 objectid = root->root_key.objectid;
92
Zheng Yan31840ae2008-09-23 13:14:14 -040093 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
Chris Masone02119d2008-09-05 16:13:11 -040094 BTRFS_TREE_LOG_OBJECTID,
Zheng Yan31840ae2008-09-23 13:14:14 -040095 trans->transid, 0, 0, 0);
Chris Masone02119d2008-09-05 16:13:11 -040096 if (IS_ERR(leaf)) {
97 ret = PTR_ERR(leaf);
98 return ret;
99 }
100
101 btrfs_set_header_nritems(leaf, 0);
102 btrfs_set_header_level(leaf, 0);
103 btrfs_set_header_bytenr(leaf, leaf->start);
104 btrfs_set_header_generation(leaf, trans->transid);
105 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
106
107 write_extent_buffer(leaf, root->fs_info->fsid,
108 (unsigned long)btrfs_header_fsid(leaf),
109 BTRFS_FSID_SIZE);
110 btrfs_mark_buffer_dirty(leaf);
111
112 inode_item = &root_item.inode;
113 memset(inode_item, 0, sizeof(*inode_item));
114 inode_item->generation = cpu_to_le64(1);
115 inode_item->size = cpu_to_le64(3);
116 inode_item->nlink = cpu_to_le32(1);
Yan Zhenga76a3cd2008-10-09 11:46:29 -0400117 inode_item->nbytes = cpu_to_le64(root->leafsize);
Chris Masone02119d2008-09-05 16:13:11 -0400118 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
119
120 btrfs_set_root_bytenr(&root_item, leaf->start);
Yan Zheng84234f32008-10-29 14:49:05 -0400121 btrfs_set_root_generation(&root_item, trans->transid);
Chris Masone02119d2008-09-05 16:13:11 -0400122 btrfs_set_root_level(&root_item, 0);
123 btrfs_set_root_refs(&root_item, 0);
124 btrfs_set_root_used(&root_item, 0);
125
126 memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
127 root_item.drop_level = 0;
128
129 btrfs_tree_unlock(leaf);
130 free_extent_buffer(leaf);
131 leaf = NULL;
132
133 btrfs_set_root_dirid(&root_item, 0);
134
135 key.objectid = BTRFS_TREE_LOG_OBJECTID;
136 key.offset = objectid;
137 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
138 ret = btrfs_insert_root(trans, root->fs_info->log_root_tree, &key,
139 &root_item);
140 if (ret)
141 goto fail;
142
143 new_root = btrfs_read_fs_root_no_radix(root->fs_info->log_root_tree,
144 &key);
145 BUG_ON(!new_root);
146
147 WARN_ON(root->log_root);
148 root->log_root = new_root;
149
150 /*
151 * log trees do not get reference counted because they go away
152 * before a real commit is actually done. They do store pointers
153 * to file data extents, and those reference counts still get
154 * updated (along with back refs to the log tree).
155 */
156 new_root->ref_cows = 0;
157 new_root->last_trans = trans->transid;
158fail:
159 return ret;
160}
161
162/*
163 * start a sub transaction and setup the log tree
164 * this increments the log tree writer count to make the people
165 * syncing the tree wait for us to finish
166 */
167static int start_log_trans(struct btrfs_trans_handle *trans,
168 struct btrfs_root *root)
169{
170 int ret;
171 mutex_lock(&root->fs_info->tree_log_mutex);
172 if (!root->fs_info->log_root_tree) {
173 ret = btrfs_init_log_root_tree(trans, root->fs_info);
174 BUG_ON(ret);
175 }
176 if (!root->log_root) {
177 ret = btrfs_add_log_tree(trans, root);
178 BUG_ON(ret);
179 }
180 atomic_inc(&root->fs_info->tree_log_writers);
181 root->fs_info->tree_log_batch++;
182 mutex_unlock(&root->fs_info->tree_log_mutex);
183 return 0;
184}
185
186/*
187 * returns 0 if there was a log transaction running and we were able
188 * to join, or returns -ENOENT if there were not transactions
189 * in progress
190 */
191static int join_running_log_trans(struct btrfs_root *root)
192{
193 int ret = -ENOENT;
194
195 smp_mb();
196 if (!root->log_root)
197 return -ENOENT;
198
199 mutex_lock(&root->fs_info->tree_log_mutex);
200 if (root->log_root) {
201 ret = 0;
202 atomic_inc(&root->fs_info->tree_log_writers);
203 root->fs_info->tree_log_batch++;
204 }
205 mutex_unlock(&root->fs_info->tree_log_mutex);
206 return ret;
207}
208
209/*
210 * indicate we're done making changes to the log tree
211 * and wake up anyone waiting to do a sync
212 */
213static int end_log_trans(struct btrfs_root *root)
214{
215 atomic_dec(&root->fs_info->tree_log_writers);
216 smp_mb();
217 if (waitqueue_active(&root->fs_info->tree_log_wait))
218 wake_up(&root->fs_info->tree_log_wait);
219 return 0;
220}
221
222
223/*
224 * the walk control struct is used to pass state down the chain when
225 * processing the log tree. The stage field tells us which part
226 * of the log tree processing we are currently doing. The others
227 * are state fields used for that specific part
228 */
229struct walk_control {
230 /* should we free the extent on disk when done? This is used
231 * at transaction commit time while freeing a log tree
232 */
233 int free;
234
235 /* should we write out the extent buffer? This is used
236 * while flushing the log tree to disk during a sync
237 */
238 int write;
239
240 /* should we wait for the extent buffer io to finish? Also used
241 * while flushing the log tree to disk for a sync
242 */
243 int wait;
244
245 /* pin only walk, we record which extents on disk belong to the
246 * log trees
247 */
248 int pin;
249
250 /* what stage of the replay code we're currently in */
251 int stage;
252
253 /* the root we are currently replaying */
254 struct btrfs_root *replay_dest;
255
256 /* the trans handle for the current replay */
257 struct btrfs_trans_handle *trans;
258
259 /* the function that gets used to process blocks we find in the
260 * tree. Note the extent_buffer might not be up to date when it is
261 * passed in, and it must be checked or read if you need the data
262 * inside it
263 */
264 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
265 struct walk_control *wc, u64 gen);
266};
267
268/*
269 * process_func used to pin down extents, write them or wait on them
270 */
271static int process_one_buffer(struct btrfs_root *log,
272 struct extent_buffer *eb,
273 struct walk_control *wc, u64 gen)
274{
275 if (wc->pin) {
Josef Bacik25179202008-10-29 14:49:05 -0400276 mutex_lock(&log->fs_info->pinned_mutex);
Chris Masone02119d2008-09-05 16:13:11 -0400277 btrfs_update_pinned_extents(log->fs_info->extent_root,
278 eb->start, eb->len, 1);
Josef Bacik25179202008-10-29 14:49:05 -0400279 mutex_unlock(&log->fs_info->pinned_mutex);
Chris Masone02119d2008-09-05 16:13:11 -0400280 }
281
282 if (btrfs_buffer_uptodate(eb, gen)) {
283 if (wc->write)
284 btrfs_write_tree_block(eb);
285 if (wc->wait)
286 btrfs_wait_tree_block_writeback(eb);
287 }
288 return 0;
289}
290
291/*
292 * Item overwrite used by replay and tree logging. eb, slot and key all refer
293 * to the src data we are copying out.
294 *
295 * root is the tree we are copying into, and path is a scratch
296 * path for use in this function (it should be released on entry and
297 * will be released on exit).
298 *
299 * If the key is already in the destination tree the existing item is
300 * overwritten. If the existing item isn't big enough, it is extended.
301 * If it is too large, it is truncated.
302 *
303 * If the key isn't in the destination yet, a new item is inserted.
304 */
305static noinline int overwrite_item(struct btrfs_trans_handle *trans,
306 struct btrfs_root *root,
307 struct btrfs_path *path,
308 struct extent_buffer *eb, int slot,
309 struct btrfs_key *key)
310{
311 int ret;
312 u32 item_size;
313 u64 saved_i_size = 0;
314 int save_old_i_size = 0;
315 unsigned long src_ptr;
316 unsigned long dst_ptr;
317 int overwrite_root = 0;
318
319 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
320 overwrite_root = 1;
321
322 item_size = btrfs_item_size_nr(eb, slot);
323 src_ptr = btrfs_item_ptr_offset(eb, slot);
324
325 /* look for the key in the destination tree */
326 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
327 if (ret == 0) {
328 char *src_copy;
329 char *dst_copy;
330 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
331 path->slots[0]);
332 if (dst_size != item_size)
333 goto insert;
334
335 if (item_size == 0) {
336 btrfs_release_path(root, path);
337 return 0;
338 }
339 dst_copy = kmalloc(item_size, GFP_NOFS);
340 src_copy = kmalloc(item_size, GFP_NOFS);
341
342 read_extent_buffer(eb, src_copy, src_ptr, item_size);
343
344 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
345 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
346 item_size);
347 ret = memcmp(dst_copy, src_copy, item_size);
348
349 kfree(dst_copy);
350 kfree(src_copy);
351 /*
352 * they have the same contents, just return, this saves
353 * us from cowing blocks in the destination tree and doing
354 * extra writes that may not have been done by a previous
355 * sync
356 */
357 if (ret == 0) {
358 btrfs_release_path(root, path);
359 return 0;
360 }
361
362 }
363insert:
364 btrfs_release_path(root, path);
365 /* try to insert the key into the destination tree */
366 ret = btrfs_insert_empty_item(trans, root, path,
367 key, item_size);
368
369 /* make sure any existing item is the correct size */
370 if (ret == -EEXIST) {
371 u32 found_size;
372 found_size = btrfs_item_size_nr(path->nodes[0],
373 path->slots[0]);
374 if (found_size > item_size) {
375 btrfs_truncate_item(trans, root, path, item_size, 1);
376 } else if (found_size < item_size) {
377 ret = btrfs_del_item(trans, root,
378 path);
379 BUG_ON(ret);
380
381 btrfs_release_path(root, path);
382 ret = btrfs_insert_empty_item(trans,
383 root, path, key, item_size);
384 BUG_ON(ret);
385 }
386 } else if (ret) {
387 BUG();
388 }
389 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
390 path->slots[0]);
391
392 /* don't overwrite an existing inode if the generation number
393 * was logged as zero. This is done when the tree logging code
394 * is just logging an inode to make sure it exists after recovery.
395 *
396 * Also, don't overwrite i_size on directories during replay.
397 * log replay inserts and removes directory items based on the
398 * state of the tree found in the subvolume, and i_size is modified
399 * as it goes
400 */
401 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
402 struct btrfs_inode_item *src_item;
403 struct btrfs_inode_item *dst_item;
404
405 src_item = (struct btrfs_inode_item *)src_ptr;
406 dst_item = (struct btrfs_inode_item *)dst_ptr;
407
408 if (btrfs_inode_generation(eb, src_item) == 0)
409 goto no_copy;
410
411 if (overwrite_root &&
412 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
413 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
414 save_old_i_size = 1;
415 saved_i_size = btrfs_inode_size(path->nodes[0],
416 dst_item);
417 }
418 }
419
420 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
421 src_ptr, item_size);
422
423 if (save_old_i_size) {
424 struct btrfs_inode_item *dst_item;
425 dst_item = (struct btrfs_inode_item *)dst_ptr;
426 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
427 }
428
429 /* make sure the generation is filled in */
430 if (key->type == BTRFS_INODE_ITEM_KEY) {
431 struct btrfs_inode_item *dst_item;
432 dst_item = (struct btrfs_inode_item *)dst_ptr;
433 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
434 btrfs_set_inode_generation(path->nodes[0], dst_item,
435 trans->transid);
436 }
437 }
Zheng Yan31840ae2008-09-23 13:14:14 -0400438
439 if (overwrite_root &&
440 key->type == BTRFS_EXTENT_DATA_KEY) {
441 int extent_type;
442 struct btrfs_file_extent_item *fi;
443
444 fi = (struct btrfs_file_extent_item *)dst_ptr;
445 extent_type = btrfs_file_extent_type(path->nodes[0], fi);
Yan Zhengd899e052008-10-30 14:25:28 -0400446 if (extent_type == BTRFS_FILE_EXTENT_REG ||
447 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
Zheng Yan31840ae2008-09-23 13:14:14 -0400448 struct btrfs_key ins;
449 ins.objectid = btrfs_file_extent_disk_bytenr(
450 path->nodes[0], fi);
451 ins.offset = btrfs_file_extent_disk_num_bytes(
452 path->nodes[0], fi);
453 ins.type = BTRFS_EXTENT_ITEM_KEY;
454
455 /*
456 * is this extent already allocated in the extent
457 * allocation tree? If so, just add a reference
458 */
459 ret = btrfs_lookup_extent(root, ins.objectid,
460 ins.offset);
461 if (ret == 0) {
462 ret = btrfs_inc_extent_ref(trans, root,
463 ins.objectid, ins.offset,
464 path->nodes[0]->start,
465 root->root_key.objectid,
Yan Zheng3bb1a1b2008-10-09 11:46:24 -0400466 trans->transid, key->objectid);
Zheng Yan31840ae2008-09-23 13:14:14 -0400467 } else {
468 /*
469 * insert the extent pointer in the extent
470 * allocation tree
471 */
472 ret = btrfs_alloc_logged_extent(trans, root,
473 path->nodes[0]->start,
474 root->root_key.objectid,
475 trans->transid, key->objectid,
Yan Zheng3bb1a1b2008-10-09 11:46:24 -0400476 &ins);
Zheng Yan31840ae2008-09-23 13:14:14 -0400477 BUG_ON(ret);
478 }
479 }
480 }
Chris Masone02119d2008-09-05 16:13:11 -0400481no_copy:
482 btrfs_mark_buffer_dirty(path->nodes[0]);
483 btrfs_release_path(root, path);
484 return 0;
485}
486
487/*
488 * simple helper to read an inode off the disk from a given root
489 * This can only be called for subvolume roots and not for the log
490 */
491static noinline struct inode *read_one_inode(struct btrfs_root *root,
492 u64 objectid)
493{
494 struct inode *inode;
495 inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
496 if (inode->i_state & I_NEW) {
497 BTRFS_I(inode)->root = root;
498 BTRFS_I(inode)->location.objectid = objectid;
499 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
500 BTRFS_I(inode)->location.offset = 0;
501 btrfs_read_locked_inode(inode);
502 unlock_new_inode(inode);
503
504 }
505 if (is_bad_inode(inode)) {
506 iput(inode);
507 inode = NULL;
508 }
509 return inode;
510}
511
512/* replays a single extent in 'eb' at 'slot' with 'key' into the
513 * subvolume 'root'. path is released on entry and should be released
514 * on exit.
515 *
516 * extents in the log tree have not been allocated out of the extent
517 * tree yet. So, this completes the allocation, taking a reference
518 * as required if the extent already exists or creating a new extent
519 * if it isn't in the extent allocation tree yet.
520 *
521 * The extent is inserted into the file, dropping any existing extents
522 * from the file that overlap the new one.
523 */
524static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
525 struct btrfs_root *root,
526 struct btrfs_path *path,
527 struct extent_buffer *eb, int slot,
528 struct btrfs_key *key)
529{
530 int found_type;
531 u64 mask = root->sectorsize - 1;
532 u64 extent_end;
533 u64 alloc_hint;
534 u64 start = key->offset;
535 struct btrfs_file_extent_item *item;
536 struct inode *inode = NULL;
537 unsigned long size;
538 int ret = 0;
539
540 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
541 found_type = btrfs_file_extent_type(eb, item);
542
Yan Zhengd899e052008-10-30 14:25:28 -0400543 if (found_type == BTRFS_FILE_EXTENT_REG ||
544 found_type == BTRFS_FILE_EXTENT_PREALLOC)
Chris Masone02119d2008-09-05 16:13:11 -0400545 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
546 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
Chris Masonc8b97812008-10-29 14:49:59 -0400547 size = btrfs_file_extent_inline_len(eb, item);
Chris Masone02119d2008-09-05 16:13:11 -0400548 extent_end = (start + size + mask) & ~mask;
549 } else {
550 ret = 0;
551 goto out;
552 }
553
554 inode = read_one_inode(root, key->objectid);
555 if (!inode) {
556 ret = -EIO;
557 goto out;
558 }
559
560 /*
561 * first check to see if we already have this extent in the
562 * file. This must be done before the btrfs_drop_extents run
563 * so we don't try to drop this extent.
564 */
565 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
566 start, 0);
567
Yan Zhengd899e052008-10-30 14:25:28 -0400568 if (ret == 0 &&
569 (found_type == BTRFS_FILE_EXTENT_REG ||
570 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
Chris Masone02119d2008-09-05 16:13:11 -0400571 struct btrfs_file_extent_item cmp1;
572 struct btrfs_file_extent_item cmp2;
573 struct btrfs_file_extent_item *existing;
574 struct extent_buffer *leaf;
575
576 leaf = path->nodes[0];
577 existing = btrfs_item_ptr(leaf, path->slots[0],
578 struct btrfs_file_extent_item);
579
580 read_extent_buffer(eb, &cmp1, (unsigned long)item,
581 sizeof(cmp1));
582 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
583 sizeof(cmp2));
584
585 /*
586 * we already have a pointer to this exact extent,
587 * we don't have to do anything
588 */
589 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
590 btrfs_release_path(root, path);
591 goto out;
592 }
593 }
594 btrfs_release_path(root, path);
595
596 /* drop any overlapping extents */
597 ret = btrfs_drop_extents(trans, root, inode,
598 start, extent_end, start, &alloc_hint);
599 BUG_ON(ret);
600
Zheng Yan31840ae2008-09-23 13:14:14 -0400601 /* insert the extent */
602 ret = overwrite_item(trans, root, path, eb, slot, key);
Chris Masone02119d2008-09-05 16:13:11 -0400603 BUG_ON(ret);
Chris Masone02119d2008-09-05 16:13:11 -0400604
Yan Zhenga76a3cd2008-10-09 11:46:29 -0400605 /* btrfs_drop_extents changes i_bytes & i_blocks, update it here */
606 inode_add_bytes(inode, extent_end - start);
Chris Masone02119d2008-09-05 16:13:11 -0400607 btrfs_update_inode(trans, root, inode);
608out:
609 if (inode)
610 iput(inode);
611 return ret;
612}
613
614/*
615 * when cleaning up conflicts between the directory names in the
616 * subvolume, directory names in the log and directory names in the
617 * inode back references, we may have to unlink inodes from directories.
618 *
619 * This is a helper function to do the unlink of a specific directory
620 * item
621 */
622static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
623 struct btrfs_root *root,
624 struct btrfs_path *path,
625 struct inode *dir,
626 struct btrfs_dir_item *di)
627{
628 struct inode *inode;
629 char *name;
630 int name_len;
631 struct extent_buffer *leaf;
632 struct btrfs_key location;
633 int ret;
634
635 leaf = path->nodes[0];
636
637 btrfs_dir_item_key_to_cpu(leaf, di, &location);
638 name_len = btrfs_dir_name_len(leaf, di);
639 name = kmalloc(name_len, GFP_NOFS);
640 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
641 btrfs_release_path(root, path);
642
643 inode = read_one_inode(root, location.objectid);
644 BUG_ON(!inode);
645
646 btrfs_inc_nlink(inode);
647 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
648 kfree(name);
649
650 iput(inode);
651 return ret;
652}
653
654/*
655 * helper function to see if a given name and sequence number found
656 * in an inode back reference are already in a directory and correctly
657 * point to this inode
658 */
659static noinline int inode_in_dir(struct btrfs_root *root,
660 struct btrfs_path *path,
661 u64 dirid, u64 objectid, u64 index,
662 const char *name, int name_len)
663{
664 struct btrfs_dir_item *di;
665 struct btrfs_key location;
666 int match = 0;
667
668 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
669 index, name, name_len, 0);
670 if (di && !IS_ERR(di)) {
671 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
672 if (location.objectid != objectid)
673 goto out;
674 } else
675 goto out;
676 btrfs_release_path(root, path);
677
678 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
679 if (di && !IS_ERR(di)) {
680 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
681 if (location.objectid != objectid)
682 goto out;
683 } else
684 goto out;
685 match = 1;
686out:
687 btrfs_release_path(root, path);
688 return match;
689}
690
691/*
692 * helper function to check a log tree for a named back reference in
693 * an inode. This is used to decide if a back reference that is
694 * found in the subvolume conflicts with what we find in the log.
695 *
696 * inode backreferences may have multiple refs in a single item,
697 * during replay we process one reference at a time, and we don't
698 * want to delete valid links to a file from the subvolume if that
699 * link is also in the log.
700 */
701static noinline int backref_in_log(struct btrfs_root *log,
702 struct btrfs_key *key,
703 char *name, int namelen)
704{
705 struct btrfs_path *path;
706 struct btrfs_inode_ref *ref;
707 unsigned long ptr;
708 unsigned long ptr_end;
709 unsigned long name_ptr;
710 int found_name_len;
711 int item_size;
712 int ret;
713 int match = 0;
714
715 path = btrfs_alloc_path();
716 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
717 if (ret != 0)
718 goto out;
719
720 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
721 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
722 ptr_end = ptr + item_size;
723 while (ptr < ptr_end) {
724 ref = (struct btrfs_inode_ref *)ptr;
725 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
726 if (found_name_len == namelen) {
727 name_ptr = (unsigned long)(ref + 1);
728 ret = memcmp_extent_buffer(path->nodes[0], name,
729 name_ptr, namelen);
730 if (ret == 0) {
731 match = 1;
732 goto out;
733 }
734 }
735 ptr = (unsigned long)(ref + 1) + found_name_len;
736 }
737out:
738 btrfs_free_path(path);
739 return match;
740}
741
742
743/*
744 * replay one inode back reference item found in the log tree.
745 * eb, slot and key refer to the buffer and key found in the log tree.
746 * root is the destination we are replaying into, and path is for temp
747 * use by this function. (it should be released on return).
748 */
749static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
750 struct btrfs_root *root,
751 struct btrfs_root *log,
752 struct btrfs_path *path,
753 struct extent_buffer *eb, int slot,
754 struct btrfs_key *key)
755{
756 struct inode *dir;
757 int ret;
758 struct btrfs_key location;
759 struct btrfs_inode_ref *ref;
760 struct btrfs_dir_item *di;
761 struct inode *inode;
762 char *name;
763 int namelen;
764 unsigned long ref_ptr;
765 unsigned long ref_end;
766
767 location.objectid = key->objectid;
768 location.type = BTRFS_INODE_ITEM_KEY;
769 location.offset = 0;
770
771 /*
772 * it is possible that we didn't log all the parent directories
773 * for a given inode. If we don't find the dir, just don't
774 * copy the back ref in. The link count fixup code will take
775 * care of the rest
776 */
777 dir = read_one_inode(root, key->offset);
778 if (!dir)
779 return -ENOENT;
780
781 inode = read_one_inode(root, key->objectid);
782 BUG_ON(!dir);
783
784 ref_ptr = btrfs_item_ptr_offset(eb, slot);
785 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
786
787again:
788 ref = (struct btrfs_inode_ref *)ref_ptr;
789
790 namelen = btrfs_inode_ref_name_len(eb, ref);
791 name = kmalloc(namelen, GFP_NOFS);
792 BUG_ON(!name);
793
794 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
795
796 /* if we already have a perfect match, we're done */
797 if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
798 btrfs_inode_ref_index(eb, ref),
799 name, namelen)) {
800 goto out;
801 }
802
803 /*
804 * look for a conflicting back reference in the metadata.
805 * if we find one we have to unlink that name of the file
806 * before we add our new link. Later on, we overwrite any
807 * existing back reference, and we don't want to create
808 * dangling pointers in the directory.
809 */
810conflict_again:
811 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
812 if (ret == 0) {
813 char *victim_name;
814 int victim_name_len;
815 struct btrfs_inode_ref *victim_ref;
816 unsigned long ptr;
817 unsigned long ptr_end;
818 struct extent_buffer *leaf = path->nodes[0];
819
820 /* are we trying to overwrite a back ref for the root directory
821 * if so, just jump out, we're done
822 */
823 if (key->objectid == key->offset)
824 goto out_nowrite;
825
826 /* check all the names in this back reference to see
827 * if they are in the log. if so, we allow them to stay
828 * otherwise they must be unlinked as a conflict
829 */
830 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
831 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
832 while(ptr < ptr_end) {
833 victim_ref = (struct btrfs_inode_ref *)ptr;
834 victim_name_len = btrfs_inode_ref_name_len(leaf,
835 victim_ref);
836 victim_name = kmalloc(victim_name_len, GFP_NOFS);
837 BUG_ON(!victim_name);
838
839 read_extent_buffer(leaf, victim_name,
840 (unsigned long)(victim_ref + 1),
841 victim_name_len);
842
843 if (!backref_in_log(log, key, victim_name,
844 victim_name_len)) {
845 btrfs_inc_nlink(inode);
846 btrfs_release_path(root, path);
847 ret = btrfs_unlink_inode(trans, root, dir,
848 inode, victim_name,
849 victim_name_len);
850 kfree(victim_name);
851 btrfs_release_path(root, path);
852 goto conflict_again;
853 }
854 kfree(victim_name);
855 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
856 }
857 BUG_ON(ret);
858 }
859 btrfs_release_path(root, path);
860
861 /* look for a conflicting sequence number */
862 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
863 btrfs_inode_ref_index(eb, ref),
864 name, namelen, 0);
865 if (di && !IS_ERR(di)) {
866 ret = drop_one_dir_item(trans, root, path, dir, di);
867 BUG_ON(ret);
868 }
869 btrfs_release_path(root, path);
870
871
872 /* look for a conflicting name */
873 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
874 name, namelen, 0);
875 if (di && !IS_ERR(di)) {
876 ret = drop_one_dir_item(trans, root, path, dir, di);
877 BUG_ON(ret);
878 }
879 btrfs_release_path(root, path);
880
881 /* insert our name */
882 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
883 btrfs_inode_ref_index(eb, ref));
884 BUG_ON(ret);
885
886 btrfs_update_inode(trans, root, inode);
887
888out:
889 ref_ptr = (unsigned long)(ref + 1) + namelen;
890 kfree(name);
891 if (ref_ptr < ref_end)
892 goto again;
893
894 /* finally write the back reference in the inode */
895 ret = overwrite_item(trans, root, path, eb, slot, key);
896 BUG_ON(ret);
897
898out_nowrite:
899 btrfs_release_path(root, path);
900 iput(dir);
901 iput(inode);
902 return 0;
903}
904
905/*
906 * replay one csum item from the log tree into the subvolume 'root'
907 * eb, slot and key all refer to the log tree
908 * path is for temp use by this function and should be released on return
909 *
910 * This copies the checksums out of the log tree and inserts them into
911 * the subvolume. Any existing checksums for this range in the file
912 * are overwritten, and new items are added where required.
913 *
914 * We keep this simple by reusing the btrfs_ordered_sum code from
915 * the data=ordered mode. This basically means making a copy
916 * of all the checksums in ram, which we have to do anyway for kmap
917 * rules.
918 *
919 * The copy is then sent down to btrfs_csum_file_blocks, which
920 * does all the hard work of finding existing items in the file
921 * or adding new ones.
922 */
923static noinline int replay_one_csum(struct btrfs_trans_handle *trans,
924 struct btrfs_root *root,
925 struct btrfs_path *path,
926 struct extent_buffer *eb, int slot,
927 struct btrfs_key *key)
928{
929 int ret;
930 u32 item_size = btrfs_item_size_nr(eb, slot);
931 u64 cur_offset;
Josef Bacik607d4322008-12-02 07:17:45 -0500932 u16 csum_size =
933 btrfs_super_csum_size(&root->fs_info->super_copy);
Chris Masone02119d2008-09-05 16:13:11 -0400934 unsigned long file_bytes;
935 struct btrfs_ordered_sum *sums;
936 struct btrfs_sector_sum *sector_sum;
Chris Masone02119d2008-09-05 16:13:11 -0400937 unsigned long ptr;
938
Josef Bacik607d4322008-12-02 07:17:45 -0500939 file_bytes = (item_size / csum_size) * root->sectorsize;
Chris Masone02119d2008-09-05 16:13:11 -0400940 sums = kzalloc(btrfs_ordered_sum_size(root, file_bytes), GFP_NOFS);
941 if (!sums) {
Chris Masone02119d2008-09-05 16:13:11 -0400942 return -ENOMEM;
943 }
944
945 INIT_LIST_HEAD(&sums->list);
946 sums->len = file_bytes;
Chris Masond20f7042008-12-08 16:58:54 -0500947 sums->bytenr = key->offset;
Chris Masone02119d2008-09-05 16:13:11 -0400948
949 /*
950 * copy all the sums into the ordered sum struct
951 */
952 sector_sum = sums->sums;
953 cur_offset = key->offset;
954 ptr = btrfs_item_ptr_offset(eb, slot);
955 while(item_size > 0) {
Chris Masond20f7042008-12-08 16:58:54 -0500956 sector_sum->bytenr = cur_offset;
Josef Bacik607d4322008-12-02 07:17:45 -0500957 read_extent_buffer(eb, &sector_sum->sum, ptr, csum_size);
Chris Masone02119d2008-09-05 16:13:11 -0400958 sector_sum++;
Josef Bacik607d4322008-12-02 07:17:45 -0500959 item_size -= csum_size;
960 ptr += csum_size;
Chris Masone02119d2008-09-05 16:13:11 -0400961 cur_offset += root->sectorsize;
962 }
963
964 /* let btrfs_csum_file_blocks add them into the file */
Chris Masond20f7042008-12-08 16:58:54 -0500965 ret = btrfs_csum_file_blocks(trans, root->fs_info->csum_root, sums);
Chris Masone02119d2008-09-05 16:13:11 -0400966 BUG_ON(ret);
967 kfree(sums);
Chris Masone02119d2008-09-05 16:13:11 -0400968 return 0;
969}
970/*
971 * There are a few corners where the link count of the file can't
972 * be properly maintained during replay. So, instead of adding
973 * lots of complexity to the log code, we just scan the backrefs
974 * for any file that has been through replay.
975 *
976 * The scan will update the link count on the inode to reflect the
977 * number of back refs found. If it goes down to zero, the iput
978 * will free the inode.
979 */
980static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
981 struct btrfs_root *root,
982 struct inode *inode)
983{
984 struct btrfs_path *path;
985 int ret;
986 struct btrfs_key key;
987 u64 nlink = 0;
988 unsigned long ptr;
989 unsigned long ptr_end;
990 int name_len;
991
992 key.objectid = inode->i_ino;
993 key.type = BTRFS_INODE_REF_KEY;
994 key.offset = (u64)-1;
995
996 path = btrfs_alloc_path();
997
998 while(1) {
999 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1000 if (ret < 0)
1001 break;
1002 if (ret > 0) {
1003 if (path->slots[0] == 0)
1004 break;
1005 path->slots[0]--;
1006 }
1007 btrfs_item_key_to_cpu(path->nodes[0], &key,
1008 path->slots[0]);
1009 if (key.objectid != inode->i_ino ||
1010 key.type != BTRFS_INODE_REF_KEY)
1011 break;
1012 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1013 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1014 path->slots[0]);
1015 while(ptr < ptr_end) {
1016 struct btrfs_inode_ref *ref;
1017
1018 ref = (struct btrfs_inode_ref *)ptr;
1019 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1020 ref);
1021 ptr = (unsigned long)(ref + 1) + name_len;
1022 nlink++;
1023 }
1024
1025 if (key.offset == 0)
1026 break;
1027 key.offset--;
1028 btrfs_release_path(root, path);
1029 }
1030 btrfs_free_path(path);
1031 if (nlink != inode->i_nlink) {
1032 inode->i_nlink = nlink;
1033 btrfs_update_inode(trans, root, inode);
1034 }
Chris Mason8d5bf1c2008-09-11 15:51:21 -04001035 BTRFS_I(inode)->index_cnt = (u64)-1;
Chris Masone02119d2008-09-05 16:13:11 -04001036
1037 return 0;
1038}
1039
1040static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1041 struct btrfs_root *root,
1042 struct btrfs_path *path)
1043{
1044 int ret;
1045 struct btrfs_key key;
1046 struct inode *inode;
1047
1048 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1049 key.type = BTRFS_ORPHAN_ITEM_KEY;
1050 key.offset = (u64)-1;
1051 while(1) {
1052 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1053 if (ret < 0)
1054 break;
1055
1056 if (ret == 1) {
1057 if (path->slots[0] == 0)
1058 break;
1059 path->slots[0]--;
1060 }
1061
1062 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1063 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1064 key.type != BTRFS_ORPHAN_ITEM_KEY)
1065 break;
1066
1067 ret = btrfs_del_item(trans, root, path);
1068 BUG_ON(ret);
1069
1070 btrfs_release_path(root, path);
1071 inode = read_one_inode(root, key.offset);
1072 BUG_ON(!inode);
1073
1074 ret = fixup_inode_link_count(trans, root, inode);
1075 BUG_ON(ret);
1076
1077 iput(inode);
1078
1079 if (key.offset == 0)
1080 break;
1081 key.offset--;
1082 }
1083 btrfs_release_path(root, path);
1084 return 0;
1085}
1086
1087
1088/*
1089 * record a given inode in the fixup dir so we can check its link
1090 * count when replay is done. The link count is incremented here
1091 * so the inode won't go away until we check it
1092 */
1093static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1094 struct btrfs_root *root,
1095 struct btrfs_path *path,
1096 u64 objectid)
1097{
1098 struct btrfs_key key;
1099 int ret = 0;
1100 struct inode *inode;
1101
1102 inode = read_one_inode(root, objectid);
1103 BUG_ON(!inode);
1104
1105 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1106 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1107 key.offset = objectid;
1108
1109 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1110
1111 btrfs_release_path(root, path);
1112 if (ret == 0) {
1113 btrfs_inc_nlink(inode);
1114 btrfs_update_inode(trans, root, inode);
1115 } else if (ret == -EEXIST) {
1116 ret = 0;
1117 } else {
1118 BUG();
1119 }
1120 iput(inode);
1121
1122 return ret;
1123}
1124
1125/*
1126 * when replaying the log for a directory, we only insert names
1127 * for inodes that actually exist. This means an fsync on a directory
1128 * does not implicitly fsync all the new files in it
1129 */
1130static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1131 struct btrfs_root *root,
1132 struct btrfs_path *path,
1133 u64 dirid, u64 index,
1134 char *name, int name_len, u8 type,
1135 struct btrfs_key *location)
1136{
1137 struct inode *inode;
1138 struct inode *dir;
1139 int ret;
1140
1141 inode = read_one_inode(root, location->objectid);
1142 if (!inode)
1143 return -ENOENT;
1144
1145 dir = read_one_inode(root, dirid);
1146 if (!dir) {
1147 iput(inode);
1148 return -EIO;
1149 }
1150 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1151
1152 /* FIXME, put inode into FIXUP list */
1153
1154 iput(inode);
1155 iput(dir);
1156 return ret;
1157}
1158
1159/*
1160 * take a single entry in a log directory item and replay it into
1161 * the subvolume.
1162 *
1163 * if a conflicting item exists in the subdirectory already,
1164 * the inode it points to is unlinked and put into the link count
1165 * fix up tree.
1166 *
1167 * If a name from the log points to a file or directory that does
1168 * not exist in the FS, it is skipped. fsyncs on directories
1169 * do not force down inodes inside that directory, just changes to the
1170 * names or unlinks in a directory.
1171 */
1172static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1173 struct btrfs_root *root,
1174 struct btrfs_path *path,
1175 struct extent_buffer *eb,
1176 struct btrfs_dir_item *di,
1177 struct btrfs_key *key)
1178{
1179 char *name;
1180 int name_len;
1181 struct btrfs_dir_item *dst_di;
1182 struct btrfs_key found_key;
1183 struct btrfs_key log_key;
1184 struct inode *dir;
Chris Masone02119d2008-09-05 16:13:11 -04001185 u8 log_type;
Chris Mason4bef0842008-09-08 11:18:08 -04001186 int exists;
Chris Masone02119d2008-09-05 16:13:11 -04001187 int ret;
1188
1189 dir = read_one_inode(root, key->objectid);
1190 BUG_ON(!dir);
1191
1192 name_len = btrfs_dir_name_len(eb, di);
1193 name = kmalloc(name_len, GFP_NOFS);
1194 log_type = btrfs_dir_type(eb, di);
1195 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1196 name_len);
1197
1198 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
Chris Mason4bef0842008-09-08 11:18:08 -04001199 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1200 if (exists == 0)
1201 exists = 1;
1202 else
1203 exists = 0;
1204 btrfs_release_path(root, path);
1205
Chris Masone02119d2008-09-05 16:13:11 -04001206 if (key->type == BTRFS_DIR_ITEM_KEY) {
1207 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1208 name, name_len, 1);
1209 }
1210 else if (key->type == BTRFS_DIR_INDEX_KEY) {
1211 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1212 key->objectid,
1213 key->offset, name,
1214 name_len, 1);
1215 } else {
1216 BUG();
1217 }
1218 if (!dst_di || IS_ERR(dst_di)) {
1219 /* we need a sequence number to insert, so we only
1220 * do inserts for the BTRFS_DIR_INDEX_KEY types
1221 */
1222 if (key->type != BTRFS_DIR_INDEX_KEY)
1223 goto out;
1224 goto insert;
1225 }
1226
1227 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1228 /* the existing item matches the logged item */
1229 if (found_key.objectid == log_key.objectid &&
1230 found_key.type == log_key.type &&
1231 found_key.offset == log_key.offset &&
1232 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1233 goto out;
1234 }
1235
1236 /*
1237 * don't drop the conflicting directory entry if the inode
1238 * for the new entry doesn't exist
1239 */
Chris Mason4bef0842008-09-08 11:18:08 -04001240 if (!exists)
Chris Masone02119d2008-09-05 16:13:11 -04001241 goto out;
1242
Chris Masone02119d2008-09-05 16:13:11 -04001243 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1244 BUG_ON(ret);
1245
1246 if (key->type == BTRFS_DIR_INDEX_KEY)
1247 goto insert;
1248out:
1249 btrfs_release_path(root, path);
1250 kfree(name);
1251 iput(dir);
1252 return 0;
1253
1254insert:
1255 btrfs_release_path(root, path);
1256 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1257 name, name_len, log_type, &log_key);
1258
1259 if (ret && ret != -ENOENT)
1260 BUG();
1261 goto out;
1262}
1263
1264/*
1265 * find all the names in a directory item and reconcile them into
1266 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1267 * one name in a directory item, but the same code gets used for
1268 * both directory index types
1269 */
1270static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1271 struct btrfs_root *root,
1272 struct btrfs_path *path,
1273 struct extent_buffer *eb, int slot,
1274 struct btrfs_key *key)
1275{
1276 int ret;
1277 u32 item_size = btrfs_item_size_nr(eb, slot);
1278 struct btrfs_dir_item *di;
1279 int name_len;
1280 unsigned long ptr;
1281 unsigned long ptr_end;
1282
1283 ptr = btrfs_item_ptr_offset(eb, slot);
1284 ptr_end = ptr + item_size;
1285 while(ptr < ptr_end) {
1286 di = (struct btrfs_dir_item *)ptr;
1287 name_len = btrfs_dir_name_len(eb, di);
1288 ret = replay_one_name(trans, root, path, eb, di, key);
1289 BUG_ON(ret);
1290 ptr = (unsigned long)(di + 1);
1291 ptr += name_len;
1292 }
1293 return 0;
1294}
1295
1296/*
1297 * directory replay has two parts. There are the standard directory
1298 * items in the log copied from the subvolume, and range items
1299 * created in the log while the subvolume was logged.
1300 *
1301 * The range items tell us which parts of the key space the log
1302 * is authoritative for. During replay, if a key in the subvolume
1303 * directory is in a logged range item, but not actually in the log
1304 * that means it was deleted from the directory before the fsync
1305 * and should be removed.
1306 */
1307static noinline int find_dir_range(struct btrfs_root *root,
1308 struct btrfs_path *path,
1309 u64 dirid, int key_type,
1310 u64 *start_ret, u64 *end_ret)
1311{
1312 struct btrfs_key key;
1313 u64 found_end;
1314 struct btrfs_dir_log_item *item;
1315 int ret;
1316 int nritems;
1317
1318 if (*start_ret == (u64)-1)
1319 return 1;
1320
1321 key.objectid = dirid;
1322 key.type = key_type;
1323 key.offset = *start_ret;
1324
1325 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1326 if (ret < 0)
1327 goto out;
1328 if (ret > 0) {
1329 if (path->slots[0] == 0)
1330 goto out;
1331 path->slots[0]--;
1332 }
1333 if (ret != 0)
1334 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1335
1336 if (key.type != key_type || key.objectid != dirid) {
1337 ret = 1;
1338 goto next;
1339 }
1340 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1341 struct btrfs_dir_log_item);
1342 found_end = btrfs_dir_log_end(path->nodes[0], item);
1343
1344 if (*start_ret >= key.offset && *start_ret <= found_end) {
1345 ret = 0;
1346 *start_ret = key.offset;
1347 *end_ret = found_end;
1348 goto out;
1349 }
1350 ret = 1;
1351next:
1352 /* check the next slot in the tree to see if it is a valid item */
1353 nritems = btrfs_header_nritems(path->nodes[0]);
1354 if (path->slots[0] >= nritems) {
1355 ret = btrfs_next_leaf(root, path);
1356 if (ret)
1357 goto out;
1358 } else {
1359 path->slots[0]++;
1360 }
1361
1362 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1363
1364 if (key.type != key_type || key.objectid != dirid) {
1365 ret = 1;
1366 goto out;
1367 }
1368 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1369 struct btrfs_dir_log_item);
1370 found_end = btrfs_dir_log_end(path->nodes[0], item);
1371 *start_ret = key.offset;
1372 *end_ret = found_end;
1373 ret = 0;
1374out:
1375 btrfs_release_path(root, path);
1376 return ret;
1377}
1378
1379/*
1380 * this looks for a given directory item in the log. If the directory
1381 * item is not in the log, the item is removed and the inode it points
1382 * to is unlinked
1383 */
1384static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1385 struct btrfs_root *root,
1386 struct btrfs_root *log,
1387 struct btrfs_path *path,
1388 struct btrfs_path *log_path,
1389 struct inode *dir,
1390 struct btrfs_key *dir_key)
1391{
1392 int ret;
1393 struct extent_buffer *eb;
1394 int slot;
1395 u32 item_size;
1396 struct btrfs_dir_item *di;
1397 struct btrfs_dir_item *log_di;
1398 int name_len;
1399 unsigned long ptr;
1400 unsigned long ptr_end;
1401 char *name;
1402 struct inode *inode;
1403 struct btrfs_key location;
1404
1405again:
1406 eb = path->nodes[0];
1407 slot = path->slots[0];
1408 item_size = btrfs_item_size_nr(eb, slot);
1409 ptr = btrfs_item_ptr_offset(eb, slot);
1410 ptr_end = ptr + item_size;
1411 while(ptr < ptr_end) {
1412 di = (struct btrfs_dir_item *)ptr;
1413 name_len = btrfs_dir_name_len(eb, di);
1414 name = kmalloc(name_len, GFP_NOFS);
1415 if (!name) {
1416 ret = -ENOMEM;
1417 goto out;
1418 }
1419 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1420 name_len);
1421 log_di = NULL;
1422 if (dir_key->type == BTRFS_DIR_ITEM_KEY) {
1423 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1424 dir_key->objectid,
1425 name, name_len, 0);
1426 } else if (dir_key->type == BTRFS_DIR_INDEX_KEY) {
1427 log_di = btrfs_lookup_dir_index_item(trans, log,
1428 log_path,
1429 dir_key->objectid,
1430 dir_key->offset,
1431 name, name_len, 0);
1432 }
1433 if (!log_di || IS_ERR(log_di)) {
1434 btrfs_dir_item_key_to_cpu(eb, di, &location);
1435 btrfs_release_path(root, path);
1436 btrfs_release_path(log, log_path);
1437 inode = read_one_inode(root, location.objectid);
1438 BUG_ON(!inode);
1439
1440 ret = link_to_fixup_dir(trans, root,
1441 path, location.objectid);
1442 BUG_ON(ret);
1443 btrfs_inc_nlink(inode);
1444 ret = btrfs_unlink_inode(trans, root, dir, inode,
1445 name, name_len);
1446 BUG_ON(ret);
1447 kfree(name);
1448 iput(inode);
1449
1450 /* there might still be more names under this key
1451 * check and repeat if required
1452 */
1453 ret = btrfs_search_slot(NULL, root, dir_key, path,
1454 0, 0);
1455 if (ret == 0)
1456 goto again;
1457 ret = 0;
1458 goto out;
1459 }
1460 btrfs_release_path(log, log_path);
1461 kfree(name);
1462
1463 ptr = (unsigned long)(di + 1);
1464 ptr += name_len;
1465 }
1466 ret = 0;
1467out:
1468 btrfs_release_path(root, path);
1469 btrfs_release_path(log, log_path);
1470 return ret;
1471}
1472
1473/*
1474 * deletion replay happens before we copy any new directory items
1475 * out of the log or out of backreferences from inodes. It
1476 * scans the log to find ranges of keys that log is authoritative for,
1477 * and then scans the directory to find items in those ranges that are
1478 * not present in the log.
1479 *
1480 * Anything we don't find in the log is unlinked and removed from the
1481 * directory.
1482 */
1483static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1484 struct btrfs_root *root,
1485 struct btrfs_root *log,
1486 struct btrfs_path *path,
1487 u64 dirid)
1488{
1489 u64 range_start;
1490 u64 range_end;
1491 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1492 int ret = 0;
1493 struct btrfs_key dir_key;
1494 struct btrfs_key found_key;
1495 struct btrfs_path *log_path;
1496 struct inode *dir;
1497
1498 dir_key.objectid = dirid;
1499 dir_key.type = BTRFS_DIR_ITEM_KEY;
1500 log_path = btrfs_alloc_path();
1501 if (!log_path)
1502 return -ENOMEM;
1503
1504 dir = read_one_inode(root, dirid);
1505 /* it isn't an error if the inode isn't there, that can happen
1506 * because we replay the deletes before we copy in the inode item
1507 * from the log
1508 */
1509 if (!dir) {
1510 btrfs_free_path(log_path);
1511 return 0;
1512 }
1513again:
1514 range_start = 0;
1515 range_end = 0;
1516 while(1) {
1517 ret = find_dir_range(log, path, dirid, key_type,
1518 &range_start, &range_end);
1519 if (ret != 0)
1520 break;
1521
1522 dir_key.offset = range_start;
1523 while(1) {
1524 int nritems;
1525 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1526 0, 0);
1527 if (ret < 0)
1528 goto out;
1529
1530 nritems = btrfs_header_nritems(path->nodes[0]);
1531 if (path->slots[0] >= nritems) {
1532 ret = btrfs_next_leaf(root, path);
1533 if (ret)
1534 break;
1535 }
1536 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1537 path->slots[0]);
1538 if (found_key.objectid != dirid ||
1539 found_key.type != dir_key.type)
1540 goto next_type;
1541
1542 if (found_key.offset > range_end)
1543 break;
1544
1545 ret = check_item_in_log(trans, root, log, path,
1546 log_path, dir, &found_key);
1547 BUG_ON(ret);
1548 if (found_key.offset == (u64)-1)
1549 break;
1550 dir_key.offset = found_key.offset + 1;
1551 }
1552 btrfs_release_path(root, path);
1553 if (range_end == (u64)-1)
1554 break;
1555 range_start = range_end + 1;
1556 }
1557
1558next_type:
1559 ret = 0;
1560 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1561 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1562 dir_key.type = BTRFS_DIR_INDEX_KEY;
1563 btrfs_release_path(root, path);
1564 goto again;
1565 }
1566out:
1567 btrfs_release_path(root, path);
1568 btrfs_free_path(log_path);
1569 iput(dir);
1570 return ret;
1571}
1572
1573/*
1574 * the process_func used to replay items from the log tree. This
1575 * gets called in two different stages. The first stage just looks
1576 * for inodes and makes sure they are all copied into the subvolume.
1577 *
1578 * The second stage copies all the other item types from the log into
1579 * the subvolume. The two stage approach is slower, but gets rid of
1580 * lots of complexity around inodes referencing other inodes that exist
1581 * only in the log (references come from either directory items or inode
1582 * back refs).
1583 */
1584static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1585 struct walk_control *wc, u64 gen)
1586{
1587 int nritems;
1588 struct btrfs_path *path;
1589 struct btrfs_root *root = wc->replay_dest;
1590 struct btrfs_key key;
1591 u32 item_size;
1592 int level;
1593 int i;
1594 int ret;
1595
1596 btrfs_read_buffer(eb, gen);
1597
1598 level = btrfs_header_level(eb);
1599
1600 if (level != 0)
1601 return 0;
1602
1603 path = btrfs_alloc_path();
1604 BUG_ON(!path);
1605
1606 nritems = btrfs_header_nritems(eb);
1607 for (i = 0; i < nritems; i++) {
1608 btrfs_item_key_to_cpu(eb, &key, i);
1609 item_size = btrfs_item_size_nr(eb, i);
1610
1611 /* inode keys are done during the first stage */
1612 if (key.type == BTRFS_INODE_ITEM_KEY &&
1613 wc->stage == LOG_WALK_REPLAY_INODES) {
1614 struct inode *inode;
1615 struct btrfs_inode_item *inode_item;
1616 u32 mode;
1617
1618 inode_item = btrfs_item_ptr(eb, i,
1619 struct btrfs_inode_item);
1620 mode = btrfs_inode_mode(eb, inode_item);
1621 if (S_ISDIR(mode)) {
1622 ret = replay_dir_deletes(wc->trans,
1623 root, log, path, key.objectid);
1624 BUG_ON(ret);
1625 }
1626 ret = overwrite_item(wc->trans, root, path,
1627 eb, i, &key);
1628 BUG_ON(ret);
1629
1630 /* for regular files, truncate away
1631 * extents past the new EOF
1632 */
1633 if (S_ISREG(mode)) {
1634 inode = read_one_inode(root,
1635 key.objectid);
1636 BUG_ON(!inode);
1637
1638 ret = btrfs_truncate_inode_items(wc->trans,
1639 root, inode, inode->i_size,
1640 BTRFS_EXTENT_DATA_KEY);
1641 BUG_ON(ret);
1642 iput(inode);
1643 }
1644 ret = link_to_fixup_dir(wc->trans, root,
1645 path, key.objectid);
1646 BUG_ON(ret);
1647 }
1648 if (wc->stage < LOG_WALK_REPLAY_ALL)
1649 continue;
1650
1651 /* these keys are simply copied */
1652 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1653 ret = overwrite_item(wc->trans, root, path,
1654 eb, i, &key);
1655 BUG_ON(ret);
1656 } else if (key.type == BTRFS_INODE_REF_KEY) {
1657 ret = add_inode_ref(wc->trans, root, log, path,
1658 eb, i, &key);
1659 BUG_ON(ret && ret != -ENOENT);
1660 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1661 ret = replay_one_extent(wc->trans, root, path,
1662 eb, i, &key);
1663 BUG_ON(ret);
Chris Masond20f7042008-12-08 16:58:54 -05001664 } else if (key.type == BTRFS_EXTENT_CSUM_KEY) {
Chris Masone02119d2008-09-05 16:13:11 -04001665 ret = replay_one_csum(wc->trans, root, path,
1666 eb, i, &key);
1667 BUG_ON(ret);
1668 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1669 key.type == BTRFS_DIR_INDEX_KEY) {
1670 ret = replay_one_dir_item(wc->trans, root, path,
1671 eb, i, &key);
1672 BUG_ON(ret);
1673 }
1674 }
1675 btrfs_free_path(path);
1676 return 0;
1677}
1678
1679static int noinline walk_down_log_tree(struct btrfs_trans_handle *trans,
1680 struct btrfs_root *root,
1681 struct btrfs_path *path, int *level,
1682 struct walk_control *wc)
1683{
1684 u64 root_owner;
1685 u64 root_gen;
1686 u64 bytenr;
1687 u64 ptr_gen;
1688 struct extent_buffer *next;
1689 struct extent_buffer *cur;
1690 struct extent_buffer *parent;
1691 u32 blocksize;
1692 int ret = 0;
1693
1694 WARN_ON(*level < 0);
1695 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1696
1697 while(*level > 0) {
1698 WARN_ON(*level < 0);
1699 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1700 cur = path->nodes[*level];
1701
1702 if (btrfs_header_level(cur) != *level)
1703 WARN_ON(1);
1704
1705 if (path->slots[*level] >=
1706 btrfs_header_nritems(cur))
1707 break;
1708
1709 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1710 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1711 blocksize = btrfs_level_size(root, *level - 1);
1712
1713 parent = path->nodes[*level];
1714 root_owner = btrfs_header_owner(parent);
1715 root_gen = btrfs_header_generation(parent);
1716
1717 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1718
1719 wc->process_func(root, next, wc, ptr_gen);
1720
1721 if (*level == 1) {
1722 path->slots[*level]++;
1723 if (wc->free) {
1724 btrfs_read_buffer(next, ptr_gen);
1725
1726 btrfs_tree_lock(next);
1727 clean_tree_block(trans, root, next);
1728 btrfs_wait_tree_block_writeback(next);
1729 btrfs_tree_unlock(next);
1730
1731 ret = btrfs_drop_leaf_ref(trans, root, next);
1732 BUG_ON(ret);
1733
1734 WARN_ON(root_owner !=
1735 BTRFS_TREE_LOG_OBJECTID);
Chris Masond00aff02008-09-11 15:54:42 -04001736 ret = btrfs_free_reserved_extent(root,
1737 bytenr, blocksize);
Chris Masone02119d2008-09-05 16:13:11 -04001738 BUG_ON(ret);
1739 }
1740 free_extent_buffer(next);
1741 continue;
1742 }
1743 btrfs_read_buffer(next, ptr_gen);
1744
1745 WARN_ON(*level <= 0);
1746 if (path->nodes[*level-1])
1747 free_extent_buffer(path->nodes[*level-1]);
1748 path->nodes[*level-1] = next;
1749 *level = btrfs_header_level(next);
1750 path->slots[*level] = 0;
1751 cond_resched();
1752 }
1753 WARN_ON(*level < 0);
1754 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1755
1756 if (path->nodes[*level] == root->node) {
1757 parent = path->nodes[*level];
1758 } else {
1759 parent = path->nodes[*level + 1];
1760 }
1761 bytenr = path->nodes[*level]->start;
1762
1763 blocksize = btrfs_level_size(root, *level);
1764 root_owner = btrfs_header_owner(parent);
1765 root_gen = btrfs_header_generation(parent);
1766
1767 wc->process_func(root, path->nodes[*level], wc,
1768 btrfs_header_generation(path->nodes[*level]));
1769
1770 if (wc->free) {
1771 next = path->nodes[*level];
1772 btrfs_tree_lock(next);
1773 clean_tree_block(trans, root, next);
1774 btrfs_wait_tree_block_writeback(next);
1775 btrfs_tree_unlock(next);
1776
1777 if (*level == 0) {
1778 ret = btrfs_drop_leaf_ref(trans, root, next);
1779 BUG_ON(ret);
1780 }
1781 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
Chris Masond00aff02008-09-11 15:54:42 -04001782 ret = btrfs_free_reserved_extent(root, bytenr, blocksize);
Chris Masone02119d2008-09-05 16:13:11 -04001783 BUG_ON(ret);
1784 }
1785 free_extent_buffer(path->nodes[*level]);
1786 path->nodes[*level] = NULL;
1787 *level += 1;
1788
1789 cond_resched();
1790 return 0;
1791}
1792
1793static int noinline walk_up_log_tree(struct btrfs_trans_handle *trans,
1794 struct btrfs_root *root,
1795 struct btrfs_path *path, int *level,
1796 struct walk_control *wc)
1797{
1798 u64 root_owner;
1799 u64 root_gen;
1800 int i;
1801 int slot;
1802 int ret;
1803
1804 for(i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1805 slot = path->slots[i];
1806 if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
1807 struct extent_buffer *node;
1808 node = path->nodes[i];
1809 path->slots[i]++;
1810 *level = i;
1811 WARN_ON(*level == 0);
1812 return 0;
1813 } else {
Zheng Yan31840ae2008-09-23 13:14:14 -04001814 struct extent_buffer *parent;
1815 if (path->nodes[*level] == root->node)
1816 parent = path->nodes[*level];
1817 else
1818 parent = path->nodes[*level + 1];
1819
1820 root_owner = btrfs_header_owner(parent);
1821 root_gen = btrfs_header_generation(parent);
Chris Masone02119d2008-09-05 16:13:11 -04001822 wc->process_func(root, path->nodes[*level], wc,
1823 btrfs_header_generation(path->nodes[*level]));
1824 if (wc->free) {
1825 struct extent_buffer *next;
1826
1827 next = path->nodes[*level];
1828
1829 btrfs_tree_lock(next);
1830 clean_tree_block(trans, root, next);
1831 btrfs_wait_tree_block_writeback(next);
1832 btrfs_tree_unlock(next);
1833
1834 if (*level == 0) {
1835 ret = btrfs_drop_leaf_ref(trans, root,
1836 next);
1837 BUG_ON(ret);
1838 }
1839
1840 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
Chris Masond00aff02008-09-11 15:54:42 -04001841 ret = btrfs_free_reserved_extent(root,
Chris Masone02119d2008-09-05 16:13:11 -04001842 path->nodes[*level]->start,
Chris Masond00aff02008-09-11 15:54:42 -04001843 path->nodes[*level]->len);
Chris Masone02119d2008-09-05 16:13:11 -04001844 BUG_ON(ret);
1845 }
1846 free_extent_buffer(path->nodes[*level]);
1847 path->nodes[*level] = NULL;
1848 *level = i + 1;
1849 }
1850 }
1851 return 1;
1852}
1853
1854/*
1855 * drop the reference count on the tree rooted at 'snap'. This traverses
1856 * the tree freeing any blocks that have a ref count of zero after being
1857 * decremented.
1858 */
1859static int walk_log_tree(struct btrfs_trans_handle *trans,
1860 struct btrfs_root *log, struct walk_control *wc)
1861{
1862 int ret = 0;
1863 int wret;
1864 int level;
1865 struct btrfs_path *path;
1866 int i;
1867 int orig_level;
1868
1869 path = btrfs_alloc_path();
1870 BUG_ON(!path);
1871
1872 level = btrfs_header_level(log->node);
1873 orig_level = level;
1874 path->nodes[level] = log->node;
1875 extent_buffer_get(log->node);
1876 path->slots[level] = 0;
1877
1878 while(1) {
1879 wret = walk_down_log_tree(trans, log, path, &level, wc);
1880 if (wret > 0)
1881 break;
1882 if (wret < 0)
1883 ret = wret;
1884
1885 wret = walk_up_log_tree(trans, log, path, &level, wc);
1886 if (wret > 0)
1887 break;
1888 if (wret < 0)
1889 ret = wret;
1890 }
1891
1892 /* was the root node processed? if not, catch it here */
1893 if (path->nodes[orig_level]) {
1894 wc->process_func(log, path->nodes[orig_level], wc,
1895 btrfs_header_generation(path->nodes[orig_level]));
1896 if (wc->free) {
1897 struct extent_buffer *next;
1898
1899 next = path->nodes[orig_level];
1900
1901 btrfs_tree_lock(next);
1902 clean_tree_block(trans, log, next);
1903 btrfs_wait_tree_block_writeback(next);
1904 btrfs_tree_unlock(next);
1905
1906 if (orig_level == 0) {
1907 ret = btrfs_drop_leaf_ref(trans, log,
1908 next);
1909 BUG_ON(ret);
1910 }
1911 WARN_ON(log->root_key.objectid !=
1912 BTRFS_TREE_LOG_OBJECTID);
Chris Masond00aff02008-09-11 15:54:42 -04001913 ret = btrfs_free_reserved_extent(log, next->start,
1914 next->len);
Chris Masone02119d2008-09-05 16:13:11 -04001915 BUG_ON(ret);
1916 }
1917 }
1918
1919 for (i = 0; i <= orig_level; i++) {
1920 if (path->nodes[i]) {
1921 free_extent_buffer(path->nodes[i]);
1922 path->nodes[i] = NULL;
1923 }
1924 }
1925 btrfs_free_path(path);
1926 if (wc->free)
1927 free_extent_buffer(log->node);
1928 return ret;
1929}
1930
Christoph Hellwigb2950862008-12-02 09:54:17 -05001931static int wait_log_commit(struct btrfs_root *log)
Chris Masone02119d2008-09-05 16:13:11 -04001932{
1933 DEFINE_WAIT(wait);
1934 u64 transid = log->fs_info->tree_log_transid;
1935
1936 do {
1937 prepare_to_wait(&log->fs_info->tree_log_wait, &wait,
1938 TASK_UNINTERRUPTIBLE);
1939 mutex_unlock(&log->fs_info->tree_log_mutex);
1940 if (atomic_read(&log->fs_info->tree_log_commit))
1941 schedule();
1942 finish_wait(&log->fs_info->tree_log_wait, &wait);
1943 mutex_lock(&log->fs_info->tree_log_mutex);
1944 } while(transid == log->fs_info->tree_log_transid &&
1945 atomic_read(&log->fs_info->tree_log_commit));
1946 return 0;
1947}
1948
1949/*
1950 * btrfs_sync_log does sends a given tree log down to the disk and
1951 * updates the super blocks to record it. When this call is done,
1952 * you know that any inodes previously logged are safely on disk
1953 */
1954int btrfs_sync_log(struct btrfs_trans_handle *trans,
1955 struct btrfs_root *root)
1956{
1957 int ret;
1958 unsigned long batch;
1959 struct btrfs_root *log = root->log_root;
Chris Masone02119d2008-09-05 16:13:11 -04001960
1961 mutex_lock(&log->fs_info->tree_log_mutex);
1962 if (atomic_read(&log->fs_info->tree_log_commit)) {
1963 wait_log_commit(log);
1964 goto out;
1965 }
1966 atomic_set(&log->fs_info->tree_log_commit, 1);
1967
1968 while(1) {
Chris Mason49eb7e42008-09-11 15:53:12 -04001969 batch = log->fs_info->tree_log_batch;
Chris Masone02119d2008-09-05 16:13:11 -04001970 mutex_unlock(&log->fs_info->tree_log_mutex);
1971 schedule_timeout_uninterruptible(1);
1972 mutex_lock(&log->fs_info->tree_log_mutex);
Chris Masone02119d2008-09-05 16:13:11 -04001973
1974 while(atomic_read(&log->fs_info->tree_log_writers)) {
1975 DEFINE_WAIT(wait);
1976 prepare_to_wait(&log->fs_info->tree_log_wait, &wait,
1977 TASK_UNINTERRUPTIBLE);
Chris Masone02119d2008-09-05 16:13:11 -04001978 mutex_unlock(&log->fs_info->tree_log_mutex);
1979 if (atomic_read(&log->fs_info->tree_log_writers))
1980 schedule();
1981 mutex_lock(&log->fs_info->tree_log_mutex);
1982 finish_wait(&log->fs_info->tree_log_wait, &wait);
1983 }
1984 if (batch == log->fs_info->tree_log_batch)
1985 break;
1986 }
Chris Masond0c803c2008-09-11 16:17:57 -04001987
1988 ret = btrfs_write_and_wait_marked_extents(log, &log->dirty_log_pages);
Chris Masone02119d2008-09-05 16:13:11 -04001989 BUG_ON(ret);
Chris Masond0c803c2008-09-11 16:17:57 -04001990 ret = btrfs_write_and_wait_marked_extents(root->fs_info->log_root_tree,
1991 &root->fs_info->log_root_tree->dirty_log_pages);
Chris Masone02119d2008-09-05 16:13:11 -04001992 BUG_ON(ret);
1993
1994 btrfs_set_super_log_root(&root->fs_info->super_for_commit,
1995 log->fs_info->log_root_tree->node->start);
1996 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
1997 btrfs_header_level(log->fs_info->log_root_tree->node));
1998
1999 write_ctree_super(trans, log->fs_info->tree_root);
2000 log->fs_info->tree_log_transid++;
2001 log->fs_info->tree_log_batch = 0;
2002 atomic_set(&log->fs_info->tree_log_commit, 0);
2003 smp_mb();
2004 if (waitqueue_active(&log->fs_info->tree_log_wait))
2005 wake_up(&log->fs_info->tree_log_wait);
2006out:
2007 mutex_unlock(&log->fs_info->tree_log_mutex);
2008 return 0;
2009
2010}
2011
Chris Mason3a5f1d42008-09-11 15:53:37 -04002012/* * free all the extents used by the tree log. This should be called
Chris Masone02119d2008-09-05 16:13:11 -04002013 * at commit time of the full transaction
2014 */
2015int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2016{
2017 int ret;
2018 struct btrfs_root *log;
2019 struct key;
Chris Masond0c803c2008-09-11 16:17:57 -04002020 u64 start;
2021 u64 end;
Chris Masone02119d2008-09-05 16:13:11 -04002022 struct walk_control wc = {
2023 .free = 1,
2024 .process_func = process_one_buffer
2025 };
2026
2027 if (!root->log_root)
2028 return 0;
2029
2030 log = root->log_root;
2031 ret = walk_log_tree(trans, log, &wc);
2032 BUG_ON(ret);
2033
Chris Masond0c803c2008-09-11 16:17:57 -04002034 while(1) {
2035 ret = find_first_extent_bit(&log->dirty_log_pages,
2036 0, &start, &end, EXTENT_DIRTY);
2037 if (ret)
2038 break;
2039
2040 clear_extent_dirty(&log->dirty_log_pages,
2041 start, end, GFP_NOFS);
2042 }
2043
Chris Masone02119d2008-09-05 16:13:11 -04002044 log = root->log_root;
2045 ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
2046 &log->root_key);
2047 BUG_ON(ret);
2048 root->log_root = NULL;
2049 kfree(root->log_root);
2050 return 0;
2051}
2052
2053/*
2054 * helper function to update the item for a given subvolumes log root
2055 * in the tree of log roots
2056 */
2057static int update_log_root(struct btrfs_trans_handle *trans,
2058 struct btrfs_root *log)
2059{
2060 u64 bytenr = btrfs_root_bytenr(&log->root_item);
2061 int ret;
2062
2063 if (log->node->start == bytenr)
2064 return 0;
2065
2066 btrfs_set_root_bytenr(&log->root_item, log->node->start);
Yan Zheng84234f32008-10-29 14:49:05 -04002067 btrfs_set_root_generation(&log->root_item, trans->transid);
Chris Masone02119d2008-09-05 16:13:11 -04002068 btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node));
2069 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2070 &log->root_key, &log->root_item);
2071 BUG_ON(ret);
2072 return ret;
2073}
2074
2075/*
2076 * If both a file and directory are logged, and unlinks or renames are
2077 * mixed in, we have a few interesting corners:
2078 *
2079 * create file X in dir Y
2080 * link file X to X.link in dir Y
2081 * fsync file X
2082 * unlink file X but leave X.link
2083 * fsync dir Y
2084 *
2085 * After a crash we would expect only X.link to exist. But file X
2086 * didn't get fsync'd again so the log has back refs for X and X.link.
2087 *
2088 * We solve this by removing directory entries and inode backrefs from the
2089 * log when a file that was logged in the current transaction is
2090 * unlinked. Any later fsync will include the updated log entries, and
2091 * we'll be able to reconstruct the proper directory items from backrefs.
2092 *
2093 * This optimizations allows us to avoid relogging the entire inode
2094 * or the entire directory.
2095 */
2096int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2097 struct btrfs_root *root,
2098 const char *name, int name_len,
2099 struct inode *dir, u64 index)
2100{
2101 struct btrfs_root *log;
2102 struct btrfs_dir_item *di;
2103 struct btrfs_path *path;
2104 int ret;
2105 int bytes_del = 0;
2106
Chris Mason3a5f1d42008-09-11 15:53:37 -04002107 if (BTRFS_I(dir)->logged_trans < trans->transid)
2108 return 0;
2109
Chris Masone02119d2008-09-05 16:13:11 -04002110 ret = join_running_log_trans(root);
2111 if (ret)
2112 return 0;
2113
2114 mutex_lock(&BTRFS_I(dir)->log_mutex);
2115
2116 log = root->log_root;
2117 path = btrfs_alloc_path();
2118 di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2119 name, name_len, -1);
2120 if (di && !IS_ERR(di)) {
2121 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2122 bytes_del += name_len;
2123 BUG_ON(ret);
2124 }
2125 btrfs_release_path(log, path);
2126 di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2127 index, name, name_len, -1);
2128 if (di && !IS_ERR(di)) {
2129 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2130 bytes_del += name_len;
2131 BUG_ON(ret);
2132 }
2133
2134 /* update the directory size in the log to reflect the names
2135 * we have removed
2136 */
2137 if (bytes_del) {
2138 struct btrfs_key key;
2139
2140 key.objectid = dir->i_ino;
2141 key.offset = 0;
2142 key.type = BTRFS_INODE_ITEM_KEY;
2143 btrfs_release_path(log, path);
2144
2145 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2146 if (ret == 0) {
2147 struct btrfs_inode_item *item;
2148 u64 i_size;
2149
2150 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2151 struct btrfs_inode_item);
2152 i_size = btrfs_inode_size(path->nodes[0], item);
2153 if (i_size > bytes_del)
2154 i_size -= bytes_del;
2155 else
2156 i_size = 0;
2157 btrfs_set_inode_size(path->nodes[0], item, i_size);
2158 btrfs_mark_buffer_dirty(path->nodes[0]);
2159 } else
2160 ret = 0;
2161 btrfs_release_path(log, path);
2162 }
2163
2164 btrfs_free_path(path);
2165 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2166 end_log_trans(root);
2167
2168 return 0;
2169}
2170
2171/* see comments for btrfs_del_dir_entries_in_log */
2172int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2173 struct btrfs_root *root,
2174 const char *name, int name_len,
2175 struct inode *inode, u64 dirid)
2176{
2177 struct btrfs_root *log;
2178 u64 index;
2179 int ret;
2180
Chris Mason3a5f1d42008-09-11 15:53:37 -04002181 if (BTRFS_I(inode)->logged_trans < trans->transid)
2182 return 0;
2183
Chris Masone02119d2008-09-05 16:13:11 -04002184 ret = join_running_log_trans(root);
2185 if (ret)
2186 return 0;
2187 log = root->log_root;
2188 mutex_lock(&BTRFS_I(inode)->log_mutex);
2189
2190 ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2191 dirid, &index);
2192 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2193 end_log_trans(root);
2194
Chris Masone02119d2008-09-05 16:13:11 -04002195 return ret;
2196}
2197
2198/*
2199 * creates a range item in the log for 'dirid'. first_offset and
2200 * last_offset tell us which parts of the key space the log should
2201 * be considered authoritative for.
2202 */
2203static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2204 struct btrfs_root *log,
2205 struct btrfs_path *path,
2206 int key_type, u64 dirid,
2207 u64 first_offset, u64 last_offset)
2208{
2209 int ret;
2210 struct btrfs_key key;
2211 struct btrfs_dir_log_item *item;
2212
2213 key.objectid = dirid;
2214 key.offset = first_offset;
2215 if (key_type == BTRFS_DIR_ITEM_KEY)
2216 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2217 else
2218 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2219 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2220 BUG_ON(ret);
2221
2222 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2223 struct btrfs_dir_log_item);
2224 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2225 btrfs_mark_buffer_dirty(path->nodes[0]);
2226 btrfs_release_path(log, path);
2227 return 0;
2228}
2229
2230/*
2231 * log all the items included in the current transaction for a given
2232 * directory. This also creates the range items in the log tree required
2233 * to replay anything deleted before the fsync
2234 */
2235static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2236 struct btrfs_root *root, struct inode *inode,
2237 struct btrfs_path *path,
2238 struct btrfs_path *dst_path, int key_type,
2239 u64 min_offset, u64 *last_offset_ret)
2240{
2241 struct btrfs_key min_key;
2242 struct btrfs_key max_key;
2243 struct btrfs_root *log = root->log_root;
2244 struct extent_buffer *src;
2245 int ret;
2246 int i;
2247 int nritems;
2248 u64 first_offset = min_offset;
2249 u64 last_offset = (u64)-1;
2250
2251 log = root->log_root;
2252 max_key.objectid = inode->i_ino;
2253 max_key.offset = (u64)-1;
2254 max_key.type = key_type;
2255
2256 min_key.objectid = inode->i_ino;
2257 min_key.type = key_type;
2258 min_key.offset = min_offset;
2259
2260 path->keep_locks = 1;
2261
2262 ret = btrfs_search_forward(root, &min_key, &max_key,
2263 path, 0, trans->transid);
2264
2265 /*
2266 * we didn't find anything from this transaction, see if there
2267 * is anything at all
2268 */
2269 if (ret != 0 || min_key.objectid != inode->i_ino ||
2270 min_key.type != key_type) {
2271 min_key.objectid = inode->i_ino;
2272 min_key.type = key_type;
2273 min_key.offset = (u64)-1;
2274 btrfs_release_path(root, path);
2275 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2276 if (ret < 0) {
2277 btrfs_release_path(root, path);
2278 return ret;
2279 }
2280 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2281
2282 /* if ret == 0 there are items for this type,
2283 * create a range to tell us the last key of this type.
2284 * otherwise, there are no items in this directory after
2285 * *min_offset, and we create a range to indicate that.
2286 */
2287 if (ret == 0) {
2288 struct btrfs_key tmp;
2289 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2290 path->slots[0]);
2291 if (key_type == tmp.type) {
2292 first_offset = max(min_offset, tmp.offset) + 1;
2293 }
2294 }
2295 goto done;
2296 }
2297
2298 /* go backward to find any previous key */
2299 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2300 if (ret == 0) {
2301 struct btrfs_key tmp;
2302 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2303 if (key_type == tmp.type) {
2304 first_offset = tmp.offset;
2305 ret = overwrite_item(trans, log, dst_path,
2306 path->nodes[0], path->slots[0],
2307 &tmp);
2308 }
2309 }
2310 btrfs_release_path(root, path);
2311
2312 /* find the first key from this transaction again */
2313 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2314 if (ret != 0) {
2315 WARN_ON(1);
2316 goto done;
2317 }
2318
2319 /*
2320 * we have a block from this transaction, log every item in it
2321 * from our directory
2322 */
2323 while(1) {
2324 struct btrfs_key tmp;
2325 src = path->nodes[0];
2326 nritems = btrfs_header_nritems(src);
2327 for (i = path->slots[0]; i < nritems; i++) {
2328 btrfs_item_key_to_cpu(src, &min_key, i);
2329
2330 if (min_key.objectid != inode->i_ino ||
2331 min_key.type != key_type)
2332 goto done;
2333 ret = overwrite_item(trans, log, dst_path, src, i,
2334 &min_key);
2335 BUG_ON(ret);
2336 }
2337 path->slots[0] = nritems;
2338
2339 /*
2340 * look ahead to the next item and see if it is also
2341 * from this directory and from this transaction
2342 */
2343 ret = btrfs_next_leaf(root, path);
2344 if (ret == 1) {
2345 last_offset = (u64)-1;
2346 goto done;
2347 }
2348 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2349 if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2350 last_offset = (u64)-1;
2351 goto done;
2352 }
2353 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2354 ret = overwrite_item(trans, log, dst_path,
2355 path->nodes[0], path->slots[0],
2356 &tmp);
2357
2358 BUG_ON(ret);
2359 last_offset = tmp.offset;
2360 goto done;
2361 }
2362 }
2363done:
2364 *last_offset_ret = last_offset;
2365 btrfs_release_path(root, path);
2366 btrfs_release_path(log, dst_path);
2367
2368 /* insert the log range keys to indicate where the log is valid */
2369 ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
2370 first_offset, last_offset);
2371 BUG_ON(ret);
2372 return 0;
2373}
2374
2375/*
2376 * logging directories is very similar to logging inodes, We find all the items
2377 * from the current transaction and write them to the log.
2378 *
2379 * The recovery code scans the directory in the subvolume, and if it finds a
2380 * key in the range logged that is not present in the log tree, then it means
2381 * that dir entry was unlinked during the transaction.
2382 *
2383 * In order for that scan to work, we must include one key smaller than
2384 * the smallest logged by this transaction and one key larger than the largest
2385 * key logged by this transaction.
2386 */
2387static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2388 struct btrfs_root *root, struct inode *inode,
2389 struct btrfs_path *path,
2390 struct btrfs_path *dst_path)
2391{
2392 u64 min_key;
2393 u64 max_key;
2394 int ret;
2395 int key_type = BTRFS_DIR_ITEM_KEY;
2396
2397again:
2398 min_key = 0;
2399 max_key = 0;
2400 while(1) {
2401 ret = log_dir_items(trans, root, inode, path,
2402 dst_path, key_type, min_key,
2403 &max_key);
2404 BUG_ON(ret);
2405 if (max_key == (u64)-1)
2406 break;
2407 min_key = max_key + 1;
2408 }
2409
2410 if (key_type == BTRFS_DIR_ITEM_KEY) {
2411 key_type = BTRFS_DIR_INDEX_KEY;
2412 goto again;
2413 }
2414 return 0;
2415}
2416
2417/*
2418 * a helper function to drop items from the log before we relog an
2419 * inode. max_key_type indicates the highest item type to remove.
2420 * This cannot be run for file data extents because it does not
2421 * free the extents they point to.
2422 */
2423static int drop_objectid_items(struct btrfs_trans_handle *trans,
2424 struct btrfs_root *log,
2425 struct btrfs_path *path,
2426 u64 objectid, int max_key_type)
2427{
2428 int ret;
2429 struct btrfs_key key;
2430 struct btrfs_key found_key;
2431
2432 key.objectid = objectid;
2433 key.type = max_key_type;
2434 key.offset = (u64)-1;
2435
2436 while(1) {
2437 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2438
2439 if (ret != 1)
2440 break;
2441
2442 if (path->slots[0] == 0)
2443 break;
2444
2445 path->slots[0]--;
2446 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2447 path->slots[0]);
2448
2449 if (found_key.objectid != objectid)
2450 break;
2451
2452 ret = btrfs_del_item(trans, log, path);
2453 BUG_ON(ret);
2454 btrfs_release_path(log, path);
2455 }
2456 btrfs_release_path(log, path);
2457 return 0;
2458}
2459
Chris Masond20f7042008-12-08 16:58:54 -05002460static noinline int copy_extent_csums(struct btrfs_trans_handle *trans,
2461 struct list_head *list,
2462 struct btrfs_root *root,
2463 u64 disk_bytenr, u64 len)
2464{
2465 struct btrfs_ordered_sum *sums;
2466 struct btrfs_sector_sum *sector_sum;
2467 int ret;
2468 struct btrfs_path *path;
2469 struct btrfs_csum_item *item = NULL;
2470 u64 end = disk_bytenr + len;
2471 u64 item_start_offset = 0;
2472 u64 item_last_offset = 0;
2473 u32 diff;
2474 u32 sum;
2475 u16 csum_size = btrfs_super_csum_size(&root->fs_info->super_copy);
2476
2477 sums = kzalloc(btrfs_ordered_sum_size(root, len), GFP_NOFS);
2478
2479 sector_sum = sums->sums;
2480 sums->bytenr = disk_bytenr;
2481 sums->len = len;
2482 list_add_tail(&sums->list, list);
2483
2484 path = btrfs_alloc_path();
2485 while(disk_bytenr < end) {
2486 if (!item || disk_bytenr < item_start_offset ||
2487 disk_bytenr >= item_last_offset) {
2488 struct btrfs_key found_key;
2489 u32 item_size;
2490
2491 if (item)
2492 btrfs_release_path(root, path);
2493 item = btrfs_lookup_csum(NULL, root, path,
2494 disk_bytenr, 0);
2495 if (IS_ERR(item)) {
2496 ret = PTR_ERR(item);
2497 if (ret == -ENOENT || ret == -EFBIG)
2498 ret = 0;
2499 sum = 0;
2500 printk("log no csum found for byte %llu\n",
2501 (unsigned long long)disk_bytenr);
2502 item = NULL;
2503 btrfs_release_path(root, path);
2504 goto found;
2505 }
2506 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2507 path->slots[0]);
2508
2509 item_start_offset = found_key.offset;
2510 item_size = btrfs_item_size_nr(path->nodes[0],
2511 path->slots[0]);
2512 item_last_offset = item_start_offset +
2513 (item_size / csum_size) *
2514 root->sectorsize;
2515 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2516 struct btrfs_csum_item);
2517 }
2518 /*
2519 * this byte range must be able to fit inside
2520 * a single leaf so it will also fit inside a u32
2521 */
2522 diff = disk_bytenr - item_start_offset;
2523 diff = diff / root->sectorsize;
2524 diff = diff * csum_size;
2525
2526 read_extent_buffer(path->nodes[0], &sum,
2527 ((unsigned long)item) + diff,
2528 csum_size);
2529found:
2530 sector_sum->bytenr = disk_bytenr;
2531 sector_sum->sum = sum;
2532 disk_bytenr += root->sectorsize;
2533 sector_sum++;
2534 }
2535 btrfs_free_path(path);
2536 return 0;
2537}
2538
Chris Mason31ff1cd2008-09-11 16:17:57 -04002539static noinline int copy_items(struct btrfs_trans_handle *trans,
2540 struct btrfs_root *log,
2541 struct btrfs_path *dst_path,
2542 struct extent_buffer *src,
2543 int start_slot, int nr, int inode_only)
2544{
2545 unsigned long src_offset;
2546 unsigned long dst_offset;
2547 struct btrfs_file_extent_item *extent;
2548 struct btrfs_inode_item *inode_item;
2549 int ret;
2550 struct btrfs_key *ins_keys;
2551 u32 *ins_sizes;
2552 char *ins_data;
2553 int i;
Chris Masond20f7042008-12-08 16:58:54 -05002554 struct list_head ordered_sums;
2555
2556 INIT_LIST_HEAD(&ordered_sums);
Chris Mason31ff1cd2008-09-11 16:17:57 -04002557
2558 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2559 nr * sizeof(u32), GFP_NOFS);
2560 ins_sizes = (u32 *)ins_data;
2561 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2562
2563 for (i = 0; i < nr; i++) {
2564 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2565 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2566 }
2567 ret = btrfs_insert_empty_items(trans, log, dst_path,
2568 ins_keys, ins_sizes, nr);
2569 BUG_ON(ret);
2570
2571 for (i = 0; i < nr; i++) {
2572 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2573 dst_path->slots[0]);
2574
2575 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2576
2577 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2578 src_offset, ins_sizes[i]);
2579
2580 if (inode_only == LOG_INODE_EXISTS &&
2581 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2582 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2583 dst_path->slots[0],
2584 struct btrfs_inode_item);
2585 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2586
2587 /* set the generation to zero so the recover code
2588 * can tell the difference between an logging
2589 * just to say 'this inode exists' and a logging
2590 * to say 'update this inode with these values'
2591 */
2592 btrfs_set_inode_generation(dst_path->nodes[0],
2593 inode_item, 0);
2594 }
2595 /* take a reference on file data extents so that truncates
2596 * or deletes of this inode don't have to relog the inode
2597 * again
2598 */
2599 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2600 int found_type;
2601 extent = btrfs_item_ptr(src, start_slot + i,
2602 struct btrfs_file_extent_item);
2603
2604 found_type = btrfs_file_extent_type(src, extent);
Yan Zhengd899e052008-10-30 14:25:28 -04002605 if (found_type == BTRFS_FILE_EXTENT_REG ||
2606 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
Chris Mason31ff1cd2008-09-11 16:17:57 -04002607 u64 ds = btrfs_file_extent_disk_bytenr(src,
2608 extent);
2609 u64 dl = btrfs_file_extent_disk_num_bytes(src,
2610 extent);
Chris Masond20f7042008-12-08 16:58:54 -05002611 u64 cs = btrfs_file_extent_offset(src, extent);
2612 u64 cl = btrfs_file_extent_num_bytes(src,
2613 extent);;
Chris Mason31ff1cd2008-09-11 16:17:57 -04002614 /* ds == 0 is a hole */
2615 if (ds != 0) {
2616 ret = btrfs_inc_extent_ref(trans, log,
2617 ds, dl,
Zheng Yan31840ae2008-09-23 13:14:14 -04002618 dst_path->nodes[0]->start,
Chris Mason31ff1cd2008-09-11 16:17:57 -04002619 BTRFS_TREE_LOG_OBJECTID,
Zheng Yan31840ae2008-09-23 13:14:14 -04002620 trans->transid,
Yan Zheng3bb1a1b2008-10-09 11:46:24 -04002621 ins_keys[i].objectid);
Chris Mason31ff1cd2008-09-11 16:17:57 -04002622 BUG_ON(ret);
Chris Masond20f7042008-12-08 16:58:54 -05002623 ret = copy_extent_csums(trans,
2624 &ordered_sums,
2625 log->fs_info->csum_root,
2626 ds + cs, cl);
2627 BUG_ON(ret);
Chris Mason31ff1cd2008-09-11 16:17:57 -04002628 }
2629 }
2630 }
2631 dst_path->slots[0]++;
2632 }
2633
2634 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2635 btrfs_release_path(log, dst_path);
2636 kfree(ins_data);
Chris Masond20f7042008-12-08 16:58:54 -05002637
2638 /*
2639 * we have to do this after the loop above to avoid changing the
2640 * log tree while trying to change the log tree.
2641 */
2642 while(!list_empty(&ordered_sums)) {
2643 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2644 struct btrfs_ordered_sum,
2645 list);
2646 ret = btrfs_csum_file_blocks(trans, log, sums);
2647 BUG_ON(ret);
2648 list_del(&sums->list);
2649 kfree(sums);
2650 }
Chris Mason31ff1cd2008-09-11 16:17:57 -04002651 return 0;
2652}
2653
Chris Masone02119d2008-09-05 16:13:11 -04002654/* log a single inode in the tree log.
2655 * At least one parent directory for this inode must exist in the tree
2656 * or be logged already.
2657 *
2658 * Any items from this inode changed by the current transaction are copied
2659 * to the log tree. An extra reference is taken on any extents in this
2660 * file, allowing us to avoid a whole pile of corner cases around logging
2661 * blocks that have been removed from the tree.
2662 *
2663 * See LOG_INODE_ALL and related defines for a description of what inode_only
2664 * does.
2665 *
2666 * This handles both files and directories.
2667 */
2668static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
2669 struct btrfs_root *root, struct inode *inode,
2670 int inode_only)
2671{
2672 struct btrfs_path *path;
2673 struct btrfs_path *dst_path;
2674 struct btrfs_key min_key;
2675 struct btrfs_key max_key;
2676 struct btrfs_root *log = root->log_root;
Chris Mason31ff1cd2008-09-11 16:17:57 -04002677 struct extent_buffer *src = NULL;
Chris Masone02119d2008-09-05 16:13:11 -04002678 u32 size;
2679 int ret;
Chris Mason3a5f1d42008-09-11 15:53:37 -04002680 int nritems;
Chris Mason31ff1cd2008-09-11 16:17:57 -04002681 int ins_start_slot = 0;
2682 int ins_nr;
Chris Masone02119d2008-09-05 16:13:11 -04002683
2684 log = root->log_root;
2685
2686 path = btrfs_alloc_path();
2687 dst_path = btrfs_alloc_path();
2688
2689 min_key.objectid = inode->i_ino;
2690 min_key.type = BTRFS_INODE_ITEM_KEY;
2691 min_key.offset = 0;
2692
2693 max_key.objectid = inode->i_ino;
2694 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2695 max_key.type = BTRFS_XATTR_ITEM_KEY;
2696 else
2697 max_key.type = (u8)-1;
2698 max_key.offset = (u64)-1;
2699
2700 /*
2701 * if this inode has already been logged and we're in inode_only
2702 * mode, we don't want to delete the things that have already
2703 * been written to the log.
2704 *
2705 * But, if the inode has been through an inode_only log,
2706 * the logged_trans field is not set. This allows us to catch
2707 * any new names for this inode in the backrefs by logging it
2708 * again
2709 */
2710 if (inode_only == LOG_INODE_EXISTS &&
2711 BTRFS_I(inode)->logged_trans == trans->transid) {
2712 btrfs_free_path(path);
2713 btrfs_free_path(dst_path);
2714 goto out;
2715 }
2716 mutex_lock(&BTRFS_I(inode)->log_mutex);
2717
2718 /*
2719 * a brute force approach to making sure we get the most uptodate
2720 * copies of everything.
2721 */
2722 if (S_ISDIR(inode->i_mode)) {
2723 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2724
2725 if (inode_only == LOG_INODE_EXISTS)
2726 max_key_type = BTRFS_XATTR_ITEM_KEY;
2727 ret = drop_objectid_items(trans, log, path,
2728 inode->i_ino, max_key_type);
2729 } else {
2730 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2731 }
2732 BUG_ON(ret);
2733 path->keep_locks = 1;
2734
2735 while(1) {
Chris Mason31ff1cd2008-09-11 16:17:57 -04002736 ins_nr = 0;
Chris Masone02119d2008-09-05 16:13:11 -04002737 ret = btrfs_search_forward(root, &min_key, &max_key,
2738 path, 0, trans->transid);
2739 if (ret != 0)
2740 break;
Chris Mason3a5f1d42008-09-11 15:53:37 -04002741again:
Chris Mason31ff1cd2008-09-11 16:17:57 -04002742 /* note, ins_nr might be > 0 here, cleanup outside the loop */
Chris Masone02119d2008-09-05 16:13:11 -04002743 if (min_key.objectid != inode->i_ino)
2744 break;
2745 if (min_key.type > max_key.type)
2746 break;
Chris Mason31ff1cd2008-09-11 16:17:57 -04002747
Chris Masone02119d2008-09-05 16:13:11 -04002748 src = path->nodes[0];
2749 size = btrfs_item_size_nr(src, path->slots[0]);
Chris Mason31ff1cd2008-09-11 16:17:57 -04002750 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2751 ins_nr++;
2752 goto next_slot;
2753 } else if (!ins_nr) {
2754 ins_start_slot = path->slots[0];
2755 ins_nr = 1;
2756 goto next_slot;
Chris Masone02119d2008-09-05 16:13:11 -04002757 }
2758
Chris Mason31ff1cd2008-09-11 16:17:57 -04002759 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2760 ins_nr, inode_only);
2761 BUG_ON(ret);
2762 ins_nr = 1;
2763 ins_start_slot = path->slots[0];
2764next_slot:
Chris Masone02119d2008-09-05 16:13:11 -04002765
Chris Mason3a5f1d42008-09-11 15:53:37 -04002766 nritems = btrfs_header_nritems(path->nodes[0]);
2767 path->slots[0]++;
2768 if (path->slots[0] < nritems) {
2769 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2770 path->slots[0]);
2771 goto again;
2772 }
Chris Mason31ff1cd2008-09-11 16:17:57 -04002773 if (ins_nr) {
2774 ret = copy_items(trans, log, dst_path, src,
2775 ins_start_slot,
2776 ins_nr, inode_only);
2777 BUG_ON(ret);
2778 ins_nr = 0;
2779 }
Chris Mason3a5f1d42008-09-11 15:53:37 -04002780 btrfs_release_path(root, path);
2781
Chris Masone02119d2008-09-05 16:13:11 -04002782 if (min_key.offset < (u64)-1)
2783 min_key.offset++;
2784 else if (min_key.type < (u8)-1)
2785 min_key.type++;
2786 else if (min_key.objectid < (u64)-1)
2787 min_key.objectid++;
2788 else
2789 break;
2790 }
Chris Mason31ff1cd2008-09-11 16:17:57 -04002791 if (ins_nr) {
2792 ret = copy_items(trans, log, dst_path, src,
2793 ins_start_slot,
2794 ins_nr, inode_only);
2795 BUG_ON(ret);
2796 ins_nr = 0;
2797 }
2798 WARN_ON(ins_nr);
Chris Mason9623f9a2008-09-11 17:42:42 -04002799 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
Chris Masone02119d2008-09-05 16:13:11 -04002800 btrfs_release_path(root, path);
2801 btrfs_release_path(log, dst_path);
Chris Mason49eb7e42008-09-11 15:53:12 -04002802 BTRFS_I(inode)->log_dirty_trans = 0;
Chris Masone02119d2008-09-05 16:13:11 -04002803 ret = log_directory_changes(trans, root, inode, path, dst_path);
2804 BUG_ON(ret);
2805 }
Chris Mason3a5f1d42008-09-11 15:53:37 -04002806 BTRFS_I(inode)->logged_trans = trans->transid;
Chris Masone02119d2008-09-05 16:13:11 -04002807 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2808
2809 btrfs_free_path(path);
2810 btrfs_free_path(dst_path);
2811
2812 mutex_lock(&root->fs_info->tree_log_mutex);
2813 ret = update_log_root(trans, log);
2814 BUG_ON(ret);
2815 mutex_unlock(&root->fs_info->tree_log_mutex);
2816out:
2817 return 0;
2818}
2819
2820int btrfs_log_inode(struct btrfs_trans_handle *trans,
2821 struct btrfs_root *root, struct inode *inode,
2822 int inode_only)
2823{
2824 int ret;
2825
2826 start_log_trans(trans, root);
2827 ret = __btrfs_log_inode(trans, root, inode, inode_only);
2828 end_log_trans(root);
2829 return ret;
2830}
2831
2832/*
2833 * helper function around btrfs_log_inode to make sure newly created
2834 * parent directories also end up in the log. A minimal inode and backref
2835 * only logging is done of any parent directories that are older than
2836 * the last committed transaction
2837 */
2838int btrfs_log_dentry(struct btrfs_trans_handle *trans,
2839 struct btrfs_root *root, struct dentry *dentry)
2840{
2841 int inode_only = LOG_INODE_ALL;
2842 struct super_block *sb;
2843 int ret;
2844
2845 start_log_trans(trans, root);
2846 sb = dentry->d_inode->i_sb;
2847 while(1) {
2848 ret = __btrfs_log_inode(trans, root, dentry->d_inode,
2849 inode_only);
2850 BUG_ON(ret);
2851 inode_only = LOG_INODE_EXISTS;
2852
2853 dentry = dentry->d_parent;
2854 if (!dentry || !dentry->d_inode || sb != dentry->d_inode->i_sb)
2855 break;
2856
2857 if (BTRFS_I(dentry->d_inode)->generation <=
2858 root->fs_info->last_trans_committed)
2859 break;
2860 }
2861 end_log_trans(root);
2862 return 0;
2863}
2864
2865/*
2866 * it is not safe to log dentry if the chunk root has added new
2867 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
2868 * If this returns 1, you must commit the transaction to safely get your
2869 * data on disk.
2870 */
2871int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
2872 struct btrfs_root *root, struct dentry *dentry)
2873{
2874 u64 gen;
2875 gen = root->fs_info->last_trans_new_blockgroup;
2876 if (gen > root->fs_info->last_trans_committed)
2877 return 1;
2878 else
2879 return btrfs_log_dentry(trans, root, dentry);
2880}
2881
2882/*
2883 * should be called during mount to recover any replay any log trees
2884 * from the FS
2885 */
2886int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
2887{
2888 int ret;
2889 struct btrfs_path *path;
2890 struct btrfs_trans_handle *trans;
2891 struct btrfs_key key;
2892 struct btrfs_key found_key;
2893 struct btrfs_key tmp_key;
2894 struct btrfs_root *log;
2895 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
Chris Mason8d5bf1c2008-09-11 15:51:21 -04002896 u64 highest_inode;
Chris Masone02119d2008-09-05 16:13:11 -04002897 struct walk_control wc = {
2898 .process_func = process_one_buffer,
2899 .stage = 0,
2900 };
2901
2902 fs_info->log_root_recovering = 1;
2903 path = btrfs_alloc_path();
2904 BUG_ON(!path);
2905
2906 trans = btrfs_start_transaction(fs_info->tree_root, 1);
2907
2908 wc.trans = trans;
2909 wc.pin = 1;
2910
2911 walk_log_tree(trans, log_root_tree, &wc);
2912
2913again:
2914 key.objectid = BTRFS_TREE_LOG_OBJECTID;
2915 key.offset = (u64)-1;
2916 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
2917
2918 while(1) {
2919 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
2920 if (ret < 0)
2921 break;
2922 if (ret > 0) {
2923 if (path->slots[0] == 0)
2924 break;
2925 path->slots[0]--;
2926 }
2927 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2928 path->slots[0]);
2929 btrfs_release_path(log_root_tree, path);
2930 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
2931 break;
2932
2933 log = btrfs_read_fs_root_no_radix(log_root_tree,
2934 &found_key);
2935 BUG_ON(!log);
2936
2937
2938 tmp_key.objectid = found_key.offset;
2939 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
2940 tmp_key.offset = (u64)-1;
2941
2942 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
2943
2944 BUG_ON(!wc.replay_dest);
2945
2946 btrfs_record_root_in_trans(wc.replay_dest);
2947 ret = walk_log_tree(trans, log, &wc);
2948 BUG_ON(ret);
2949
2950 if (wc.stage == LOG_WALK_REPLAY_ALL) {
2951 ret = fixup_inode_link_counts(trans, wc.replay_dest,
2952 path);
2953 BUG_ON(ret);
2954 }
Chris Mason8d5bf1c2008-09-11 15:51:21 -04002955 ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode);
2956 if (ret == 0) {
2957 wc.replay_dest->highest_inode = highest_inode;
2958 wc.replay_dest->last_inode_alloc = highest_inode;
2959 }
Chris Masone02119d2008-09-05 16:13:11 -04002960
2961 key.offset = found_key.offset - 1;
2962 free_extent_buffer(log->node);
2963 kfree(log);
2964
2965 if (found_key.offset == 0)
2966 break;
2967 }
2968 btrfs_release_path(log_root_tree, path);
2969
2970 /* step one is to pin it all, step two is to replay just inodes */
2971 if (wc.pin) {
2972 wc.pin = 0;
2973 wc.process_func = replay_one_buffer;
2974 wc.stage = LOG_WALK_REPLAY_INODES;
2975 goto again;
2976 }
2977 /* step three is to replay everything */
2978 if (wc.stage < LOG_WALK_REPLAY_ALL) {
2979 wc.stage++;
2980 goto again;
2981 }
2982
2983 btrfs_free_path(path);
2984
2985 free_extent_buffer(log_root_tree->node);
2986 log_root_tree->log_root = NULL;
2987 fs_info->log_root_recovering = 0;
2988
2989 /* step 4: commit the transaction, which also unpins the blocks */
2990 btrfs_commit_transaction(trans, fs_info->tree_root);
2991
2992 kfree(log_root_tree);
2993 return 0;
2994}