Keshavamurthy, Anil S | ba39592 | 2007-10-21 16:41:49 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2006, Intel Corporation. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify it |
| 5 | * under the terms and conditions of the GNU General Public License, |
| 6 | * version 2, as published by the Free Software Foundation. |
| 7 | * |
| 8 | * This program is distributed in the hope it will be useful, but WITHOUT |
| 9 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 10 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 11 | * more details. |
| 12 | * |
| 13 | * You should have received a copy of the GNU General Public License along with |
| 14 | * this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
| 15 | * Place - Suite 330, Boston, MA 02111-1307 USA. |
| 16 | * |
| 17 | * Copyright (C) Ashok Raj <ashok.raj@intel.com> |
| 18 | * Copyright (C) Shaohua Li <shaohua.li@intel.com> |
| 19 | * Copyright (C) Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> |
| 20 | */ |
| 21 | |
| 22 | #include <linux/init.h> |
| 23 | #include <linux/bitmap.h> |
| 24 | #include <linux/slab.h> |
| 25 | #include <linux/irq.h> |
| 26 | #include <linux/interrupt.h> |
| 27 | #include <linux/sysdev.h> |
| 28 | #include <linux/spinlock.h> |
| 29 | #include <linux/pci.h> |
| 30 | #include <linux/dmar.h> |
| 31 | #include <linux/dma-mapping.h> |
| 32 | #include <linux/mempool.h> |
| 33 | #include "iova.h" |
| 34 | #include "intel-iommu.h" |
| 35 | #include <asm/proto.h> /* force_iommu in this header in x86-64*/ |
| 36 | #include <asm/cacheflush.h> |
| 37 | #include <asm/iommu.h> |
| 38 | #include "pci.h" |
| 39 | |
| 40 | #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) |
| 41 | #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) |
| 42 | |
| 43 | #define IOAPIC_RANGE_START (0xfee00000) |
| 44 | #define IOAPIC_RANGE_END (0xfeefffff) |
| 45 | #define IOVA_START_ADDR (0x1000) |
| 46 | |
| 47 | #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48 |
| 48 | |
| 49 | #define DMAR_OPERATION_TIMEOUT (HZ*60) /* 1m */ |
| 50 | |
| 51 | #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1) |
| 52 | |
| 53 | static void domain_remove_dev_info(struct dmar_domain *domain); |
| 54 | |
| 55 | static int dmar_disabled; |
| 56 | static int __initdata dmar_map_gfx = 1; |
| 57 | |
| 58 | #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1)) |
| 59 | static DEFINE_SPINLOCK(device_domain_lock); |
| 60 | static LIST_HEAD(device_domain_list); |
| 61 | |
| 62 | static int __init intel_iommu_setup(char *str) |
| 63 | { |
| 64 | if (!str) |
| 65 | return -EINVAL; |
| 66 | while (*str) { |
| 67 | if (!strncmp(str, "off", 3)) { |
| 68 | dmar_disabled = 1; |
| 69 | printk(KERN_INFO"Intel-IOMMU: disabled\n"); |
| 70 | } else if (!strncmp(str, "igfx_off", 8)) { |
| 71 | dmar_map_gfx = 0; |
| 72 | printk(KERN_INFO |
| 73 | "Intel-IOMMU: disable GFX device mapping\n"); |
| 74 | } |
| 75 | |
| 76 | str += strcspn(str, ","); |
| 77 | while (*str == ',') |
| 78 | str++; |
| 79 | } |
| 80 | return 0; |
| 81 | } |
| 82 | __setup("intel_iommu=", intel_iommu_setup); |
| 83 | |
| 84 | static struct kmem_cache *iommu_domain_cache; |
| 85 | static struct kmem_cache *iommu_devinfo_cache; |
| 86 | static struct kmem_cache *iommu_iova_cache; |
| 87 | |
| 88 | static inline void *alloc_pgtable_page(void) |
| 89 | { |
| 90 | return (void *)get_zeroed_page(GFP_ATOMIC); |
| 91 | } |
| 92 | |
| 93 | static inline void free_pgtable_page(void *vaddr) |
| 94 | { |
| 95 | free_page((unsigned long)vaddr); |
| 96 | } |
| 97 | |
| 98 | static inline void *alloc_domain_mem(void) |
| 99 | { |
| 100 | return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC); |
| 101 | } |
| 102 | |
| 103 | static inline void free_domain_mem(void *vaddr) |
| 104 | { |
| 105 | kmem_cache_free(iommu_domain_cache, vaddr); |
| 106 | } |
| 107 | |
| 108 | static inline void * alloc_devinfo_mem(void) |
| 109 | { |
| 110 | return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC); |
| 111 | } |
| 112 | |
| 113 | static inline void free_devinfo_mem(void *vaddr) |
| 114 | { |
| 115 | kmem_cache_free(iommu_devinfo_cache, vaddr); |
| 116 | } |
| 117 | |
| 118 | struct iova *alloc_iova_mem(void) |
| 119 | { |
| 120 | return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC); |
| 121 | } |
| 122 | |
| 123 | void free_iova_mem(struct iova *iova) |
| 124 | { |
| 125 | kmem_cache_free(iommu_iova_cache, iova); |
| 126 | } |
| 127 | |
| 128 | static inline void __iommu_flush_cache( |
| 129 | struct intel_iommu *iommu, void *addr, int size) |
| 130 | { |
| 131 | if (!ecap_coherent(iommu->ecap)) |
| 132 | clflush_cache_range(addr, size); |
| 133 | } |
| 134 | |
| 135 | /* Gets context entry for a given bus and devfn */ |
| 136 | static struct context_entry * device_to_context_entry(struct intel_iommu *iommu, |
| 137 | u8 bus, u8 devfn) |
| 138 | { |
| 139 | struct root_entry *root; |
| 140 | struct context_entry *context; |
| 141 | unsigned long phy_addr; |
| 142 | unsigned long flags; |
| 143 | |
| 144 | spin_lock_irqsave(&iommu->lock, flags); |
| 145 | root = &iommu->root_entry[bus]; |
| 146 | context = get_context_addr_from_root(root); |
| 147 | if (!context) { |
| 148 | context = (struct context_entry *)alloc_pgtable_page(); |
| 149 | if (!context) { |
| 150 | spin_unlock_irqrestore(&iommu->lock, flags); |
| 151 | return NULL; |
| 152 | } |
| 153 | __iommu_flush_cache(iommu, (void *)context, PAGE_SIZE_4K); |
| 154 | phy_addr = virt_to_phys((void *)context); |
| 155 | set_root_value(root, phy_addr); |
| 156 | set_root_present(root); |
| 157 | __iommu_flush_cache(iommu, root, sizeof(*root)); |
| 158 | } |
| 159 | spin_unlock_irqrestore(&iommu->lock, flags); |
| 160 | return &context[devfn]; |
| 161 | } |
| 162 | |
| 163 | static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn) |
| 164 | { |
| 165 | struct root_entry *root; |
| 166 | struct context_entry *context; |
| 167 | int ret; |
| 168 | unsigned long flags; |
| 169 | |
| 170 | spin_lock_irqsave(&iommu->lock, flags); |
| 171 | root = &iommu->root_entry[bus]; |
| 172 | context = get_context_addr_from_root(root); |
| 173 | if (!context) { |
| 174 | ret = 0; |
| 175 | goto out; |
| 176 | } |
| 177 | ret = context_present(context[devfn]); |
| 178 | out: |
| 179 | spin_unlock_irqrestore(&iommu->lock, flags); |
| 180 | return ret; |
| 181 | } |
| 182 | |
| 183 | static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn) |
| 184 | { |
| 185 | struct root_entry *root; |
| 186 | struct context_entry *context; |
| 187 | unsigned long flags; |
| 188 | |
| 189 | spin_lock_irqsave(&iommu->lock, flags); |
| 190 | root = &iommu->root_entry[bus]; |
| 191 | context = get_context_addr_from_root(root); |
| 192 | if (context) { |
| 193 | context_clear_entry(context[devfn]); |
| 194 | __iommu_flush_cache(iommu, &context[devfn], \ |
| 195 | sizeof(*context)); |
| 196 | } |
| 197 | spin_unlock_irqrestore(&iommu->lock, flags); |
| 198 | } |
| 199 | |
| 200 | static void free_context_table(struct intel_iommu *iommu) |
| 201 | { |
| 202 | struct root_entry *root; |
| 203 | int i; |
| 204 | unsigned long flags; |
| 205 | struct context_entry *context; |
| 206 | |
| 207 | spin_lock_irqsave(&iommu->lock, flags); |
| 208 | if (!iommu->root_entry) { |
| 209 | goto out; |
| 210 | } |
| 211 | for (i = 0; i < ROOT_ENTRY_NR; i++) { |
| 212 | root = &iommu->root_entry[i]; |
| 213 | context = get_context_addr_from_root(root); |
| 214 | if (context) |
| 215 | free_pgtable_page(context); |
| 216 | } |
| 217 | free_pgtable_page(iommu->root_entry); |
| 218 | iommu->root_entry = NULL; |
| 219 | out: |
| 220 | spin_unlock_irqrestore(&iommu->lock, flags); |
| 221 | } |
| 222 | |
| 223 | /* page table handling */ |
| 224 | #define LEVEL_STRIDE (9) |
| 225 | #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1) |
| 226 | |
| 227 | static inline int agaw_to_level(int agaw) |
| 228 | { |
| 229 | return agaw + 2; |
| 230 | } |
| 231 | |
| 232 | static inline int agaw_to_width(int agaw) |
| 233 | { |
| 234 | return 30 + agaw * LEVEL_STRIDE; |
| 235 | |
| 236 | } |
| 237 | |
| 238 | static inline int width_to_agaw(int width) |
| 239 | { |
| 240 | return (width - 30) / LEVEL_STRIDE; |
| 241 | } |
| 242 | |
| 243 | static inline unsigned int level_to_offset_bits(int level) |
| 244 | { |
| 245 | return (12 + (level - 1) * LEVEL_STRIDE); |
| 246 | } |
| 247 | |
| 248 | static inline int address_level_offset(u64 addr, int level) |
| 249 | { |
| 250 | return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK); |
| 251 | } |
| 252 | |
| 253 | static inline u64 level_mask(int level) |
| 254 | { |
| 255 | return ((u64)-1 << level_to_offset_bits(level)); |
| 256 | } |
| 257 | |
| 258 | static inline u64 level_size(int level) |
| 259 | { |
| 260 | return ((u64)1 << level_to_offset_bits(level)); |
| 261 | } |
| 262 | |
| 263 | static inline u64 align_to_level(u64 addr, int level) |
| 264 | { |
| 265 | return ((addr + level_size(level) - 1) & level_mask(level)); |
| 266 | } |
| 267 | |
| 268 | static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr) |
| 269 | { |
| 270 | int addr_width = agaw_to_width(domain->agaw); |
| 271 | struct dma_pte *parent, *pte = NULL; |
| 272 | int level = agaw_to_level(domain->agaw); |
| 273 | int offset; |
| 274 | unsigned long flags; |
| 275 | |
| 276 | BUG_ON(!domain->pgd); |
| 277 | |
| 278 | addr &= (((u64)1) << addr_width) - 1; |
| 279 | parent = domain->pgd; |
| 280 | |
| 281 | spin_lock_irqsave(&domain->mapping_lock, flags); |
| 282 | while (level > 0) { |
| 283 | void *tmp_page; |
| 284 | |
| 285 | offset = address_level_offset(addr, level); |
| 286 | pte = &parent[offset]; |
| 287 | if (level == 1) |
| 288 | break; |
| 289 | |
| 290 | if (!dma_pte_present(*pte)) { |
| 291 | tmp_page = alloc_pgtable_page(); |
| 292 | |
| 293 | if (!tmp_page) { |
| 294 | spin_unlock_irqrestore(&domain->mapping_lock, |
| 295 | flags); |
| 296 | return NULL; |
| 297 | } |
| 298 | __iommu_flush_cache(domain->iommu, tmp_page, |
| 299 | PAGE_SIZE_4K); |
| 300 | dma_set_pte_addr(*pte, virt_to_phys(tmp_page)); |
| 301 | /* |
| 302 | * high level table always sets r/w, last level page |
| 303 | * table control read/write |
| 304 | */ |
| 305 | dma_set_pte_readable(*pte); |
| 306 | dma_set_pte_writable(*pte); |
| 307 | __iommu_flush_cache(domain->iommu, pte, sizeof(*pte)); |
| 308 | } |
| 309 | parent = phys_to_virt(dma_pte_addr(*pte)); |
| 310 | level--; |
| 311 | } |
| 312 | |
| 313 | spin_unlock_irqrestore(&domain->mapping_lock, flags); |
| 314 | return pte; |
| 315 | } |
| 316 | |
| 317 | /* return address's pte at specific level */ |
| 318 | static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr, |
| 319 | int level) |
| 320 | { |
| 321 | struct dma_pte *parent, *pte = NULL; |
| 322 | int total = agaw_to_level(domain->agaw); |
| 323 | int offset; |
| 324 | |
| 325 | parent = domain->pgd; |
| 326 | while (level <= total) { |
| 327 | offset = address_level_offset(addr, total); |
| 328 | pte = &parent[offset]; |
| 329 | if (level == total) |
| 330 | return pte; |
| 331 | |
| 332 | if (!dma_pte_present(*pte)) |
| 333 | break; |
| 334 | parent = phys_to_virt(dma_pte_addr(*pte)); |
| 335 | total--; |
| 336 | } |
| 337 | return NULL; |
| 338 | } |
| 339 | |
| 340 | /* clear one page's page table */ |
| 341 | static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr) |
| 342 | { |
| 343 | struct dma_pte *pte = NULL; |
| 344 | |
| 345 | /* get last level pte */ |
| 346 | pte = dma_addr_level_pte(domain, addr, 1); |
| 347 | |
| 348 | if (pte) { |
| 349 | dma_clear_pte(*pte); |
| 350 | __iommu_flush_cache(domain->iommu, pte, sizeof(*pte)); |
| 351 | } |
| 352 | } |
| 353 | |
| 354 | /* clear last level pte, a tlb flush should be followed */ |
| 355 | static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end) |
| 356 | { |
| 357 | int addr_width = agaw_to_width(domain->agaw); |
| 358 | |
| 359 | start &= (((u64)1) << addr_width) - 1; |
| 360 | end &= (((u64)1) << addr_width) - 1; |
| 361 | /* in case it's partial page */ |
| 362 | start = PAGE_ALIGN_4K(start); |
| 363 | end &= PAGE_MASK_4K; |
| 364 | |
| 365 | /* we don't need lock here, nobody else touches the iova range */ |
| 366 | while (start < end) { |
| 367 | dma_pte_clear_one(domain, start); |
| 368 | start += PAGE_SIZE_4K; |
| 369 | } |
| 370 | } |
| 371 | |
| 372 | /* free page table pages. last level pte should already be cleared */ |
| 373 | static void dma_pte_free_pagetable(struct dmar_domain *domain, |
| 374 | u64 start, u64 end) |
| 375 | { |
| 376 | int addr_width = agaw_to_width(domain->agaw); |
| 377 | struct dma_pte *pte; |
| 378 | int total = agaw_to_level(domain->agaw); |
| 379 | int level; |
| 380 | u64 tmp; |
| 381 | |
| 382 | start &= (((u64)1) << addr_width) - 1; |
| 383 | end &= (((u64)1) << addr_width) - 1; |
| 384 | |
| 385 | /* we don't need lock here, nobody else touches the iova range */ |
| 386 | level = 2; |
| 387 | while (level <= total) { |
| 388 | tmp = align_to_level(start, level); |
| 389 | if (tmp >= end || (tmp + level_size(level) > end)) |
| 390 | return; |
| 391 | |
| 392 | while (tmp < end) { |
| 393 | pte = dma_addr_level_pte(domain, tmp, level); |
| 394 | if (pte) { |
| 395 | free_pgtable_page( |
| 396 | phys_to_virt(dma_pte_addr(*pte))); |
| 397 | dma_clear_pte(*pte); |
| 398 | __iommu_flush_cache(domain->iommu, |
| 399 | pte, sizeof(*pte)); |
| 400 | } |
| 401 | tmp += level_size(level); |
| 402 | } |
| 403 | level++; |
| 404 | } |
| 405 | /* free pgd */ |
| 406 | if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) { |
| 407 | free_pgtable_page(domain->pgd); |
| 408 | domain->pgd = NULL; |
| 409 | } |
| 410 | } |
| 411 | |
| 412 | /* iommu handling */ |
| 413 | static int iommu_alloc_root_entry(struct intel_iommu *iommu) |
| 414 | { |
| 415 | struct root_entry *root; |
| 416 | unsigned long flags; |
| 417 | |
| 418 | root = (struct root_entry *)alloc_pgtable_page(); |
| 419 | if (!root) |
| 420 | return -ENOMEM; |
| 421 | |
| 422 | __iommu_flush_cache(iommu, root, PAGE_SIZE_4K); |
| 423 | |
| 424 | spin_lock_irqsave(&iommu->lock, flags); |
| 425 | iommu->root_entry = root; |
| 426 | spin_unlock_irqrestore(&iommu->lock, flags); |
| 427 | |
| 428 | return 0; |
| 429 | } |
| 430 | |
| 431 | #define IOMMU_WAIT_OP(iommu, offset, op, cond, sts) \ |
| 432 | {\ |
| 433 | unsigned long start_time = jiffies;\ |
| 434 | while (1) {\ |
| 435 | sts = op (iommu->reg + offset);\ |
| 436 | if (cond)\ |
| 437 | break;\ |
| 438 | if (time_after(jiffies, start_time + DMAR_OPERATION_TIMEOUT))\ |
| 439 | panic("DMAR hardware is malfunctioning\n");\ |
| 440 | cpu_relax();\ |
| 441 | }\ |
| 442 | } |
| 443 | |
| 444 | static void iommu_set_root_entry(struct intel_iommu *iommu) |
| 445 | { |
| 446 | void *addr; |
| 447 | u32 cmd, sts; |
| 448 | unsigned long flag; |
| 449 | |
| 450 | addr = iommu->root_entry; |
| 451 | |
| 452 | spin_lock_irqsave(&iommu->register_lock, flag); |
| 453 | dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr)); |
| 454 | |
| 455 | cmd = iommu->gcmd | DMA_GCMD_SRTP; |
| 456 | writel(cmd, iommu->reg + DMAR_GCMD_REG); |
| 457 | |
| 458 | /* Make sure hardware complete it */ |
| 459 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| 460 | readl, (sts & DMA_GSTS_RTPS), sts); |
| 461 | |
| 462 | spin_unlock_irqrestore(&iommu->register_lock, flag); |
| 463 | } |
| 464 | |
| 465 | static void iommu_flush_write_buffer(struct intel_iommu *iommu) |
| 466 | { |
| 467 | u32 val; |
| 468 | unsigned long flag; |
| 469 | |
| 470 | if (!cap_rwbf(iommu->cap)) |
| 471 | return; |
| 472 | val = iommu->gcmd | DMA_GCMD_WBF; |
| 473 | |
| 474 | spin_lock_irqsave(&iommu->register_lock, flag); |
| 475 | writel(val, iommu->reg + DMAR_GCMD_REG); |
| 476 | |
| 477 | /* Make sure hardware complete it */ |
| 478 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| 479 | readl, (!(val & DMA_GSTS_WBFS)), val); |
| 480 | |
| 481 | spin_unlock_irqrestore(&iommu->register_lock, flag); |
| 482 | } |
| 483 | |
| 484 | /* return value determine if we need a write buffer flush */ |
| 485 | static int __iommu_flush_context(struct intel_iommu *iommu, |
| 486 | u16 did, u16 source_id, u8 function_mask, u64 type, |
| 487 | int non_present_entry_flush) |
| 488 | { |
| 489 | u64 val = 0; |
| 490 | unsigned long flag; |
| 491 | |
| 492 | /* |
| 493 | * In the non-present entry flush case, if hardware doesn't cache |
| 494 | * non-present entry we do nothing and if hardware cache non-present |
| 495 | * entry, we flush entries of domain 0 (the domain id is used to cache |
| 496 | * any non-present entries) |
| 497 | */ |
| 498 | if (non_present_entry_flush) { |
| 499 | if (!cap_caching_mode(iommu->cap)) |
| 500 | return 1; |
| 501 | else |
| 502 | did = 0; |
| 503 | } |
| 504 | |
| 505 | switch (type) { |
| 506 | case DMA_CCMD_GLOBAL_INVL: |
| 507 | val = DMA_CCMD_GLOBAL_INVL; |
| 508 | break; |
| 509 | case DMA_CCMD_DOMAIN_INVL: |
| 510 | val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did); |
| 511 | break; |
| 512 | case DMA_CCMD_DEVICE_INVL: |
| 513 | val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did) |
| 514 | | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask); |
| 515 | break; |
| 516 | default: |
| 517 | BUG(); |
| 518 | } |
| 519 | val |= DMA_CCMD_ICC; |
| 520 | |
| 521 | spin_lock_irqsave(&iommu->register_lock, flag); |
| 522 | dmar_writeq(iommu->reg + DMAR_CCMD_REG, val); |
| 523 | |
| 524 | /* Make sure hardware complete it */ |
| 525 | IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG, |
| 526 | dmar_readq, (!(val & DMA_CCMD_ICC)), val); |
| 527 | |
| 528 | spin_unlock_irqrestore(&iommu->register_lock, flag); |
| 529 | |
| 530 | /* flush context entry will implictly flush write buffer */ |
| 531 | return 0; |
| 532 | } |
| 533 | |
| 534 | static int inline iommu_flush_context_global(struct intel_iommu *iommu, |
| 535 | int non_present_entry_flush) |
| 536 | { |
| 537 | return __iommu_flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL, |
| 538 | non_present_entry_flush); |
| 539 | } |
| 540 | |
| 541 | static int inline iommu_flush_context_domain(struct intel_iommu *iommu, u16 did, |
| 542 | int non_present_entry_flush) |
| 543 | { |
| 544 | return __iommu_flush_context(iommu, did, 0, 0, DMA_CCMD_DOMAIN_INVL, |
| 545 | non_present_entry_flush); |
| 546 | } |
| 547 | |
| 548 | static int inline iommu_flush_context_device(struct intel_iommu *iommu, |
| 549 | u16 did, u16 source_id, u8 function_mask, int non_present_entry_flush) |
| 550 | { |
| 551 | return __iommu_flush_context(iommu, did, source_id, function_mask, |
| 552 | DMA_CCMD_DEVICE_INVL, non_present_entry_flush); |
| 553 | } |
| 554 | |
| 555 | /* return value determine if we need a write buffer flush */ |
| 556 | static int __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, |
| 557 | u64 addr, unsigned int size_order, u64 type, |
| 558 | int non_present_entry_flush) |
| 559 | { |
| 560 | int tlb_offset = ecap_iotlb_offset(iommu->ecap); |
| 561 | u64 val = 0, val_iva = 0; |
| 562 | unsigned long flag; |
| 563 | |
| 564 | /* |
| 565 | * In the non-present entry flush case, if hardware doesn't cache |
| 566 | * non-present entry we do nothing and if hardware cache non-present |
| 567 | * entry, we flush entries of domain 0 (the domain id is used to cache |
| 568 | * any non-present entries) |
| 569 | */ |
| 570 | if (non_present_entry_flush) { |
| 571 | if (!cap_caching_mode(iommu->cap)) |
| 572 | return 1; |
| 573 | else |
| 574 | did = 0; |
| 575 | } |
| 576 | |
| 577 | switch (type) { |
| 578 | case DMA_TLB_GLOBAL_FLUSH: |
| 579 | /* global flush doesn't need set IVA_REG */ |
| 580 | val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT; |
| 581 | break; |
| 582 | case DMA_TLB_DSI_FLUSH: |
| 583 | val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); |
| 584 | break; |
| 585 | case DMA_TLB_PSI_FLUSH: |
| 586 | val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); |
| 587 | /* Note: always flush non-leaf currently */ |
| 588 | val_iva = size_order | addr; |
| 589 | break; |
| 590 | default: |
| 591 | BUG(); |
| 592 | } |
| 593 | /* Note: set drain read/write */ |
| 594 | #if 0 |
| 595 | /* |
| 596 | * This is probably to be super secure.. Looks like we can |
| 597 | * ignore it without any impact. |
| 598 | */ |
| 599 | if (cap_read_drain(iommu->cap)) |
| 600 | val |= DMA_TLB_READ_DRAIN; |
| 601 | #endif |
| 602 | if (cap_write_drain(iommu->cap)) |
| 603 | val |= DMA_TLB_WRITE_DRAIN; |
| 604 | |
| 605 | spin_lock_irqsave(&iommu->register_lock, flag); |
| 606 | /* Note: Only uses first TLB reg currently */ |
| 607 | if (val_iva) |
| 608 | dmar_writeq(iommu->reg + tlb_offset, val_iva); |
| 609 | dmar_writeq(iommu->reg + tlb_offset + 8, val); |
| 610 | |
| 611 | /* Make sure hardware complete it */ |
| 612 | IOMMU_WAIT_OP(iommu, tlb_offset + 8, |
| 613 | dmar_readq, (!(val & DMA_TLB_IVT)), val); |
| 614 | |
| 615 | spin_unlock_irqrestore(&iommu->register_lock, flag); |
| 616 | |
| 617 | /* check IOTLB invalidation granularity */ |
| 618 | if (DMA_TLB_IAIG(val) == 0) |
| 619 | printk(KERN_ERR"IOMMU: flush IOTLB failed\n"); |
| 620 | if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type)) |
| 621 | pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n", |
| 622 | DMA_TLB_IIRG(type), DMA_TLB_IAIG(val)); |
| 623 | /* flush context entry will implictly flush write buffer */ |
| 624 | return 0; |
| 625 | } |
| 626 | |
| 627 | static int inline iommu_flush_iotlb_global(struct intel_iommu *iommu, |
| 628 | int non_present_entry_flush) |
| 629 | { |
| 630 | return __iommu_flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH, |
| 631 | non_present_entry_flush); |
| 632 | } |
| 633 | |
| 634 | static int inline iommu_flush_iotlb_dsi(struct intel_iommu *iommu, u16 did, |
| 635 | int non_present_entry_flush) |
| 636 | { |
| 637 | return __iommu_flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH, |
| 638 | non_present_entry_flush); |
| 639 | } |
| 640 | |
| 641 | static int iommu_get_alignment(u64 base, unsigned int size) |
| 642 | { |
| 643 | int t = 0; |
| 644 | u64 end; |
| 645 | |
| 646 | end = base + size - 1; |
| 647 | while (base != end) { |
| 648 | t++; |
| 649 | base >>= 1; |
| 650 | end >>= 1; |
| 651 | } |
| 652 | return t; |
| 653 | } |
| 654 | |
| 655 | static int iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did, |
| 656 | u64 addr, unsigned int pages, int non_present_entry_flush) |
| 657 | { |
| 658 | unsigned int align; |
| 659 | |
| 660 | BUG_ON(addr & (~PAGE_MASK_4K)); |
| 661 | BUG_ON(pages == 0); |
| 662 | |
| 663 | /* Fallback to domain selective flush if no PSI support */ |
| 664 | if (!cap_pgsel_inv(iommu->cap)) |
| 665 | return iommu_flush_iotlb_dsi(iommu, did, |
| 666 | non_present_entry_flush); |
| 667 | |
| 668 | /* |
| 669 | * PSI requires page size to be 2 ^ x, and the base address is naturally |
| 670 | * aligned to the size |
| 671 | */ |
| 672 | align = iommu_get_alignment(addr >> PAGE_SHIFT_4K, pages); |
| 673 | /* Fallback to domain selective flush if size is too big */ |
| 674 | if (align > cap_max_amask_val(iommu->cap)) |
| 675 | return iommu_flush_iotlb_dsi(iommu, did, |
| 676 | non_present_entry_flush); |
| 677 | |
| 678 | addr >>= PAGE_SHIFT_4K + align; |
| 679 | addr <<= PAGE_SHIFT_4K + align; |
| 680 | |
| 681 | return __iommu_flush_iotlb(iommu, did, addr, align, |
| 682 | DMA_TLB_PSI_FLUSH, non_present_entry_flush); |
| 683 | } |
| 684 | |
| 685 | static int iommu_enable_translation(struct intel_iommu *iommu) |
| 686 | { |
| 687 | u32 sts; |
| 688 | unsigned long flags; |
| 689 | |
| 690 | spin_lock_irqsave(&iommu->register_lock, flags); |
| 691 | writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG); |
| 692 | |
| 693 | /* Make sure hardware complete it */ |
| 694 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| 695 | readl, (sts & DMA_GSTS_TES), sts); |
| 696 | |
| 697 | iommu->gcmd |= DMA_GCMD_TE; |
| 698 | spin_unlock_irqrestore(&iommu->register_lock, flags); |
| 699 | return 0; |
| 700 | } |
| 701 | |
| 702 | static int iommu_disable_translation(struct intel_iommu *iommu) |
| 703 | { |
| 704 | u32 sts; |
| 705 | unsigned long flag; |
| 706 | |
| 707 | spin_lock_irqsave(&iommu->register_lock, flag); |
| 708 | iommu->gcmd &= ~DMA_GCMD_TE; |
| 709 | writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); |
| 710 | |
| 711 | /* Make sure hardware complete it */ |
| 712 | IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| 713 | readl, (!(sts & DMA_GSTS_TES)), sts); |
| 714 | |
| 715 | spin_unlock_irqrestore(&iommu->register_lock, flag); |
| 716 | return 0; |
| 717 | } |
| 718 | |
| 719 | static int iommu_init_domains(struct intel_iommu *iommu) |
| 720 | { |
| 721 | unsigned long ndomains; |
| 722 | unsigned long nlongs; |
| 723 | |
| 724 | ndomains = cap_ndoms(iommu->cap); |
| 725 | pr_debug("Number of Domains supportd <%ld>\n", ndomains); |
| 726 | nlongs = BITS_TO_LONGS(ndomains); |
| 727 | |
| 728 | /* TBD: there might be 64K domains, |
| 729 | * consider other allocation for future chip |
| 730 | */ |
| 731 | iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL); |
| 732 | if (!iommu->domain_ids) { |
| 733 | printk(KERN_ERR "Allocating domain id array failed\n"); |
| 734 | return -ENOMEM; |
| 735 | } |
| 736 | iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *), |
| 737 | GFP_KERNEL); |
| 738 | if (!iommu->domains) { |
| 739 | printk(KERN_ERR "Allocating domain array failed\n"); |
| 740 | kfree(iommu->domain_ids); |
| 741 | return -ENOMEM; |
| 742 | } |
| 743 | |
| 744 | /* |
| 745 | * if Caching mode is set, then invalid translations are tagged |
| 746 | * with domainid 0. Hence we need to pre-allocate it. |
| 747 | */ |
| 748 | if (cap_caching_mode(iommu->cap)) |
| 749 | set_bit(0, iommu->domain_ids); |
| 750 | return 0; |
| 751 | } |
| 752 | |
| 753 | static struct intel_iommu *alloc_iommu(struct dmar_drhd_unit *drhd) |
| 754 | { |
| 755 | struct intel_iommu *iommu; |
| 756 | int ret; |
| 757 | int map_size; |
| 758 | u32 ver; |
| 759 | |
| 760 | iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); |
| 761 | if (!iommu) |
| 762 | return NULL; |
| 763 | iommu->reg = ioremap(drhd->reg_base_addr, PAGE_SIZE_4K); |
| 764 | if (!iommu->reg) { |
| 765 | printk(KERN_ERR "IOMMU: can't map the region\n"); |
| 766 | goto error; |
| 767 | } |
| 768 | iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG); |
| 769 | iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG); |
| 770 | |
| 771 | /* the registers might be more than one page */ |
| 772 | map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap), |
| 773 | cap_max_fault_reg_offset(iommu->cap)); |
| 774 | map_size = PAGE_ALIGN_4K(map_size); |
| 775 | if (map_size > PAGE_SIZE_4K) { |
| 776 | iounmap(iommu->reg); |
| 777 | iommu->reg = ioremap(drhd->reg_base_addr, map_size); |
| 778 | if (!iommu->reg) { |
| 779 | printk(KERN_ERR "IOMMU: can't map the region\n"); |
| 780 | goto error; |
| 781 | } |
| 782 | } |
| 783 | |
| 784 | ver = readl(iommu->reg + DMAR_VER_REG); |
| 785 | pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n", |
| 786 | drhd->reg_base_addr, DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver), |
| 787 | iommu->cap, iommu->ecap); |
| 788 | ret = iommu_init_domains(iommu); |
| 789 | if (ret) |
| 790 | goto error_unmap; |
| 791 | spin_lock_init(&iommu->lock); |
| 792 | spin_lock_init(&iommu->register_lock); |
| 793 | |
| 794 | drhd->iommu = iommu; |
| 795 | return iommu; |
| 796 | error_unmap: |
| 797 | iounmap(iommu->reg); |
| 798 | iommu->reg = 0; |
| 799 | error: |
| 800 | kfree(iommu); |
| 801 | return NULL; |
| 802 | } |
| 803 | |
| 804 | static void domain_exit(struct dmar_domain *domain); |
| 805 | static void free_iommu(struct intel_iommu *iommu) |
| 806 | { |
| 807 | struct dmar_domain *domain; |
| 808 | int i; |
| 809 | |
| 810 | if (!iommu) |
| 811 | return; |
| 812 | |
| 813 | i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap)); |
| 814 | for (; i < cap_ndoms(iommu->cap); ) { |
| 815 | domain = iommu->domains[i]; |
| 816 | clear_bit(i, iommu->domain_ids); |
| 817 | domain_exit(domain); |
| 818 | i = find_next_bit(iommu->domain_ids, |
| 819 | cap_ndoms(iommu->cap), i+1); |
| 820 | } |
| 821 | |
| 822 | if (iommu->gcmd & DMA_GCMD_TE) |
| 823 | iommu_disable_translation(iommu); |
| 824 | |
| 825 | if (iommu->irq) { |
| 826 | set_irq_data(iommu->irq, NULL); |
| 827 | /* This will mask the irq */ |
| 828 | free_irq(iommu->irq, iommu); |
| 829 | destroy_irq(iommu->irq); |
| 830 | } |
| 831 | |
| 832 | kfree(iommu->domains); |
| 833 | kfree(iommu->domain_ids); |
| 834 | |
| 835 | /* free context mapping */ |
| 836 | free_context_table(iommu); |
| 837 | |
| 838 | if (iommu->reg) |
| 839 | iounmap(iommu->reg); |
| 840 | kfree(iommu); |
| 841 | } |
| 842 | |
| 843 | static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu) |
| 844 | { |
| 845 | unsigned long num; |
| 846 | unsigned long ndomains; |
| 847 | struct dmar_domain *domain; |
| 848 | unsigned long flags; |
| 849 | |
| 850 | domain = alloc_domain_mem(); |
| 851 | if (!domain) |
| 852 | return NULL; |
| 853 | |
| 854 | ndomains = cap_ndoms(iommu->cap); |
| 855 | |
| 856 | spin_lock_irqsave(&iommu->lock, flags); |
| 857 | num = find_first_zero_bit(iommu->domain_ids, ndomains); |
| 858 | if (num >= ndomains) { |
| 859 | spin_unlock_irqrestore(&iommu->lock, flags); |
| 860 | free_domain_mem(domain); |
| 861 | printk(KERN_ERR "IOMMU: no free domain ids\n"); |
| 862 | return NULL; |
| 863 | } |
| 864 | |
| 865 | set_bit(num, iommu->domain_ids); |
| 866 | domain->id = num; |
| 867 | domain->iommu = iommu; |
| 868 | iommu->domains[num] = domain; |
| 869 | spin_unlock_irqrestore(&iommu->lock, flags); |
| 870 | |
| 871 | return domain; |
| 872 | } |
| 873 | |
| 874 | static void iommu_free_domain(struct dmar_domain *domain) |
| 875 | { |
| 876 | unsigned long flags; |
| 877 | |
| 878 | spin_lock_irqsave(&domain->iommu->lock, flags); |
| 879 | clear_bit(domain->id, domain->iommu->domain_ids); |
| 880 | spin_unlock_irqrestore(&domain->iommu->lock, flags); |
| 881 | } |
| 882 | |
| 883 | static struct iova_domain reserved_iova_list; |
| 884 | |
| 885 | static void dmar_init_reserved_ranges(void) |
| 886 | { |
| 887 | struct pci_dev *pdev = NULL; |
| 888 | struct iova *iova; |
| 889 | int i; |
| 890 | u64 addr, size; |
| 891 | |
| 892 | init_iova_domain(&reserved_iova_list); |
| 893 | |
| 894 | /* IOAPIC ranges shouldn't be accessed by DMA */ |
| 895 | iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START), |
| 896 | IOVA_PFN(IOAPIC_RANGE_END)); |
| 897 | if (!iova) |
| 898 | printk(KERN_ERR "Reserve IOAPIC range failed\n"); |
| 899 | |
| 900 | /* Reserve all PCI MMIO to avoid peer-to-peer access */ |
| 901 | for_each_pci_dev(pdev) { |
| 902 | struct resource *r; |
| 903 | |
| 904 | for (i = 0; i < PCI_NUM_RESOURCES; i++) { |
| 905 | r = &pdev->resource[i]; |
| 906 | if (!r->flags || !(r->flags & IORESOURCE_MEM)) |
| 907 | continue; |
| 908 | addr = r->start; |
| 909 | addr &= PAGE_MASK_4K; |
| 910 | size = r->end - addr; |
| 911 | size = PAGE_ALIGN_4K(size); |
| 912 | iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr), |
| 913 | IOVA_PFN(size + addr) - 1); |
| 914 | if (!iova) |
| 915 | printk(KERN_ERR "Reserve iova failed\n"); |
| 916 | } |
| 917 | } |
| 918 | |
| 919 | } |
| 920 | |
| 921 | static void domain_reserve_special_ranges(struct dmar_domain *domain) |
| 922 | { |
| 923 | copy_reserved_iova(&reserved_iova_list, &domain->iovad); |
| 924 | } |
| 925 | |
| 926 | static inline int guestwidth_to_adjustwidth(int gaw) |
| 927 | { |
| 928 | int agaw; |
| 929 | int r = (gaw - 12) % 9; |
| 930 | |
| 931 | if (r == 0) |
| 932 | agaw = gaw; |
| 933 | else |
| 934 | agaw = gaw + 9 - r; |
| 935 | if (agaw > 64) |
| 936 | agaw = 64; |
| 937 | return agaw; |
| 938 | } |
| 939 | |
| 940 | static int domain_init(struct dmar_domain *domain, int guest_width) |
| 941 | { |
| 942 | struct intel_iommu *iommu; |
| 943 | int adjust_width, agaw; |
| 944 | unsigned long sagaw; |
| 945 | |
| 946 | init_iova_domain(&domain->iovad); |
| 947 | spin_lock_init(&domain->mapping_lock); |
| 948 | |
| 949 | domain_reserve_special_ranges(domain); |
| 950 | |
| 951 | /* calculate AGAW */ |
| 952 | iommu = domain->iommu; |
| 953 | if (guest_width > cap_mgaw(iommu->cap)) |
| 954 | guest_width = cap_mgaw(iommu->cap); |
| 955 | domain->gaw = guest_width; |
| 956 | adjust_width = guestwidth_to_adjustwidth(guest_width); |
| 957 | agaw = width_to_agaw(adjust_width); |
| 958 | sagaw = cap_sagaw(iommu->cap); |
| 959 | if (!test_bit(agaw, &sagaw)) { |
| 960 | /* hardware doesn't support it, choose a bigger one */ |
| 961 | pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw); |
| 962 | agaw = find_next_bit(&sagaw, 5, agaw); |
| 963 | if (agaw >= 5) |
| 964 | return -ENODEV; |
| 965 | } |
| 966 | domain->agaw = agaw; |
| 967 | INIT_LIST_HEAD(&domain->devices); |
| 968 | |
| 969 | /* always allocate the top pgd */ |
| 970 | domain->pgd = (struct dma_pte *)alloc_pgtable_page(); |
| 971 | if (!domain->pgd) |
| 972 | return -ENOMEM; |
| 973 | __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE_4K); |
| 974 | return 0; |
| 975 | } |
| 976 | |
| 977 | static void domain_exit(struct dmar_domain *domain) |
| 978 | { |
| 979 | u64 end; |
| 980 | |
| 981 | /* Domain 0 is reserved, so dont process it */ |
| 982 | if (!domain) |
| 983 | return; |
| 984 | |
| 985 | domain_remove_dev_info(domain); |
| 986 | /* destroy iovas */ |
| 987 | put_iova_domain(&domain->iovad); |
| 988 | end = DOMAIN_MAX_ADDR(domain->gaw); |
| 989 | end = end & (~PAGE_MASK_4K); |
| 990 | |
| 991 | /* clear ptes */ |
| 992 | dma_pte_clear_range(domain, 0, end); |
| 993 | |
| 994 | /* free page tables */ |
| 995 | dma_pte_free_pagetable(domain, 0, end); |
| 996 | |
| 997 | iommu_free_domain(domain); |
| 998 | free_domain_mem(domain); |
| 999 | } |
| 1000 | |
| 1001 | static int domain_context_mapping_one(struct dmar_domain *domain, |
| 1002 | u8 bus, u8 devfn) |
| 1003 | { |
| 1004 | struct context_entry *context; |
| 1005 | struct intel_iommu *iommu = domain->iommu; |
| 1006 | unsigned long flags; |
| 1007 | |
| 1008 | pr_debug("Set context mapping for %02x:%02x.%d\n", |
| 1009 | bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); |
| 1010 | BUG_ON(!domain->pgd); |
| 1011 | context = device_to_context_entry(iommu, bus, devfn); |
| 1012 | if (!context) |
| 1013 | return -ENOMEM; |
| 1014 | spin_lock_irqsave(&iommu->lock, flags); |
| 1015 | if (context_present(*context)) { |
| 1016 | spin_unlock_irqrestore(&iommu->lock, flags); |
| 1017 | return 0; |
| 1018 | } |
| 1019 | |
| 1020 | context_set_domain_id(*context, domain->id); |
| 1021 | context_set_address_width(*context, domain->agaw); |
| 1022 | context_set_address_root(*context, virt_to_phys(domain->pgd)); |
| 1023 | context_set_translation_type(*context, CONTEXT_TT_MULTI_LEVEL); |
| 1024 | context_set_fault_enable(*context); |
| 1025 | context_set_present(*context); |
| 1026 | __iommu_flush_cache(iommu, context, sizeof(*context)); |
| 1027 | |
| 1028 | /* it's a non-present to present mapping */ |
| 1029 | if (iommu_flush_context_device(iommu, domain->id, |
| 1030 | (((u16)bus) << 8) | devfn, DMA_CCMD_MASK_NOBIT, 1)) |
| 1031 | iommu_flush_write_buffer(iommu); |
| 1032 | else |
| 1033 | iommu_flush_iotlb_dsi(iommu, 0, 0); |
| 1034 | spin_unlock_irqrestore(&iommu->lock, flags); |
| 1035 | return 0; |
| 1036 | } |
| 1037 | |
| 1038 | static int |
| 1039 | domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev) |
| 1040 | { |
| 1041 | int ret; |
| 1042 | struct pci_dev *tmp, *parent; |
| 1043 | |
| 1044 | ret = domain_context_mapping_one(domain, pdev->bus->number, |
| 1045 | pdev->devfn); |
| 1046 | if (ret) |
| 1047 | return ret; |
| 1048 | |
| 1049 | /* dependent device mapping */ |
| 1050 | tmp = pci_find_upstream_pcie_bridge(pdev); |
| 1051 | if (!tmp) |
| 1052 | return 0; |
| 1053 | /* Secondary interface's bus number and devfn 0 */ |
| 1054 | parent = pdev->bus->self; |
| 1055 | while (parent != tmp) { |
| 1056 | ret = domain_context_mapping_one(domain, parent->bus->number, |
| 1057 | parent->devfn); |
| 1058 | if (ret) |
| 1059 | return ret; |
| 1060 | parent = parent->bus->self; |
| 1061 | } |
| 1062 | if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */ |
| 1063 | return domain_context_mapping_one(domain, |
| 1064 | tmp->subordinate->number, 0); |
| 1065 | else /* this is a legacy PCI bridge */ |
| 1066 | return domain_context_mapping_one(domain, |
| 1067 | tmp->bus->number, tmp->devfn); |
| 1068 | } |
| 1069 | |
| 1070 | static int domain_context_mapped(struct dmar_domain *domain, |
| 1071 | struct pci_dev *pdev) |
| 1072 | { |
| 1073 | int ret; |
| 1074 | struct pci_dev *tmp, *parent; |
| 1075 | |
| 1076 | ret = device_context_mapped(domain->iommu, |
| 1077 | pdev->bus->number, pdev->devfn); |
| 1078 | if (!ret) |
| 1079 | return ret; |
| 1080 | /* dependent device mapping */ |
| 1081 | tmp = pci_find_upstream_pcie_bridge(pdev); |
| 1082 | if (!tmp) |
| 1083 | return ret; |
| 1084 | /* Secondary interface's bus number and devfn 0 */ |
| 1085 | parent = pdev->bus->self; |
| 1086 | while (parent != tmp) { |
| 1087 | ret = device_context_mapped(domain->iommu, parent->bus->number, |
| 1088 | parent->devfn); |
| 1089 | if (!ret) |
| 1090 | return ret; |
| 1091 | parent = parent->bus->self; |
| 1092 | } |
| 1093 | if (tmp->is_pcie) |
| 1094 | return device_context_mapped(domain->iommu, |
| 1095 | tmp->subordinate->number, 0); |
| 1096 | else |
| 1097 | return device_context_mapped(domain->iommu, |
| 1098 | tmp->bus->number, tmp->devfn); |
| 1099 | } |
| 1100 | |
| 1101 | static int |
| 1102 | domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova, |
| 1103 | u64 hpa, size_t size, int prot) |
| 1104 | { |
| 1105 | u64 start_pfn, end_pfn; |
| 1106 | struct dma_pte *pte; |
| 1107 | int index; |
| 1108 | |
| 1109 | if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0) |
| 1110 | return -EINVAL; |
| 1111 | iova &= PAGE_MASK_4K; |
| 1112 | start_pfn = ((u64)hpa) >> PAGE_SHIFT_4K; |
| 1113 | end_pfn = (PAGE_ALIGN_4K(((u64)hpa) + size)) >> PAGE_SHIFT_4K; |
| 1114 | index = 0; |
| 1115 | while (start_pfn < end_pfn) { |
| 1116 | pte = addr_to_dma_pte(domain, iova + PAGE_SIZE_4K * index); |
| 1117 | if (!pte) |
| 1118 | return -ENOMEM; |
| 1119 | /* We don't need lock here, nobody else |
| 1120 | * touches the iova range |
| 1121 | */ |
| 1122 | BUG_ON(dma_pte_addr(*pte)); |
| 1123 | dma_set_pte_addr(*pte, start_pfn << PAGE_SHIFT_4K); |
| 1124 | dma_set_pte_prot(*pte, prot); |
| 1125 | __iommu_flush_cache(domain->iommu, pte, sizeof(*pte)); |
| 1126 | start_pfn++; |
| 1127 | index++; |
| 1128 | } |
| 1129 | return 0; |
| 1130 | } |
| 1131 | |
| 1132 | static void detach_domain_for_dev(struct dmar_domain *domain, u8 bus, u8 devfn) |
| 1133 | { |
| 1134 | clear_context_table(domain->iommu, bus, devfn); |
| 1135 | iommu_flush_context_global(domain->iommu, 0); |
| 1136 | iommu_flush_iotlb_global(domain->iommu, 0); |
| 1137 | } |
| 1138 | |
| 1139 | static void domain_remove_dev_info(struct dmar_domain *domain) |
| 1140 | { |
| 1141 | struct device_domain_info *info; |
| 1142 | unsigned long flags; |
| 1143 | |
| 1144 | spin_lock_irqsave(&device_domain_lock, flags); |
| 1145 | while (!list_empty(&domain->devices)) { |
| 1146 | info = list_entry(domain->devices.next, |
| 1147 | struct device_domain_info, link); |
| 1148 | list_del(&info->link); |
| 1149 | list_del(&info->global); |
| 1150 | if (info->dev) |
| 1151 | info->dev->sysdata = NULL; |
| 1152 | spin_unlock_irqrestore(&device_domain_lock, flags); |
| 1153 | |
| 1154 | detach_domain_for_dev(info->domain, info->bus, info->devfn); |
| 1155 | free_devinfo_mem(info); |
| 1156 | |
| 1157 | spin_lock_irqsave(&device_domain_lock, flags); |
| 1158 | } |
| 1159 | spin_unlock_irqrestore(&device_domain_lock, flags); |
| 1160 | } |
| 1161 | |
| 1162 | /* |
| 1163 | * find_domain |
| 1164 | * Note: we use struct pci_dev->sysdata stores the info |
| 1165 | */ |
| 1166 | struct dmar_domain * |
| 1167 | find_domain(struct pci_dev *pdev) |
| 1168 | { |
| 1169 | struct device_domain_info *info; |
| 1170 | |
| 1171 | /* No lock here, assumes no domain exit in normal case */ |
| 1172 | info = pdev->sysdata; |
| 1173 | if (info) |
| 1174 | return info->domain; |
| 1175 | return NULL; |
| 1176 | } |
| 1177 | |
| 1178 | static int dmar_pci_device_match(struct pci_dev *devices[], int cnt, |
| 1179 | struct pci_dev *dev) |
| 1180 | { |
| 1181 | int index; |
| 1182 | |
| 1183 | while (dev) { |
| 1184 | for (index = 0; index < cnt; index ++) |
| 1185 | if (dev == devices[index]) |
| 1186 | return 1; |
| 1187 | |
| 1188 | /* Check our parent */ |
| 1189 | dev = dev->bus->self; |
| 1190 | } |
| 1191 | |
| 1192 | return 0; |
| 1193 | } |
| 1194 | |
| 1195 | static struct dmar_drhd_unit * |
| 1196 | dmar_find_matched_drhd_unit(struct pci_dev *dev) |
| 1197 | { |
| 1198 | struct dmar_drhd_unit *drhd = NULL; |
| 1199 | |
| 1200 | list_for_each_entry(drhd, &dmar_drhd_units, list) { |
| 1201 | if (drhd->include_all || dmar_pci_device_match(drhd->devices, |
| 1202 | drhd->devices_cnt, dev)) |
| 1203 | return drhd; |
| 1204 | } |
| 1205 | |
| 1206 | return NULL; |
| 1207 | } |
| 1208 | |
| 1209 | /* domain is initialized */ |
| 1210 | static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw) |
| 1211 | { |
| 1212 | struct dmar_domain *domain, *found = NULL; |
| 1213 | struct intel_iommu *iommu; |
| 1214 | struct dmar_drhd_unit *drhd; |
| 1215 | struct device_domain_info *info, *tmp; |
| 1216 | struct pci_dev *dev_tmp; |
| 1217 | unsigned long flags; |
| 1218 | int bus = 0, devfn = 0; |
| 1219 | |
| 1220 | domain = find_domain(pdev); |
| 1221 | if (domain) |
| 1222 | return domain; |
| 1223 | |
| 1224 | dev_tmp = pci_find_upstream_pcie_bridge(pdev); |
| 1225 | if (dev_tmp) { |
| 1226 | if (dev_tmp->is_pcie) { |
| 1227 | bus = dev_tmp->subordinate->number; |
| 1228 | devfn = 0; |
| 1229 | } else { |
| 1230 | bus = dev_tmp->bus->number; |
| 1231 | devfn = dev_tmp->devfn; |
| 1232 | } |
| 1233 | spin_lock_irqsave(&device_domain_lock, flags); |
| 1234 | list_for_each_entry(info, &device_domain_list, global) { |
| 1235 | if (info->bus == bus && info->devfn == devfn) { |
| 1236 | found = info->domain; |
| 1237 | break; |
| 1238 | } |
| 1239 | } |
| 1240 | spin_unlock_irqrestore(&device_domain_lock, flags); |
| 1241 | /* pcie-pci bridge already has a domain, uses it */ |
| 1242 | if (found) { |
| 1243 | domain = found; |
| 1244 | goto found_domain; |
| 1245 | } |
| 1246 | } |
| 1247 | |
| 1248 | /* Allocate new domain for the device */ |
| 1249 | drhd = dmar_find_matched_drhd_unit(pdev); |
| 1250 | if (!drhd) { |
| 1251 | printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n", |
| 1252 | pci_name(pdev)); |
| 1253 | return NULL; |
| 1254 | } |
| 1255 | iommu = drhd->iommu; |
| 1256 | |
| 1257 | domain = iommu_alloc_domain(iommu); |
| 1258 | if (!domain) |
| 1259 | goto error; |
| 1260 | |
| 1261 | if (domain_init(domain, gaw)) { |
| 1262 | domain_exit(domain); |
| 1263 | goto error; |
| 1264 | } |
| 1265 | |
| 1266 | /* register pcie-to-pci device */ |
| 1267 | if (dev_tmp) { |
| 1268 | info = alloc_devinfo_mem(); |
| 1269 | if (!info) { |
| 1270 | domain_exit(domain); |
| 1271 | goto error; |
| 1272 | } |
| 1273 | info->bus = bus; |
| 1274 | info->devfn = devfn; |
| 1275 | info->dev = NULL; |
| 1276 | info->domain = domain; |
| 1277 | /* This domain is shared by devices under p2p bridge */ |
| 1278 | domain->flags |= DOMAIN_FLAG_MULTIPLE_DEVICES; |
| 1279 | |
| 1280 | /* pcie-to-pci bridge already has a domain, uses it */ |
| 1281 | found = NULL; |
| 1282 | spin_lock_irqsave(&device_domain_lock, flags); |
| 1283 | list_for_each_entry(tmp, &device_domain_list, global) { |
| 1284 | if (tmp->bus == bus && tmp->devfn == devfn) { |
| 1285 | found = tmp->domain; |
| 1286 | break; |
| 1287 | } |
| 1288 | } |
| 1289 | if (found) { |
| 1290 | free_devinfo_mem(info); |
| 1291 | domain_exit(domain); |
| 1292 | domain = found; |
| 1293 | } else { |
| 1294 | list_add(&info->link, &domain->devices); |
| 1295 | list_add(&info->global, &device_domain_list); |
| 1296 | } |
| 1297 | spin_unlock_irqrestore(&device_domain_lock, flags); |
| 1298 | } |
| 1299 | |
| 1300 | found_domain: |
| 1301 | info = alloc_devinfo_mem(); |
| 1302 | if (!info) |
| 1303 | goto error; |
| 1304 | info->bus = pdev->bus->number; |
| 1305 | info->devfn = pdev->devfn; |
| 1306 | info->dev = pdev; |
| 1307 | info->domain = domain; |
| 1308 | spin_lock_irqsave(&device_domain_lock, flags); |
| 1309 | /* somebody is fast */ |
| 1310 | found = find_domain(pdev); |
| 1311 | if (found != NULL) { |
| 1312 | spin_unlock_irqrestore(&device_domain_lock, flags); |
| 1313 | if (found != domain) { |
| 1314 | domain_exit(domain); |
| 1315 | domain = found; |
| 1316 | } |
| 1317 | free_devinfo_mem(info); |
| 1318 | return domain; |
| 1319 | } |
| 1320 | list_add(&info->link, &domain->devices); |
| 1321 | list_add(&info->global, &device_domain_list); |
| 1322 | pdev->sysdata = info; |
| 1323 | spin_unlock_irqrestore(&device_domain_lock, flags); |
| 1324 | return domain; |
| 1325 | error: |
| 1326 | /* recheck it here, maybe others set it */ |
| 1327 | return find_domain(pdev); |
| 1328 | } |
| 1329 | |
| 1330 | static int iommu_prepare_identity_map(struct pci_dev *pdev, u64 start, u64 end) |
| 1331 | { |
| 1332 | struct dmar_domain *domain; |
| 1333 | unsigned long size; |
| 1334 | u64 base; |
| 1335 | int ret; |
| 1336 | |
| 1337 | printk(KERN_INFO |
| 1338 | "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n", |
| 1339 | pci_name(pdev), start, end); |
| 1340 | /* page table init */ |
| 1341 | domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH); |
| 1342 | if (!domain) |
| 1343 | return -ENOMEM; |
| 1344 | |
| 1345 | /* The address might not be aligned */ |
| 1346 | base = start & PAGE_MASK_4K; |
| 1347 | size = end - base; |
| 1348 | size = PAGE_ALIGN_4K(size); |
| 1349 | if (!reserve_iova(&domain->iovad, IOVA_PFN(base), |
| 1350 | IOVA_PFN(base + size) - 1)) { |
| 1351 | printk(KERN_ERR "IOMMU: reserve iova failed\n"); |
| 1352 | ret = -ENOMEM; |
| 1353 | goto error; |
| 1354 | } |
| 1355 | |
| 1356 | pr_debug("Mapping reserved region %lx@%llx for %s\n", |
| 1357 | size, base, pci_name(pdev)); |
| 1358 | /* |
| 1359 | * RMRR range might have overlap with physical memory range, |
| 1360 | * clear it first |
| 1361 | */ |
| 1362 | dma_pte_clear_range(domain, base, base + size); |
| 1363 | |
| 1364 | ret = domain_page_mapping(domain, base, base, size, |
| 1365 | DMA_PTE_READ|DMA_PTE_WRITE); |
| 1366 | if (ret) |
| 1367 | goto error; |
| 1368 | |
| 1369 | /* context entry init */ |
| 1370 | ret = domain_context_mapping(domain, pdev); |
| 1371 | if (!ret) |
| 1372 | return 0; |
| 1373 | error: |
| 1374 | domain_exit(domain); |
| 1375 | return ret; |
| 1376 | |
| 1377 | } |
| 1378 | |
| 1379 | static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr, |
| 1380 | struct pci_dev *pdev) |
| 1381 | { |
| 1382 | if (pdev->sysdata == DUMMY_DEVICE_DOMAIN_INFO) |
| 1383 | return 0; |
| 1384 | return iommu_prepare_identity_map(pdev, rmrr->base_address, |
| 1385 | rmrr->end_address + 1); |
| 1386 | } |
| 1387 | |
| 1388 | int __init init_dmars(void) |
| 1389 | { |
| 1390 | struct dmar_drhd_unit *drhd; |
| 1391 | struct dmar_rmrr_unit *rmrr; |
| 1392 | struct pci_dev *pdev; |
| 1393 | struct intel_iommu *iommu; |
| 1394 | int ret, unit = 0; |
| 1395 | |
| 1396 | /* |
| 1397 | * for each drhd |
| 1398 | * allocate root |
| 1399 | * initialize and program root entry to not present |
| 1400 | * endfor |
| 1401 | */ |
| 1402 | for_each_drhd_unit(drhd) { |
| 1403 | if (drhd->ignored) |
| 1404 | continue; |
| 1405 | iommu = alloc_iommu(drhd); |
| 1406 | if (!iommu) { |
| 1407 | ret = -ENOMEM; |
| 1408 | goto error; |
| 1409 | } |
| 1410 | |
| 1411 | /* |
| 1412 | * TBD: |
| 1413 | * we could share the same root & context tables |
| 1414 | * amoung all IOMMU's. Need to Split it later. |
| 1415 | */ |
| 1416 | ret = iommu_alloc_root_entry(iommu); |
| 1417 | if (ret) { |
| 1418 | printk(KERN_ERR "IOMMU: allocate root entry failed\n"); |
| 1419 | goto error; |
| 1420 | } |
| 1421 | } |
| 1422 | |
| 1423 | /* |
| 1424 | * For each rmrr |
| 1425 | * for each dev attached to rmrr |
| 1426 | * do |
| 1427 | * locate drhd for dev, alloc domain for dev |
| 1428 | * allocate free domain |
| 1429 | * allocate page table entries for rmrr |
| 1430 | * if context not allocated for bus |
| 1431 | * allocate and init context |
| 1432 | * set present in root table for this bus |
| 1433 | * init context with domain, translation etc |
| 1434 | * endfor |
| 1435 | * endfor |
| 1436 | */ |
| 1437 | for_each_rmrr_units(rmrr) { |
| 1438 | int i; |
| 1439 | for (i = 0; i < rmrr->devices_cnt; i++) { |
| 1440 | pdev = rmrr->devices[i]; |
| 1441 | /* some BIOS lists non-exist devices in DMAR table */ |
| 1442 | if (!pdev) |
| 1443 | continue; |
| 1444 | ret = iommu_prepare_rmrr_dev(rmrr, pdev); |
| 1445 | if (ret) |
| 1446 | printk(KERN_ERR |
| 1447 | "IOMMU: mapping reserved region failed\n"); |
| 1448 | } |
| 1449 | } |
| 1450 | |
| 1451 | /* |
| 1452 | * for each drhd |
| 1453 | * enable fault log |
| 1454 | * global invalidate context cache |
| 1455 | * global invalidate iotlb |
| 1456 | * enable translation |
| 1457 | */ |
| 1458 | for_each_drhd_unit(drhd) { |
| 1459 | if (drhd->ignored) |
| 1460 | continue; |
| 1461 | iommu = drhd->iommu; |
| 1462 | sprintf (iommu->name, "dmar%d", unit++); |
| 1463 | |
| 1464 | iommu_flush_write_buffer(iommu); |
| 1465 | |
| 1466 | iommu_set_root_entry(iommu); |
| 1467 | |
| 1468 | iommu_flush_context_global(iommu, 0); |
| 1469 | iommu_flush_iotlb_global(iommu, 0); |
| 1470 | |
| 1471 | ret = iommu_enable_translation(iommu); |
| 1472 | if (ret) |
| 1473 | goto error; |
| 1474 | } |
| 1475 | |
| 1476 | return 0; |
| 1477 | error: |
| 1478 | for_each_drhd_unit(drhd) { |
| 1479 | if (drhd->ignored) |
| 1480 | continue; |
| 1481 | iommu = drhd->iommu; |
| 1482 | free_iommu(iommu); |
| 1483 | } |
| 1484 | return ret; |
| 1485 | } |
| 1486 | |
| 1487 | static inline u64 aligned_size(u64 host_addr, size_t size) |
| 1488 | { |
| 1489 | u64 addr; |
| 1490 | addr = (host_addr & (~PAGE_MASK_4K)) + size; |
| 1491 | return PAGE_ALIGN_4K(addr); |
| 1492 | } |
| 1493 | |
| 1494 | struct iova * |
| 1495 | iommu_alloc_iova(struct dmar_domain *domain, void *host_addr, size_t size, |
| 1496 | u64 start, u64 end) |
| 1497 | { |
| 1498 | u64 start_addr; |
| 1499 | struct iova *piova; |
| 1500 | |
| 1501 | /* Make sure it's in range */ |
| 1502 | if ((start > DOMAIN_MAX_ADDR(domain->gaw)) || end < start) |
| 1503 | return NULL; |
| 1504 | |
| 1505 | end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end); |
| 1506 | start_addr = PAGE_ALIGN_4K(start); |
| 1507 | size = aligned_size((u64)host_addr, size); |
| 1508 | if (!size || (start_addr + size > end)) |
| 1509 | return NULL; |
| 1510 | |
| 1511 | piova = alloc_iova(&domain->iovad, |
| 1512 | size >> PAGE_SHIFT_4K, IOVA_PFN(end)); |
| 1513 | |
| 1514 | return piova; |
| 1515 | } |
| 1516 | |
| 1517 | static dma_addr_t __intel_map_single(struct device *dev, void *addr, |
| 1518 | size_t size, int dir, u64 *flush_addr, unsigned int *flush_size) |
| 1519 | { |
| 1520 | struct dmar_domain *domain; |
| 1521 | struct pci_dev *pdev = to_pci_dev(dev); |
| 1522 | int ret; |
| 1523 | int prot = 0; |
| 1524 | struct iova *iova = NULL; |
| 1525 | u64 start_addr; |
| 1526 | |
| 1527 | addr = (void *)virt_to_phys(addr); |
| 1528 | |
| 1529 | domain = get_domain_for_dev(pdev, |
| 1530 | DEFAULT_DOMAIN_ADDRESS_WIDTH); |
| 1531 | if (!domain) { |
| 1532 | printk(KERN_ERR |
| 1533 | "Allocating domain for %s failed", pci_name(pdev)); |
| 1534 | return 0; |
| 1535 | } |
| 1536 | |
| 1537 | start_addr = IOVA_START_ADDR; |
| 1538 | |
| 1539 | if (pdev->dma_mask <= DMA_32BIT_MASK) { |
| 1540 | iova = iommu_alloc_iova(domain, addr, size, start_addr, |
| 1541 | pdev->dma_mask); |
| 1542 | } else { |
| 1543 | /* |
| 1544 | * First try to allocate an io virtual address in |
| 1545 | * DMA_32BIT_MASK and if that fails then try allocating |
| 1546 | * from higer range |
| 1547 | */ |
| 1548 | iova = iommu_alloc_iova(domain, addr, size, start_addr, |
| 1549 | DMA_32BIT_MASK); |
| 1550 | if (!iova) |
| 1551 | iova = iommu_alloc_iova(domain, addr, size, start_addr, |
| 1552 | pdev->dma_mask); |
| 1553 | } |
| 1554 | |
| 1555 | if (!iova) { |
| 1556 | printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev)); |
| 1557 | return 0; |
| 1558 | } |
| 1559 | |
| 1560 | /* make sure context mapping is ok */ |
| 1561 | if (unlikely(!domain_context_mapped(domain, pdev))) { |
| 1562 | ret = domain_context_mapping(domain, pdev); |
| 1563 | if (ret) |
| 1564 | goto error; |
| 1565 | } |
| 1566 | |
| 1567 | /* |
| 1568 | * Check if DMAR supports zero-length reads on write only |
| 1569 | * mappings.. |
| 1570 | */ |
| 1571 | if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ |
| 1572 | !cap_zlr(domain->iommu->cap)) |
| 1573 | prot |= DMA_PTE_READ; |
| 1574 | if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) |
| 1575 | prot |= DMA_PTE_WRITE; |
| 1576 | /* |
| 1577 | * addr - (addr + size) might be partial page, we should map the whole |
| 1578 | * page. Note: if two part of one page are separately mapped, we |
| 1579 | * might have two guest_addr mapping to the same host addr, but this |
| 1580 | * is not a big problem |
| 1581 | */ |
| 1582 | ret = domain_page_mapping(domain, iova->pfn_lo << PAGE_SHIFT_4K, |
| 1583 | ((u64)addr) & PAGE_MASK_4K, |
| 1584 | (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT_4K, prot); |
| 1585 | if (ret) |
| 1586 | goto error; |
| 1587 | |
| 1588 | pr_debug("Device %s request: %lx@%llx mapping: %lx@%llx, dir %d\n", |
| 1589 | pci_name(pdev), size, (u64)addr, |
| 1590 | (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT_4K, |
| 1591 | (u64)(iova->pfn_lo << PAGE_SHIFT_4K), dir); |
| 1592 | |
| 1593 | *flush_addr = iova->pfn_lo << PAGE_SHIFT_4K; |
| 1594 | *flush_size = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT_4K; |
| 1595 | return (iova->pfn_lo << PAGE_SHIFT_4K) + ((u64)addr & (~PAGE_MASK_4K)); |
| 1596 | error: |
| 1597 | __free_iova(&domain->iovad, iova); |
| 1598 | printk(KERN_ERR"Device %s request: %lx@%llx dir %d --- failed\n", |
| 1599 | pci_name(pdev), size, (u64)addr, dir); |
| 1600 | return 0; |
| 1601 | } |
| 1602 | |
| 1603 | static dma_addr_t intel_map_single(struct device *hwdev, void *addr, |
| 1604 | size_t size, int dir) |
| 1605 | { |
| 1606 | struct pci_dev *pdev = to_pci_dev(hwdev); |
| 1607 | dma_addr_t ret; |
| 1608 | struct dmar_domain *domain; |
| 1609 | u64 flush_addr; |
| 1610 | unsigned int flush_size; |
| 1611 | |
| 1612 | BUG_ON(dir == DMA_NONE); |
| 1613 | if (pdev->sysdata == DUMMY_DEVICE_DOMAIN_INFO) |
| 1614 | return virt_to_bus(addr); |
| 1615 | |
| 1616 | ret = __intel_map_single(hwdev, addr, size, |
| 1617 | dir, &flush_addr, &flush_size); |
| 1618 | if (ret) { |
| 1619 | domain = find_domain(pdev); |
| 1620 | /* it's a non-present to present mapping */ |
| 1621 | if (iommu_flush_iotlb_psi(domain->iommu, domain->id, |
| 1622 | flush_addr, flush_size >> PAGE_SHIFT_4K, 1)) |
| 1623 | iommu_flush_write_buffer(domain->iommu); |
| 1624 | } |
| 1625 | return ret; |
| 1626 | } |
| 1627 | |
| 1628 | static void __intel_unmap_single(struct device *dev, dma_addr_t dev_addr, |
| 1629 | size_t size, int dir, u64 *flush_addr, unsigned int *flush_size) |
| 1630 | { |
| 1631 | struct dmar_domain *domain; |
| 1632 | struct pci_dev *pdev = to_pci_dev(dev); |
| 1633 | struct iova *iova; |
| 1634 | |
| 1635 | domain = find_domain(pdev); |
| 1636 | BUG_ON(!domain); |
| 1637 | |
| 1638 | iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr)); |
| 1639 | if (!iova) { |
| 1640 | *flush_size = 0; |
| 1641 | return; |
| 1642 | } |
| 1643 | pr_debug("Device %s unmapping: %lx@%llx\n", |
| 1644 | pci_name(pdev), |
| 1645 | (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT_4K, |
| 1646 | (u64)(iova->pfn_lo << PAGE_SHIFT_4K)); |
| 1647 | |
| 1648 | *flush_addr = iova->pfn_lo << PAGE_SHIFT_4K; |
| 1649 | *flush_size = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT_4K; |
| 1650 | /* clear the whole page, not just dev_addr - (dev_addr + size) */ |
| 1651 | dma_pte_clear_range(domain, *flush_addr, *flush_addr + *flush_size); |
| 1652 | /* free page tables */ |
| 1653 | dma_pte_free_pagetable(domain, *flush_addr, *flush_addr + *flush_size); |
| 1654 | /* free iova */ |
| 1655 | __free_iova(&domain->iovad, iova); |
| 1656 | } |
| 1657 | |
| 1658 | static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, |
| 1659 | size_t size, int dir) |
| 1660 | { |
| 1661 | struct pci_dev *pdev = to_pci_dev(dev); |
| 1662 | struct dmar_domain *domain; |
| 1663 | u64 flush_addr; |
| 1664 | unsigned int flush_size; |
| 1665 | |
| 1666 | if (pdev->sysdata == DUMMY_DEVICE_DOMAIN_INFO) |
| 1667 | return; |
| 1668 | |
| 1669 | domain = find_domain(pdev); |
| 1670 | __intel_unmap_single(dev, dev_addr, size, |
| 1671 | dir, &flush_addr, &flush_size); |
| 1672 | if (flush_size == 0) |
| 1673 | return; |
| 1674 | if (iommu_flush_iotlb_psi(domain->iommu, domain->id, flush_addr, |
| 1675 | flush_size >> PAGE_SHIFT_4K, 0)) |
| 1676 | iommu_flush_write_buffer(domain->iommu); |
| 1677 | } |
| 1678 | |
| 1679 | static void * intel_alloc_coherent(struct device *hwdev, size_t size, |
| 1680 | dma_addr_t *dma_handle, gfp_t flags) |
| 1681 | { |
| 1682 | void *vaddr; |
| 1683 | int order; |
| 1684 | |
| 1685 | size = PAGE_ALIGN_4K(size); |
| 1686 | order = get_order(size); |
| 1687 | flags &= ~(GFP_DMA | GFP_DMA32); |
| 1688 | |
| 1689 | vaddr = (void *)__get_free_pages(flags, order); |
| 1690 | if (!vaddr) |
| 1691 | return NULL; |
| 1692 | memset(vaddr, 0, size); |
| 1693 | |
| 1694 | *dma_handle = intel_map_single(hwdev, vaddr, size, DMA_BIDIRECTIONAL); |
| 1695 | if (*dma_handle) |
| 1696 | return vaddr; |
| 1697 | free_pages((unsigned long)vaddr, order); |
| 1698 | return NULL; |
| 1699 | } |
| 1700 | |
| 1701 | static void intel_free_coherent(struct device *hwdev, size_t size, |
| 1702 | void *vaddr, dma_addr_t dma_handle) |
| 1703 | { |
| 1704 | int order; |
| 1705 | |
| 1706 | size = PAGE_ALIGN_4K(size); |
| 1707 | order = get_order(size); |
| 1708 | |
| 1709 | intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL); |
| 1710 | free_pages((unsigned long)vaddr, order); |
| 1711 | } |
| 1712 | |
| 1713 | static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sg, |
| 1714 | int nelems, int dir) |
| 1715 | { |
| 1716 | int i; |
| 1717 | struct pci_dev *pdev = to_pci_dev(hwdev); |
| 1718 | struct dmar_domain *domain; |
| 1719 | u64 flush_addr; |
| 1720 | unsigned int flush_size; |
| 1721 | |
| 1722 | if (pdev->sysdata == DUMMY_DEVICE_DOMAIN_INFO) |
| 1723 | return; |
| 1724 | |
| 1725 | domain = find_domain(pdev); |
| 1726 | for (i = 0; i < nelems; i++, sg++) |
| 1727 | __intel_unmap_single(hwdev, sg->dma_address, |
| 1728 | sg->dma_length, dir, &flush_addr, &flush_size); |
| 1729 | |
| 1730 | if (iommu_flush_iotlb_dsi(domain->iommu, domain->id, 0)) |
| 1731 | iommu_flush_write_buffer(domain->iommu); |
| 1732 | } |
| 1733 | |
| 1734 | #define SG_ENT_VIRT_ADDRESS(sg) (page_address((sg)->page) + (sg)->offset) |
| 1735 | static int intel_nontranslate_map_sg(struct device *hddev, |
| 1736 | struct scatterlist *sg, int nelems, int dir) |
| 1737 | { |
| 1738 | int i; |
| 1739 | |
| 1740 | for (i = 0; i < nelems; i++) { |
| 1741 | struct scatterlist *s = &sg[i]; |
| 1742 | BUG_ON(!s->page); |
| 1743 | s->dma_address = virt_to_bus(SG_ENT_VIRT_ADDRESS(s)); |
| 1744 | s->dma_length = s->length; |
| 1745 | } |
| 1746 | return nelems; |
| 1747 | } |
| 1748 | |
| 1749 | static int intel_map_sg(struct device *hwdev, struct scatterlist *sg, |
| 1750 | int nelems, int dir) |
| 1751 | { |
| 1752 | void *addr; |
| 1753 | int i; |
| 1754 | dma_addr_t dma_handle; |
| 1755 | struct pci_dev *pdev = to_pci_dev(hwdev); |
| 1756 | struct dmar_domain *domain; |
| 1757 | u64 flush_addr; |
| 1758 | unsigned int flush_size; |
| 1759 | |
| 1760 | BUG_ON(dir == DMA_NONE); |
| 1761 | if (pdev->sysdata == DUMMY_DEVICE_DOMAIN_INFO) |
| 1762 | return intel_nontranslate_map_sg(hwdev, sg, nelems, dir); |
| 1763 | |
| 1764 | for (i = 0; i < nelems; i++, sg++) { |
| 1765 | addr = SG_ENT_VIRT_ADDRESS(sg); |
| 1766 | dma_handle = __intel_map_single(hwdev, addr, |
| 1767 | sg->length, dir, &flush_addr, &flush_size); |
| 1768 | if (!dma_handle) { |
| 1769 | intel_unmap_sg(hwdev, sg - i, i, dir); |
| 1770 | sg[0].dma_length = 0; |
| 1771 | return 0; |
| 1772 | } |
| 1773 | sg->dma_address = dma_handle; |
| 1774 | sg->dma_length = sg->length; |
| 1775 | } |
| 1776 | |
| 1777 | domain = find_domain(pdev); |
| 1778 | |
| 1779 | /* it's a non-present to present mapping */ |
| 1780 | if (iommu_flush_iotlb_dsi(domain->iommu, domain->id, 1)) |
| 1781 | iommu_flush_write_buffer(domain->iommu); |
| 1782 | return nelems; |
| 1783 | } |
| 1784 | |
| 1785 | static struct dma_mapping_ops intel_dma_ops = { |
| 1786 | .alloc_coherent = intel_alloc_coherent, |
| 1787 | .free_coherent = intel_free_coherent, |
| 1788 | .map_single = intel_map_single, |
| 1789 | .unmap_single = intel_unmap_single, |
| 1790 | .map_sg = intel_map_sg, |
| 1791 | .unmap_sg = intel_unmap_sg, |
| 1792 | }; |
| 1793 | |
| 1794 | static inline int iommu_domain_cache_init(void) |
| 1795 | { |
| 1796 | int ret = 0; |
| 1797 | |
| 1798 | iommu_domain_cache = kmem_cache_create("iommu_domain", |
| 1799 | sizeof(struct dmar_domain), |
| 1800 | 0, |
| 1801 | SLAB_HWCACHE_ALIGN, |
| 1802 | |
| 1803 | NULL); |
| 1804 | if (!iommu_domain_cache) { |
| 1805 | printk(KERN_ERR "Couldn't create iommu_domain cache\n"); |
| 1806 | ret = -ENOMEM; |
| 1807 | } |
| 1808 | |
| 1809 | return ret; |
| 1810 | } |
| 1811 | |
| 1812 | static inline int iommu_devinfo_cache_init(void) |
| 1813 | { |
| 1814 | int ret = 0; |
| 1815 | |
| 1816 | iommu_devinfo_cache = kmem_cache_create("iommu_devinfo", |
| 1817 | sizeof(struct device_domain_info), |
| 1818 | 0, |
| 1819 | SLAB_HWCACHE_ALIGN, |
| 1820 | |
| 1821 | NULL); |
| 1822 | if (!iommu_devinfo_cache) { |
| 1823 | printk(KERN_ERR "Couldn't create devinfo cache\n"); |
| 1824 | ret = -ENOMEM; |
| 1825 | } |
| 1826 | |
| 1827 | return ret; |
| 1828 | } |
| 1829 | |
| 1830 | static inline int iommu_iova_cache_init(void) |
| 1831 | { |
| 1832 | int ret = 0; |
| 1833 | |
| 1834 | iommu_iova_cache = kmem_cache_create("iommu_iova", |
| 1835 | sizeof(struct iova), |
| 1836 | 0, |
| 1837 | SLAB_HWCACHE_ALIGN, |
| 1838 | |
| 1839 | NULL); |
| 1840 | if (!iommu_iova_cache) { |
| 1841 | printk(KERN_ERR "Couldn't create iova cache\n"); |
| 1842 | ret = -ENOMEM; |
| 1843 | } |
| 1844 | |
| 1845 | return ret; |
| 1846 | } |
| 1847 | |
| 1848 | static int __init iommu_init_mempool(void) |
| 1849 | { |
| 1850 | int ret; |
| 1851 | ret = iommu_iova_cache_init(); |
| 1852 | if (ret) |
| 1853 | return ret; |
| 1854 | |
| 1855 | ret = iommu_domain_cache_init(); |
| 1856 | if (ret) |
| 1857 | goto domain_error; |
| 1858 | |
| 1859 | ret = iommu_devinfo_cache_init(); |
| 1860 | if (!ret) |
| 1861 | return ret; |
| 1862 | |
| 1863 | kmem_cache_destroy(iommu_domain_cache); |
| 1864 | domain_error: |
| 1865 | kmem_cache_destroy(iommu_iova_cache); |
| 1866 | |
| 1867 | return -ENOMEM; |
| 1868 | } |
| 1869 | |
| 1870 | static void __init iommu_exit_mempool(void) |
| 1871 | { |
| 1872 | kmem_cache_destroy(iommu_devinfo_cache); |
| 1873 | kmem_cache_destroy(iommu_domain_cache); |
| 1874 | kmem_cache_destroy(iommu_iova_cache); |
| 1875 | |
| 1876 | } |
| 1877 | |
| 1878 | void __init detect_intel_iommu(void) |
| 1879 | { |
| 1880 | if (swiotlb || no_iommu || iommu_detected || dmar_disabled) |
| 1881 | return; |
| 1882 | if (early_dmar_detect()) { |
| 1883 | iommu_detected = 1; |
| 1884 | } |
| 1885 | } |
| 1886 | |
| 1887 | static void __init init_no_remapping_devices(void) |
| 1888 | { |
| 1889 | struct dmar_drhd_unit *drhd; |
| 1890 | |
| 1891 | for_each_drhd_unit(drhd) { |
| 1892 | if (!drhd->include_all) { |
| 1893 | int i; |
| 1894 | for (i = 0; i < drhd->devices_cnt; i++) |
| 1895 | if (drhd->devices[i] != NULL) |
| 1896 | break; |
| 1897 | /* ignore DMAR unit if no pci devices exist */ |
| 1898 | if (i == drhd->devices_cnt) |
| 1899 | drhd->ignored = 1; |
| 1900 | } |
| 1901 | } |
| 1902 | |
| 1903 | if (dmar_map_gfx) |
| 1904 | return; |
| 1905 | |
| 1906 | for_each_drhd_unit(drhd) { |
| 1907 | int i; |
| 1908 | if (drhd->ignored || drhd->include_all) |
| 1909 | continue; |
| 1910 | |
| 1911 | for (i = 0; i < drhd->devices_cnt; i++) |
| 1912 | if (drhd->devices[i] && |
| 1913 | !IS_GFX_DEVICE(drhd->devices[i])) |
| 1914 | break; |
| 1915 | |
| 1916 | if (i < drhd->devices_cnt) |
| 1917 | continue; |
| 1918 | |
| 1919 | /* bypass IOMMU if it is just for gfx devices */ |
| 1920 | drhd->ignored = 1; |
| 1921 | for (i = 0; i < drhd->devices_cnt; i++) { |
| 1922 | if (!drhd->devices[i]) |
| 1923 | continue; |
| 1924 | drhd->devices[i]->sysdata = DUMMY_DEVICE_DOMAIN_INFO; |
| 1925 | } |
| 1926 | } |
| 1927 | } |
| 1928 | |
| 1929 | int __init intel_iommu_init(void) |
| 1930 | { |
| 1931 | int ret = 0; |
| 1932 | |
| 1933 | if (no_iommu || swiotlb || dmar_disabled) |
| 1934 | return -ENODEV; |
| 1935 | |
| 1936 | if (dmar_table_init()) |
| 1937 | return -ENODEV; |
| 1938 | |
| 1939 | iommu_init_mempool(); |
| 1940 | dmar_init_reserved_ranges(); |
| 1941 | |
| 1942 | init_no_remapping_devices(); |
| 1943 | |
| 1944 | ret = init_dmars(); |
| 1945 | if (ret) { |
| 1946 | printk(KERN_ERR "IOMMU: dmar init failed\n"); |
| 1947 | put_iova_domain(&reserved_iova_list); |
| 1948 | iommu_exit_mempool(); |
| 1949 | return ret; |
| 1950 | } |
| 1951 | printk(KERN_INFO |
| 1952 | "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n"); |
| 1953 | |
| 1954 | force_iommu = 1; |
| 1955 | dma_ops = &intel_dma_ops; |
| 1956 | return 0; |
| 1957 | } |