blob: 01ca0856caff38a8d910df0915e4bb6cc93be536 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001#ifndef _LINUX_PAGEMAP_H
2#define _LINUX_PAGEMAP_H
3
4/*
5 * Copyright 1995 Linus Torvalds
6 */
7#include <linux/mm.h>
8#include <linux/fs.h>
9#include <linux/list.h>
10#include <linux/highmem.h>
11#include <linux/compiler.h>
12#include <asm/uaccess.h>
13#include <linux/gfp.h>
Guillaume Chazarain3e9f45b2007-05-08 00:23:25 -070014#include <linux/bitops.h>
Nick Piggine2867812008-07-25 19:45:30 -070015#include <linux/hardirq.h> /* for in_interrupt() */
Linus Torvalds1da177e2005-04-16 15:20:36 -070016
17/*
18 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
19 * allocation mode flags.
20 */
21#define AS_EIO (__GFP_BITS_SHIFT + 0) /* IO error on async write */
22#define AS_ENOSPC (__GFP_BITS_SHIFT + 1) /* ENOSPC on async write */
Andrea Arcangeli7906d002008-07-28 15:46:26 -070023#define AS_MM_ALL_LOCKS (__GFP_BITS_SHIFT + 2) /* under mm_take_all_locks() */
Linus Torvalds1da177e2005-04-16 15:20:36 -070024
Guillaume Chazarain3e9f45b2007-05-08 00:23:25 -070025static inline void mapping_set_error(struct address_space *mapping, int error)
26{
Andrew Morton2185e692008-07-23 21:27:19 -070027 if (unlikely(error)) {
Guillaume Chazarain3e9f45b2007-05-08 00:23:25 -070028 if (error == -ENOSPC)
29 set_bit(AS_ENOSPC, &mapping->flags);
30 else
31 set_bit(AS_EIO, &mapping->flags);
32 }
33}
34
Lee Schermerhornba9ddf42008-10-18 20:26:42 -070035#ifdef CONFIG_UNEVICTABLE_LRU
36#define AS_UNEVICTABLE (__GFP_BITS_SHIFT + 2) /* e.g., ramdisk, SHM_LOCK */
37
38static inline void mapping_set_unevictable(struct address_space *mapping)
39{
40 set_bit(AS_UNEVICTABLE, &mapping->flags);
41}
42
Lee Schermerhorn89e004ea2008-10-18 20:26:43 -070043static inline void mapping_clear_unevictable(struct address_space *mapping)
44{
45 clear_bit(AS_UNEVICTABLE, &mapping->flags);
46}
47
Lee Schermerhornba9ddf42008-10-18 20:26:42 -070048static inline int mapping_unevictable(struct address_space *mapping)
49{
Lee Schermerhorn89e004ea2008-10-18 20:26:43 -070050 if (likely(mapping))
51 return test_bit(AS_UNEVICTABLE, &mapping->flags);
52 return !!mapping;
Lee Schermerhornba9ddf42008-10-18 20:26:42 -070053}
54#else
55static inline void mapping_set_unevictable(struct address_space *mapping) { }
Lee Schermerhorn89e004ea2008-10-18 20:26:43 -070056static inline void mapping_clear_unevictable(struct address_space *mapping) { }
Lee Schermerhornba9ddf42008-10-18 20:26:42 -070057static inline int mapping_unevictable(struct address_space *mapping)
58{
59 return 0;
60}
61#endif
62
Al Virodd0fc662005-10-07 07:46:04 +010063static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
Linus Torvalds1da177e2005-04-16 15:20:36 -070064{
Al Viro260b2362005-10-21 03:22:44 -040065 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
Linus Torvalds1da177e2005-04-16 15:20:36 -070066}
67
68/*
69 * This is non-atomic. Only to be used before the mapping is activated.
70 * Probably needs a barrier...
71 */
Al Viro260b2362005-10-21 03:22:44 -040072static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -070073{
Al Viro260b2362005-10-21 03:22:44 -040074 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
75 (__force unsigned long)mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -070076}
77
78/*
79 * The page cache can done in larger chunks than
80 * one page, because it allows for more efficient
81 * throughput (it can then be mapped into user
82 * space in smaller chunks for same flexibility).
83 *
84 * Or rather, it _will_ be done in larger chunks.
85 */
86#define PAGE_CACHE_SHIFT PAGE_SHIFT
87#define PAGE_CACHE_SIZE PAGE_SIZE
88#define PAGE_CACHE_MASK PAGE_MASK
89#define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
90
91#define page_cache_get(page) get_page(page)
92#define page_cache_release(page) put_page(page)
93void release_pages(struct page **pages, int nr, int cold);
94
Nick Piggine2867812008-07-25 19:45:30 -070095/*
96 * speculatively take a reference to a page.
97 * If the page is free (_count == 0), then _count is untouched, and 0
98 * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
99 *
100 * This function must be called inside the same rcu_read_lock() section as has
101 * been used to lookup the page in the pagecache radix-tree (or page table):
102 * this allows allocators to use a synchronize_rcu() to stabilize _count.
103 *
104 * Unless an RCU grace period has passed, the count of all pages coming out
105 * of the allocator must be considered unstable. page_count may return higher
106 * than expected, and put_page must be able to do the right thing when the
107 * page has been finished with, no matter what it is subsequently allocated
108 * for (because put_page is what is used here to drop an invalid speculative
109 * reference).
110 *
111 * This is the interesting part of the lockless pagecache (and lockless
112 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
113 * has the following pattern:
114 * 1. find page in radix tree
115 * 2. conditionally increment refcount
116 * 3. check the page is still in pagecache (if no, goto 1)
117 *
118 * Remove-side that cares about stability of _count (eg. reclaim) has the
119 * following (with tree_lock held for write):
120 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
121 * B. remove page from pagecache
122 * C. free the page
123 *
124 * There are 2 critical interleavings that matter:
125 * - 2 runs before A: in this case, A sees elevated refcount and bails out
126 * - A runs before 2: in this case, 2 sees zero refcount and retries;
127 * subsequently, B will complete and 1 will find no page, causing the
128 * lookup to return NULL.
129 *
130 * It is possible that between 1 and 2, the page is removed then the exact same
131 * page is inserted into the same position in pagecache. That's OK: the
132 * old find_get_page using tree_lock could equally have run before or after
133 * such a re-insertion, depending on order that locks are granted.
134 *
135 * Lookups racing against pagecache insertion isn't a big problem: either 1
136 * will find the page or it will not. Likewise, the old find_get_page could run
137 * either before the insertion or afterwards, depending on timing.
138 */
139static inline int page_cache_get_speculative(struct page *page)
140{
141 VM_BUG_ON(in_interrupt());
142
143#if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
144# ifdef CONFIG_PREEMPT
145 VM_BUG_ON(!in_atomic());
146# endif
147 /*
148 * Preempt must be disabled here - we rely on rcu_read_lock doing
149 * this for us.
150 *
151 * Pagecache won't be truncated from interrupt context, so if we have
152 * found a page in the radix tree here, we have pinned its refcount by
153 * disabling preempt, and hence no need for the "speculative get" that
154 * SMP requires.
155 */
156 VM_BUG_ON(page_count(page) == 0);
157 atomic_inc(&page->_count);
158
159#else
160 if (unlikely(!get_page_unless_zero(page))) {
161 /*
162 * Either the page has been freed, or will be freed.
163 * In either case, retry here and the caller should
164 * do the right thing (see comments above).
165 */
166 return 0;
167 }
168#endif
169 VM_BUG_ON(PageTail(page));
170
171 return 1;
172}
173
Nick Piggince0ad7f2008-07-30 15:23:13 +1000174/*
175 * Same as above, but add instead of inc (could just be merged)
176 */
177static inline int page_cache_add_speculative(struct page *page, int count)
178{
179 VM_BUG_ON(in_interrupt());
180
181#if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
182# ifdef CONFIG_PREEMPT
183 VM_BUG_ON(!in_atomic());
184# endif
185 VM_BUG_ON(page_count(page) == 0);
186 atomic_add(count, &page->_count);
187
188#else
189 if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
190 return 0;
191#endif
192 VM_BUG_ON(PageCompound(page) && page != compound_head(page));
193
194 return 1;
195}
196
Nick Piggine2867812008-07-25 19:45:30 -0700197static inline int page_freeze_refs(struct page *page, int count)
198{
199 return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
200}
201
202static inline void page_unfreeze_refs(struct page *page, int count)
203{
204 VM_BUG_ON(page_count(page) != 0);
205 VM_BUG_ON(count == 0);
206
207 atomic_set(&page->_count, count);
208}
209
Paul Jackson44110fe2006-03-24 03:16:04 -0800210#ifdef CONFIG_NUMA
Nick Piggin2ae88142006-10-28 10:38:23 -0700211extern struct page *__page_cache_alloc(gfp_t gfp);
Paul Jackson44110fe2006-03-24 03:16:04 -0800212#else
Nick Piggin2ae88142006-10-28 10:38:23 -0700213static inline struct page *__page_cache_alloc(gfp_t gfp)
214{
215 return alloc_pages(gfp, 0);
216}
217#endif
218
Linus Torvalds1da177e2005-04-16 15:20:36 -0700219static inline struct page *page_cache_alloc(struct address_space *x)
220{
Nick Piggin2ae88142006-10-28 10:38:23 -0700221 return __page_cache_alloc(mapping_gfp_mask(x));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700222}
223
224static inline struct page *page_cache_alloc_cold(struct address_space *x)
225{
Nick Piggin2ae88142006-10-28 10:38:23 -0700226 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700227}
228
229typedef int filler_t(void *, struct page *);
230
231extern struct page * find_get_page(struct address_space *mapping,
Fengguang Wu57f6b962007-10-16 01:24:37 -0700232 pgoff_t index);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700233extern struct page * find_lock_page(struct address_space *mapping,
Fengguang Wu57f6b962007-10-16 01:24:37 -0700234 pgoff_t index);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700235extern struct page * find_or_create_page(struct address_space *mapping,
Fengguang Wu57f6b962007-10-16 01:24:37 -0700236 pgoff_t index, gfp_t gfp_mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700237unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
238 unsigned int nr_pages, struct page **pages);
Jens Axboeebf43502006-04-27 08:46:01 +0200239unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
240 unsigned int nr_pages, struct page **pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700241unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
242 int tag, unsigned int nr_pages, struct page **pages);
243
Nick Piggin54566b22009-01-04 12:00:53 -0800244struct page *grab_cache_page_write_begin(struct address_space *mapping,
245 pgoff_t index, unsigned flags);
Nick Pigginafddba42007-10-16 01:25:01 -0700246
Linus Torvalds1da177e2005-04-16 15:20:36 -0700247/*
248 * Returns locked page at given index in given cache, creating it if needed.
249 */
Fengguang Wu57f6b962007-10-16 01:24:37 -0700250static inline struct page *grab_cache_page(struct address_space *mapping,
251 pgoff_t index)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700252{
253 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
254}
255
256extern struct page * grab_cache_page_nowait(struct address_space *mapping,
Fengguang Wu57f6b962007-10-16 01:24:37 -0700257 pgoff_t index);
Nick Piggin6fe69002007-05-06 14:49:04 -0700258extern struct page * read_cache_page_async(struct address_space *mapping,
Fengguang Wu57f6b962007-10-16 01:24:37 -0700259 pgoff_t index, filler_t *filler,
Nick Piggin6fe69002007-05-06 14:49:04 -0700260 void *data);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700261extern struct page * read_cache_page(struct address_space *mapping,
Fengguang Wu57f6b962007-10-16 01:24:37 -0700262 pgoff_t index, filler_t *filler,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700263 void *data);
264extern int read_cache_pages(struct address_space *mapping,
265 struct list_head *pages, filler_t *filler, void *data);
266
Nick Piggin6fe69002007-05-06 14:49:04 -0700267static inline struct page *read_mapping_page_async(
268 struct address_space *mapping,
Fengguang Wu57f6b962007-10-16 01:24:37 -0700269 pgoff_t index, void *data)
Nick Piggin6fe69002007-05-06 14:49:04 -0700270{
271 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
272 return read_cache_page_async(mapping, index, filler, data);
273}
274
Pekka Enberg090d2b12006-06-23 02:05:08 -0700275static inline struct page *read_mapping_page(struct address_space *mapping,
Fengguang Wu57f6b962007-10-16 01:24:37 -0700276 pgoff_t index, void *data)
Pekka Enberg090d2b12006-06-23 02:05:08 -0700277{
278 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
279 return read_cache_page(mapping, index, filler, data);
280}
281
Nick Piggine2867812008-07-25 19:45:30 -0700282/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700283 * Return byte-offset into filesystem object for page.
284 */
285static inline loff_t page_offset(struct page *page)
286{
287 return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
288}
289
290static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
291 unsigned long address)
292{
293 pgoff_t pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
294 pgoff += vma->vm_pgoff;
295 return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
296}
297
Harvey Harrisonb3c97522008-02-13 15:03:15 -0800298extern void __lock_page(struct page *page);
299extern int __lock_page_killable(struct page *page);
300extern void __lock_page_nosync(struct page *page);
301extern void unlock_page(struct page *page);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700302
Nick Pigginf45840b2008-10-18 20:26:57 -0700303static inline void __set_page_locked(struct page *page)
Nick Piggin529ae9a2008-08-02 12:01:03 +0200304{
Nick Pigginf45840b2008-10-18 20:26:57 -0700305 __set_bit(PG_locked, &page->flags);
Nick Piggin529ae9a2008-08-02 12:01:03 +0200306}
307
Nick Pigginf45840b2008-10-18 20:26:57 -0700308static inline void __clear_page_locked(struct page *page)
Nick Piggin529ae9a2008-08-02 12:01:03 +0200309{
Nick Pigginf45840b2008-10-18 20:26:57 -0700310 __clear_bit(PG_locked, &page->flags);
Nick Piggin529ae9a2008-08-02 12:01:03 +0200311}
312
313static inline int trylock_page(struct page *page)
314{
Nick Piggin8413ac92008-10-18 20:26:59 -0700315 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
Nick Piggin529ae9a2008-08-02 12:01:03 +0200316}
317
Nick Piggindb376482006-09-25 23:31:24 -0700318/*
319 * lock_page may only be called if we have the page's inode pinned.
320 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700321static inline void lock_page(struct page *page)
322{
323 might_sleep();
Nick Piggin529ae9a2008-08-02 12:01:03 +0200324 if (!trylock_page(page))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700325 __lock_page(page);
326}
Nick Piggindb376482006-09-25 23:31:24 -0700327
328/*
Matthew Wilcox2687a352007-12-06 11:18:49 -0500329 * lock_page_killable is like lock_page but can be interrupted by fatal
330 * signals. It returns 0 if it locked the page and -EINTR if it was
331 * killed while waiting.
332 */
333static inline int lock_page_killable(struct page *page)
334{
335 might_sleep();
Nick Piggin529ae9a2008-08-02 12:01:03 +0200336 if (!trylock_page(page))
Matthew Wilcox2687a352007-12-06 11:18:49 -0500337 return __lock_page_killable(page);
338 return 0;
339}
340
341/*
Nick Piggindb376482006-09-25 23:31:24 -0700342 * lock_page_nosync should only be used if we can't pin the page's inode.
343 * Doesn't play quite so well with block device plugging.
344 */
345static inline void lock_page_nosync(struct page *page)
346{
347 might_sleep();
Nick Piggin529ae9a2008-08-02 12:01:03 +0200348 if (!trylock_page(page))
Nick Piggindb376482006-09-25 23:31:24 -0700349 __lock_page_nosync(page);
350}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700351
352/*
353 * This is exported only for wait_on_page_locked/wait_on_page_writeback.
354 * Never use this directly!
355 */
Harvey Harrisonb3c97522008-02-13 15:03:15 -0800356extern void wait_on_page_bit(struct page *page, int bit_nr);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700357
358/*
359 * Wait for a page to be unlocked.
360 *
361 * This must be called with the caller "holding" the page,
362 * ie with increased "page->count" so that the page won't
363 * go away during the wait..
364 */
365static inline void wait_on_page_locked(struct page *page)
366{
367 if (PageLocked(page))
368 wait_on_page_bit(page, PG_locked);
369}
370
371/*
372 * Wait for a page to complete writeback
373 */
374static inline void wait_on_page_writeback(struct page *page)
375{
376 if (PageWriteback(page))
377 wait_on_page_bit(page, PG_writeback);
378}
379
380extern void end_page_writeback(struct page *page);
381
382/*
383 * Fault a userspace page into pagetables. Return non-zero on a fault.
384 *
385 * This assumes that two userspace pages are always sufficient. That's
386 * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
387 */
388static inline int fault_in_pages_writeable(char __user *uaddr, int size)
389{
390 int ret;
391
Nick Piggin082914292007-10-16 01:24:59 -0700392 if (unlikely(size == 0))
393 return 0;
394
Linus Torvalds1da177e2005-04-16 15:20:36 -0700395 /*
396 * Writing zeroes into userspace here is OK, because we know that if
397 * the zero gets there, we'll be overwriting it.
398 */
399 ret = __put_user(0, uaddr);
400 if (ret == 0) {
401 char __user *end = uaddr + size - 1;
402
403 /*
404 * If the page was already mapped, this will get a cache miss
405 * for sure, so try to avoid doing it.
406 */
407 if (((unsigned long)uaddr & PAGE_MASK) !=
408 ((unsigned long)end & PAGE_MASK))
409 ret = __put_user(0, end);
410 }
411 return ret;
412}
413
Nick Piggin082914292007-10-16 01:24:59 -0700414static inline int fault_in_pages_readable(const char __user *uaddr, int size)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700415{
416 volatile char c;
417 int ret;
418
Nick Piggin082914292007-10-16 01:24:59 -0700419 if (unlikely(size == 0))
420 return 0;
421
Linus Torvalds1da177e2005-04-16 15:20:36 -0700422 ret = __get_user(c, uaddr);
423 if (ret == 0) {
424 const char __user *end = uaddr + size - 1;
425
426 if (((unsigned long)uaddr & PAGE_MASK) !=
427 ((unsigned long)end & PAGE_MASK))
Nick Piggin082914292007-10-16 01:24:59 -0700428 ret = __get_user(c, end);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700429 }
Nick Piggin082914292007-10-16 01:24:59 -0700430 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700431}
432
Nick Piggin529ae9a2008-08-02 12:01:03 +0200433int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
434 pgoff_t index, gfp_t gfp_mask);
435int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
436 pgoff_t index, gfp_t gfp_mask);
437extern void remove_from_page_cache(struct page *page);
438extern void __remove_from_page_cache(struct page *page);
439
440/*
441 * Like add_to_page_cache_locked, but used to add newly allocated pages:
Nick Pigginf45840b2008-10-18 20:26:57 -0700442 * the page is new, so we can just run __set_page_locked() against it.
Nick Piggin529ae9a2008-08-02 12:01:03 +0200443 */
444static inline int add_to_page_cache(struct page *page,
445 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
446{
447 int error;
448
Nick Pigginf45840b2008-10-18 20:26:57 -0700449 __set_page_locked(page);
Nick Piggin529ae9a2008-08-02 12:01:03 +0200450 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
451 if (unlikely(error))
Nick Pigginf45840b2008-10-18 20:26:57 -0700452 __clear_page_locked(page);
Nick Piggin529ae9a2008-08-02 12:01:03 +0200453 return error;
454}
455
Linus Torvalds1da177e2005-04-16 15:20:36 -0700456#endif /* _LINUX_PAGEMAP_H */