Sean Wang | 548c459 | 2018-03-15 15:40:36 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | // Copyright (c) 2017-2018 MediaTek Inc. |
| 3 | |
| 4 | /* |
| 5 | * Driver for MediaTek High-Speed DMA Controller |
| 6 | * |
| 7 | * Author: Sean Wang <sean.wang@mediatek.com> |
| 8 | * |
| 9 | */ |
| 10 | |
| 11 | #include <linux/bitops.h> |
| 12 | #include <linux/clk.h> |
| 13 | #include <linux/dmaengine.h> |
| 14 | #include <linux/dma-mapping.h> |
| 15 | #include <linux/err.h> |
| 16 | #include <linux/iopoll.h> |
| 17 | #include <linux/list.h> |
| 18 | #include <linux/module.h> |
| 19 | #include <linux/of.h> |
| 20 | #include <linux/of_device.h> |
| 21 | #include <linux/of_dma.h> |
| 22 | #include <linux/platform_device.h> |
| 23 | #include <linux/pm_runtime.h> |
| 24 | #include <linux/refcount.h> |
| 25 | #include <linux/slab.h> |
| 26 | |
| 27 | #include "../virt-dma.h" |
| 28 | |
| 29 | #define MTK_HSDMA_USEC_POLL 20 |
| 30 | #define MTK_HSDMA_TIMEOUT_POLL 200000 |
| 31 | #define MTK_HSDMA_DMA_BUSWIDTHS BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
| 32 | |
| 33 | /* The default number of virtual channel */ |
| 34 | #define MTK_HSDMA_NR_VCHANS 3 |
| 35 | |
| 36 | /* Only one physical channel supported */ |
| 37 | #define MTK_HSDMA_NR_MAX_PCHANS 1 |
| 38 | |
| 39 | /* Macro for physical descriptor (PD) manipulation */ |
| 40 | /* The number of PD which must be 2 of power */ |
| 41 | #define MTK_DMA_SIZE 64 |
| 42 | #define MTK_HSDMA_NEXT_DESP_IDX(x, y) (((x) + 1) & ((y) - 1)) |
| 43 | #define MTK_HSDMA_LAST_DESP_IDX(x, y) (((x) - 1) & ((y) - 1)) |
| 44 | #define MTK_HSDMA_MAX_LEN 0x3f80 |
| 45 | #define MTK_HSDMA_ALIGN_SIZE 4 |
| 46 | #define MTK_HSDMA_PLEN_MASK 0x3fff |
| 47 | #define MTK_HSDMA_DESC_PLEN(x) (((x) & MTK_HSDMA_PLEN_MASK) << 16) |
| 48 | #define MTK_HSDMA_DESC_PLEN_GET(x) (((x) >> 16) & MTK_HSDMA_PLEN_MASK) |
| 49 | |
| 50 | /* Registers for underlying ring manipulation */ |
| 51 | #define MTK_HSDMA_TX_BASE 0x0 |
| 52 | #define MTK_HSDMA_TX_CNT 0x4 |
| 53 | #define MTK_HSDMA_TX_CPU 0x8 |
| 54 | #define MTK_HSDMA_TX_DMA 0xc |
| 55 | #define MTK_HSDMA_RX_BASE 0x100 |
| 56 | #define MTK_HSDMA_RX_CNT 0x104 |
| 57 | #define MTK_HSDMA_RX_CPU 0x108 |
| 58 | #define MTK_HSDMA_RX_DMA 0x10c |
| 59 | |
| 60 | /* Registers for global setup */ |
| 61 | #define MTK_HSDMA_GLO 0x204 |
| 62 | #define MTK_HSDMA_GLO_MULTI_DMA BIT(10) |
| 63 | #define MTK_HSDMA_TX_WB_DDONE BIT(6) |
| 64 | #define MTK_HSDMA_BURST_64BYTES (0x2 << 4) |
| 65 | #define MTK_HSDMA_GLO_RX_BUSY BIT(3) |
| 66 | #define MTK_HSDMA_GLO_RX_DMA BIT(2) |
| 67 | #define MTK_HSDMA_GLO_TX_BUSY BIT(1) |
| 68 | #define MTK_HSDMA_GLO_TX_DMA BIT(0) |
| 69 | #define MTK_HSDMA_GLO_DMA (MTK_HSDMA_GLO_TX_DMA | \ |
| 70 | MTK_HSDMA_GLO_RX_DMA) |
| 71 | #define MTK_HSDMA_GLO_BUSY (MTK_HSDMA_GLO_RX_BUSY | \ |
| 72 | MTK_HSDMA_GLO_TX_BUSY) |
| 73 | #define MTK_HSDMA_GLO_DEFAULT (MTK_HSDMA_GLO_TX_DMA | \ |
| 74 | MTK_HSDMA_GLO_RX_DMA | \ |
| 75 | MTK_HSDMA_TX_WB_DDONE | \ |
| 76 | MTK_HSDMA_BURST_64BYTES | \ |
| 77 | MTK_HSDMA_GLO_MULTI_DMA) |
| 78 | |
| 79 | /* Registers for reset */ |
| 80 | #define MTK_HSDMA_RESET 0x208 |
| 81 | #define MTK_HSDMA_RST_TX BIT(0) |
| 82 | #define MTK_HSDMA_RST_RX BIT(16) |
| 83 | |
| 84 | /* Registers for interrupt control */ |
| 85 | #define MTK_HSDMA_DLYINT 0x20c |
| 86 | #define MTK_HSDMA_RXDLY_INT_EN BIT(15) |
| 87 | |
| 88 | /* Interrupt fires when the pending number's more than the specified */ |
| 89 | #define MTK_HSDMA_RXMAX_PINT(x) (((x) & 0x7f) << 8) |
| 90 | |
| 91 | /* Interrupt fires when the pending time's more than the specified in 20 us */ |
| 92 | #define MTK_HSDMA_RXMAX_PTIME(x) ((x) & 0x7f) |
| 93 | #define MTK_HSDMA_DLYINT_DEFAULT (MTK_HSDMA_RXDLY_INT_EN | \ |
| 94 | MTK_HSDMA_RXMAX_PINT(20) | \ |
| 95 | MTK_HSDMA_RXMAX_PTIME(20)) |
| 96 | #define MTK_HSDMA_INT_STATUS 0x220 |
| 97 | #define MTK_HSDMA_INT_ENABLE 0x228 |
| 98 | #define MTK_HSDMA_INT_RXDONE BIT(16) |
| 99 | |
| 100 | enum mtk_hsdma_vdesc_flag { |
| 101 | MTK_HSDMA_VDESC_FINISHED = 0x01, |
| 102 | }; |
| 103 | |
| 104 | #define IS_MTK_HSDMA_VDESC_FINISHED(x) ((x) == MTK_HSDMA_VDESC_FINISHED) |
| 105 | |
| 106 | /** |
| 107 | * struct mtk_hsdma_pdesc - This is the struct holding info describing physical |
| 108 | * descriptor (PD) and its placement must be kept at |
| 109 | * 4-bytes alignment in little endian order. |
| 110 | * @desc[1-4]: The control pad used to indicate hardware how to |
| 111 | * deal with the descriptor such as source and |
| 112 | * destination address and data length. The maximum |
| 113 | * data length each pdesc can handle is 0x3f80 bytes |
| 114 | */ |
| 115 | struct mtk_hsdma_pdesc { |
| 116 | __le32 desc1; |
| 117 | __le32 desc2; |
| 118 | __le32 desc3; |
| 119 | __le32 desc4; |
| 120 | } __packed __aligned(4); |
| 121 | |
| 122 | /** |
| 123 | * struct mtk_hsdma_vdesc - This is the struct holding info describing virtual |
| 124 | * descriptor (VD) |
| 125 | * @vd: An instance for struct virt_dma_desc |
| 126 | * @len: The total data size device wants to move |
| 127 | * @residue: The remaining data size device will move |
| 128 | * @dest: The destination address device wants to move to |
| 129 | * @src: The source address device wants to move from |
| 130 | */ |
| 131 | struct mtk_hsdma_vdesc { |
| 132 | struct virt_dma_desc vd; |
| 133 | size_t len; |
| 134 | size_t residue; |
| 135 | dma_addr_t dest; |
| 136 | dma_addr_t src; |
| 137 | }; |
| 138 | |
| 139 | /** |
| 140 | * struct mtk_hsdma_cb - This is the struct holding extra info required for RX |
| 141 | * ring to know what relevant VD the the PD is being |
| 142 | * mapped to. |
| 143 | * @vd: Pointer to the relevant VD. |
| 144 | * @flag: Flag indicating what action should be taken when VD |
| 145 | * is completed. |
| 146 | */ |
| 147 | struct mtk_hsdma_cb { |
| 148 | struct virt_dma_desc *vd; |
| 149 | enum mtk_hsdma_vdesc_flag flag; |
| 150 | }; |
| 151 | |
| 152 | /** |
| 153 | * struct mtk_hsdma_ring - This struct holds info describing underlying ring |
| 154 | * space |
| 155 | * @txd: The descriptor TX ring which describes DMA source |
| 156 | * information |
| 157 | * @rxd: The descriptor RX ring which describes DMA |
| 158 | * destination information |
| 159 | * @cb: The extra information pointed at by RX ring |
| 160 | * @tphys: The physical addr of TX ring |
| 161 | * @rphys: The physical addr of RX ring |
| 162 | * @cur_tptr: Pointer to the next free descriptor used by the host |
| 163 | * @cur_rptr: Pointer to the last done descriptor by the device |
| 164 | */ |
| 165 | struct mtk_hsdma_ring { |
| 166 | struct mtk_hsdma_pdesc *txd; |
| 167 | struct mtk_hsdma_pdesc *rxd; |
| 168 | struct mtk_hsdma_cb *cb; |
| 169 | dma_addr_t tphys; |
| 170 | dma_addr_t rphys; |
| 171 | u16 cur_tptr; |
| 172 | u16 cur_rptr; |
| 173 | }; |
| 174 | |
| 175 | /** |
| 176 | * struct mtk_hsdma_pchan - This is the struct holding info describing physical |
| 177 | * channel (PC) |
| 178 | * @ring: An instance for the underlying ring |
| 179 | * @sz_ring: Total size allocated for the ring |
| 180 | * @nr_free: Total number of free rooms in the ring. It would |
| 181 | * be accessed and updated frequently between IRQ |
| 182 | * context and user context to reflect whether ring |
| 183 | * can accept requests from VD. |
| 184 | */ |
| 185 | struct mtk_hsdma_pchan { |
| 186 | struct mtk_hsdma_ring ring; |
| 187 | size_t sz_ring; |
| 188 | atomic_t nr_free; |
| 189 | }; |
| 190 | |
| 191 | /** |
| 192 | * struct mtk_hsdma_vchan - This is the struct holding info describing virtual |
| 193 | * channel (VC) |
| 194 | * @vc: An instance for struct virt_dma_chan |
| 195 | * @issue_completion: The wait for all issued descriptors completited |
| 196 | * @issue_synchronize: Bool indicating channel synchronization starts |
| 197 | * @desc_hw_processing: List those descriptors the hardware is processing, |
| 198 | * which is protected by vc.lock |
| 199 | */ |
| 200 | struct mtk_hsdma_vchan { |
| 201 | struct virt_dma_chan vc; |
| 202 | struct completion issue_completion; |
| 203 | bool issue_synchronize; |
| 204 | struct list_head desc_hw_processing; |
| 205 | }; |
| 206 | |
| 207 | /** |
| 208 | * struct mtk_hsdma_soc - This is the struct holding differences among SoCs |
| 209 | * @ddone: Bit mask for DDONE |
| 210 | * @ls0: Bit mask for LS0 |
| 211 | */ |
| 212 | struct mtk_hsdma_soc { |
| 213 | __le32 ddone; |
| 214 | __le32 ls0; |
| 215 | }; |
| 216 | |
| 217 | /** |
| 218 | * struct mtk_hsdma_device - This is the struct holding info describing HSDMA |
| 219 | * device |
| 220 | * @ddev: An instance for struct dma_device |
| 221 | * @base: The mapped register I/O base |
| 222 | * @clk: The clock that device internal is using |
| 223 | * @irq: The IRQ that device are using |
| 224 | * @dma_requests: The number of VCs the device supports to |
| 225 | * @vc: The pointer to all available VCs |
| 226 | * @pc: The pointer to the underlying PC |
| 227 | * @pc_refcnt: Track how many VCs are using the PC |
| 228 | * @lock: Lock protect agaisting multiple VCs access PC |
| 229 | * @soc: The pointer to area holding differences among |
| 230 | * vaious platform |
| 231 | */ |
| 232 | struct mtk_hsdma_device { |
| 233 | struct dma_device ddev; |
| 234 | void __iomem *base; |
| 235 | struct clk *clk; |
| 236 | u32 irq; |
| 237 | |
| 238 | u32 dma_requests; |
| 239 | struct mtk_hsdma_vchan *vc; |
| 240 | struct mtk_hsdma_pchan *pc; |
| 241 | refcount_t pc_refcnt; |
| 242 | |
| 243 | /* Lock used to protect against multiple VCs access PC */ |
| 244 | spinlock_t lock; |
| 245 | |
| 246 | const struct mtk_hsdma_soc *soc; |
| 247 | }; |
| 248 | |
| 249 | static struct mtk_hsdma_device *to_hsdma_dev(struct dma_chan *chan) |
| 250 | { |
| 251 | return container_of(chan->device, struct mtk_hsdma_device, ddev); |
| 252 | } |
| 253 | |
| 254 | static inline struct mtk_hsdma_vchan *to_hsdma_vchan(struct dma_chan *chan) |
| 255 | { |
| 256 | return container_of(chan, struct mtk_hsdma_vchan, vc.chan); |
| 257 | } |
| 258 | |
| 259 | static struct mtk_hsdma_vdesc *to_hsdma_vdesc(struct virt_dma_desc *vd) |
| 260 | { |
| 261 | return container_of(vd, struct mtk_hsdma_vdesc, vd); |
| 262 | } |
| 263 | |
| 264 | static struct device *hsdma2dev(struct mtk_hsdma_device *hsdma) |
| 265 | { |
| 266 | return hsdma->ddev.dev; |
| 267 | } |
| 268 | |
| 269 | static u32 mtk_dma_read(struct mtk_hsdma_device *hsdma, u32 reg) |
| 270 | { |
| 271 | return readl(hsdma->base + reg); |
| 272 | } |
| 273 | |
| 274 | static void mtk_dma_write(struct mtk_hsdma_device *hsdma, u32 reg, u32 val) |
| 275 | { |
| 276 | writel(val, hsdma->base + reg); |
| 277 | } |
| 278 | |
| 279 | static void mtk_dma_rmw(struct mtk_hsdma_device *hsdma, u32 reg, |
| 280 | u32 mask, u32 set) |
| 281 | { |
| 282 | u32 val; |
| 283 | |
| 284 | val = mtk_dma_read(hsdma, reg); |
| 285 | val &= ~mask; |
| 286 | val |= set; |
| 287 | mtk_dma_write(hsdma, reg, val); |
| 288 | } |
| 289 | |
| 290 | static void mtk_dma_set(struct mtk_hsdma_device *hsdma, u32 reg, u32 val) |
| 291 | { |
| 292 | mtk_dma_rmw(hsdma, reg, 0, val); |
| 293 | } |
| 294 | |
| 295 | static void mtk_dma_clr(struct mtk_hsdma_device *hsdma, u32 reg, u32 val) |
| 296 | { |
| 297 | mtk_dma_rmw(hsdma, reg, val, 0); |
| 298 | } |
| 299 | |
| 300 | static void mtk_hsdma_vdesc_free(struct virt_dma_desc *vd) |
| 301 | { |
| 302 | kfree(container_of(vd, struct mtk_hsdma_vdesc, vd)); |
| 303 | } |
| 304 | |
| 305 | static int mtk_hsdma_busy_wait(struct mtk_hsdma_device *hsdma) |
| 306 | { |
| 307 | u32 status = 0; |
| 308 | |
| 309 | return readl_poll_timeout(hsdma->base + MTK_HSDMA_GLO, status, |
| 310 | !(status & MTK_HSDMA_GLO_BUSY), |
| 311 | MTK_HSDMA_USEC_POLL, |
| 312 | MTK_HSDMA_TIMEOUT_POLL); |
| 313 | } |
| 314 | |
| 315 | static int mtk_hsdma_alloc_pchan(struct mtk_hsdma_device *hsdma, |
| 316 | struct mtk_hsdma_pchan *pc) |
| 317 | { |
| 318 | struct mtk_hsdma_ring *ring = &pc->ring; |
| 319 | int err; |
| 320 | |
| 321 | memset(pc, 0, sizeof(*pc)); |
| 322 | |
| 323 | /* |
| 324 | * Allocate ring space where [0 ... MTK_DMA_SIZE - 1] is for TX ring |
| 325 | * and [MTK_DMA_SIZE ... 2 * MTK_DMA_SIZE - 1] is for RX ring. |
| 326 | */ |
| 327 | pc->sz_ring = 2 * MTK_DMA_SIZE * sizeof(*ring->txd); |
Luis Chamberlain | 750afb0 | 2019-01-04 09:23:09 +0100 | [diff] [blame] | 328 | ring->txd = dma_alloc_coherent(hsdma2dev(hsdma), pc->sz_ring, |
| 329 | &ring->tphys, GFP_NOWAIT); |
Sean Wang | 548c459 | 2018-03-15 15:40:36 +0800 | [diff] [blame] | 330 | if (!ring->txd) |
| 331 | return -ENOMEM; |
| 332 | |
| 333 | ring->rxd = &ring->txd[MTK_DMA_SIZE]; |
| 334 | ring->rphys = ring->tphys + MTK_DMA_SIZE * sizeof(*ring->txd); |
| 335 | ring->cur_tptr = 0; |
| 336 | ring->cur_rptr = MTK_DMA_SIZE - 1; |
| 337 | |
| 338 | ring->cb = kcalloc(MTK_DMA_SIZE, sizeof(*ring->cb), GFP_NOWAIT); |
| 339 | if (!ring->cb) { |
| 340 | err = -ENOMEM; |
| 341 | goto err_free_dma; |
| 342 | } |
| 343 | |
| 344 | atomic_set(&pc->nr_free, MTK_DMA_SIZE - 1); |
| 345 | |
| 346 | /* Disable HSDMA and wait for the completion */ |
| 347 | mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA); |
| 348 | err = mtk_hsdma_busy_wait(hsdma); |
| 349 | if (err) |
| 350 | goto err_free_cb; |
| 351 | |
| 352 | /* Reset */ |
| 353 | mtk_dma_set(hsdma, MTK_HSDMA_RESET, |
| 354 | MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX); |
| 355 | mtk_dma_clr(hsdma, MTK_HSDMA_RESET, |
| 356 | MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX); |
| 357 | |
| 358 | /* Setup HSDMA initial pointer in the ring */ |
| 359 | mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, ring->tphys); |
| 360 | mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, MTK_DMA_SIZE); |
| 361 | mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr); |
| 362 | mtk_dma_write(hsdma, MTK_HSDMA_TX_DMA, 0); |
| 363 | mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, ring->rphys); |
| 364 | mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, MTK_DMA_SIZE); |
| 365 | mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, ring->cur_rptr); |
| 366 | mtk_dma_write(hsdma, MTK_HSDMA_RX_DMA, 0); |
| 367 | |
| 368 | /* Enable HSDMA */ |
| 369 | mtk_dma_set(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA); |
| 370 | |
| 371 | /* Setup delayed interrupt */ |
| 372 | mtk_dma_write(hsdma, MTK_HSDMA_DLYINT, MTK_HSDMA_DLYINT_DEFAULT); |
| 373 | |
| 374 | /* Enable interrupt */ |
| 375 | mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE); |
| 376 | |
| 377 | return 0; |
| 378 | |
| 379 | err_free_cb: |
| 380 | kfree(ring->cb); |
| 381 | |
| 382 | err_free_dma: |
| 383 | dma_free_coherent(hsdma2dev(hsdma), |
| 384 | pc->sz_ring, ring->txd, ring->tphys); |
| 385 | return err; |
| 386 | } |
| 387 | |
| 388 | static void mtk_hsdma_free_pchan(struct mtk_hsdma_device *hsdma, |
| 389 | struct mtk_hsdma_pchan *pc) |
| 390 | { |
| 391 | struct mtk_hsdma_ring *ring = &pc->ring; |
| 392 | |
| 393 | /* Disable HSDMA and then wait for the completion */ |
| 394 | mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA); |
| 395 | mtk_hsdma_busy_wait(hsdma); |
| 396 | |
| 397 | /* Reset pointer in the ring */ |
| 398 | mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE); |
| 399 | mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, 0); |
| 400 | mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, 0); |
| 401 | mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, 0); |
| 402 | mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, 0); |
| 403 | mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, 0); |
| 404 | mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, MTK_DMA_SIZE - 1); |
| 405 | |
| 406 | kfree(ring->cb); |
| 407 | |
| 408 | dma_free_coherent(hsdma2dev(hsdma), |
| 409 | pc->sz_ring, ring->txd, ring->tphys); |
| 410 | } |
| 411 | |
| 412 | static int mtk_hsdma_issue_pending_vdesc(struct mtk_hsdma_device *hsdma, |
| 413 | struct mtk_hsdma_pchan *pc, |
| 414 | struct mtk_hsdma_vdesc *hvd) |
| 415 | { |
| 416 | struct mtk_hsdma_ring *ring = &pc->ring; |
| 417 | struct mtk_hsdma_pdesc *txd, *rxd; |
| 418 | u16 reserved, prev, tlen, num_sgs; |
| 419 | unsigned long flags; |
| 420 | |
| 421 | /* Protect against PC is accessed by multiple VCs simultaneously */ |
| 422 | spin_lock_irqsave(&hsdma->lock, flags); |
| 423 | |
| 424 | /* |
| 425 | * Reserve rooms, where pc->nr_free is used to track how many free |
| 426 | * rooms in the ring being updated in user and IRQ context. |
| 427 | */ |
| 428 | num_sgs = DIV_ROUND_UP(hvd->len, MTK_HSDMA_MAX_LEN); |
| 429 | reserved = min_t(u16, num_sgs, atomic_read(&pc->nr_free)); |
| 430 | |
| 431 | if (!reserved) { |
| 432 | spin_unlock_irqrestore(&hsdma->lock, flags); |
| 433 | return -ENOSPC; |
| 434 | } |
| 435 | |
| 436 | atomic_sub(reserved, &pc->nr_free); |
| 437 | |
| 438 | while (reserved--) { |
| 439 | /* Limit size by PD capability for valid data moving */ |
| 440 | tlen = (hvd->len > MTK_HSDMA_MAX_LEN) ? |
| 441 | MTK_HSDMA_MAX_LEN : hvd->len; |
| 442 | |
| 443 | /* |
| 444 | * Setup PDs using the remaining VD info mapped on those |
| 445 | * reserved rooms. And since RXD is shared memory between the |
| 446 | * host and the device allocated by dma_alloc_coherent call, |
| 447 | * the helper macro WRITE_ONCE can ensure the data written to |
| 448 | * RAM would really happens. |
| 449 | */ |
| 450 | txd = &ring->txd[ring->cur_tptr]; |
| 451 | WRITE_ONCE(txd->desc1, hvd->src); |
| 452 | WRITE_ONCE(txd->desc2, |
| 453 | hsdma->soc->ls0 | MTK_HSDMA_DESC_PLEN(tlen)); |
| 454 | |
| 455 | rxd = &ring->rxd[ring->cur_tptr]; |
| 456 | WRITE_ONCE(rxd->desc1, hvd->dest); |
| 457 | WRITE_ONCE(rxd->desc2, MTK_HSDMA_DESC_PLEN(tlen)); |
| 458 | |
| 459 | /* Associate VD, the PD belonged to */ |
| 460 | ring->cb[ring->cur_tptr].vd = &hvd->vd; |
| 461 | |
| 462 | /* Move forward the pointer of TX ring */ |
| 463 | ring->cur_tptr = MTK_HSDMA_NEXT_DESP_IDX(ring->cur_tptr, |
| 464 | MTK_DMA_SIZE); |
| 465 | |
| 466 | /* Update VD with remaining data */ |
| 467 | hvd->src += tlen; |
| 468 | hvd->dest += tlen; |
| 469 | hvd->len -= tlen; |
| 470 | } |
| 471 | |
| 472 | /* |
| 473 | * Tagging flag for the last PD for VD will be responsible for |
| 474 | * completing VD. |
| 475 | */ |
| 476 | if (!hvd->len) { |
| 477 | prev = MTK_HSDMA_LAST_DESP_IDX(ring->cur_tptr, MTK_DMA_SIZE); |
| 478 | ring->cb[prev].flag = MTK_HSDMA_VDESC_FINISHED; |
| 479 | } |
| 480 | |
| 481 | /* Ensure all changes indeed done before we're going on */ |
| 482 | wmb(); |
| 483 | |
| 484 | /* |
| 485 | * Updating into hardware the pointer of TX ring lets HSDMA to take |
| 486 | * action for those pending PDs. |
| 487 | */ |
| 488 | mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr); |
| 489 | |
| 490 | spin_unlock_irqrestore(&hsdma->lock, flags); |
| 491 | |
| 492 | return 0; |
| 493 | } |
| 494 | |
| 495 | static void mtk_hsdma_issue_vchan_pending(struct mtk_hsdma_device *hsdma, |
| 496 | struct mtk_hsdma_vchan *hvc) |
| 497 | { |
| 498 | struct virt_dma_desc *vd, *vd2; |
| 499 | int err; |
| 500 | |
| 501 | lockdep_assert_held(&hvc->vc.lock); |
| 502 | |
| 503 | list_for_each_entry_safe(vd, vd2, &hvc->vc.desc_issued, node) { |
| 504 | struct mtk_hsdma_vdesc *hvd; |
| 505 | |
| 506 | hvd = to_hsdma_vdesc(vd); |
| 507 | |
| 508 | /* Map VD into PC and all VCs shares a single PC */ |
| 509 | err = mtk_hsdma_issue_pending_vdesc(hsdma, hsdma->pc, hvd); |
| 510 | |
| 511 | /* |
| 512 | * Move VD from desc_issued to desc_hw_processing when entire |
| 513 | * VD is fit into available PDs. Otherwise, the uncompleted |
| 514 | * VDs would stay in list desc_issued and then restart the |
| 515 | * processing as soon as possible once underlying ring space |
| 516 | * got freed. |
| 517 | */ |
| 518 | if (err == -ENOSPC || hvd->len > 0) |
| 519 | break; |
| 520 | |
| 521 | /* |
| 522 | * The extra list desc_hw_processing is used because |
| 523 | * hardware can't provide sufficient information allowing us |
| 524 | * to know what VDs are still working on the underlying ring. |
| 525 | * Through the additional list, it can help us to implement |
| 526 | * terminate_all, residue calculation and such thing needed |
| 527 | * to know detail descriptor status on the hardware. |
| 528 | */ |
| 529 | list_move_tail(&vd->node, &hvc->desc_hw_processing); |
| 530 | } |
| 531 | } |
| 532 | |
| 533 | static void mtk_hsdma_free_rooms_in_ring(struct mtk_hsdma_device *hsdma) |
| 534 | { |
| 535 | struct mtk_hsdma_vchan *hvc; |
| 536 | struct mtk_hsdma_pdesc *rxd; |
| 537 | struct mtk_hsdma_vdesc *hvd; |
| 538 | struct mtk_hsdma_pchan *pc; |
| 539 | struct mtk_hsdma_cb *cb; |
| 540 | int i = MTK_DMA_SIZE; |
| 541 | __le32 desc2; |
| 542 | u32 status; |
| 543 | u16 next; |
| 544 | |
| 545 | /* Read IRQ status */ |
| 546 | status = mtk_dma_read(hsdma, MTK_HSDMA_INT_STATUS); |
| 547 | if (unlikely(!(status & MTK_HSDMA_INT_RXDONE))) |
| 548 | goto rx_done; |
| 549 | |
| 550 | pc = hsdma->pc; |
| 551 | |
| 552 | /* |
| 553 | * Using a fail-safe loop with iterations of up to MTK_DMA_SIZE to |
| 554 | * reclaim these finished descriptors: The most number of PDs the ISR |
| 555 | * can handle at one time shouldn't be more than MTK_DMA_SIZE so we |
| 556 | * take it as limited count instead of just using a dangerous infinite |
| 557 | * poll. |
| 558 | */ |
| 559 | while (i--) { |
| 560 | next = MTK_HSDMA_NEXT_DESP_IDX(pc->ring.cur_rptr, |
| 561 | MTK_DMA_SIZE); |
| 562 | rxd = &pc->ring.rxd[next]; |
| 563 | |
| 564 | /* |
| 565 | * If MTK_HSDMA_DESC_DDONE is no specified, that means data |
| 566 | * moving for the PD is still under going. |
| 567 | */ |
| 568 | desc2 = READ_ONCE(rxd->desc2); |
| 569 | if (!(desc2 & hsdma->soc->ddone)) |
| 570 | break; |
| 571 | |
| 572 | cb = &pc->ring.cb[next]; |
| 573 | if (unlikely(!cb->vd)) { |
| 574 | dev_err(hsdma2dev(hsdma), "cb->vd cannot be null\n"); |
| 575 | break; |
| 576 | } |
| 577 | |
| 578 | /* Update residue of VD the associated PD belonged to */ |
| 579 | hvd = to_hsdma_vdesc(cb->vd); |
| 580 | hvd->residue -= MTK_HSDMA_DESC_PLEN_GET(rxd->desc2); |
| 581 | |
| 582 | /* Complete VD until the relevant last PD is finished */ |
| 583 | if (IS_MTK_HSDMA_VDESC_FINISHED(cb->flag)) { |
| 584 | hvc = to_hsdma_vchan(cb->vd->tx.chan); |
| 585 | |
| 586 | spin_lock(&hvc->vc.lock); |
| 587 | |
| 588 | /* Remove VD from list desc_hw_processing */ |
| 589 | list_del(&cb->vd->node); |
| 590 | |
| 591 | /* Add VD into list desc_completed */ |
| 592 | vchan_cookie_complete(cb->vd); |
| 593 | |
| 594 | if (hvc->issue_synchronize && |
| 595 | list_empty(&hvc->desc_hw_processing)) { |
| 596 | complete(&hvc->issue_completion); |
| 597 | hvc->issue_synchronize = false; |
| 598 | } |
| 599 | spin_unlock(&hvc->vc.lock); |
| 600 | |
| 601 | cb->flag = 0; |
| 602 | } |
| 603 | |
| 604 | cb->vd = 0; |
| 605 | |
| 606 | /* |
| 607 | * Recycle the RXD with the helper WRITE_ONCE that can ensure |
| 608 | * data written into RAM would really happens. |
| 609 | */ |
| 610 | WRITE_ONCE(rxd->desc1, 0); |
| 611 | WRITE_ONCE(rxd->desc2, 0); |
| 612 | pc->ring.cur_rptr = next; |
| 613 | |
| 614 | /* Release rooms */ |
| 615 | atomic_inc(&pc->nr_free); |
| 616 | } |
| 617 | |
| 618 | /* Ensure all changes indeed done before we're going on */ |
| 619 | wmb(); |
| 620 | |
| 621 | /* Update CPU pointer for those completed PDs */ |
| 622 | mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, pc->ring.cur_rptr); |
| 623 | |
| 624 | /* |
| 625 | * Acking the pending IRQ allows hardware no longer to keep the used |
| 626 | * IRQ line in certain trigger state when software has completed all |
| 627 | * the finished physical descriptors. |
| 628 | */ |
| 629 | if (atomic_read(&pc->nr_free) >= MTK_DMA_SIZE - 1) |
| 630 | mtk_dma_write(hsdma, MTK_HSDMA_INT_STATUS, status); |
| 631 | |
| 632 | /* ASAP handles pending VDs in all VCs after freeing some rooms */ |
| 633 | for (i = 0; i < hsdma->dma_requests; i++) { |
| 634 | hvc = &hsdma->vc[i]; |
| 635 | spin_lock(&hvc->vc.lock); |
| 636 | mtk_hsdma_issue_vchan_pending(hsdma, hvc); |
| 637 | spin_unlock(&hvc->vc.lock); |
| 638 | } |
| 639 | |
| 640 | rx_done: |
| 641 | /* All completed PDs are cleaned up, so enable interrupt again */ |
| 642 | mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE); |
| 643 | } |
| 644 | |
| 645 | static irqreturn_t mtk_hsdma_irq(int irq, void *devid) |
| 646 | { |
| 647 | struct mtk_hsdma_device *hsdma = devid; |
| 648 | |
| 649 | /* |
| 650 | * Disable interrupt until all completed PDs are cleaned up in |
| 651 | * mtk_hsdma_free_rooms call. |
| 652 | */ |
| 653 | mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE); |
| 654 | |
| 655 | mtk_hsdma_free_rooms_in_ring(hsdma); |
| 656 | |
| 657 | return IRQ_HANDLED; |
| 658 | } |
| 659 | |
| 660 | static struct virt_dma_desc *mtk_hsdma_find_active_desc(struct dma_chan *c, |
| 661 | dma_cookie_t cookie) |
| 662 | { |
| 663 | struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c); |
| 664 | struct virt_dma_desc *vd; |
| 665 | |
| 666 | list_for_each_entry(vd, &hvc->desc_hw_processing, node) |
| 667 | if (vd->tx.cookie == cookie) |
| 668 | return vd; |
| 669 | |
| 670 | list_for_each_entry(vd, &hvc->vc.desc_issued, node) |
| 671 | if (vd->tx.cookie == cookie) |
| 672 | return vd; |
| 673 | |
| 674 | return NULL; |
| 675 | } |
| 676 | |
| 677 | static enum dma_status mtk_hsdma_tx_status(struct dma_chan *c, |
| 678 | dma_cookie_t cookie, |
| 679 | struct dma_tx_state *txstate) |
| 680 | { |
| 681 | struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c); |
| 682 | struct mtk_hsdma_vdesc *hvd; |
| 683 | struct virt_dma_desc *vd; |
| 684 | enum dma_status ret; |
| 685 | unsigned long flags; |
| 686 | size_t bytes = 0; |
| 687 | |
| 688 | ret = dma_cookie_status(c, cookie, txstate); |
| 689 | if (ret == DMA_COMPLETE || !txstate) |
| 690 | return ret; |
| 691 | |
| 692 | spin_lock_irqsave(&hvc->vc.lock, flags); |
| 693 | vd = mtk_hsdma_find_active_desc(c, cookie); |
| 694 | spin_unlock_irqrestore(&hvc->vc.lock, flags); |
| 695 | |
| 696 | if (vd) { |
| 697 | hvd = to_hsdma_vdesc(vd); |
| 698 | bytes = hvd->residue; |
| 699 | } |
| 700 | |
| 701 | dma_set_residue(txstate, bytes); |
| 702 | |
| 703 | return ret; |
| 704 | } |
| 705 | |
| 706 | static void mtk_hsdma_issue_pending(struct dma_chan *c) |
| 707 | { |
| 708 | struct mtk_hsdma_device *hsdma = to_hsdma_dev(c); |
| 709 | struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c); |
| 710 | unsigned long flags; |
| 711 | |
| 712 | spin_lock_irqsave(&hvc->vc.lock, flags); |
| 713 | |
| 714 | if (vchan_issue_pending(&hvc->vc)) |
| 715 | mtk_hsdma_issue_vchan_pending(hsdma, hvc); |
| 716 | |
| 717 | spin_unlock_irqrestore(&hvc->vc.lock, flags); |
| 718 | } |
| 719 | |
| 720 | static struct dma_async_tx_descriptor * |
| 721 | mtk_hsdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest, |
| 722 | dma_addr_t src, size_t len, unsigned long flags) |
| 723 | { |
| 724 | struct mtk_hsdma_vdesc *hvd; |
| 725 | |
| 726 | hvd = kzalloc(sizeof(*hvd), GFP_NOWAIT); |
| 727 | if (!hvd) |
| 728 | return NULL; |
| 729 | |
| 730 | hvd->len = len; |
| 731 | hvd->residue = len; |
| 732 | hvd->src = src; |
| 733 | hvd->dest = dest; |
| 734 | |
| 735 | return vchan_tx_prep(to_virt_chan(c), &hvd->vd, flags); |
| 736 | } |
| 737 | |
| 738 | static int mtk_hsdma_free_inactive_desc(struct dma_chan *c) |
| 739 | { |
| 740 | struct virt_dma_chan *vc = to_virt_chan(c); |
| 741 | unsigned long flags; |
| 742 | LIST_HEAD(head); |
| 743 | |
| 744 | spin_lock_irqsave(&vc->lock, flags); |
| 745 | list_splice_tail_init(&vc->desc_allocated, &head); |
| 746 | list_splice_tail_init(&vc->desc_submitted, &head); |
| 747 | list_splice_tail_init(&vc->desc_issued, &head); |
| 748 | spin_unlock_irqrestore(&vc->lock, flags); |
| 749 | |
| 750 | /* At the point, we don't expect users put descriptor into VC again */ |
| 751 | vchan_dma_desc_free_list(vc, &head); |
| 752 | |
| 753 | return 0; |
| 754 | } |
| 755 | |
| 756 | static void mtk_hsdma_free_active_desc(struct dma_chan *c) |
| 757 | { |
| 758 | struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c); |
| 759 | bool sync_needed = false; |
| 760 | |
| 761 | /* |
| 762 | * Once issue_synchronize is being set, which means once the hardware |
| 763 | * consumes all descriptors for the channel in the ring, the |
| 764 | * synchronization must be be notified immediately it is completed. |
| 765 | */ |
| 766 | spin_lock(&hvc->vc.lock); |
| 767 | if (!list_empty(&hvc->desc_hw_processing)) { |
| 768 | hvc->issue_synchronize = true; |
| 769 | sync_needed = true; |
| 770 | } |
| 771 | spin_unlock(&hvc->vc.lock); |
| 772 | |
| 773 | if (sync_needed) |
| 774 | wait_for_completion(&hvc->issue_completion); |
| 775 | /* |
| 776 | * At the point, we expect that all remaining descriptors in the ring |
| 777 | * for the channel should be all processing done. |
| 778 | */ |
| 779 | WARN_ONCE(!list_empty(&hvc->desc_hw_processing), |
| 780 | "Desc pending still in list desc_hw_processing\n"); |
| 781 | |
| 782 | /* Free all descriptors in list desc_completed */ |
| 783 | vchan_synchronize(&hvc->vc); |
| 784 | |
| 785 | WARN_ONCE(!list_empty(&hvc->vc.desc_completed), |
| 786 | "Desc pending still in list desc_completed\n"); |
| 787 | } |
| 788 | |
| 789 | static int mtk_hsdma_terminate_all(struct dma_chan *c) |
| 790 | { |
| 791 | /* |
| 792 | * Free pending descriptors not processed yet by hardware that have |
| 793 | * previously been submitted to the channel. |
| 794 | */ |
| 795 | mtk_hsdma_free_inactive_desc(c); |
| 796 | |
| 797 | /* |
| 798 | * However, the DMA engine doesn't provide any way to stop these |
| 799 | * descriptors being processed currently by hardware. The only way is |
| 800 | * to just waiting until these descriptors are all processed completely |
| 801 | * through mtk_hsdma_free_active_desc call. |
| 802 | */ |
| 803 | mtk_hsdma_free_active_desc(c); |
| 804 | |
| 805 | return 0; |
| 806 | } |
| 807 | |
| 808 | static int mtk_hsdma_alloc_chan_resources(struct dma_chan *c) |
| 809 | { |
| 810 | struct mtk_hsdma_device *hsdma = to_hsdma_dev(c); |
| 811 | int err; |
| 812 | |
| 813 | /* |
| 814 | * Since HSDMA has only one PC, the resource for PC is being allocated |
| 815 | * when the first VC is being created and the other VCs would run on |
| 816 | * the same PC. |
| 817 | */ |
| 818 | if (!refcount_read(&hsdma->pc_refcnt)) { |
| 819 | err = mtk_hsdma_alloc_pchan(hsdma, hsdma->pc); |
| 820 | if (err) |
| 821 | return err; |
| 822 | /* |
| 823 | * refcount_inc would complain increment on 0; use-after-free. |
| 824 | * Thus, we need to explicitly set it as 1 initially. |
| 825 | */ |
| 826 | refcount_set(&hsdma->pc_refcnt, 1); |
| 827 | } else { |
| 828 | refcount_inc(&hsdma->pc_refcnt); |
| 829 | } |
| 830 | |
| 831 | return 0; |
| 832 | } |
| 833 | |
| 834 | static void mtk_hsdma_free_chan_resources(struct dma_chan *c) |
| 835 | { |
| 836 | struct mtk_hsdma_device *hsdma = to_hsdma_dev(c); |
| 837 | |
| 838 | /* Free all descriptors in all lists on the VC */ |
| 839 | mtk_hsdma_terminate_all(c); |
| 840 | |
| 841 | /* The resource for PC is not freed until all the VCs are destroyed */ |
| 842 | if (!refcount_dec_and_test(&hsdma->pc_refcnt)) |
| 843 | return; |
| 844 | |
| 845 | mtk_hsdma_free_pchan(hsdma, hsdma->pc); |
| 846 | } |
| 847 | |
| 848 | static int mtk_hsdma_hw_init(struct mtk_hsdma_device *hsdma) |
| 849 | { |
| 850 | int err; |
| 851 | |
| 852 | pm_runtime_enable(hsdma2dev(hsdma)); |
| 853 | pm_runtime_get_sync(hsdma2dev(hsdma)); |
| 854 | |
| 855 | err = clk_prepare_enable(hsdma->clk); |
| 856 | if (err) |
| 857 | return err; |
| 858 | |
| 859 | mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0); |
| 860 | mtk_dma_write(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DEFAULT); |
| 861 | |
| 862 | return 0; |
| 863 | } |
| 864 | |
| 865 | static int mtk_hsdma_hw_deinit(struct mtk_hsdma_device *hsdma) |
| 866 | { |
| 867 | mtk_dma_write(hsdma, MTK_HSDMA_GLO, 0); |
| 868 | |
| 869 | clk_disable_unprepare(hsdma->clk); |
| 870 | |
| 871 | pm_runtime_put_sync(hsdma2dev(hsdma)); |
| 872 | pm_runtime_disable(hsdma2dev(hsdma)); |
| 873 | |
| 874 | return 0; |
| 875 | } |
| 876 | |
| 877 | static const struct mtk_hsdma_soc mt7623_soc = { |
| 878 | .ddone = BIT(31), |
| 879 | .ls0 = BIT(30), |
| 880 | }; |
| 881 | |
| 882 | static const struct mtk_hsdma_soc mt7622_soc = { |
| 883 | .ddone = BIT(15), |
| 884 | .ls0 = BIT(14), |
| 885 | }; |
| 886 | |
| 887 | static const struct of_device_id mtk_hsdma_match[] = { |
| 888 | { .compatible = "mediatek,mt7623-hsdma", .data = &mt7623_soc}, |
| 889 | { .compatible = "mediatek,mt7622-hsdma", .data = &mt7622_soc}, |
| 890 | { /* sentinel */ } |
| 891 | }; |
| 892 | MODULE_DEVICE_TABLE(of, mtk_hsdma_match); |
| 893 | |
| 894 | static int mtk_hsdma_probe(struct platform_device *pdev) |
| 895 | { |
| 896 | struct mtk_hsdma_device *hsdma; |
| 897 | struct mtk_hsdma_vchan *vc; |
| 898 | struct dma_device *dd; |
| 899 | struct resource *res; |
| 900 | int i, err; |
| 901 | |
| 902 | hsdma = devm_kzalloc(&pdev->dev, sizeof(*hsdma), GFP_KERNEL); |
| 903 | if (!hsdma) |
| 904 | return -ENOMEM; |
| 905 | |
| 906 | dd = &hsdma->ddev; |
| 907 | |
| 908 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 909 | hsdma->base = devm_ioremap_resource(&pdev->dev, res); |
| 910 | if (IS_ERR(hsdma->base)) |
| 911 | return PTR_ERR(hsdma->base); |
| 912 | |
| 913 | hsdma->soc = of_device_get_match_data(&pdev->dev); |
| 914 | if (!hsdma->soc) { |
| 915 | dev_err(&pdev->dev, "No device match found\n"); |
| 916 | return -ENODEV; |
| 917 | } |
| 918 | |
| 919 | hsdma->clk = devm_clk_get(&pdev->dev, "hsdma"); |
| 920 | if (IS_ERR(hsdma->clk)) { |
| 921 | dev_err(&pdev->dev, "No clock for %s\n", |
| 922 | dev_name(&pdev->dev)); |
| 923 | return PTR_ERR(hsdma->clk); |
| 924 | } |
| 925 | |
| 926 | res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); |
| 927 | if (!res) { |
| 928 | dev_err(&pdev->dev, "No irq resource for %s\n", |
| 929 | dev_name(&pdev->dev)); |
| 930 | return -EINVAL; |
| 931 | } |
| 932 | hsdma->irq = res->start; |
| 933 | |
| 934 | refcount_set(&hsdma->pc_refcnt, 0); |
| 935 | spin_lock_init(&hsdma->lock); |
| 936 | |
| 937 | dma_cap_set(DMA_MEMCPY, dd->cap_mask); |
| 938 | |
| 939 | dd->copy_align = MTK_HSDMA_ALIGN_SIZE; |
| 940 | dd->device_alloc_chan_resources = mtk_hsdma_alloc_chan_resources; |
| 941 | dd->device_free_chan_resources = mtk_hsdma_free_chan_resources; |
| 942 | dd->device_tx_status = mtk_hsdma_tx_status; |
| 943 | dd->device_issue_pending = mtk_hsdma_issue_pending; |
| 944 | dd->device_prep_dma_memcpy = mtk_hsdma_prep_dma_memcpy; |
| 945 | dd->device_terminate_all = mtk_hsdma_terminate_all; |
| 946 | dd->src_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS; |
| 947 | dd->dst_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS; |
| 948 | dd->directions = BIT(DMA_MEM_TO_MEM); |
| 949 | dd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; |
| 950 | dd->dev = &pdev->dev; |
| 951 | INIT_LIST_HEAD(&dd->channels); |
| 952 | |
| 953 | hsdma->dma_requests = MTK_HSDMA_NR_VCHANS; |
| 954 | if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node, |
| 955 | "dma-requests", |
| 956 | &hsdma->dma_requests)) { |
| 957 | dev_info(&pdev->dev, |
| 958 | "Using %u as missing dma-requests property\n", |
| 959 | MTK_HSDMA_NR_VCHANS); |
| 960 | } |
| 961 | |
| 962 | hsdma->pc = devm_kcalloc(&pdev->dev, MTK_HSDMA_NR_MAX_PCHANS, |
| 963 | sizeof(*hsdma->pc), GFP_KERNEL); |
| 964 | if (!hsdma->pc) |
| 965 | return -ENOMEM; |
| 966 | |
| 967 | hsdma->vc = devm_kcalloc(&pdev->dev, hsdma->dma_requests, |
| 968 | sizeof(*hsdma->vc), GFP_KERNEL); |
| 969 | if (!hsdma->vc) |
| 970 | return -ENOMEM; |
| 971 | |
| 972 | for (i = 0; i < hsdma->dma_requests; i++) { |
| 973 | vc = &hsdma->vc[i]; |
| 974 | vc->vc.desc_free = mtk_hsdma_vdesc_free; |
| 975 | vchan_init(&vc->vc, dd); |
| 976 | init_completion(&vc->issue_completion); |
| 977 | INIT_LIST_HEAD(&vc->desc_hw_processing); |
| 978 | } |
| 979 | |
| 980 | err = dma_async_device_register(dd); |
| 981 | if (err) |
| 982 | return err; |
| 983 | |
| 984 | err = of_dma_controller_register(pdev->dev.of_node, |
| 985 | of_dma_xlate_by_chan_id, hsdma); |
| 986 | if (err) { |
| 987 | dev_err(&pdev->dev, |
| 988 | "MediaTek HSDMA OF registration failed %d\n", err); |
| 989 | goto err_unregister; |
| 990 | } |
| 991 | |
| 992 | mtk_hsdma_hw_init(hsdma); |
| 993 | |
| 994 | err = devm_request_irq(&pdev->dev, hsdma->irq, |
| 995 | mtk_hsdma_irq, 0, |
| 996 | dev_name(&pdev->dev), hsdma); |
| 997 | if (err) { |
| 998 | dev_err(&pdev->dev, |
| 999 | "request_irq failed with err %d\n", err); |
| 1000 | goto err_unregister; |
| 1001 | } |
| 1002 | |
| 1003 | platform_set_drvdata(pdev, hsdma); |
| 1004 | |
| 1005 | dev_info(&pdev->dev, "MediaTek HSDMA driver registered\n"); |
| 1006 | |
| 1007 | return 0; |
| 1008 | |
| 1009 | err_unregister: |
| 1010 | dma_async_device_unregister(dd); |
| 1011 | |
| 1012 | return err; |
| 1013 | } |
| 1014 | |
| 1015 | static int mtk_hsdma_remove(struct platform_device *pdev) |
| 1016 | { |
| 1017 | struct mtk_hsdma_device *hsdma = platform_get_drvdata(pdev); |
| 1018 | struct mtk_hsdma_vchan *vc; |
| 1019 | int i; |
| 1020 | |
| 1021 | /* Kill VC task */ |
| 1022 | for (i = 0; i < hsdma->dma_requests; i++) { |
| 1023 | vc = &hsdma->vc[i]; |
| 1024 | |
| 1025 | list_del(&vc->vc.chan.device_node); |
| 1026 | tasklet_kill(&vc->vc.task); |
| 1027 | } |
| 1028 | |
| 1029 | /* Disable DMA interrupt */ |
| 1030 | mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0); |
| 1031 | |
| 1032 | /* Waits for any pending IRQ handlers to complete */ |
| 1033 | synchronize_irq(hsdma->irq); |
| 1034 | |
| 1035 | /* Disable hardware */ |
| 1036 | mtk_hsdma_hw_deinit(hsdma); |
| 1037 | |
| 1038 | dma_async_device_unregister(&hsdma->ddev); |
| 1039 | of_dma_controller_free(pdev->dev.of_node); |
| 1040 | |
| 1041 | return 0; |
| 1042 | } |
| 1043 | |
| 1044 | static struct platform_driver mtk_hsdma_driver = { |
| 1045 | .probe = mtk_hsdma_probe, |
| 1046 | .remove = mtk_hsdma_remove, |
| 1047 | .driver = { |
| 1048 | .name = KBUILD_MODNAME, |
| 1049 | .of_match_table = mtk_hsdma_match, |
| 1050 | }, |
| 1051 | }; |
| 1052 | module_platform_driver(mtk_hsdma_driver); |
| 1053 | |
| 1054 | MODULE_DESCRIPTION("MediaTek High-Speed DMA Controller Driver"); |
| 1055 | MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>"); |
| 1056 | MODULE_LICENSE("GPL v2"); |