Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 1 | /**************************************************************************** |
| 2 | * Driver for Solarflare Solarstorm network controllers and boards |
| 3 | * Copyright 2005-2006 Fen Systems Ltd. |
| 4 | * Copyright 2005-2008 Solarflare Communications Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify it |
| 7 | * under the terms of the GNU General Public License version 2 as published |
| 8 | * by the Free Software Foundation, incorporated herein by reference. |
| 9 | */ |
| 10 | |
| 11 | #include <linux/pci.h> |
| 12 | #include <linux/tcp.h> |
| 13 | #include <linux/ip.h> |
| 14 | #include <linux/in.h> |
| 15 | #include <linux/if_ether.h> |
| 16 | #include <linux/highmem.h> |
| 17 | #include "net_driver.h" |
| 18 | #include "tx.h" |
| 19 | #include "efx.h" |
| 20 | #include "falcon.h" |
| 21 | #include "workarounds.h" |
| 22 | |
| 23 | /* |
| 24 | * TX descriptor ring full threshold |
| 25 | * |
| 26 | * The tx_queue descriptor ring fill-level must fall below this value |
| 27 | * before we restart the netif queue |
| 28 | */ |
| 29 | #define EFX_NETDEV_TX_THRESHOLD(_tx_queue) \ |
| 30 | (_tx_queue->efx->type->txd_ring_mask / 2u) |
| 31 | |
| 32 | /* We want to be able to nest calls to netif_stop_queue(), since each |
| 33 | * channel can have an individual stop on the queue. |
| 34 | */ |
| 35 | void efx_stop_queue(struct efx_nic *efx) |
| 36 | { |
| 37 | spin_lock_bh(&efx->netif_stop_lock); |
| 38 | EFX_TRACE(efx, "stop TX queue\n"); |
| 39 | |
| 40 | atomic_inc(&efx->netif_stop_count); |
| 41 | netif_stop_queue(efx->net_dev); |
| 42 | |
| 43 | spin_unlock_bh(&efx->netif_stop_lock); |
| 44 | } |
| 45 | |
| 46 | /* Wake netif's TX queue |
| 47 | * We want to be able to nest calls to netif_stop_queue(), since each |
| 48 | * channel can have an individual stop on the queue. |
| 49 | */ |
| 50 | inline void efx_wake_queue(struct efx_nic *efx) |
| 51 | { |
| 52 | local_bh_disable(); |
| 53 | if (atomic_dec_and_lock(&efx->netif_stop_count, |
| 54 | &efx->netif_stop_lock)) { |
| 55 | EFX_TRACE(efx, "waking TX queue\n"); |
| 56 | netif_wake_queue(efx->net_dev); |
| 57 | spin_unlock(&efx->netif_stop_lock); |
| 58 | } |
| 59 | local_bh_enable(); |
| 60 | } |
| 61 | |
| 62 | static inline void efx_dequeue_buffer(struct efx_tx_queue *tx_queue, |
| 63 | struct efx_tx_buffer *buffer) |
| 64 | { |
| 65 | if (buffer->unmap_len) { |
| 66 | struct pci_dev *pci_dev = tx_queue->efx->pci_dev; |
Ben Hutchings | cc12dac | 2008-09-01 12:46:43 +0100 | [diff] [blame^] | 67 | dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len - |
| 68 | buffer->unmap_len); |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 69 | if (buffer->unmap_single) |
Ben Hutchings | cc12dac | 2008-09-01 12:46:43 +0100 | [diff] [blame^] | 70 | pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len, |
| 71 | PCI_DMA_TODEVICE); |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 72 | else |
Ben Hutchings | cc12dac | 2008-09-01 12:46:43 +0100 | [diff] [blame^] | 73 | pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len, |
| 74 | PCI_DMA_TODEVICE); |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 75 | buffer->unmap_len = 0; |
| 76 | buffer->unmap_single = 0; |
| 77 | } |
| 78 | |
| 79 | if (buffer->skb) { |
| 80 | dev_kfree_skb_any((struct sk_buff *) buffer->skb); |
| 81 | buffer->skb = NULL; |
| 82 | EFX_TRACE(tx_queue->efx, "TX queue %d transmission id %x " |
| 83 | "complete\n", tx_queue->queue, read_ptr); |
| 84 | } |
| 85 | } |
| 86 | |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 87 | /** |
| 88 | * struct efx_tso_header - a DMA mapped buffer for packet headers |
| 89 | * @next: Linked list of free ones. |
| 90 | * The list is protected by the TX queue lock. |
| 91 | * @dma_unmap_len: Length to unmap for an oversize buffer, or 0. |
| 92 | * @dma_addr: The DMA address of the header below. |
| 93 | * |
| 94 | * This controls the memory used for a TSO header. Use TSOH_DATA() |
| 95 | * to find the packet header data. Use TSOH_SIZE() to calculate the |
| 96 | * total size required for a given packet header length. TSO headers |
| 97 | * in the free list are exactly %TSOH_STD_SIZE bytes in size. |
| 98 | */ |
| 99 | struct efx_tso_header { |
| 100 | union { |
| 101 | struct efx_tso_header *next; |
| 102 | size_t unmap_len; |
| 103 | }; |
| 104 | dma_addr_t dma_addr; |
| 105 | }; |
| 106 | |
| 107 | static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, |
| 108 | const struct sk_buff *skb); |
| 109 | static void efx_fini_tso(struct efx_tx_queue *tx_queue); |
| 110 | static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, |
| 111 | struct efx_tso_header *tsoh); |
| 112 | |
| 113 | static inline void efx_tsoh_free(struct efx_tx_queue *tx_queue, |
| 114 | struct efx_tx_buffer *buffer) |
| 115 | { |
| 116 | if (buffer->tsoh) { |
| 117 | if (likely(!buffer->tsoh->unmap_len)) { |
| 118 | buffer->tsoh->next = tx_queue->tso_headers_free; |
| 119 | tx_queue->tso_headers_free = buffer->tsoh; |
| 120 | } else { |
| 121 | efx_tsoh_heap_free(tx_queue, buffer->tsoh); |
| 122 | } |
| 123 | buffer->tsoh = NULL; |
| 124 | } |
| 125 | } |
| 126 | |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 127 | |
| 128 | /* |
| 129 | * Add a socket buffer to a TX queue |
| 130 | * |
| 131 | * This maps all fragments of a socket buffer for DMA and adds them to |
| 132 | * the TX queue. The queue's insert pointer will be incremented by |
| 133 | * the number of fragments in the socket buffer. |
| 134 | * |
| 135 | * If any DMA mapping fails, any mapped fragments will be unmapped, |
| 136 | * the queue's insert pointer will be restored to its original value. |
| 137 | * |
| 138 | * Returns NETDEV_TX_OK or NETDEV_TX_BUSY |
| 139 | * You must hold netif_tx_lock() to call this function. |
| 140 | */ |
| 141 | static inline int efx_enqueue_skb(struct efx_tx_queue *tx_queue, |
| 142 | const struct sk_buff *skb) |
| 143 | { |
| 144 | struct efx_nic *efx = tx_queue->efx; |
| 145 | struct pci_dev *pci_dev = efx->pci_dev; |
| 146 | struct efx_tx_buffer *buffer; |
| 147 | skb_frag_t *fragment; |
| 148 | struct page *page; |
| 149 | int page_offset; |
| 150 | unsigned int len, unmap_len = 0, fill_level, insert_ptr, misalign; |
| 151 | dma_addr_t dma_addr, unmap_addr = 0; |
| 152 | unsigned int dma_len; |
| 153 | unsigned unmap_single; |
| 154 | int q_space, i = 0; |
| 155 | int rc = NETDEV_TX_OK; |
| 156 | |
| 157 | EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count); |
| 158 | |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 159 | if (skb_shinfo((struct sk_buff *)skb)->gso_size) |
| 160 | return efx_enqueue_skb_tso(tx_queue, skb); |
| 161 | |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 162 | /* Get size of the initial fragment */ |
| 163 | len = skb_headlen(skb); |
| 164 | |
| 165 | fill_level = tx_queue->insert_count - tx_queue->old_read_count; |
| 166 | q_space = efx->type->txd_ring_mask - 1 - fill_level; |
| 167 | |
| 168 | /* Map for DMA. Use pci_map_single rather than pci_map_page |
| 169 | * since this is more efficient on machines with sparse |
| 170 | * memory. |
| 171 | */ |
| 172 | unmap_single = 1; |
| 173 | dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE); |
| 174 | |
| 175 | /* Process all fragments */ |
| 176 | while (1) { |
FUJITA Tomonori | 8d8bb39 | 2008-07-25 19:44:49 -0700 | [diff] [blame] | 177 | if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr))) |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 178 | goto pci_err; |
| 179 | |
| 180 | /* Store fields for marking in the per-fragment final |
| 181 | * descriptor */ |
| 182 | unmap_len = len; |
| 183 | unmap_addr = dma_addr; |
| 184 | |
| 185 | /* Add to TX queue, splitting across DMA boundaries */ |
| 186 | do { |
| 187 | if (unlikely(q_space-- <= 0)) { |
| 188 | /* It might be that completions have |
| 189 | * happened since the xmit path last |
| 190 | * checked. Update the xmit path's |
| 191 | * copy of read_count. |
| 192 | */ |
| 193 | ++tx_queue->stopped; |
| 194 | /* This memory barrier protects the |
| 195 | * change of stopped from the access |
| 196 | * of read_count. */ |
| 197 | smp_mb(); |
| 198 | tx_queue->old_read_count = |
| 199 | *(volatile unsigned *) |
| 200 | &tx_queue->read_count; |
| 201 | fill_level = (tx_queue->insert_count |
| 202 | - tx_queue->old_read_count); |
| 203 | q_space = (efx->type->txd_ring_mask - 1 - |
| 204 | fill_level); |
| 205 | if (unlikely(q_space-- <= 0)) |
| 206 | goto stop; |
| 207 | smp_mb(); |
| 208 | --tx_queue->stopped; |
| 209 | } |
| 210 | |
| 211 | insert_ptr = (tx_queue->insert_count & |
| 212 | efx->type->txd_ring_mask); |
| 213 | buffer = &tx_queue->buffer[insert_ptr]; |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 214 | efx_tsoh_free(tx_queue, buffer); |
| 215 | EFX_BUG_ON_PARANOID(buffer->tsoh); |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 216 | EFX_BUG_ON_PARANOID(buffer->skb); |
| 217 | EFX_BUG_ON_PARANOID(buffer->len); |
| 218 | EFX_BUG_ON_PARANOID(buffer->continuation != 1); |
| 219 | EFX_BUG_ON_PARANOID(buffer->unmap_len); |
| 220 | |
| 221 | dma_len = (((~dma_addr) & efx->type->tx_dma_mask) + 1); |
| 222 | if (likely(dma_len > len)) |
| 223 | dma_len = len; |
| 224 | |
| 225 | misalign = (unsigned)dma_addr & efx->type->bug5391_mask; |
| 226 | if (misalign && dma_len + misalign > 512) |
| 227 | dma_len = 512 - misalign; |
| 228 | |
| 229 | /* Fill out per descriptor fields */ |
| 230 | buffer->len = dma_len; |
| 231 | buffer->dma_addr = dma_addr; |
| 232 | len -= dma_len; |
| 233 | dma_addr += dma_len; |
| 234 | ++tx_queue->insert_count; |
| 235 | } while (len); |
| 236 | |
| 237 | /* Transfer ownership of the unmapping to the final buffer */ |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 238 | buffer->unmap_single = unmap_single; |
| 239 | buffer->unmap_len = unmap_len; |
| 240 | unmap_len = 0; |
| 241 | |
| 242 | /* Get address and size of next fragment */ |
| 243 | if (i >= skb_shinfo(skb)->nr_frags) |
| 244 | break; |
| 245 | fragment = &skb_shinfo(skb)->frags[i]; |
| 246 | len = fragment->size; |
| 247 | page = fragment->page; |
| 248 | page_offset = fragment->page_offset; |
| 249 | i++; |
| 250 | /* Map for DMA */ |
| 251 | unmap_single = 0; |
| 252 | dma_addr = pci_map_page(pci_dev, page, page_offset, len, |
| 253 | PCI_DMA_TODEVICE); |
| 254 | } |
| 255 | |
| 256 | /* Transfer ownership of the skb to the final buffer */ |
| 257 | buffer->skb = skb; |
| 258 | buffer->continuation = 0; |
| 259 | |
| 260 | /* Pass off to hardware */ |
| 261 | falcon_push_buffers(tx_queue); |
| 262 | |
| 263 | return NETDEV_TX_OK; |
| 264 | |
| 265 | pci_err: |
| 266 | EFX_ERR_RL(efx, " TX queue %d could not map skb with %d bytes %d " |
| 267 | "fragments for DMA\n", tx_queue->queue, skb->len, |
| 268 | skb_shinfo(skb)->nr_frags + 1); |
| 269 | |
| 270 | /* Mark the packet as transmitted, and free the SKB ourselves */ |
| 271 | dev_kfree_skb_any((struct sk_buff *)skb); |
| 272 | goto unwind; |
| 273 | |
| 274 | stop: |
| 275 | rc = NETDEV_TX_BUSY; |
| 276 | |
| 277 | if (tx_queue->stopped == 1) |
| 278 | efx_stop_queue(efx); |
| 279 | |
| 280 | unwind: |
| 281 | /* Work backwards until we hit the original insert pointer value */ |
| 282 | while (tx_queue->insert_count != tx_queue->write_count) { |
| 283 | --tx_queue->insert_count; |
| 284 | insert_ptr = tx_queue->insert_count & efx->type->txd_ring_mask; |
| 285 | buffer = &tx_queue->buffer[insert_ptr]; |
| 286 | efx_dequeue_buffer(tx_queue, buffer); |
| 287 | buffer->len = 0; |
| 288 | } |
| 289 | |
| 290 | /* Free the fragment we were mid-way through pushing */ |
Ben Hutchings | ecbd95c | 2008-09-01 12:46:40 +0100 | [diff] [blame] | 291 | if (unmap_len) { |
| 292 | if (unmap_single) |
| 293 | pci_unmap_single(pci_dev, unmap_addr, unmap_len, |
| 294 | PCI_DMA_TODEVICE); |
| 295 | else |
| 296 | pci_unmap_page(pci_dev, unmap_addr, unmap_len, |
| 297 | PCI_DMA_TODEVICE); |
| 298 | } |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 299 | |
| 300 | return rc; |
| 301 | } |
| 302 | |
| 303 | /* Remove packets from the TX queue |
| 304 | * |
| 305 | * This removes packets from the TX queue, up to and including the |
| 306 | * specified index. |
| 307 | */ |
| 308 | static inline void efx_dequeue_buffers(struct efx_tx_queue *tx_queue, |
| 309 | unsigned int index) |
| 310 | { |
| 311 | struct efx_nic *efx = tx_queue->efx; |
| 312 | unsigned int stop_index, read_ptr; |
| 313 | unsigned int mask = tx_queue->efx->type->txd_ring_mask; |
| 314 | |
| 315 | stop_index = (index + 1) & mask; |
| 316 | read_ptr = tx_queue->read_count & mask; |
| 317 | |
| 318 | while (read_ptr != stop_index) { |
| 319 | struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr]; |
| 320 | if (unlikely(buffer->len == 0)) { |
| 321 | EFX_ERR(tx_queue->efx, "TX queue %d spurious TX " |
| 322 | "completion id %x\n", tx_queue->queue, |
| 323 | read_ptr); |
| 324 | efx_schedule_reset(efx, RESET_TYPE_TX_SKIP); |
| 325 | return; |
| 326 | } |
| 327 | |
| 328 | efx_dequeue_buffer(tx_queue, buffer); |
| 329 | buffer->continuation = 1; |
| 330 | buffer->len = 0; |
| 331 | |
| 332 | ++tx_queue->read_count; |
| 333 | read_ptr = tx_queue->read_count & mask; |
| 334 | } |
| 335 | } |
| 336 | |
| 337 | /* Initiate a packet transmission on the specified TX queue. |
| 338 | * Note that returning anything other than NETDEV_TX_OK will cause the |
| 339 | * OS to free the skb. |
| 340 | * |
| 341 | * This function is split out from efx_hard_start_xmit to allow the |
| 342 | * loopback test to direct packets via specific TX queues. It is |
| 343 | * therefore a non-static inline, so as not to penalise performance |
| 344 | * for non-loopback transmissions. |
| 345 | * |
| 346 | * Context: netif_tx_lock held |
| 347 | */ |
| 348 | inline int efx_xmit(struct efx_nic *efx, |
| 349 | struct efx_tx_queue *tx_queue, struct sk_buff *skb) |
| 350 | { |
| 351 | int rc; |
| 352 | |
| 353 | /* Map fragments for DMA and add to TX queue */ |
| 354 | rc = efx_enqueue_skb(tx_queue, skb); |
| 355 | if (unlikely(rc != NETDEV_TX_OK)) |
| 356 | goto out; |
| 357 | |
| 358 | /* Update last TX timer */ |
| 359 | efx->net_dev->trans_start = jiffies; |
| 360 | |
| 361 | out: |
| 362 | return rc; |
| 363 | } |
| 364 | |
| 365 | /* Initiate a packet transmission. We use one channel per CPU |
| 366 | * (sharing when we have more CPUs than channels). On Falcon, the TX |
| 367 | * completion events will be directed back to the CPU that transmitted |
| 368 | * the packet, which should be cache-efficient. |
| 369 | * |
| 370 | * Context: non-blocking. |
| 371 | * Note that returning anything other than NETDEV_TX_OK will cause the |
| 372 | * OS to free the skb. |
| 373 | */ |
| 374 | int efx_hard_start_xmit(struct sk_buff *skb, struct net_device *net_dev) |
| 375 | { |
Ben Hutchings | 767e468 | 2008-09-01 12:43:14 +0100 | [diff] [blame] | 376 | struct efx_nic *efx = netdev_priv(net_dev); |
Ben Hutchings | 60ac106 | 2008-09-01 12:44:59 +0100 | [diff] [blame] | 377 | struct efx_tx_queue *tx_queue; |
| 378 | |
| 379 | if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) |
| 380 | tx_queue = &efx->tx_queue[EFX_TX_QUEUE_OFFLOAD_CSUM]; |
| 381 | else |
| 382 | tx_queue = &efx->tx_queue[EFX_TX_QUEUE_NO_CSUM]; |
| 383 | |
| 384 | return efx_xmit(efx, tx_queue, skb); |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 385 | } |
| 386 | |
| 387 | void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index) |
| 388 | { |
| 389 | unsigned fill_level; |
| 390 | struct efx_nic *efx = tx_queue->efx; |
| 391 | |
| 392 | EFX_BUG_ON_PARANOID(index > efx->type->txd_ring_mask); |
| 393 | |
| 394 | efx_dequeue_buffers(tx_queue, index); |
| 395 | |
| 396 | /* See if we need to restart the netif queue. This barrier |
| 397 | * separates the update of read_count from the test of |
| 398 | * stopped. */ |
| 399 | smp_mb(); |
| 400 | if (unlikely(tx_queue->stopped)) { |
| 401 | fill_level = tx_queue->insert_count - tx_queue->read_count; |
| 402 | if (fill_level < EFX_NETDEV_TX_THRESHOLD(tx_queue)) { |
Ben Hutchings | 5566861 | 2008-05-16 21:16:10 +0100 | [diff] [blame] | 403 | EFX_BUG_ON_PARANOID(!efx_dev_registered(efx)); |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 404 | |
| 405 | /* Do this under netif_tx_lock(), to avoid racing |
| 406 | * with efx_xmit(). */ |
| 407 | netif_tx_lock(efx->net_dev); |
| 408 | if (tx_queue->stopped) { |
| 409 | tx_queue->stopped = 0; |
| 410 | efx_wake_queue(efx); |
| 411 | } |
| 412 | netif_tx_unlock(efx->net_dev); |
| 413 | } |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | int efx_probe_tx_queue(struct efx_tx_queue *tx_queue) |
| 418 | { |
| 419 | struct efx_nic *efx = tx_queue->efx; |
| 420 | unsigned int txq_size; |
| 421 | int i, rc; |
| 422 | |
| 423 | EFX_LOG(efx, "creating TX queue %d\n", tx_queue->queue); |
| 424 | |
| 425 | /* Allocate software ring */ |
| 426 | txq_size = (efx->type->txd_ring_mask + 1) * sizeof(*tx_queue->buffer); |
| 427 | tx_queue->buffer = kzalloc(txq_size, GFP_KERNEL); |
Ben Hutchings | 60ac106 | 2008-09-01 12:44:59 +0100 | [diff] [blame] | 428 | if (!tx_queue->buffer) |
| 429 | return -ENOMEM; |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 430 | for (i = 0; i <= efx->type->txd_ring_mask; ++i) |
| 431 | tx_queue->buffer[i].continuation = 1; |
| 432 | |
| 433 | /* Allocate hardware ring */ |
| 434 | rc = falcon_probe_tx(tx_queue); |
| 435 | if (rc) |
Ben Hutchings | 60ac106 | 2008-09-01 12:44:59 +0100 | [diff] [blame] | 436 | goto fail; |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 437 | |
| 438 | return 0; |
| 439 | |
Ben Hutchings | 60ac106 | 2008-09-01 12:44:59 +0100 | [diff] [blame] | 440 | fail: |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 441 | kfree(tx_queue->buffer); |
| 442 | tx_queue->buffer = NULL; |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 443 | return rc; |
| 444 | } |
| 445 | |
| 446 | int efx_init_tx_queue(struct efx_tx_queue *tx_queue) |
| 447 | { |
| 448 | EFX_LOG(tx_queue->efx, "initialising TX queue %d\n", tx_queue->queue); |
| 449 | |
| 450 | tx_queue->insert_count = 0; |
| 451 | tx_queue->write_count = 0; |
| 452 | tx_queue->read_count = 0; |
| 453 | tx_queue->old_read_count = 0; |
| 454 | BUG_ON(tx_queue->stopped); |
| 455 | |
| 456 | /* Set up TX descriptor ring */ |
| 457 | return falcon_init_tx(tx_queue); |
| 458 | } |
| 459 | |
| 460 | void efx_release_tx_buffers(struct efx_tx_queue *tx_queue) |
| 461 | { |
| 462 | struct efx_tx_buffer *buffer; |
| 463 | |
| 464 | if (!tx_queue->buffer) |
| 465 | return; |
| 466 | |
| 467 | /* Free any buffers left in the ring */ |
| 468 | while (tx_queue->read_count != tx_queue->write_count) { |
| 469 | buffer = &tx_queue->buffer[tx_queue->read_count & |
| 470 | tx_queue->efx->type->txd_ring_mask]; |
| 471 | efx_dequeue_buffer(tx_queue, buffer); |
| 472 | buffer->continuation = 1; |
| 473 | buffer->len = 0; |
| 474 | |
| 475 | ++tx_queue->read_count; |
| 476 | } |
| 477 | } |
| 478 | |
| 479 | void efx_fini_tx_queue(struct efx_tx_queue *tx_queue) |
| 480 | { |
| 481 | EFX_LOG(tx_queue->efx, "shutting down TX queue %d\n", tx_queue->queue); |
| 482 | |
| 483 | /* Flush TX queue, remove descriptor ring */ |
| 484 | falcon_fini_tx(tx_queue); |
| 485 | |
| 486 | efx_release_tx_buffers(tx_queue); |
| 487 | |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 488 | /* Free up TSO header cache */ |
| 489 | efx_fini_tso(tx_queue); |
| 490 | |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 491 | /* Release queue's stop on port, if any */ |
| 492 | if (tx_queue->stopped) { |
| 493 | tx_queue->stopped = 0; |
| 494 | efx_wake_queue(tx_queue->efx); |
| 495 | } |
| 496 | } |
| 497 | |
| 498 | void efx_remove_tx_queue(struct efx_tx_queue *tx_queue) |
| 499 | { |
| 500 | EFX_LOG(tx_queue->efx, "destroying TX queue %d\n", tx_queue->queue); |
| 501 | falcon_remove_tx(tx_queue); |
| 502 | |
| 503 | kfree(tx_queue->buffer); |
| 504 | tx_queue->buffer = NULL; |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 505 | } |
| 506 | |
| 507 | |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 508 | /* Efx TCP segmentation acceleration. |
| 509 | * |
| 510 | * Why? Because by doing it here in the driver we can go significantly |
| 511 | * faster than the GSO. |
| 512 | * |
| 513 | * Requires TX checksum offload support. |
| 514 | */ |
| 515 | |
| 516 | /* Number of bytes inserted at the start of a TSO header buffer, |
| 517 | * similar to NET_IP_ALIGN. |
| 518 | */ |
| 519 | #if defined(__i386__) || defined(__x86_64__) |
| 520 | #define TSOH_OFFSET 0 |
| 521 | #else |
| 522 | #define TSOH_OFFSET NET_IP_ALIGN |
| 523 | #endif |
| 524 | |
| 525 | #define TSOH_BUFFER(tsoh) ((u8 *)(tsoh + 1) + TSOH_OFFSET) |
| 526 | |
| 527 | /* Total size of struct efx_tso_header, buffer and padding */ |
| 528 | #define TSOH_SIZE(hdr_len) \ |
| 529 | (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len) |
| 530 | |
| 531 | /* Size of blocks on free list. Larger blocks must be allocated from |
| 532 | * the heap. |
| 533 | */ |
| 534 | #define TSOH_STD_SIZE 128 |
| 535 | |
| 536 | #define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2)) |
| 537 | #define ETH_HDR_LEN(skb) (skb_network_header(skb) - (skb)->data) |
| 538 | #define SKB_TCP_OFF(skb) PTR_DIFF(tcp_hdr(skb), (skb)->data) |
| 539 | #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data) |
| 540 | |
| 541 | /** |
| 542 | * struct tso_state - TSO state for an SKB |
| 543 | * @remaining_len: Bytes of data we've yet to segment |
| 544 | * @seqnum: Current sequence number |
| 545 | * @packet_space: Remaining space in current packet |
| 546 | * @ifc: Input fragment cursor. |
| 547 | * Where we are in the current fragment of the incoming SKB. These |
| 548 | * values get updated in place when we split a fragment over |
| 549 | * multiple packets. |
| 550 | * @p: Parameters. |
| 551 | * These values are set once at the start of the TSO send and do |
| 552 | * not get changed as the routine progresses. |
| 553 | * |
| 554 | * The state used during segmentation. It is put into this data structure |
| 555 | * just to make it easy to pass into inline functions. |
| 556 | */ |
| 557 | struct tso_state { |
| 558 | unsigned remaining_len; |
| 559 | unsigned seqnum; |
| 560 | unsigned packet_space; |
| 561 | |
| 562 | struct { |
| 563 | /* DMA address of current position */ |
| 564 | dma_addr_t dma_addr; |
| 565 | /* Remaining length */ |
| 566 | unsigned int len; |
| 567 | /* DMA address and length of the whole fragment */ |
| 568 | unsigned int unmap_len; |
| 569 | dma_addr_t unmap_addr; |
Ben Hutchings | ecbd95c | 2008-09-01 12:46:40 +0100 | [diff] [blame] | 570 | unsigned int unmap_single; |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 571 | } ifc; |
| 572 | |
| 573 | struct { |
| 574 | /* The number of bytes of header */ |
| 575 | unsigned int header_length; |
| 576 | |
| 577 | /* The number of bytes to put in each outgoing segment. */ |
| 578 | int full_packet_size; |
| 579 | |
| 580 | /* Current IPv4 ID, host endian. */ |
| 581 | unsigned ipv4_id; |
| 582 | } p; |
| 583 | }; |
| 584 | |
| 585 | |
| 586 | /* |
| 587 | * Verify that our various assumptions about sk_buffs and the conditions |
| 588 | * under which TSO will be attempted hold true. |
| 589 | */ |
| 590 | static inline void efx_tso_check_safe(const struct sk_buff *skb) |
| 591 | { |
| 592 | EFX_BUG_ON_PARANOID(skb->protocol != htons(ETH_P_IP)); |
| 593 | EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto != |
| 594 | skb->protocol); |
| 595 | EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP); |
| 596 | EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data) |
| 597 | + (tcp_hdr(skb)->doff << 2u)) > |
| 598 | skb_headlen(skb)); |
| 599 | } |
| 600 | |
| 601 | |
| 602 | /* |
| 603 | * Allocate a page worth of efx_tso_header structures, and string them |
| 604 | * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM. |
| 605 | */ |
| 606 | static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue) |
| 607 | { |
| 608 | |
| 609 | struct pci_dev *pci_dev = tx_queue->efx->pci_dev; |
| 610 | struct efx_tso_header *tsoh; |
| 611 | dma_addr_t dma_addr; |
| 612 | u8 *base_kva, *kva; |
| 613 | |
| 614 | base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr); |
| 615 | if (base_kva == NULL) { |
| 616 | EFX_ERR(tx_queue->efx, "Unable to allocate page for TSO" |
| 617 | " headers\n"); |
| 618 | return -ENOMEM; |
| 619 | } |
| 620 | |
| 621 | /* pci_alloc_consistent() allocates pages. */ |
| 622 | EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u)); |
| 623 | |
| 624 | for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) { |
| 625 | tsoh = (struct efx_tso_header *)kva; |
| 626 | tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva); |
| 627 | tsoh->next = tx_queue->tso_headers_free; |
| 628 | tx_queue->tso_headers_free = tsoh; |
| 629 | } |
| 630 | |
| 631 | return 0; |
| 632 | } |
| 633 | |
| 634 | |
| 635 | /* Free up a TSO header, and all others in the same page. */ |
| 636 | static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue, |
| 637 | struct efx_tso_header *tsoh, |
| 638 | struct pci_dev *pci_dev) |
| 639 | { |
| 640 | struct efx_tso_header **p; |
| 641 | unsigned long base_kva; |
| 642 | dma_addr_t base_dma; |
| 643 | |
| 644 | base_kva = (unsigned long)tsoh & PAGE_MASK; |
| 645 | base_dma = tsoh->dma_addr & PAGE_MASK; |
| 646 | |
| 647 | p = &tx_queue->tso_headers_free; |
Ben Hutchings | b347564 | 2008-05-16 21:15:49 +0100 | [diff] [blame] | 648 | while (*p != NULL) { |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 649 | if (((unsigned long)*p & PAGE_MASK) == base_kva) |
| 650 | *p = (*p)->next; |
| 651 | else |
| 652 | p = &(*p)->next; |
Ben Hutchings | b347564 | 2008-05-16 21:15:49 +0100 | [diff] [blame] | 653 | } |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 654 | |
| 655 | pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma); |
| 656 | } |
| 657 | |
| 658 | static struct efx_tso_header * |
| 659 | efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len) |
| 660 | { |
| 661 | struct efx_tso_header *tsoh; |
| 662 | |
| 663 | tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA); |
| 664 | if (unlikely(!tsoh)) |
| 665 | return NULL; |
| 666 | |
| 667 | tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev, |
| 668 | TSOH_BUFFER(tsoh), header_len, |
| 669 | PCI_DMA_TODEVICE); |
FUJITA Tomonori | 8d8bb39 | 2008-07-25 19:44:49 -0700 | [diff] [blame] | 670 | if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev, |
| 671 | tsoh->dma_addr))) { |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 672 | kfree(tsoh); |
| 673 | return NULL; |
| 674 | } |
| 675 | |
| 676 | tsoh->unmap_len = header_len; |
| 677 | return tsoh; |
| 678 | } |
| 679 | |
| 680 | static void |
| 681 | efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh) |
| 682 | { |
| 683 | pci_unmap_single(tx_queue->efx->pci_dev, |
| 684 | tsoh->dma_addr, tsoh->unmap_len, |
| 685 | PCI_DMA_TODEVICE); |
| 686 | kfree(tsoh); |
| 687 | } |
| 688 | |
| 689 | /** |
| 690 | * efx_tx_queue_insert - push descriptors onto the TX queue |
| 691 | * @tx_queue: Efx TX queue |
| 692 | * @dma_addr: DMA address of fragment |
| 693 | * @len: Length of fragment |
Ben Hutchings | ecbd95c | 2008-09-01 12:46:40 +0100 | [diff] [blame] | 694 | * @final_buffer: The final buffer inserted into the queue |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 695 | * |
| 696 | * Push descriptors onto the TX queue. Return 0 on success or 1 if |
| 697 | * @tx_queue full. |
| 698 | */ |
| 699 | static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue, |
| 700 | dma_addr_t dma_addr, unsigned len, |
Ben Hutchings | ecbd95c | 2008-09-01 12:46:40 +0100 | [diff] [blame] | 701 | struct efx_tx_buffer **final_buffer) |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 702 | { |
| 703 | struct efx_tx_buffer *buffer; |
| 704 | struct efx_nic *efx = tx_queue->efx; |
| 705 | unsigned dma_len, fill_level, insert_ptr, misalign; |
| 706 | int q_space; |
| 707 | |
| 708 | EFX_BUG_ON_PARANOID(len <= 0); |
| 709 | |
| 710 | fill_level = tx_queue->insert_count - tx_queue->old_read_count; |
| 711 | /* -1 as there is no way to represent all descriptors used */ |
| 712 | q_space = efx->type->txd_ring_mask - 1 - fill_level; |
| 713 | |
| 714 | while (1) { |
| 715 | if (unlikely(q_space-- <= 0)) { |
| 716 | /* It might be that completions have happened |
| 717 | * since the xmit path last checked. Update |
| 718 | * the xmit path's copy of read_count. |
| 719 | */ |
| 720 | ++tx_queue->stopped; |
| 721 | /* This memory barrier protects the change of |
| 722 | * stopped from the access of read_count. */ |
| 723 | smp_mb(); |
| 724 | tx_queue->old_read_count = |
| 725 | *(volatile unsigned *)&tx_queue->read_count; |
| 726 | fill_level = (tx_queue->insert_count |
| 727 | - tx_queue->old_read_count); |
| 728 | q_space = efx->type->txd_ring_mask - 1 - fill_level; |
Ben Hutchings | ecbd95c | 2008-09-01 12:46:40 +0100 | [diff] [blame] | 729 | if (unlikely(q_space-- <= 0)) { |
| 730 | *final_buffer = NULL; |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 731 | return 1; |
Ben Hutchings | ecbd95c | 2008-09-01 12:46:40 +0100 | [diff] [blame] | 732 | } |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 733 | smp_mb(); |
| 734 | --tx_queue->stopped; |
| 735 | } |
| 736 | |
| 737 | insert_ptr = tx_queue->insert_count & efx->type->txd_ring_mask; |
| 738 | buffer = &tx_queue->buffer[insert_ptr]; |
| 739 | ++tx_queue->insert_count; |
| 740 | |
| 741 | EFX_BUG_ON_PARANOID(tx_queue->insert_count - |
| 742 | tx_queue->read_count > |
| 743 | efx->type->txd_ring_mask); |
| 744 | |
| 745 | efx_tsoh_free(tx_queue, buffer); |
| 746 | EFX_BUG_ON_PARANOID(buffer->len); |
| 747 | EFX_BUG_ON_PARANOID(buffer->unmap_len); |
| 748 | EFX_BUG_ON_PARANOID(buffer->skb); |
| 749 | EFX_BUG_ON_PARANOID(buffer->continuation != 1); |
| 750 | EFX_BUG_ON_PARANOID(buffer->tsoh); |
| 751 | |
| 752 | buffer->dma_addr = dma_addr; |
| 753 | |
| 754 | /* Ensure we do not cross a boundary unsupported by H/W */ |
| 755 | dma_len = (~dma_addr & efx->type->tx_dma_mask) + 1; |
| 756 | |
| 757 | misalign = (unsigned)dma_addr & efx->type->bug5391_mask; |
| 758 | if (misalign && dma_len + misalign > 512) |
| 759 | dma_len = 512 - misalign; |
| 760 | |
| 761 | /* If there is enough space to send then do so */ |
| 762 | if (dma_len >= len) |
| 763 | break; |
| 764 | |
| 765 | buffer->len = dma_len; /* Don't set the other members */ |
| 766 | dma_addr += dma_len; |
| 767 | len -= dma_len; |
| 768 | } |
| 769 | |
| 770 | EFX_BUG_ON_PARANOID(!len); |
| 771 | buffer->len = len; |
Ben Hutchings | ecbd95c | 2008-09-01 12:46:40 +0100 | [diff] [blame] | 772 | *final_buffer = buffer; |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 773 | return 0; |
| 774 | } |
| 775 | |
| 776 | |
| 777 | /* |
| 778 | * Put a TSO header into the TX queue. |
| 779 | * |
| 780 | * This is special-cased because we know that it is small enough to fit in |
| 781 | * a single fragment, and we know it doesn't cross a page boundary. It |
| 782 | * also allows us to not worry about end-of-packet etc. |
| 783 | */ |
| 784 | static inline void efx_tso_put_header(struct efx_tx_queue *tx_queue, |
| 785 | struct efx_tso_header *tsoh, unsigned len) |
| 786 | { |
| 787 | struct efx_tx_buffer *buffer; |
| 788 | |
| 789 | buffer = &tx_queue->buffer[tx_queue->insert_count & |
| 790 | tx_queue->efx->type->txd_ring_mask]; |
| 791 | efx_tsoh_free(tx_queue, buffer); |
| 792 | EFX_BUG_ON_PARANOID(buffer->len); |
| 793 | EFX_BUG_ON_PARANOID(buffer->unmap_len); |
| 794 | EFX_BUG_ON_PARANOID(buffer->skb); |
| 795 | EFX_BUG_ON_PARANOID(buffer->continuation != 1); |
| 796 | EFX_BUG_ON_PARANOID(buffer->tsoh); |
| 797 | buffer->len = len; |
| 798 | buffer->dma_addr = tsoh->dma_addr; |
| 799 | buffer->tsoh = tsoh; |
| 800 | |
| 801 | ++tx_queue->insert_count; |
| 802 | } |
| 803 | |
| 804 | |
| 805 | /* Remove descriptors put into a tx_queue. */ |
| 806 | static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue) |
| 807 | { |
| 808 | struct efx_tx_buffer *buffer; |
Ben Hutchings | cc12dac | 2008-09-01 12:46:43 +0100 | [diff] [blame^] | 809 | dma_addr_t unmap_addr; |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 810 | |
| 811 | /* Work backwards until we hit the original insert pointer value */ |
| 812 | while (tx_queue->insert_count != tx_queue->write_count) { |
| 813 | --tx_queue->insert_count; |
| 814 | buffer = &tx_queue->buffer[tx_queue->insert_count & |
| 815 | tx_queue->efx->type->txd_ring_mask]; |
| 816 | efx_tsoh_free(tx_queue, buffer); |
| 817 | EFX_BUG_ON_PARANOID(buffer->skb); |
| 818 | buffer->len = 0; |
| 819 | buffer->continuation = 1; |
| 820 | if (buffer->unmap_len) { |
Ben Hutchings | cc12dac | 2008-09-01 12:46:43 +0100 | [diff] [blame^] | 821 | unmap_addr = (buffer->dma_addr + buffer->len - |
| 822 | buffer->unmap_len); |
Ben Hutchings | ecbd95c | 2008-09-01 12:46:40 +0100 | [diff] [blame] | 823 | if (buffer->unmap_single) |
| 824 | pci_unmap_single(tx_queue->efx->pci_dev, |
Ben Hutchings | cc12dac | 2008-09-01 12:46:43 +0100 | [diff] [blame^] | 825 | unmap_addr, buffer->unmap_len, |
Ben Hutchings | ecbd95c | 2008-09-01 12:46:40 +0100 | [diff] [blame] | 826 | PCI_DMA_TODEVICE); |
| 827 | else |
| 828 | pci_unmap_page(tx_queue->efx->pci_dev, |
Ben Hutchings | cc12dac | 2008-09-01 12:46:43 +0100 | [diff] [blame^] | 829 | unmap_addr, buffer->unmap_len, |
Ben Hutchings | ecbd95c | 2008-09-01 12:46:40 +0100 | [diff] [blame] | 830 | PCI_DMA_TODEVICE); |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 831 | buffer->unmap_len = 0; |
| 832 | } |
| 833 | } |
| 834 | } |
| 835 | |
| 836 | |
| 837 | /* Parse the SKB header and initialise state. */ |
| 838 | static inline void tso_start(struct tso_state *st, const struct sk_buff *skb) |
| 839 | { |
| 840 | /* All ethernet/IP/TCP headers combined size is TCP header size |
| 841 | * plus offset of TCP header relative to start of packet. |
| 842 | */ |
| 843 | st->p.header_length = ((tcp_hdr(skb)->doff << 2u) |
| 844 | + PTR_DIFF(tcp_hdr(skb), skb->data)); |
| 845 | st->p.full_packet_size = (st->p.header_length |
| 846 | + skb_shinfo(skb)->gso_size); |
| 847 | |
| 848 | st->p.ipv4_id = ntohs(ip_hdr(skb)->id); |
| 849 | st->seqnum = ntohl(tcp_hdr(skb)->seq); |
| 850 | |
| 851 | EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg); |
| 852 | EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn); |
| 853 | EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst); |
| 854 | |
| 855 | st->packet_space = st->p.full_packet_size; |
| 856 | st->remaining_len = skb->len - st->p.header_length; |
Ben Hutchings | ecbd95c | 2008-09-01 12:46:40 +0100 | [diff] [blame] | 857 | st->ifc.unmap_len = 0; |
| 858 | st->ifc.unmap_single = 0; |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 859 | } |
| 860 | |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 861 | static inline int tso_get_fragment(struct tso_state *st, struct efx_nic *efx, |
Ben Hutchings | ecbd95c | 2008-09-01 12:46:40 +0100 | [diff] [blame] | 862 | skb_frag_t *frag) |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 863 | { |
Ben Hutchings | ecbd95c | 2008-09-01 12:46:40 +0100 | [diff] [blame] | 864 | st->ifc.unmap_addr = pci_map_page(efx->pci_dev, frag->page, |
| 865 | frag->page_offset, frag->size, |
| 866 | PCI_DMA_TODEVICE); |
FUJITA Tomonori | 8d8bb39 | 2008-07-25 19:44:49 -0700 | [diff] [blame] | 867 | if (likely(!pci_dma_mapping_error(efx->pci_dev, st->ifc.unmap_addr))) { |
Ben Hutchings | ecbd95c | 2008-09-01 12:46:40 +0100 | [diff] [blame] | 868 | st->ifc.unmap_single = 0; |
| 869 | st->ifc.unmap_len = frag->size; |
| 870 | st->ifc.len = frag->size; |
| 871 | st->ifc.dma_addr = st->ifc.unmap_addr; |
| 872 | return 0; |
| 873 | } |
| 874 | return -ENOMEM; |
| 875 | } |
| 876 | |
| 877 | static inline int |
| 878 | tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx, |
| 879 | const struct sk_buff *skb) |
| 880 | { |
| 881 | int hl = st->p.header_length; |
| 882 | int len = skb_headlen(skb) - hl; |
| 883 | |
| 884 | st->ifc.unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl, |
| 885 | len, PCI_DMA_TODEVICE); |
| 886 | if (likely(!pci_dma_mapping_error(efx->pci_dev, st->ifc.unmap_addr))) { |
| 887 | st->ifc.unmap_single = 1; |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 888 | st->ifc.unmap_len = len; |
| 889 | st->ifc.len = len; |
| 890 | st->ifc.dma_addr = st->ifc.unmap_addr; |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 891 | return 0; |
| 892 | } |
| 893 | return -ENOMEM; |
| 894 | } |
| 895 | |
| 896 | |
| 897 | /** |
| 898 | * tso_fill_packet_with_fragment - form descriptors for the current fragment |
| 899 | * @tx_queue: Efx TX queue |
| 900 | * @skb: Socket buffer |
| 901 | * @st: TSO state |
| 902 | * |
| 903 | * Form descriptors for the current fragment, until we reach the end |
| 904 | * of fragment or end-of-packet. Return 0 on success, 1 if not enough |
| 905 | * space in @tx_queue. |
| 906 | */ |
| 907 | static inline int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue, |
| 908 | const struct sk_buff *skb, |
| 909 | struct tso_state *st) |
| 910 | { |
Ben Hutchings | ecbd95c | 2008-09-01 12:46:40 +0100 | [diff] [blame] | 911 | struct efx_tx_buffer *buffer; |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 912 | int n, end_of_packet, rc; |
| 913 | |
| 914 | if (st->ifc.len == 0) |
| 915 | return 0; |
| 916 | if (st->packet_space == 0) |
| 917 | return 0; |
| 918 | |
| 919 | EFX_BUG_ON_PARANOID(st->ifc.len <= 0); |
| 920 | EFX_BUG_ON_PARANOID(st->packet_space <= 0); |
| 921 | |
| 922 | n = min(st->ifc.len, st->packet_space); |
| 923 | |
| 924 | st->packet_space -= n; |
| 925 | st->remaining_len -= n; |
| 926 | st->ifc.len -= n; |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 927 | |
Ben Hutchings | ecbd95c | 2008-09-01 12:46:40 +0100 | [diff] [blame] | 928 | rc = efx_tx_queue_insert(tx_queue, st->ifc.dma_addr, n, &buffer); |
| 929 | if (likely(rc == 0)) { |
| 930 | if (st->remaining_len == 0) |
| 931 | /* Transfer ownership of the skb */ |
| 932 | buffer->skb = skb; |
| 933 | |
| 934 | end_of_packet = st->remaining_len == 0 || st->packet_space == 0; |
| 935 | buffer->continuation = !end_of_packet; |
| 936 | |
| 937 | if (st->ifc.len == 0) { |
| 938 | /* Transfer ownership of the pci mapping */ |
| 939 | buffer->unmap_len = st->ifc.unmap_len; |
| 940 | buffer->unmap_single = st->ifc.unmap_single; |
| 941 | st->ifc.unmap_len = 0; |
| 942 | } |
| 943 | } |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 944 | |
| 945 | st->ifc.dma_addr += n; |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 946 | return rc; |
| 947 | } |
| 948 | |
| 949 | |
| 950 | /** |
| 951 | * tso_start_new_packet - generate a new header and prepare for the new packet |
| 952 | * @tx_queue: Efx TX queue |
| 953 | * @skb: Socket buffer |
| 954 | * @st: TSO state |
| 955 | * |
| 956 | * Generate a new header and prepare for the new packet. Return 0 on |
| 957 | * success, or -1 if failed to alloc header. |
| 958 | */ |
| 959 | static inline int tso_start_new_packet(struct efx_tx_queue *tx_queue, |
| 960 | const struct sk_buff *skb, |
| 961 | struct tso_state *st) |
| 962 | { |
| 963 | struct efx_tso_header *tsoh; |
| 964 | struct iphdr *tsoh_iph; |
| 965 | struct tcphdr *tsoh_th; |
| 966 | unsigned ip_length; |
| 967 | u8 *header; |
| 968 | |
| 969 | /* Allocate a DMA-mapped header buffer. */ |
| 970 | if (likely(TSOH_SIZE(st->p.header_length) <= TSOH_STD_SIZE)) { |
Ben Hutchings | b347564 | 2008-05-16 21:15:49 +0100 | [diff] [blame] | 971 | if (tx_queue->tso_headers_free == NULL) { |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 972 | if (efx_tsoh_block_alloc(tx_queue)) |
| 973 | return -1; |
Ben Hutchings | b347564 | 2008-05-16 21:15:49 +0100 | [diff] [blame] | 974 | } |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 975 | EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free); |
| 976 | tsoh = tx_queue->tso_headers_free; |
| 977 | tx_queue->tso_headers_free = tsoh->next; |
| 978 | tsoh->unmap_len = 0; |
| 979 | } else { |
| 980 | tx_queue->tso_long_headers++; |
| 981 | tsoh = efx_tsoh_heap_alloc(tx_queue, st->p.header_length); |
| 982 | if (unlikely(!tsoh)) |
| 983 | return -1; |
| 984 | } |
| 985 | |
| 986 | header = TSOH_BUFFER(tsoh); |
| 987 | tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb)); |
| 988 | tsoh_iph = (struct iphdr *)(header + SKB_IPV4_OFF(skb)); |
| 989 | |
| 990 | /* Copy and update the headers. */ |
| 991 | memcpy(header, skb->data, st->p.header_length); |
| 992 | |
| 993 | tsoh_th->seq = htonl(st->seqnum); |
| 994 | st->seqnum += skb_shinfo(skb)->gso_size; |
| 995 | if (st->remaining_len > skb_shinfo(skb)->gso_size) { |
| 996 | /* This packet will not finish the TSO burst. */ |
| 997 | ip_length = st->p.full_packet_size - ETH_HDR_LEN(skb); |
| 998 | tsoh_th->fin = 0; |
| 999 | tsoh_th->psh = 0; |
| 1000 | } else { |
| 1001 | /* This packet will be the last in the TSO burst. */ |
| 1002 | ip_length = (st->p.header_length - ETH_HDR_LEN(skb) |
| 1003 | + st->remaining_len); |
| 1004 | tsoh_th->fin = tcp_hdr(skb)->fin; |
| 1005 | tsoh_th->psh = tcp_hdr(skb)->psh; |
| 1006 | } |
| 1007 | tsoh_iph->tot_len = htons(ip_length); |
| 1008 | |
| 1009 | /* Linux leaves suitable gaps in the IP ID space for us to fill. */ |
| 1010 | tsoh_iph->id = htons(st->p.ipv4_id); |
| 1011 | st->p.ipv4_id++; |
| 1012 | |
| 1013 | st->packet_space = skb_shinfo(skb)->gso_size; |
| 1014 | ++tx_queue->tso_packets; |
| 1015 | |
| 1016 | /* Form a descriptor for this header. */ |
| 1017 | efx_tso_put_header(tx_queue, tsoh, st->p.header_length); |
| 1018 | |
| 1019 | return 0; |
| 1020 | } |
| 1021 | |
| 1022 | |
| 1023 | /** |
| 1024 | * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer |
| 1025 | * @tx_queue: Efx TX queue |
| 1026 | * @skb: Socket buffer |
| 1027 | * |
| 1028 | * Context: You must hold netif_tx_lock() to call this function. |
| 1029 | * |
| 1030 | * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if |
| 1031 | * @skb was not enqueued. In all cases @skb is consumed. Return |
| 1032 | * %NETDEV_TX_OK or %NETDEV_TX_BUSY. |
| 1033 | */ |
| 1034 | static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, |
| 1035 | const struct sk_buff *skb) |
| 1036 | { |
Ben Hutchings | ecbd95c | 2008-09-01 12:46:40 +0100 | [diff] [blame] | 1037 | struct efx_nic *efx = tx_queue->efx; |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 1038 | int frag_i, rc, rc2 = NETDEV_TX_OK; |
| 1039 | struct tso_state state; |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 1040 | |
| 1041 | /* Verify TSO is safe - these checks should never fail. */ |
| 1042 | efx_tso_check_safe(skb); |
| 1043 | |
| 1044 | EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count); |
| 1045 | |
| 1046 | tso_start(&state, skb); |
| 1047 | |
| 1048 | /* Assume that skb header area contains exactly the headers, and |
| 1049 | * all payload is in the frag list. |
| 1050 | */ |
| 1051 | if (skb_headlen(skb) == state.p.header_length) { |
| 1052 | /* Grab the first payload fragment. */ |
| 1053 | EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1); |
| 1054 | frag_i = 0; |
Ben Hutchings | ecbd95c | 2008-09-01 12:46:40 +0100 | [diff] [blame] | 1055 | rc = tso_get_fragment(&state, efx, |
| 1056 | skb_shinfo(skb)->frags + frag_i); |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 1057 | if (rc) |
| 1058 | goto mem_err; |
| 1059 | } else { |
Ben Hutchings | ecbd95c | 2008-09-01 12:46:40 +0100 | [diff] [blame] | 1060 | rc = tso_get_head_fragment(&state, efx, skb); |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 1061 | if (rc) |
| 1062 | goto mem_err; |
| 1063 | frag_i = -1; |
| 1064 | } |
| 1065 | |
| 1066 | if (tso_start_new_packet(tx_queue, skb, &state) < 0) |
| 1067 | goto mem_err; |
| 1068 | |
| 1069 | while (1) { |
| 1070 | rc = tso_fill_packet_with_fragment(tx_queue, skb, &state); |
| 1071 | if (unlikely(rc)) |
| 1072 | goto stop; |
| 1073 | |
| 1074 | /* Move onto the next fragment? */ |
| 1075 | if (state.ifc.len == 0) { |
| 1076 | if (++frag_i >= skb_shinfo(skb)->nr_frags) |
| 1077 | /* End of payload reached. */ |
| 1078 | break; |
Ben Hutchings | ecbd95c | 2008-09-01 12:46:40 +0100 | [diff] [blame] | 1079 | rc = tso_get_fragment(&state, efx, |
| 1080 | skb_shinfo(skb)->frags + frag_i); |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 1081 | if (rc) |
| 1082 | goto mem_err; |
| 1083 | } |
| 1084 | |
| 1085 | /* Start at new packet? */ |
| 1086 | if (state.packet_space == 0 && |
| 1087 | tso_start_new_packet(tx_queue, skb, &state) < 0) |
| 1088 | goto mem_err; |
| 1089 | } |
| 1090 | |
| 1091 | /* Pass off to hardware */ |
| 1092 | falcon_push_buffers(tx_queue); |
| 1093 | |
| 1094 | tx_queue->tso_bursts++; |
| 1095 | return NETDEV_TX_OK; |
| 1096 | |
| 1097 | mem_err: |
Ben Hutchings | ecbd95c | 2008-09-01 12:46:40 +0100 | [diff] [blame] | 1098 | EFX_ERR(efx, "Out of memory for TSO headers, or PCI mapping error\n"); |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 1099 | dev_kfree_skb_any((struct sk_buff *)skb); |
| 1100 | goto unwind; |
| 1101 | |
| 1102 | stop: |
| 1103 | rc2 = NETDEV_TX_BUSY; |
| 1104 | |
| 1105 | /* Stop the queue if it wasn't stopped before. */ |
| 1106 | if (tx_queue->stopped == 1) |
Ben Hutchings | ecbd95c | 2008-09-01 12:46:40 +0100 | [diff] [blame] | 1107 | efx_stop_queue(efx); |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 1108 | |
| 1109 | unwind: |
Ben Hutchings | 5988b63 | 2008-09-01 12:46:36 +0100 | [diff] [blame] | 1110 | /* Free the DMA mapping we were in the process of writing out */ |
Ben Hutchings | ecbd95c | 2008-09-01 12:46:40 +0100 | [diff] [blame] | 1111 | if (state.ifc.unmap_len) { |
| 1112 | if (state.ifc.unmap_single) |
| 1113 | pci_unmap_single(efx->pci_dev, state.ifc.unmap_addr, |
| 1114 | state.ifc.unmap_len, PCI_DMA_TODEVICE); |
| 1115 | else |
| 1116 | pci_unmap_page(efx->pci_dev, state.ifc.unmap_addr, |
| 1117 | state.ifc.unmap_len, PCI_DMA_TODEVICE); |
| 1118 | } |
Ben Hutchings | 5988b63 | 2008-09-01 12:46:36 +0100 | [diff] [blame] | 1119 | |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 1120 | efx_enqueue_unwind(tx_queue); |
| 1121 | return rc2; |
| 1122 | } |
| 1123 | |
| 1124 | |
| 1125 | /* |
| 1126 | * Free up all TSO datastructures associated with tx_queue. This |
| 1127 | * routine should be called only once the tx_queue is both empty and |
| 1128 | * will no longer be used. |
| 1129 | */ |
| 1130 | static void efx_fini_tso(struct efx_tx_queue *tx_queue) |
| 1131 | { |
| 1132 | unsigned i; |
| 1133 | |
Ben Hutchings | b347564 | 2008-05-16 21:15:49 +0100 | [diff] [blame] | 1134 | if (tx_queue->buffer) { |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 1135 | for (i = 0; i <= tx_queue->efx->type->txd_ring_mask; ++i) |
| 1136 | efx_tsoh_free(tx_queue, &tx_queue->buffer[i]); |
Ben Hutchings | b347564 | 2008-05-16 21:15:49 +0100 | [diff] [blame] | 1137 | } |
Ben Hutchings | b9b39b6 | 2008-05-07 12:51:12 +0100 | [diff] [blame] | 1138 | |
| 1139 | while (tx_queue->tso_headers_free != NULL) |
| 1140 | efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free, |
| 1141 | tx_queue->efx->pci_dev); |
| 1142 | } |