blob: 35e098d4d749f31947dedeeeaaa7d1fec2124130 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
Tim Shimmin87c199c2006-06-09 14:56:16 +10002 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
Nathan Scott7b718762005-11-02 14:58:39 +11003 * All Rights Reserved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004 *
Nathan Scott7b718762005-11-02 14:58:39 +11005 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
Linus Torvalds1da177e2005-04-16 15:20:36 -07007 * published by the Free Software Foundation.
8 *
Nathan Scott7b718762005-11-02 14:58:39 +11009 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
Linus Torvalds1da177e2005-04-16 15:20:36 -070013 *
Nathan Scott7b718762005-11-02 14:58:39 +110014 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Linus Torvalds1da177e2005-04-16 15:20:36 -070017 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070018#include "xfs.h"
Nathan Scotta844f452005-11-02 14:38:42 +110019#include "xfs_fs.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070020#include "xfs_types.h"
Nathan Scotta844f452005-11-02 14:38:42 +110021#include "xfs_bit.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070022#include "xfs_log.h"
Nathan Scotta844f452005-11-02 14:38:42 +110023#include "xfs_inum.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070024#include "xfs_trans.h"
Nathan Scotta844f452005-11-02 14:38:42 +110025#include "xfs_sb.h"
26#include "xfs_ag.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070027#include "xfs_dir2.h"
28#include "xfs_dmapi.h"
29#include "xfs_mount.h"
30#include "xfs_error.h"
31#include "xfs_bmap_btree.h"
Nathan Scotta844f452005-11-02 14:38:42 +110032#include "xfs_alloc_btree.h"
33#include "xfs_ialloc_btree.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070034#include "xfs_dir2_sf.h"
Nathan Scotta844f452005-11-02 14:38:42 +110035#include "xfs_attr_sf.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070036#include "xfs_dinode.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070037#include "xfs_inode.h"
Nathan Scotta844f452005-11-02 14:38:42 +110038#include "xfs_inode_item.h"
39#include "xfs_imap.h"
40#include "xfs_alloc.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070041#include "xfs_ialloc.h"
42#include "xfs_log_priv.h"
43#include "xfs_buf_item.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070044#include "xfs_log_recover.h"
45#include "xfs_extfree_item.h"
46#include "xfs_trans_priv.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070047#include "xfs_quota.h"
48#include "xfs_rw.h"
49
50STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
51STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
52STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
53 xlog_recover_item_t *item);
54#if defined(DEBUG)
55STATIC void xlog_recover_check_summary(xlog_t *);
56STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
57#else
58#define xlog_recover_check_summary(log)
59#define xlog_recover_check_ail(mp, lip, gen)
60#endif
61
62
63/*
64 * Sector aligned buffer routines for buffer create/read/write/access
65 */
66
67#define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
68 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
69 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
70#define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
71
72xfs_buf_t *
73xlog_get_bp(
74 xlog_t *log,
75 int num_bblks)
76{
77 ASSERT(num_bblks > 0);
78
79 if (log->l_sectbb_log) {
80 if (num_bblks > 1)
81 num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
82 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
83 }
84 return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
85}
86
87void
88xlog_put_bp(
89 xfs_buf_t *bp)
90{
91 xfs_buf_free(bp);
92}
93
94
95/*
96 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
97 */
98int
99xlog_bread(
100 xlog_t *log,
101 xfs_daddr_t blk_no,
102 int nbblks,
103 xfs_buf_t *bp)
104{
105 int error;
106
107 if (log->l_sectbb_log) {
108 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
109 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
110 }
111
112 ASSERT(nbblks > 0);
113 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
114 ASSERT(bp);
115
116 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
117 XFS_BUF_READ(bp);
118 XFS_BUF_BUSY(bp);
119 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
120 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
121
122 xfsbdstrat(log->l_mp, bp);
123 if ((error = xfs_iowait(bp)))
124 xfs_ioerror_alert("xlog_bread", log->l_mp,
125 bp, XFS_BUF_ADDR(bp));
126 return error;
127}
128
129/*
130 * Write out the buffer at the given block for the given number of blocks.
131 * The buffer is kept locked across the write and is returned locked.
132 * This can only be used for synchronous log writes.
133 */
Christoph Hellwigba0f32d2005-06-21 15:36:52 +1000134STATIC int
Linus Torvalds1da177e2005-04-16 15:20:36 -0700135xlog_bwrite(
136 xlog_t *log,
137 xfs_daddr_t blk_no,
138 int nbblks,
139 xfs_buf_t *bp)
140{
141 int error;
142
143 if (log->l_sectbb_log) {
144 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
145 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
146 }
147
148 ASSERT(nbblks > 0);
149 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
150
151 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
152 XFS_BUF_ZEROFLAGS(bp);
153 XFS_BUF_BUSY(bp);
154 XFS_BUF_HOLD(bp);
155 XFS_BUF_PSEMA(bp, PRIBIO);
156 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
157 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
158
159 if ((error = xfs_bwrite(log->l_mp, bp)))
160 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
161 bp, XFS_BUF_ADDR(bp));
162 return error;
163}
164
Christoph Hellwigba0f32d2005-06-21 15:36:52 +1000165STATIC xfs_caddr_t
Linus Torvalds1da177e2005-04-16 15:20:36 -0700166xlog_align(
167 xlog_t *log,
168 xfs_daddr_t blk_no,
169 int nbblks,
170 xfs_buf_t *bp)
171{
172 xfs_caddr_t ptr;
173
174 if (!log->l_sectbb_log)
175 return XFS_BUF_PTR(bp);
176
177 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
178 ASSERT(XFS_BUF_SIZE(bp) >=
179 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
180 return ptr;
181}
182
183#ifdef DEBUG
184/*
185 * dump debug superblock and log record information
186 */
187STATIC void
188xlog_header_check_dump(
189 xfs_mount_t *mp,
190 xlog_rec_header_t *head)
191{
192 int b;
193
Nathan Scottb6574522006-06-09 15:29:40 +1000194 cmn_err(CE_DEBUG, "%s: SB : uuid = ", __FUNCTION__);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700195 for (b = 0; b < 16; b++)
Nathan Scottb6574522006-06-09 15:29:40 +1000196 cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
197 cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
198 cmn_err(CE_DEBUG, " log : uuid = ");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700199 for (b = 0; b < 16; b++)
Nathan Scottb6574522006-06-09 15:29:40 +1000200 cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
Christoph Hellwigb53e6752007-10-12 10:59:34 +1000201 cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700202}
203#else
204#define xlog_header_check_dump(mp, head)
205#endif
206
207/*
208 * check log record header for recovery
209 */
210STATIC int
211xlog_header_check_recover(
212 xfs_mount_t *mp,
213 xlog_rec_header_t *head)
214{
Christoph Hellwigb53e6752007-10-12 10:59:34 +1000215 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700216
217 /*
218 * IRIX doesn't write the h_fmt field and leaves it zeroed
219 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
220 * a dirty log created in IRIX.
221 */
Christoph Hellwigb53e6752007-10-12 10:59:34 +1000222 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700223 xlog_warn(
224 "XFS: dirty log written in incompatible format - can't recover");
225 xlog_header_check_dump(mp, head);
226 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
227 XFS_ERRLEVEL_HIGH, mp);
228 return XFS_ERROR(EFSCORRUPTED);
229 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
230 xlog_warn(
231 "XFS: dirty log entry has mismatched uuid - can't recover");
232 xlog_header_check_dump(mp, head);
233 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
234 XFS_ERRLEVEL_HIGH, mp);
235 return XFS_ERROR(EFSCORRUPTED);
236 }
237 return 0;
238}
239
240/*
241 * read the head block of the log and check the header
242 */
243STATIC int
244xlog_header_check_mount(
245 xfs_mount_t *mp,
246 xlog_rec_header_t *head)
247{
Christoph Hellwigb53e6752007-10-12 10:59:34 +1000248 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700249
250 if (uuid_is_nil(&head->h_fs_uuid)) {
251 /*
252 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
253 * h_fs_uuid is nil, we assume this log was last mounted
254 * by IRIX and continue.
255 */
256 xlog_warn("XFS: nil uuid in log - IRIX style log");
257 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
258 xlog_warn("XFS: log has mismatched uuid - can't recover");
259 xlog_header_check_dump(mp, head);
260 XFS_ERROR_REPORT("xlog_header_check_mount",
261 XFS_ERRLEVEL_HIGH, mp);
262 return XFS_ERROR(EFSCORRUPTED);
263 }
264 return 0;
265}
266
267STATIC void
268xlog_recover_iodone(
269 struct xfs_buf *bp)
270{
271 xfs_mount_t *mp;
272
273 ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
274
275 if (XFS_BUF_GETERROR(bp)) {
276 /*
277 * We're not going to bother about retrying
278 * this during recovery. One strike!
279 */
280 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
281 xfs_ioerror_alert("xlog_recover_iodone",
282 mp, bp, XFS_BUF_ADDR(bp));
Nathan Scott7d04a332006-06-09 14:58:38 +1000283 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700284 }
285 XFS_BUF_SET_FSPRIVATE(bp, NULL);
286 XFS_BUF_CLR_IODONE_FUNC(bp);
287 xfs_biodone(bp);
288}
289
290/*
291 * This routine finds (to an approximation) the first block in the physical
292 * log which contains the given cycle. It uses a binary search algorithm.
293 * Note that the algorithm can not be perfect because the disk will not
294 * necessarily be perfect.
295 */
296int
297xlog_find_cycle_start(
298 xlog_t *log,
299 xfs_buf_t *bp,
300 xfs_daddr_t first_blk,
301 xfs_daddr_t *last_blk,
302 uint cycle)
303{
304 xfs_caddr_t offset;
305 xfs_daddr_t mid_blk;
306 uint mid_cycle;
307 int error;
308
309 mid_blk = BLK_AVG(first_blk, *last_blk);
310 while (mid_blk != first_blk && mid_blk != *last_blk) {
311 if ((error = xlog_bread(log, mid_blk, 1, bp)))
312 return error;
313 offset = xlog_align(log, mid_blk, 1, bp);
Christoph Hellwig03bea6f2007-10-12 10:58:05 +1000314 mid_cycle = xlog_get_cycle(offset);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700315 if (mid_cycle == cycle) {
316 *last_blk = mid_blk;
317 /* last_half_cycle == mid_cycle */
318 } else {
319 first_blk = mid_blk;
320 /* first_half_cycle == mid_cycle */
321 }
322 mid_blk = BLK_AVG(first_blk, *last_blk);
323 }
324 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
325 (mid_blk == *last_blk && mid_blk-1 == first_blk));
326
327 return 0;
328}
329
330/*
331 * Check that the range of blocks does not contain the cycle number
332 * given. The scan needs to occur from front to back and the ptr into the
333 * region must be updated since a later routine will need to perform another
334 * test. If the region is completely good, we end up returning the same
335 * last block number.
336 *
337 * Set blkno to -1 if we encounter no errors. This is an invalid block number
338 * since we don't ever expect logs to get this large.
339 */
340STATIC int
341xlog_find_verify_cycle(
342 xlog_t *log,
343 xfs_daddr_t start_blk,
344 int nbblks,
345 uint stop_on_cycle_no,
346 xfs_daddr_t *new_blk)
347{
348 xfs_daddr_t i, j;
349 uint cycle;
350 xfs_buf_t *bp;
351 xfs_daddr_t bufblks;
352 xfs_caddr_t buf = NULL;
353 int error = 0;
354
355 bufblks = 1 << ffs(nbblks);
356
357 while (!(bp = xlog_get_bp(log, bufblks))) {
358 /* can't get enough memory to do everything in one big buffer */
359 bufblks >>= 1;
360 if (bufblks <= log->l_sectbb_log)
361 return ENOMEM;
362 }
363
364 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
365 int bcount;
366
367 bcount = min(bufblks, (start_blk + nbblks - i));
368
369 if ((error = xlog_bread(log, i, bcount, bp)))
370 goto out;
371
372 buf = xlog_align(log, i, bcount, bp);
373 for (j = 0; j < bcount; j++) {
Christoph Hellwig03bea6f2007-10-12 10:58:05 +1000374 cycle = xlog_get_cycle(buf);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700375 if (cycle == stop_on_cycle_no) {
376 *new_blk = i+j;
377 goto out;
378 }
379
380 buf += BBSIZE;
381 }
382 }
383
384 *new_blk = -1;
385
386out:
387 xlog_put_bp(bp);
388 return error;
389}
390
391/*
392 * Potentially backup over partial log record write.
393 *
394 * In the typical case, last_blk is the number of the block directly after
395 * a good log record. Therefore, we subtract one to get the block number
396 * of the last block in the given buffer. extra_bblks contains the number
397 * of blocks we would have read on a previous read. This happens when the
398 * last log record is split over the end of the physical log.
399 *
400 * extra_bblks is the number of blocks potentially verified on a previous
401 * call to this routine.
402 */
403STATIC int
404xlog_find_verify_log_record(
405 xlog_t *log,
406 xfs_daddr_t start_blk,
407 xfs_daddr_t *last_blk,
408 int extra_bblks)
409{
410 xfs_daddr_t i;
411 xfs_buf_t *bp;
412 xfs_caddr_t offset = NULL;
413 xlog_rec_header_t *head = NULL;
414 int error = 0;
415 int smallmem = 0;
416 int num_blks = *last_blk - start_blk;
417 int xhdrs;
418
419 ASSERT(start_blk != 0 || *last_blk != start_blk);
420
421 if (!(bp = xlog_get_bp(log, num_blks))) {
422 if (!(bp = xlog_get_bp(log, 1)))
423 return ENOMEM;
424 smallmem = 1;
425 } else {
426 if ((error = xlog_bread(log, start_blk, num_blks, bp)))
427 goto out;
428 offset = xlog_align(log, start_blk, num_blks, bp);
429 offset += ((num_blks - 1) << BBSHIFT);
430 }
431
432 for (i = (*last_blk) - 1; i >= 0; i--) {
433 if (i < start_blk) {
434 /* valid log record not found */
435 xlog_warn(
436 "XFS: Log inconsistent (didn't find previous header)");
437 ASSERT(0);
438 error = XFS_ERROR(EIO);
439 goto out;
440 }
441
442 if (smallmem) {
443 if ((error = xlog_bread(log, i, 1, bp)))
444 goto out;
445 offset = xlog_align(log, i, 1, bp);
446 }
447
448 head = (xlog_rec_header_t *)offset;
449
Christoph Hellwigb53e6752007-10-12 10:59:34 +1000450 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700451 break;
452
453 if (!smallmem)
454 offset -= BBSIZE;
455 }
456
457 /*
458 * We hit the beginning of the physical log & still no header. Return
459 * to caller. If caller can handle a return of -1, then this routine
460 * will be called again for the end of the physical log.
461 */
462 if (i == -1) {
463 error = -1;
464 goto out;
465 }
466
467 /*
468 * We have the final block of the good log (the first block
469 * of the log record _before_ the head. So we check the uuid.
470 */
471 if ((error = xlog_header_check_mount(log->l_mp, head)))
472 goto out;
473
474 /*
475 * We may have found a log record header before we expected one.
476 * last_blk will be the 1st block # with a given cycle #. We may end
477 * up reading an entire log record. In this case, we don't want to
478 * reset last_blk. Only when last_blk points in the middle of a log
479 * record do we update last_blk.
480 */
481 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
Christoph Hellwigb53e6752007-10-12 10:59:34 +1000482 uint h_size = be32_to_cpu(head->h_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700483
484 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
485 if (h_size % XLOG_HEADER_CYCLE_SIZE)
486 xhdrs++;
487 } else {
488 xhdrs = 1;
489 }
490
Christoph Hellwigb53e6752007-10-12 10:59:34 +1000491 if (*last_blk - i + extra_bblks !=
492 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700493 *last_blk = i;
494
495out:
496 xlog_put_bp(bp);
497 return error;
498}
499
500/*
501 * Head is defined to be the point of the log where the next log write
502 * write could go. This means that incomplete LR writes at the end are
503 * eliminated when calculating the head. We aren't guaranteed that previous
504 * LR have complete transactions. We only know that a cycle number of
505 * current cycle number -1 won't be present in the log if we start writing
506 * from our current block number.
507 *
508 * last_blk contains the block number of the first block with a given
509 * cycle number.
510 *
511 * Return: zero if normal, non-zero if error.
512 */
Christoph Hellwigba0f32d2005-06-21 15:36:52 +1000513STATIC int
Linus Torvalds1da177e2005-04-16 15:20:36 -0700514xlog_find_head(
515 xlog_t *log,
516 xfs_daddr_t *return_head_blk)
517{
518 xfs_buf_t *bp;
519 xfs_caddr_t offset;
520 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
521 int num_scan_bblks;
522 uint first_half_cycle, last_half_cycle;
523 uint stop_on_cycle;
524 int error, log_bbnum = log->l_logBBsize;
525
526 /* Is the end of the log device zeroed? */
527 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
528 *return_head_blk = first_blk;
529
530 /* Is the whole lot zeroed? */
531 if (!first_blk) {
532 /* Linux XFS shouldn't generate totally zeroed logs -
533 * mkfs etc write a dummy unmount record to a fresh
534 * log so we can store the uuid in there
535 */
536 xlog_warn("XFS: totally zeroed log");
537 }
538
539 return 0;
540 } else if (error) {
541 xlog_warn("XFS: empty log check failed");
542 return error;
543 }
544
545 first_blk = 0; /* get cycle # of 1st block */
546 bp = xlog_get_bp(log, 1);
547 if (!bp)
548 return ENOMEM;
549 if ((error = xlog_bread(log, 0, 1, bp)))
550 goto bp_err;
551 offset = xlog_align(log, 0, 1, bp);
Christoph Hellwig03bea6f2007-10-12 10:58:05 +1000552 first_half_cycle = xlog_get_cycle(offset);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700553
554 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
555 if ((error = xlog_bread(log, last_blk, 1, bp)))
556 goto bp_err;
557 offset = xlog_align(log, last_blk, 1, bp);
Christoph Hellwig03bea6f2007-10-12 10:58:05 +1000558 last_half_cycle = xlog_get_cycle(offset);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700559 ASSERT(last_half_cycle != 0);
560
561 /*
562 * If the 1st half cycle number is equal to the last half cycle number,
563 * then the entire log is stamped with the same cycle number. In this
564 * case, head_blk can't be set to zero (which makes sense). The below
565 * math doesn't work out properly with head_blk equal to zero. Instead,
566 * we set it to log_bbnum which is an invalid block number, but this
567 * value makes the math correct. If head_blk doesn't changed through
568 * all the tests below, *head_blk is set to zero at the very end rather
569 * than log_bbnum. In a sense, log_bbnum and zero are the same block
570 * in a circular file.
571 */
572 if (first_half_cycle == last_half_cycle) {
573 /*
574 * In this case we believe that the entire log should have
575 * cycle number last_half_cycle. We need to scan backwards
576 * from the end verifying that there are no holes still
577 * containing last_half_cycle - 1. If we find such a hole,
578 * then the start of that hole will be the new head. The
579 * simple case looks like
580 * x | x ... | x - 1 | x
581 * Another case that fits this picture would be
582 * x | x + 1 | x ... | x
Nathan Scottc41564b2006-03-29 08:55:14 +1000583 * In this case the head really is somewhere at the end of the
Linus Torvalds1da177e2005-04-16 15:20:36 -0700584 * log, as one of the latest writes at the beginning was
585 * incomplete.
586 * One more case is
587 * x | x + 1 | x ... | x - 1 | x
588 * This is really the combination of the above two cases, and
589 * the head has to end up at the start of the x-1 hole at the
590 * end of the log.
591 *
592 * In the 256k log case, we will read from the beginning to the
593 * end of the log and search for cycle numbers equal to x-1.
594 * We don't worry about the x+1 blocks that we encounter,
595 * because we know that they cannot be the head since the log
596 * started with x.
597 */
598 head_blk = log_bbnum;
599 stop_on_cycle = last_half_cycle - 1;
600 } else {
601 /*
602 * In this case we want to find the first block with cycle
603 * number matching last_half_cycle. We expect the log to be
604 * some variation on
605 * x + 1 ... | x ...
606 * The first block with cycle number x (last_half_cycle) will
607 * be where the new head belongs. First we do a binary search
608 * for the first occurrence of last_half_cycle. The binary
609 * search may not be totally accurate, so then we scan back
610 * from there looking for occurrences of last_half_cycle before
611 * us. If that backwards scan wraps around the beginning of
612 * the log, then we look for occurrences of last_half_cycle - 1
613 * at the end of the log. The cases we're looking for look
614 * like
615 * x + 1 ... | x | x + 1 | x ...
616 * ^ binary search stopped here
617 * or
618 * x + 1 ... | x ... | x - 1 | x
619 * <---------> less than scan distance
620 */
621 stop_on_cycle = last_half_cycle;
622 if ((error = xlog_find_cycle_start(log, bp, first_blk,
623 &head_blk, last_half_cycle)))
624 goto bp_err;
625 }
626
627 /*
628 * Now validate the answer. Scan back some number of maximum possible
629 * blocks and make sure each one has the expected cycle number. The
630 * maximum is determined by the total possible amount of buffering
631 * in the in-core log. The following number can be made tighter if
632 * we actually look at the block size of the filesystem.
633 */
634 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
635 if (head_blk >= num_scan_bblks) {
636 /*
637 * We are guaranteed that the entire check can be performed
638 * in one buffer.
639 */
640 start_blk = head_blk - num_scan_bblks;
641 if ((error = xlog_find_verify_cycle(log,
642 start_blk, num_scan_bblks,
643 stop_on_cycle, &new_blk)))
644 goto bp_err;
645 if (new_blk != -1)
646 head_blk = new_blk;
647 } else { /* need to read 2 parts of log */
648 /*
649 * We are going to scan backwards in the log in two parts.
650 * First we scan the physical end of the log. In this part
651 * of the log, we are looking for blocks with cycle number
652 * last_half_cycle - 1.
653 * If we find one, then we know that the log starts there, as
654 * we've found a hole that didn't get written in going around
655 * the end of the physical log. The simple case for this is
656 * x + 1 ... | x ... | x - 1 | x
657 * <---------> less than scan distance
658 * If all of the blocks at the end of the log have cycle number
659 * last_half_cycle, then we check the blocks at the start of
660 * the log looking for occurrences of last_half_cycle. If we
661 * find one, then our current estimate for the location of the
662 * first occurrence of last_half_cycle is wrong and we move
663 * back to the hole we've found. This case looks like
664 * x + 1 ... | x | x + 1 | x ...
665 * ^ binary search stopped here
666 * Another case we need to handle that only occurs in 256k
667 * logs is
668 * x + 1 ... | x ... | x+1 | x ...
669 * ^ binary search stops here
670 * In a 256k log, the scan at the end of the log will see the
671 * x + 1 blocks. We need to skip past those since that is
672 * certainly not the head of the log. By searching for
673 * last_half_cycle-1 we accomplish that.
674 */
675 start_blk = log_bbnum - num_scan_bblks + head_blk;
676 ASSERT(head_blk <= INT_MAX &&
677 (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
678 if ((error = xlog_find_verify_cycle(log, start_blk,
679 num_scan_bblks - (int)head_blk,
680 (stop_on_cycle - 1), &new_blk)))
681 goto bp_err;
682 if (new_blk != -1) {
683 head_blk = new_blk;
684 goto bad_blk;
685 }
686
687 /*
688 * Scan beginning of log now. The last part of the physical
689 * log is good. This scan needs to verify that it doesn't find
690 * the last_half_cycle.
691 */
692 start_blk = 0;
693 ASSERT(head_blk <= INT_MAX);
694 if ((error = xlog_find_verify_cycle(log,
695 start_blk, (int)head_blk,
696 stop_on_cycle, &new_blk)))
697 goto bp_err;
698 if (new_blk != -1)
699 head_blk = new_blk;
700 }
701
702 bad_blk:
703 /*
704 * Now we need to make sure head_blk is not pointing to a block in
705 * the middle of a log record.
706 */
707 num_scan_bblks = XLOG_REC_SHIFT(log);
708 if (head_blk >= num_scan_bblks) {
709 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
710
711 /* start ptr at last block ptr before head_blk */
712 if ((error = xlog_find_verify_log_record(log, start_blk,
713 &head_blk, 0)) == -1) {
714 error = XFS_ERROR(EIO);
715 goto bp_err;
716 } else if (error)
717 goto bp_err;
718 } else {
719 start_blk = 0;
720 ASSERT(head_blk <= INT_MAX);
721 if ((error = xlog_find_verify_log_record(log, start_blk,
722 &head_blk, 0)) == -1) {
723 /* We hit the beginning of the log during our search */
724 start_blk = log_bbnum - num_scan_bblks + head_blk;
725 new_blk = log_bbnum;
726 ASSERT(start_blk <= INT_MAX &&
727 (xfs_daddr_t) log_bbnum-start_blk >= 0);
728 ASSERT(head_blk <= INT_MAX);
729 if ((error = xlog_find_verify_log_record(log,
730 start_blk, &new_blk,
731 (int)head_blk)) == -1) {
732 error = XFS_ERROR(EIO);
733 goto bp_err;
734 } else if (error)
735 goto bp_err;
736 if (new_blk != log_bbnum)
737 head_blk = new_blk;
738 } else if (error)
739 goto bp_err;
740 }
741
742 xlog_put_bp(bp);
743 if (head_blk == log_bbnum)
744 *return_head_blk = 0;
745 else
746 *return_head_blk = head_blk;
747 /*
748 * When returning here, we have a good block number. Bad block
749 * means that during a previous crash, we didn't have a clean break
750 * from cycle number N to cycle number N-1. In this case, we need
751 * to find the first block with cycle number N-1.
752 */
753 return 0;
754
755 bp_err:
756 xlog_put_bp(bp);
757
758 if (error)
759 xlog_warn("XFS: failed to find log head");
760 return error;
761}
762
763/*
764 * Find the sync block number or the tail of the log.
765 *
766 * This will be the block number of the last record to have its
767 * associated buffers synced to disk. Every log record header has
768 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
769 * to get a sync block number. The only concern is to figure out which
770 * log record header to believe.
771 *
772 * The following algorithm uses the log record header with the largest
773 * lsn. The entire log record does not need to be valid. We only care
774 * that the header is valid.
775 *
776 * We could speed up search by using current head_blk buffer, but it is not
777 * available.
778 */
779int
780xlog_find_tail(
781 xlog_t *log,
782 xfs_daddr_t *head_blk,
Eric Sandeen65be6052006-01-11 15:34:19 +1100783 xfs_daddr_t *tail_blk)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700784{
785 xlog_rec_header_t *rhead;
786 xlog_op_header_t *op_head;
787 xfs_caddr_t offset = NULL;
788 xfs_buf_t *bp;
789 int error, i, found;
790 xfs_daddr_t umount_data_blk;
791 xfs_daddr_t after_umount_blk;
792 xfs_lsn_t tail_lsn;
793 int hblks;
794
795 found = 0;
796
797 /*
798 * Find previous log record
799 */
800 if ((error = xlog_find_head(log, head_blk)))
801 return error;
802
803 bp = xlog_get_bp(log, 1);
804 if (!bp)
805 return ENOMEM;
806 if (*head_blk == 0) { /* special case */
807 if ((error = xlog_bread(log, 0, 1, bp)))
808 goto bread_err;
809 offset = xlog_align(log, 0, 1, bp);
Christoph Hellwig03bea6f2007-10-12 10:58:05 +1000810 if (xlog_get_cycle(offset) == 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700811 *tail_blk = 0;
812 /* leave all other log inited values alone */
813 goto exit;
814 }
815 }
816
817 /*
818 * Search backwards looking for log record header block
819 */
820 ASSERT(*head_blk < INT_MAX);
821 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
822 if ((error = xlog_bread(log, i, 1, bp)))
823 goto bread_err;
824 offset = xlog_align(log, i, 1, bp);
Christoph Hellwigb53e6752007-10-12 10:59:34 +1000825 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700826 found = 1;
827 break;
828 }
829 }
830 /*
831 * If we haven't found the log record header block, start looking
832 * again from the end of the physical log. XXXmiken: There should be
833 * a check here to make sure we didn't search more than N blocks in
834 * the previous code.
835 */
836 if (!found) {
837 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
838 if ((error = xlog_bread(log, i, 1, bp)))
839 goto bread_err;
840 offset = xlog_align(log, i, 1, bp);
841 if (XLOG_HEADER_MAGIC_NUM ==
Christoph Hellwigb53e6752007-10-12 10:59:34 +1000842 be32_to_cpu(*(__be32 *)offset)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700843 found = 2;
844 break;
845 }
846 }
847 }
848 if (!found) {
849 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
850 ASSERT(0);
851 return XFS_ERROR(EIO);
852 }
853
854 /* find blk_no of tail of log */
855 rhead = (xlog_rec_header_t *)offset;
Christoph Hellwigb53e6752007-10-12 10:59:34 +1000856 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700857
858 /*
859 * Reset log values according to the state of the log when we
860 * crashed. In the case where head_blk == 0, we bump curr_cycle
861 * one because the next write starts a new cycle rather than
862 * continuing the cycle of the last good log record. At this
863 * point we have guaranteed that all partial log records have been
864 * accounted for. Therefore, we know that the last good log record
865 * written was complete and ended exactly on the end boundary
866 * of the physical log.
867 */
868 log->l_prev_block = i;
869 log->l_curr_block = (int)*head_blk;
Christoph Hellwigb53e6752007-10-12 10:59:34 +1000870 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700871 if (found == 2)
872 log->l_curr_cycle++;
Christoph Hellwigb53e6752007-10-12 10:59:34 +1000873 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
874 log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700875 log->l_grant_reserve_cycle = log->l_curr_cycle;
876 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
877 log->l_grant_write_cycle = log->l_curr_cycle;
878 log->l_grant_write_bytes = BBTOB(log->l_curr_block);
879
880 /*
881 * Look for unmount record. If we find it, then we know there
882 * was a clean unmount. Since 'i' could be the last block in
883 * the physical log, we convert to a log block before comparing
884 * to the head_blk.
885 *
886 * Save the current tail lsn to use to pass to
887 * xlog_clear_stale_blocks() below. We won't want to clear the
888 * unmount record if there is one, so we pass the lsn of the
889 * unmount record rather than the block after it.
890 */
891 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
Christoph Hellwigb53e6752007-10-12 10:59:34 +1000892 int h_size = be32_to_cpu(rhead->h_size);
893 int h_version = be32_to_cpu(rhead->h_version);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700894
895 if ((h_version & XLOG_VERSION_2) &&
896 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
897 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
898 if (h_size % XLOG_HEADER_CYCLE_SIZE)
899 hblks++;
900 } else {
901 hblks = 1;
902 }
903 } else {
904 hblks = 1;
905 }
906 after_umount_blk = (i + hblks + (int)
Christoph Hellwigb53e6752007-10-12 10:59:34 +1000907 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700908 tail_lsn = log->l_tail_lsn;
909 if (*head_blk == after_umount_blk &&
Christoph Hellwigb53e6752007-10-12 10:59:34 +1000910 be32_to_cpu(rhead->h_num_logops) == 1) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700911 umount_data_blk = (i + hblks) % log->l_logBBsize;
912 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
913 goto bread_err;
914 }
915 offset = xlog_align(log, umount_data_blk, 1, bp);
916 op_head = (xlog_op_header_t *)offset;
917 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
918 /*
919 * Set tail and last sync so that newly written
920 * log records will point recovery to after the
921 * current unmount record.
922 */
Christoph Hellwig03bea6f2007-10-12 10:58:05 +1000923 log->l_tail_lsn =
924 xlog_assign_lsn(log->l_curr_cycle,
925 after_umount_blk);
926 log->l_last_sync_lsn =
927 xlog_assign_lsn(log->l_curr_cycle,
928 after_umount_blk);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700929 *tail_blk = after_umount_blk;
David Chinner92821e22007-05-24 15:26:31 +1000930
931 /*
932 * Note that the unmount was clean. If the unmount
933 * was not clean, we need to know this to rebuild the
934 * superblock counters from the perag headers if we
935 * have a filesystem using non-persistent counters.
936 */
937 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700938 }
939 }
940
941 /*
942 * Make sure that there are no blocks in front of the head
943 * with the same cycle number as the head. This can happen
944 * because we allow multiple outstanding log writes concurrently,
945 * and the later writes might make it out before earlier ones.
946 *
947 * We use the lsn from before modifying it so that we'll never
948 * overwrite the unmount record after a clean unmount.
949 *
950 * Do this only if we are going to recover the filesystem
951 *
952 * NOTE: This used to say "if (!readonly)"
953 * However on Linux, we can & do recover a read-only filesystem.
954 * We only skip recovery if NORECOVERY is specified on mount,
955 * in which case we would not be here.
956 *
957 * But... if the -device- itself is readonly, just skip this.
958 * We can't recover this device anyway, so it won't matter.
959 */
960 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
961 error = xlog_clear_stale_blocks(log, tail_lsn);
962 }
963
964bread_err:
965exit:
966 xlog_put_bp(bp);
967
968 if (error)
969 xlog_warn("XFS: failed to locate log tail");
970 return error;
971}
972
973/*
974 * Is the log zeroed at all?
975 *
976 * The last binary search should be changed to perform an X block read
977 * once X becomes small enough. You can then search linearly through
978 * the X blocks. This will cut down on the number of reads we need to do.
979 *
980 * If the log is partially zeroed, this routine will pass back the blkno
981 * of the first block with cycle number 0. It won't have a complete LR
982 * preceding it.
983 *
984 * Return:
985 * 0 => the log is completely written to
986 * -1 => use *blk_no as the first block of the log
987 * >0 => error has occurred
988 */
989int
990xlog_find_zeroed(
991 xlog_t *log,
992 xfs_daddr_t *blk_no)
993{
994 xfs_buf_t *bp;
995 xfs_caddr_t offset;
996 uint first_cycle, last_cycle;
997 xfs_daddr_t new_blk, last_blk, start_blk;
998 xfs_daddr_t num_scan_bblks;
999 int error, log_bbnum = log->l_logBBsize;
1000
Nathan Scott6fdf8cc2006-06-28 10:13:52 +10001001 *blk_no = 0;
1002
Linus Torvalds1da177e2005-04-16 15:20:36 -07001003 /* check totally zeroed log */
1004 bp = xlog_get_bp(log, 1);
1005 if (!bp)
1006 return ENOMEM;
1007 if ((error = xlog_bread(log, 0, 1, bp)))
1008 goto bp_err;
1009 offset = xlog_align(log, 0, 1, bp);
Christoph Hellwig03bea6f2007-10-12 10:58:05 +10001010 first_cycle = xlog_get_cycle(offset);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001011 if (first_cycle == 0) { /* completely zeroed log */
1012 *blk_no = 0;
1013 xlog_put_bp(bp);
1014 return -1;
1015 }
1016
1017 /* check partially zeroed log */
1018 if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1019 goto bp_err;
1020 offset = xlog_align(log, log_bbnum-1, 1, bp);
Christoph Hellwig03bea6f2007-10-12 10:58:05 +10001021 last_cycle = xlog_get_cycle(offset);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001022 if (last_cycle != 0) { /* log completely written to */
1023 xlog_put_bp(bp);
1024 return 0;
1025 } else if (first_cycle != 1) {
1026 /*
1027 * If the cycle of the last block is zero, the cycle of
1028 * the first block must be 1. If it's not, maybe we're
1029 * not looking at a log... Bail out.
1030 */
1031 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1032 return XFS_ERROR(EINVAL);
1033 }
1034
1035 /* we have a partially zeroed log */
1036 last_blk = log_bbnum-1;
1037 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1038 goto bp_err;
1039
1040 /*
1041 * Validate the answer. Because there is no way to guarantee that
1042 * the entire log is made up of log records which are the same size,
1043 * we scan over the defined maximum blocks. At this point, the maximum
1044 * is not chosen to mean anything special. XXXmiken
1045 */
1046 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1047 ASSERT(num_scan_bblks <= INT_MAX);
1048
1049 if (last_blk < num_scan_bblks)
1050 num_scan_bblks = last_blk;
1051 start_blk = last_blk - num_scan_bblks;
1052
1053 /*
1054 * We search for any instances of cycle number 0 that occur before
1055 * our current estimate of the head. What we're trying to detect is
1056 * 1 ... | 0 | 1 | 0...
1057 * ^ binary search ends here
1058 */
1059 if ((error = xlog_find_verify_cycle(log, start_blk,
1060 (int)num_scan_bblks, 0, &new_blk)))
1061 goto bp_err;
1062 if (new_blk != -1)
1063 last_blk = new_blk;
1064
1065 /*
1066 * Potentially backup over partial log record write. We don't need
1067 * to search the end of the log because we know it is zero.
1068 */
1069 if ((error = xlog_find_verify_log_record(log, start_blk,
1070 &last_blk, 0)) == -1) {
1071 error = XFS_ERROR(EIO);
1072 goto bp_err;
1073 } else if (error)
1074 goto bp_err;
1075
1076 *blk_no = last_blk;
1077bp_err:
1078 xlog_put_bp(bp);
1079 if (error)
1080 return error;
1081 return -1;
1082}
1083
1084/*
1085 * These are simple subroutines used by xlog_clear_stale_blocks() below
1086 * to initialize a buffer full of empty log record headers and write
1087 * them into the log.
1088 */
1089STATIC void
1090xlog_add_record(
1091 xlog_t *log,
1092 xfs_caddr_t buf,
1093 int cycle,
1094 int block,
1095 int tail_cycle,
1096 int tail_block)
1097{
1098 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1099
1100 memset(buf, 0, BBSIZE);
Christoph Hellwigb53e6752007-10-12 10:59:34 +10001101 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1102 recp->h_cycle = cpu_to_be32(cycle);
1103 recp->h_version = cpu_to_be32(
Linus Torvalds1da177e2005-04-16 15:20:36 -07001104 XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1);
Christoph Hellwigb53e6752007-10-12 10:59:34 +10001105 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1106 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1107 recp->h_fmt = cpu_to_be32(XLOG_FMT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001108 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1109}
1110
1111STATIC int
1112xlog_write_log_records(
1113 xlog_t *log,
1114 int cycle,
1115 int start_block,
1116 int blocks,
1117 int tail_cycle,
1118 int tail_block)
1119{
1120 xfs_caddr_t offset;
1121 xfs_buf_t *bp;
1122 int balign, ealign;
1123 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1124 int end_block = start_block + blocks;
1125 int bufblks;
1126 int error = 0;
1127 int i, j = 0;
1128
1129 bufblks = 1 << ffs(blocks);
1130 while (!(bp = xlog_get_bp(log, bufblks))) {
1131 bufblks >>= 1;
1132 if (bufblks <= log->l_sectbb_log)
1133 return ENOMEM;
1134 }
1135
1136 /* We may need to do a read at the start to fill in part of
1137 * the buffer in the starting sector not covered by the first
1138 * write below.
1139 */
1140 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1141 if (balign != start_block) {
1142 if ((error = xlog_bread(log, start_block, 1, bp))) {
1143 xlog_put_bp(bp);
1144 return error;
1145 }
1146 j = start_block - balign;
1147 }
1148
1149 for (i = start_block; i < end_block; i += bufblks) {
1150 int bcount, endcount;
1151
1152 bcount = min(bufblks, end_block - start_block);
1153 endcount = bcount - j;
1154
1155 /* We may need to do a read at the end to fill in part of
1156 * the buffer in the final sector not covered by the write.
1157 * If this is the same sector as the above read, skip it.
1158 */
1159 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1160 if (j == 0 && (start_block + endcount > ealign)) {
1161 offset = XFS_BUF_PTR(bp);
1162 balign = BBTOB(ealign - start_block);
1163 XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb));
1164 if ((error = xlog_bread(log, ealign, sectbb, bp)))
1165 break;
1166 XFS_BUF_SET_PTR(bp, offset, bufblks);
1167 }
1168
1169 offset = xlog_align(log, start_block, endcount, bp);
1170 for (; j < endcount; j++) {
1171 xlog_add_record(log, offset, cycle, i+j,
1172 tail_cycle, tail_block);
1173 offset += BBSIZE;
1174 }
1175 error = xlog_bwrite(log, start_block, endcount, bp);
1176 if (error)
1177 break;
1178 start_block += endcount;
1179 j = 0;
1180 }
1181 xlog_put_bp(bp);
1182 return error;
1183}
1184
1185/*
1186 * This routine is called to blow away any incomplete log writes out
1187 * in front of the log head. We do this so that we won't become confused
1188 * if we come up, write only a little bit more, and then crash again.
1189 * If we leave the partial log records out there, this situation could
1190 * cause us to think those partial writes are valid blocks since they
1191 * have the current cycle number. We get rid of them by overwriting them
1192 * with empty log records with the old cycle number rather than the
1193 * current one.
1194 *
1195 * The tail lsn is passed in rather than taken from
1196 * the log so that we will not write over the unmount record after a
1197 * clean unmount in a 512 block log. Doing so would leave the log without
1198 * any valid log records in it until a new one was written. If we crashed
1199 * during that time we would not be able to recover.
1200 */
1201STATIC int
1202xlog_clear_stale_blocks(
1203 xlog_t *log,
1204 xfs_lsn_t tail_lsn)
1205{
1206 int tail_cycle, head_cycle;
1207 int tail_block, head_block;
1208 int tail_distance, max_distance;
1209 int distance;
1210 int error;
1211
1212 tail_cycle = CYCLE_LSN(tail_lsn);
1213 tail_block = BLOCK_LSN(tail_lsn);
1214 head_cycle = log->l_curr_cycle;
1215 head_block = log->l_curr_block;
1216
1217 /*
1218 * Figure out the distance between the new head of the log
1219 * and the tail. We want to write over any blocks beyond the
1220 * head that we may have written just before the crash, but
1221 * we don't want to overwrite the tail of the log.
1222 */
1223 if (head_cycle == tail_cycle) {
1224 /*
1225 * The tail is behind the head in the physical log,
1226 * so the distance from the head to the tail is the
1227 * distance from the head to the end of the log plus
1228 * the distance from the beginning of the log to the
1229 * tail.
1230 */
1231 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1232 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1233 XFS_ERRLEVEL_LOW, log->l_mp);
1234 return XFS_ERROR(EFSCORRUPTED);
1235 }
1236 tail_distance = tail_block + (log->l_logBBsize - head_block);
1237 } else {
1238 /*
1239 * The head is behind the tail in the physical log,
1240 * so the distance from the head to the tail is just
1241 * the tail block minus the head block.
1242 */
1243 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1244 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1245 XFS_ERRLEVEL_LOW, log->l_mp);
1246 return XFS_ERROR(EFSCORRUPTED);
1247 }
1248 tail_distance = tail_block - head_block;
1249 }
1250
1251 /*
1252 * If the head is right up against the tail, we can't clear
1253 * anything.
1254 */
1255 if (tail_distance <= 0) {
1256 ASSERT(tail_distance == 0);
1257 return 0;
1258 }
1259
1260 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1261 /*
1262 * Take the smaller of the maximum amount of outstanding I/O
1263 * we could have and the distance to the tail to clear out.
1264 * We take the smaller so that we don't overwrite the tail and
1265 * we don't waste all day writing from the head to the tail
1266 * for no reason.
1267 */
1268 max_distance = MIN(max_distance, tail_distance);
1269
1270 if ((head_block + max_distance) <= log->l_logBBsize) {
1271 /*
1272 * We can stomp all the blocks we need to without
1273 * wrapping around the end of the log. Just do it
1274 * in a single write. Use the cycle number of the
1275 * current cycle minus one so that the log will look like:
1276 * n ... | n - 1 ...
1277 */
1278 error = xlog_write_log_records(log, (head_cycle - 1),
1279 head_block, max_distance, tail_cycle,
1280 tail_block);
1281 if (error)
1282 return error;
1283 } else {
1284 /*
1285 * We need to wrap around the end of the physical log in
1286 * order to clear all the blocks. Do it in two separate
1287 * I/Os. The first write should be from the head to the
1288 * end of the physical log, and it should use the current
1289 * cycle number minus one just like above.
1290 */
1291 distance = log->l_logBBsize - head_block;
1292 error = xlog_write_log_records(log, (head_cycle - 1),
1293 head_block, distance, tail_cycle,
1294 tail_block);
1295
1296 if (error)
1297 return error;
1298
1299 /*
1300 * Now write the blocks at the start of the physical log.
1301 * This writes the remainder of the blocks we want to clear.
1302 * It uses the current cycle number since we're now on the
1303 * same cycle as the head so that we get:
1304 * n ... n ... | n - 1 ...
1305 * ^^^^^ blocks we're writing
1306 */
1307 distance = max_distance - (log->l_logBBsize - head_block);
1308 error = xlog_write_log_records(log, head_cycle, 0, distance,
1309 tail_cycle, tail_block);
1310 if (error)
1311 return error;
1312 }
1313
1314 return 0;
1315}
1316
1317/******************************************************************************
1318 *
1319 * Log recover routines
1320 *
1321 ******************************************************************************
1322 */
1323
1324STATIC xlog_recover_t *
1325xlog_recover_find_tid(
1326 xlog_recover_t *q,
1327 xlog_tid_t tid)
1328{
1329 xlog_recover_t *p = q;
1330
1331 while (p != NULL) {
1332 if (p->r_log_tid == tid)
1333 break;
1334 p = p->r_next;
1335 }
1336 return p;
1337}
1338
1339STATIC void
1340xlog_recover_put_hashq(
1341 xlog_recover_t **q,
1342 xlog_recover_t *trans)
1343{
1344 trans->r_next = *q;
1345 *q = trans;
1346}
1347
1348STATIC void
1349xlog_recover_add_item(
1350 xlog_recover_item_t **itemq)
1351{
1352 xlog_recover_item_t *item;
1353
1354 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1355 xlog_recover_insert_item_backq(itemq, item);
1356}
1357
1358STATIC int
1359xlog_recover_add_to_cont_trans(
1360 xlog_recover_t *trans,
1361 xfs_caddr_t dp,
1362 int len)
1363{
1364 xlog_recover_item_t *item;
1365 xfs_caddr_t ptr, old_ptr;
1366 int old_len;
1367
1368 item = trans->r_itemq;
Christoph Hellwig4b809162007-08-16 15:37:36 +10001369 if (item == NULL) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001370 /* finish copying rest of trans header */
1371 xlog_recover_add_item(&trans->r_itemq);
1372 ptr = (xfs_caddr_t) &trans->r_theader +
1373 sizeof(xfs_trans_header_t) - len;
1374 memcpy(ptr, dp, len); /* d, s, l */
1375 return 0;
1376 }
1377 item = item->ri_prev;
1378
1379 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1380 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1381
Christoph Hellwig760dea62005-09-02 16:56:02 +10001382 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001383 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1384 item->ri_buf[item->ri_cnt-1].i_len += len;
1385 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1386 return 0;
1387}
1388
1389/*
1390 * The next region to add is the start of a new region. It could be
1391 * a whole region or it could be the first part of a new region. Because
1392 * of this, the assumption here is that the type and size fields of all
1393 * format structures fit into the first 32 bits of the structure.
1394 *
1395 * This works because all regions must be 32 bit aligned. Therefore, we
1396 * either have both fields or we have neither field. In the case we have
1397 * neither field, the data part of the region is zero length. We only have
1398 * a log_op_header and can throw away the header since a new one will appear
1399 * later. If we have at least 4 bytes, then we can determine how many regions
1400 * will appear in the current log item.
1401 */
1402STATIC int
1403xlog_recover_add_to_trans(
1404 xlog_recover_t *trans,
1405 xfs_caddr_t dp,
1406 int len)
1407{
1408 xfs_inode_log_format_t *in_f; /* any will do */
1409 xlog_recover_item_t *item;
1410 xfs_caddr_t ptr;
1411
1412 if (!len)
1413 return 0;
1414 item = trans->r_itemq;
Christoph Hellwig4b809162007-08-16 15:37:36 +10001415 if (item == NULL) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001416 ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
1417 if (len == sizeof(xfs_trans_header_t))
1418 xlog_recover_add_item(&trans->r_itemq);
1419 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1420 return 0;
1421 }
1422
1423 ptr = kmem_alloc(len, KM_SLEEP);
1424 memcpy(ptr, dp, len);
1425 in_f = (xfs_inode_log_format_t *)ptr;
1426
1427 if (item->ri_prev->ri_total != 0 &&
1428 item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1429 xlog_recover_add_item(&trans->r_itemq);
1430 }
1431 item = trans->r_itemq;
1432 item = item->ri_prev;
1433
1434 if (item->ri_total == 0) { /* first region to be added */
1435 item->ri_total = in_f->ilf_size;
1436 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1437 item->ri_buf = kmem_zalloc((item->ri_total *
1438 sizeof(xfs_log_iovec_t)), KM_SLEEP);
1439 }
1440 ASSERT(item->ri_total > item->ri_cnt);
1441 /* Description region is ri_buf[0] */
1442 item->ri_buf[item->ri_cnt].i_addr = ptr;
1443 item->ri_buf[item->ri_cnt].i_len = len;
1444 item->ri_cnt++;
1445 return 0;
1446}
1447
1448STATIC void
1449xlog_recover_new_tid(
1450 xlog_recover_t **q,
1451 xlog_tid_t tid,
1452 xfs_lsn_t lsn)
1453{
1454 xlog_recover_t *trans;
1455
1456 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1457 trans->r_log_tid = tid;
1458 trans->r_lsn = lsn;
1459 xlog_recover_put_hashq(q, trans);
1460}
1461
1462STATIC int
1463xlog_recover_unlink_tid(
1464 xlog_recover_t **q,
1465 xlog_recover_t *trans)
1466{
1467 xlog_recover_t *tp;
1468 int found = 0;
1469
Christoph Hellwig4b809162007-08-16 15:37:36 +10001470 ASSERT(trans != NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001471 if (trans == *q) {
1472 *q = (*q)->r_next;
1473 } else {
1474 tp = *q;
Christoph Hellwig4b809162007-08-16 15:37:36 +10001475 while (tp) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001476 if (tp->r_next == trans) {
1477 found = 1;
1478 break;
1479 }
1480 tp = tp->r_next;
1481 }
1482 if (!found) {
1483 xlog_warn(
1484 "XFS: xlog_recover_unlink_tid: trans not found");
1485 ASSERT(0);
1486 return XFS_ERROR(EIO);
1487 }
1488 tp->r_next = tp->r_next->r_next;
1489 }
1490 return 0;
1491}
1492
1493STATIC void
1494xlog_recover_insert_item_backq(
1495 xlog_recover_item_t **q,
1496 xlog_recover_item_t *item)
1497{
Christoph Hellwig4b809162007-08-16 15:37:36 +10001498 if (*q == NULL) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001499 item->ri_prev = item->ri_next = item;
1500 *q = item;
1501 } else {
1502 item->ri_next = *q;
1503 item->ri_prev = (*q)->ri_prev;
1504 (*q)->ri_prev = item;
1505 item->ri_prev->ri_next = item;
1506 }
1507}
1508
1509STATIC void
1510xlog_recover_insert_item_frontq(
1511 xlog_recover_item_t **q,
1512 xlog_recover_item_t *item)
1513{
1514 xlog_recover_insert_item_backq(q, item);
1515 *q = item;
1516}
1517
1518STATIC int
1519xlog_recover_reorder_trans(
Linus Torvalds1da177e2005-04-16 15:20:36 -07001520 xlog_recover_t *trans)
1521{
1522 xlog_recover_item_t *first_item, *itemq, *itemq_next;
1523 xfs_buf_log_format_t *buf_f;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001524 ushort flags = 0;
1525
1526 first_item = itemq = trans->r_itemq;
1527 trans->r_itemq = NULL;
1528 do {
1529 itemq_next = itemq->ri_next;
1530 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001531
1532 switch (ITEM_TYPE(itemq)) {
1533 case XFS_LI_BUF:
Eric Sandeen804195b2007-02-10 18:35:02 +11001534 flags = buf_f->blf_flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001535 if (!(flags & XFS_BLI_CANCEL)) {
1536 xlog_recover_insert_item_frontq(&trans->r_itemq,
1537 itemq);
1538 break;
1539 }
1540 case XFS_LI_INODE:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001541 case XFS_LI_DQUOT:
1542 case XFS_LI_QUOTAOFF:
1543 case XFS_LI_EFD:
1544 case XFS_LI_EFI:
1545 xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1546 break;
1547 default:
1548 xlog_warn(
1549 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1550 ASSERT(0);
1551 return XFS_ERROR(EIO);
1552 }
1553 itemq = itemq_next;
1554 } while (first_item != itemq);
1555 return 0;
1556}
1557
1558/*
1559 * Build up the table of buf cancel records so that we don't replay
1560 * cancelled data in the second pass. For buffer records that are
1561 * not cancel records, there is nothing to do here so we just return.
1562 *
1563 * If we get a cancel record which is already in the table, this indicates
1564 * that the buffer was cancelled multiple times. In order to ensure
1565 * that during pass 2 we keep the record in the table until we reach its
1566 * last occurrence in the log, we keep a reference count in the cancel
1567 * record in the table to tell us how many times we expect to see this
1568 * record during the second pass.
1569 */
1570STATIC void
1571xlog_recover_do_buffer_pass1(
1572 xlog_t *log,
1573 xfs_buf_log_format_t *buf_f)
1574{
1575 xfs_buf_cancel_t *bcp;
1576 xfs_buf_cancel_t *nextp;
1577 xfs_buf_cancel_t *prevp;
1578 xfs_buf_cancel_t **bucket;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001579 xfs_daddr_t blkno = 0;
1580 uint len = 0;
1581 ushort flags = 0;
1582
1583 switch (buf_f->blf_type) {
1584 case XFS_LI_BUF:
1585 blkno = buf_f->blf_blkno;
1586 len = buf_f->blf_len;
1587 flags = buf_f->blf_flags;
1588 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001589 }
1590
1591 /*
1592 * If this isn't a cancel buffer item, then just return.
1593 */
1594 if (!(flags & XFS_BLI_CANCEL))
1595 return;
1596
1597 /*
1598 * Insert an xfs_buf_cancel record into the hash table of
1599 * them. If there is already an identical record, bump
1600 * its reference count.
1601 */
1602 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1603 XLOG_BC_TABLE_SIZE];
1604 /*
1605 * If the hash bucket is empty then just insert a new record into
1606 * the bucket.
1607 */
1608 if (*bucket == NULL) {
1609 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1610 KM_SLEEP);
1611 bcp->bc_blkno = blkno;
1612 bcp->bc_len = len;
1613 bcp->bc_refcount = 1;
1614 bcp->bc_next = NULL;
1615 *bucket = bcp;
1616 return;
1617 }
1618
1619 /*
1620 * The hash bucket is not empty, so search for duplicates of our
1621 * record. If we find one them just bump its refcount. If not
1622 * then add us at the end of the list.
1623 */
1624 prevp = NULL;
1625 nextp = *bucket;
1626 while (nextp != NULL) {
1627 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1628 nextp->bc_refcount++;
1629 return;
1630 }
1631 prevp = nextp;
1632 nextp = nextp->bc_next;
1633 }
1634 ASSERT(prevp != NULL);
1635 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1636 KM_SLEEP);
1637 bcp->bc_blkno = blkno;
1638 bcp->bc_len = len;
1639 bcp->bc_refcount = 1;
1640 bcp->bc_next = NULL;
1641 prevp->bc_next = bcp;
1642}
1643
1644/*
1645 * Check to see whether the buffer being recovered has a corresponding
1646 * entry in the buffer cancel record table. If it does then return 1
1647 * so that it will be cancelled, otherwise return 0. If the buffer is
1648 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1649 * the refcount on the entry in the table and remove it from the table
1650 * if this is the last reference.
1651 *
1652 * We remove the cancel record from the table when we encounter its
1653 * last occurrence in the log so that if the same buffer is re-used
1654 * again after its last cancellation we actually replay the changes
1655 * made at that point.
1656 */
1657STATIC int
1658xlog_check_buffer_cancelled(
1659 xlog_t *log,
1660 xfs_daddr_t blkno,
1661 uint len,
1662 ushort flags)
1663{
1664 xfs_buf_cancel_t *bcp;
1665 xfs_buf_cancel_t *prevp;
1666 xfs_buf_cancel_t **bucket;
1667
1668 if (log->l_buf_cancel_table == NULL) {
1669 /*
1670 * There is nothing in the table built in pass one,
1671 * so this buffer must not be cancelled.
1672 */
1673 ASSERT(!(flags & XFS_BLI_CANCEL));
1674 return 0;
1675 }
1676
1677 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1678 XLOG_BC_TABLE_SIZE];
1679 bcp = *bucket;
1680 if (bcp == NULL) {
1681 /*
1682 * There is no corresponding entry in the table built
1683 * in pass one, so this buffer has not been cancelled.
1684 */
1685 ASSERT(!(flags & XFS_BLI_CANCEL));
1686 return 0;
1687 }
1688
1689 /*
1690 * Search for an entry in the buffer cancel table that
1691 * matches our buffer.
1692 */
1693 prevp = NULL;
1694 while (bcp != NULL) {
1695 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1696 /*
1697 * We've go a match, so return 1 so that the
1698 * recovery of this buffer is cancelled.
1699 * If this buffer is actually a buffer cancel
1700 * log item, then decrement the refcount on the
1701 * one in the table and remove it if this is the
1702 * last reference.
1703 */
1704 if (flags & XFS_BLI_CANCEL) {
1705 bcp->bc_refcount--;
1706 if (bcp->bc_refcount == 0) {
1707 if (prevp == NULL) {
1708 *bucket = bcp->bc_next;
1709 } else {
1710 prevp->bc_next = bcp->bc_next;
1711 }
1712 kmem_free(bcp,
1713 sizeof(xfs_buf_cancel_t));
1714 }
1715 }
1716 return 1;
1717 }
1718 prevp = bcp;
1719 bcp = bcp->bc_next;
1720 }
1721 /*
1722 * We didn't find a corresponding entry in the table, so
1723 * return 0 so that the buffer is NOT cancelled.
1724 */
1725 ASSERT(!(flags & XFS_BLI_CANCEL));
1726 return 0;
1727}
1728
1729STATIC int
1730xlog_recover_do_buffer_pass2(
1731 xlog_t *log,
1732 xfs_buf_log_format_t *buf_f)
1733{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001734 xfs_daddr_t blkno = 0;
1735 ushort flags = 0;
1736 uint len = 0;
1737
1738 switch (buf_f->blf_type) {
1739 case XFS_LI_BUF:
1740 blkno = buf_f->blf_blkno;
1741 flags = buf_f->blf_flags;
1742 len = buf_f->blf_len;
1743 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001744 }
1745
1746 return xlog_check_buffer_cancelled(log, blkno, len, flags);
1747}
1748
1749/*
1750 * Perform recovery for a buffer full of inodes. In these buffers,
1751 * the only data which should be recovered is that which corresponds
1752 * to the di_next_unlinked pointers in the on disk inode structures.
1753 * The rest of the data for the inodes is always logged through the
1754 * inodes themselves rather than the inode buffer and is recovered
1755 * in xlog_recover_do_inode_trans().
1756 *
1757 * The only time when buffers full of inodes are fully recovered is
1758 * when the buffer is full of newly allocated inodes. In this case
1759 * the buffer will not be marked as an inode buffer and so will be
1760 * sent to xlog_recover_do_reg_buffer() below during recovery.
1761 */
1762STATIC int
1763xlog_recover_do_inode_buffer(
1764 xfs_mount_t *mp,
1765 xlog_recover_item_t *item,
1766 xfs_buf_t *bp,
1767 xfs_buf_log_format_t *buf_f)
1768{
1769 int i;
1770 int item_index;
1771 int bit;
1772 int nbits;
1773 int reg_buf_offset;
1774 int reg_buf_bytes;
1775 int next_unlinked_offset;
1776 int inodes_per_buf;
1777 xfs_agino_t *logged_nextp;
1778 xfs_agino_t *buffer_nextp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001779 unsigned int *data_map = NULL;
1780 unsigned int map_size = 0;
1781
1782 switch (buf_f->blf_type) {
1783 case XFS_LI_BUF:
1784 data_map = buf_f->blf_data_map;
1785 map_size = buf_f->blf_map_size;
1786 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001787 }
1788 /*
1789 * Set the variables corresponding to the current region to
1790 * 0 so that we'll initialize them on the first pass through
1791 * the loop.
1792 */
1793 reg_buf_offset = 0;
1794 reg_buf_bytes = 0;
1795 bit = 0;
1796 nbits = 0;
1797 item_index = 0;
1798 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1799 for (i = 0; i < inodes_per_buf; i++) {
1800 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1801 offsetof(xfs_dinode_t, di_next_unlinked);
1802
1803 while (next_unlinked_offset >=
1804 (reg_buf_offset + reg_buf_bytes)) {
1805 /*
1806 * The next di_next_unlinked field is beyond
1807 * the current logged region. Find the next
1808 * logged region that contains or is beyond
1809 * the current di_next_unlinked field.
1810 */
1811 bit += nbits;
1812 bit = xfs_next_bit(data_map, map_size, bit);
1813
1814 /*
1815 * If there are no more logged regions in the
1816 * buffer, then we're done.
1817 */
1818 if (bit == -1) {
1819 return 0;
1820 }
1821
1822 nbits = xfs_contig_bits(data_map, map_size,
1823 bit);
1824 ASSERT(nbits > 0);
1825 reg_buf_offset = bit << XFS_BLI_SHIFT;
1826 reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1827 item_index++;
1828 }
1829
1830 /*
1831 * If the current logged region starts after the current
1832 * di_next_unlinked field, then move on to the next
1833 * di_next_unlinked field.
1834 */
1835 if (next_unlinked_offset < reg_buf_offset) {
1836 continue;
1837 }
1838
1839 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1840 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1841 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1842
1843 /*
1844 * The current logged region contains a copy of the
1845 * current di_next_unlinked field. Extract its value
1846 * and copy it to the buffer copy.
1847 */
1848 logged_nextp = (xfs_agino_t *)
1849 ((char *)(item->ri_buf[item_index].i_addr) +
1850 (next_unlinked_offset - reg_buf_offset));
1851 if (unlikely(*logged_nextp == 0)) {
1852 xfs_fs_cmn_err(CE_ALERT, mp,
1853 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1854 item, bp);
1855 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1856 XFS_ERRLEVEL_LOW, mp);
1857 return XFS_ERROR(EFSCORRUPTED);
1858 }
1859
1860 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1861 next_unlinked_offset);
Tim Shimmin87c199c2006-06-09 14:56:16 +10001862 *buffer_nextp = *logged_nextp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001863 }
1864
1865 return 0;
1866}
1867
1868/*
1869 * Perform a 'normal' buffer recovery. Each logged region of the
1870 * buffer should be copied over the corresponding region in the
1871 * given buffer. The bitmap in the buf log format structure indicates
1872 * where to place the logged data.
1873 */
1874/*ARGSUSED*/
1875STATIC void
1876xlog_recover_do_reg_buffer(
Linus Torvalds1da177e2005-04-16 15:20:36 -07001877 xlog_recover_item_t *item,
1878 xfs_buf_t *bp,
1879 xfs_buf_log_format_t *buf_f)
1880{
1881 int i;
1882 int bit;
1883 int nbits;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001884 unsigned int *data_map = NULL;
1885 unsigned int map_size = 0;
1886 int error;
1887
1888 switch (buf_f->blf_type) {
1889 case XFS_LI_BUF:
1890 data_map = buf_f->blf_data_map;
1891 map_size = buf_f->blf_map_size;
1892 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001893 }
1894 bit = 0;
1895 i = 1; /* 0 is the buf format structure */
1896 while (1) {
1897 bit = xfs_next_bit(data_map, map_size, bit);
1898 if (bit == -1)
1899 break;
1900 nbits = xfs_contig_bits(data_map, map_size, bit);
1901 ASSERT(nbits > 0);
Christoph Hellwig4b809162007-08-16 15:37:36 +10001902 ASSERT(item->ri_buf[i].i_addr != NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001903 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1904 ASSERT(XFS_BUF_COUNT(bp) >=
1905 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1906
1907 /*
1908 * Do a sanity check if this is a dquot buffer. Just checking
1909 * the first dquot in the buffer should do. XXXThis is
1910 * probably a good thing to do for other buf types also.
1911 */
1912 error = 0;
Nathan Scottc8ad20f2005-06-21 15:38:48 +10001913 if (buf_f->blf_flags &
1914 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001915 error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1916 item->ri_buf[i].i_addr,
1917 -1, 0, XFS_QMOPT_DOWARN,
1918 "dquot_buf_recover");
1919 }
Tim Shimmin053c59a2007-10-01 16:39:37 +10001920 if (!error)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001921 memcpy(xfs_buf_offset(bp,
1922 (uint)bit << XFS_BLI_SHIFT), /* dest */
1923 item->ri_buf[i].i_addr, /* source */
1924 nbits<<XFS_BLI_SHIFT); /* length */
1925 i++;
1926 bit += nbits;
1927 }
1928
1929 /* Shouldn't be any more regions */
1930 ASSERT(i == item->ri_total);
1931}
1932
1933/*
1934 * Do some primitive error checking on ondisk dquot data structures.
1935 */
1936int
1937xfs_qm_dqcheck(
1938 xfs_disk_dquot_t *ddq,
1939 xfs_dqid_t id,
1940 uint type, /* used only when IO_dorepair is true */
1941 uint flags,
1942 char *str)
1943{
1944 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1945 int errs = 0;
1946
1947 /*
1948 * We can encounter an uninitialized dquot buffer for 2 reasons:
1949 * 1. If we crash while deleting the quotainode(s), and those blks got
1950 * used for user data. This is because we take the path of regular
1951 * file deletion; however, the size field of quotainodes is never
1952 * updated, so all the tricks that we play in itruncate_finish
1953 * don't quite matter.
1954 *
1955 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1956 * But the allocation will be replayed so we'll end up with an
1957 * uninitialized quota block.
1958 *
1959 * This is all fine; things are still consistent, and we haven't lost
1960 * any quota information. Just don't complain about bad dquot blks.
1961 */
Christoph Hellwig1149d962005-11-02 15:01:12 +11001962 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001963 if (flags & XFS_QMOPT_DOWARN)
1964 cmn_err(CE_ALERT,
1965 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
Christoph Hellwig1149d962005-11-02 15:01:12 +11001966 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001967 errs++;
1968 }
Christoph Hellwig1149d962005-11-02 15:01:12 +11001969 if (ddq->d_version != XFS_DQUOT_VERSION) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001970 if (flags & XFS_QMOPT_DOWARN)
1971 cmn_err(CE_ALERT,
1972 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
Christoph Hellwig1149d962005-11-02 15:01:12 +11001973 str, id, ddq->d_version, XFS_DQUOT_VERSION);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001974 errs++;
1975 }
1976
Christoph Hellwig1149d962005-11-02 15:01:12 +11001977 if (ddq->d_flags != XFS_DQ_USER &&
1978 ddq->d_flags != XFS_DQ_PROJ &&
1979 ddq->d_flags != XFS_DQ_GROUP) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001980 if (flags & XFS_QMOPT_DOWARN)
1981 cmn_err(CE_ALERT,
1982 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
Christoph Hellwig1149d962005-11-02 15:01:12 +11001983 str, id, ddq->d_flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001984 errs++;
1985 }
1986
Christoph Hellwig1149d962005-11-02 15:01:12 +11001987 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001988 if (flags & XFS_QMOPT_DOWARN)
1989 cmn_err(CE_ALERT,
1990 "%s : ondisk-dquot 0x%p, ID mismatch: "
1991 "0x%x expected, found id 0x%x",
Christoph Hellwig1149d962005-11-02 15:01:12 +11001992 str, ddq, id, be32_to_cpu(ddq->d_id));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001993 errs++;
1994 }
1995
1996 if (!errs && ddq->d_id) {
Christoph Hellwig1149d962005-11-02 15:01:12 +11001997 if (ddq->d_blk_softlimit &&
1998 be64_to_cpu(ddq->d_bcount) >=
1999 be64_to_cpu(ddq->d_blk_softlimit)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002000 if (!ddq->d_btimer) {
2001 if (flags & XFS_QMOPT_DOWARN)
2002 cmn_err(CE_ALERT,
2003 "%s : Dquot ID 0x%x (0x%p) "
2004 "BLK TIMER NOT STARTED",
Christoph Hellwig1149d962005-11-02 15:01:12 +11002005 str, (int)be32_to_cpu(ddq->d_id), ddq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002006 errs++;
2007 }
2008 }
Christoph Hellwig1149d962005-11-02 15:01:12 +11002009 if (ddq->d_ino_softlimit &&
2010 be64_to_cpu(ddq->d_icount) >=
2011 be64_to_cpu(ddq->d_ino_softlimit)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002012 if (!ddq->d_itimer) {
2013 if (flags & XFS_QMOPT_DOWARN)
2014 cmn_err(CE_ALERT,
2015 "%s : Dquot ID 0x%x (0x%p) "
2016 "INODE TIMER NOT STARTED",
Christoph Hellwig1149d962005-11-02 15:01:12 +11002017 str, (int)be32_to_cpu(ddq->d_id), ddq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002018 errs++;
2019 }
2020 }
Christoph Hellwig1149d962005-11-02 15:01:12 +11002021 if (ddq->d_rtb_softlimit &&
2022 be64_to_cpu(ddq->d_rtbcount) >=
2023 be64_to_cpu(ddq->d_rtb_softlimit)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002024 if (!ddq->d_rtbtimer) {
2025 if (flags & XFS_QMOPT_DOWARN)
2026 cmn_err(CE_ALERT,
2027 "%s : Dquot ID 0x%x (0x%p) "
2028 "RTBLK TIMER NOT STARTED",
Christoph Hellwig1149d962005-11-02 15:01:12 +11002029 str, (int)be32_to_cpu(ddq->d_id), ddq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002030 errs++;
2031 }
2032 }
2033 }
2034
2035 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2036 return errs;
2037
2038 if (flags & XFS_QMOPT_DOWARN)
2039 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2040
2041 /*
2042 * Typically, a repair is only requested by quotacheck.
2043 */
2044 ASSERT(id != -1);
2045 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2046 memset(d, 0, sizeof(xfs_dqblk_t));
Christoph Hellwig1149d962005-11-02 15:01:12 +11002047
2048 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2049 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2050 d->dd_diskdq.d_flags = type;
2051 d->dd_diskdq.d_id = cpu_to_be32(id);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002052
2053 return errs;
2054}
2055
2056/*
2057 * Perform a dquot buffer recovery.
2058 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2059 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2060 * Else, treat it as a regular buffer and do recovery.
2061 */
2062STATIC void
2063xlog_recover_do_dquot_buffer(
2064 xfs_mount_t *mp,
2065 xlog_t *log,
2066 xlog_recover_item_t *item,
2067 xfs_buf_t *bp,
2068 xfs_buf_log_format_t *buf_f)
2069{
2070 uint type;
2071
2072 /*
2073 * Filesystems are required to send in quota flags at mount time.
2074 */
2075 if (mp->m_qflags == 0) {
2076 return;
2077 }
2078
2079 type = 0;
2080 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2081 type |= XFS_DQ_USER;
Nathan Scottc8ad20f2005-06-21 15:38:48 +10002082 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2083 type |= XFS_DQ_PROJ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002084 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2085 type |= XFS_DQ_GROUP;
2086 /*
2087 * This type of quotas was turned off, so ignore this buffer
2088 */
2089 if (log->l_quotaoffs_flag & type)
2090 return;
2091
Tim Shimmin053c59a2007-10-01 16:39:37 +10002092 xlog_recover_do_reg_buffer(item, bp, buf_f);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002093}
2094
2095/*
2096 * This routine replays a modification made to a buffer at runtime.
2097 * There are actually two types of buffer, regular and inode, which
2098 * are handled differently. Inode buffers are handled differently
2099 * in that we only recover a specific set of data from them, namely
2100 * the inode di_next_unlinked fields. This is because all other inode
2101 * data is actually logged via inode records and any data we replay
2102 * here which overlaps that may be stale.
2103 *
2104 * When meta-data buffers are freed at run time we log a buffer item
2105 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2106 * of the buffer in the log should not be replayed at recovery time.
2107 * This is so that if the blocks covered by the buffer are reused for
2108 * file data before we crash we don't end up replaying old, freed
2109 * meta-data into a user's file.
2110 *
2111 * To handle the cancellation of buffer log items, we make two passes
2112 * over the log during recovery. During the first we build a table of
2113 * those buffers which have been cancelled, and during the second we
2114 * only replay those buffers which do not have corresponding cancel
2115 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2116 * for more details on the implementation of the table of cancel records.
2117 */
2118STATIC int
2119xlog_recover_do_buffer_trans(
2120 xlog_t *log,
2121 xlog_recover_item_t *item,
2122 int pass)
2123{
2124 xfs_buf_log_format_t *buf_f;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002125 xfs_mount_t *mp;
2126 xfs_buf_t *bp;
2127 int error;
2128 int cancel;
2129 xfs_daddr_t blkno;
2130 int len;
2131 ushort flags;
2132
2133 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2134
2135 if (pass == XLOG_RECOVER_PASS1) {
2136 /*
2137 * In this pass we're only looking for buf items
2138 * with the XFS_BLI_CANCEL bit set.
2139 */
2140 xlog_recover_do_buffer_pass1(log, buf_f);
2141 return 0;
2142 } else {
2143 /*
2144 * In this pass we want to recover all the buffers
2145 * which have not been cancelled and are not
2146 * cancellation buffers themselves. The routine
2147 * we call here will tell us whether or not to
2148 * continue with the replay of this buffer.
2149 */
2150 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2151 if (cancel) {
2152 return 0;
2153 }
2154 }
2155 switch (buf_f->blf_type) {
2156 case XFS_LI_BUF:
2157 blkno = buf_f->blf_blkno;
2158 len = buf_f->blf_len;
2159 flags = buf_f->blf_flags;
2160 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002161 default:
2162 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
Nathan Scottfc1f8c12005-11-02 11:44:33 +11002163 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2164 buf_f->blf_type, log->l_mp->m_logname ?
2165 log->l_mp->m_logname : "internal");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002166 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2167 XFS_ERRLEVEL_LOW, log->l_mp);
2168 return XFS_ERROR(EFSCORRUPTED);
2169 }
2170
2171 mp = log->l_mp;
2172 if (flags & XFS_BLI_INODE_BUF) {
2173 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2174 XFS_BUF_LOCK);
2175 } else {
2176 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2177 }
2178 if (XFS_BUF_ISERROR(bp)) {
2179 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2180 bp, blkno);
2181 error = XFS_BUF_GETERROR(bp);
2182 xfs_buf_relse(bp);
2183 return error;
2184 }
2185
2186 error = 0;
2187 if (flags & XFS_BLI_INODE_BUF) {
2188 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
Nathan Scottc8ad20f2005-06-21 15:38:48 +10002189 } else if (flags &
2190 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002191 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2192 } else {
Tim Shimmin053c59a2007-10-01 16:39:37 +10002193 xlog_recover_do_reg_buffer(item, bp, buf_f);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002194 }
2195 if (error)
2196 return XFS_ERROR(error);
2197
2198 /*
2199 * Perform delayed write on the buffer. Asynchronous writes will be
2200 * slower when taking into account all the buffers to be flushed.
2201 *
2202 * Also make sure that only inode buffers with good sizes stay in
2203 * the buffer cache. The kernel moves inodes in buffers of 1 block
2204 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2205 * buffers in the log can be a different size if the log was generated
2206 * by an older kernel using unclustered inode buffers or a newer kernel
2207 * running with a different inode cluster size. Regardless, if the
2208 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2209 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2210 * the buffer out of the buffer cache so that the buffer won't
2211 * overlap with future reads of those inodes.
2212 */
2213 if (XFS_DINODE_MAGIC ==
Christoph Hellwigb53e6752007-10-12 10:59:34 +10002214 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07002215 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2216 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2217 XFS_BUF_STALE(bp);
2218 error = xfs_bwrite(mp, bp);
2219 } else {
2220 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2221 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2222 XFS_BUF_SET_FSPRIVATE(bp, mp);
2223 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2224 xfs_bdwrite(mp, bp);
2225 }
2226
2227 return (error);
2228}
2229
2230STATIC int
2231xlog_recover_do_inode_trans(
2232 xlog_t *log,
2233 xlog_recover_item_t *item,
2234 int pass)
2235{
2236 xfs_inode_log_format_t *in_f;
2237 xfs_mount_t *mp;
2238 xfs_buf_t *bp;
2239 xfs_imap_t imap;
2240 xfs_dinode_t *dip;
2241 xfs_ino_t ino;
2242 int len;
2243 xfs_caddr_t src;
2244 xfs_caddr_t dest;
2245 int error;
2246 int attr_index;
2247 uint fields;
Christoph Hellwig347d1c02007-08-28 13:57:51 +10002248 xfs_icdinode_t *dicp;
Tim Shimmin6d192a92006-06-09 14:55:38 +10002249 int need_free = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002250
2251 if (pass == XLOG_RECOVER_PASS1) {
2252 return 0;
2253 }
2254
Tim Shimmin6d192a92006-06-09 14:55:38 +10002255 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2256 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2257 } else {
2258 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2259 sizeof(xfs_inode_log_format_t), KM_SLEEP);
2260 need_free = 1;
2261 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2262 if (error)
2263 goto error;
2264 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002265 ino = in_f->ilf_ino;
2266 mp = log->l_mp;
2267 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2268 imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
2269 imap.im_len = in_f->ilf_len;
2270 imap.im_boffset = in_f->ilf_boffset;
2271 } else {
2272 /*
2273 * It's an old inode format record. We don't know where
2274 * its cluster is located on disk, and we can't allow
2275 * xfs_imap() to figure it out because the inode btrees
2276 * are not ready to be used. Therefore do not pass the
2277 * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give
2278 * us only the single block in which the inode lives
2279 * rather than its cluster, so we must make sure to
2280 * invalidate the buffer when we write it out below.
2281 */
2282 imap.im_blkno = 0;
2283 xfs_imap(log->l_mp, NULL, ino, &imap, 0);
2284 }
2285
2286 /*
2287 * Inode buffers can be freed, look out for it,
2288 * and do not replay the inode.
2289 */
Tim Shimmin6d192a92006-06-09 14:55:38 +10002290 if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) {
2291 error = 0;
2292 goto error;
2293 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002294
2295 bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
2296 XFS_BUF_LOCK);
2297 if (XFS_BUF_ISERROR(bp)) {
2298 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2299 bp, imap.im_blkno);
2300 error = XFS_BUF_GETERROR(bp);
2301 xfs_buf_relse(bp);
Tim Shimmin6d192a92006-06-09 14:55:38 +10002302 goto error;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002303 }
2304 error = 0;
2305 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2306 dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
2307
2308 /*
2309 * Make sure the place we're flushing out to really looks
2310 * like an inode!
2311 */
Christoph Hellwig347d1c02007-08-28 13:57:51 +10002312 if (unlikely(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002313 xfs_buf_relse(bp);
2314 xfs_fs_cmn_err(CE_ALERT, mp,
2315 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2316 dip, bp, ino);
2317 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2318 XFS_ERRLEVEL_LOW, mp);
Tim Shimmin6d192a92006-06-09 14:55:38 +10002319 error = EFSCORRUPTED;
2320 goto error;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002321 }
Christoph Hellwig347d1c02007-08-28 13:57:51 +10002322 dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002323 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2324 xfs_buf_relse(bp);
2325 xfs_fs_cmn_err(CE_ALERT, mp,
2326 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2327 item, ino);
2328 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2329 XFS_ERRLEVEL_LOW, mp);
Tim Shimmin6d192a92006-06-09 14:55:38 +10002330 error = EFSCORRUPTED;
2331 goto error;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002332 }
2333
2334 /* Skip replay when the on disk inode is newer than the log one */
Christoph Hellwig347d1c02007-08-28 13:57:51 +10002335 if (dicp->di_flushiter < be16_to_cpu(dip->di_core.di_flushiter)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002336 /*
2337 * Deal with the wrap case, DI_MAX_FLUSH is less
2338 * than smaller numbers
2339 */
Christoph Hellwig347d1c02007-08-28 13:57:51 +10002340 if (be16_to_cpu(dip->di_core.di_flushiter) == DI_MAX_FLUSH &&
2341 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002342 /* do nothing */
2343 } else {
2344 xfs_buf_relse(bp);
Tim Shimmin6d192a92006-06-09 14:55:38 +10002345 error = 0;
2346 goto error;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002347 }
2348 }
2349 /* Take the opportunity to reset the flush iteration count */
2350 dicp->di_flushiter = 0;
2351
2352 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2353 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2354 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2355 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2356 XFS_ERRLEVEL_LOW, mp, dicp);
2357 xfs_buf_relse(bp);
2358 xfs_fs_cmn_err(CE_ALERT, mp,
2359 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2360 item, dip, bp, ino);
Tim Shimmin6d192a92006-06-09 14:55:38 +10002361 error = EFSCORRUPTED;
2362 goto error;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002363 }
2364 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2365 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2366 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2367 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2368 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2369 XFS_ERRLEVEL_LOW, mp, dicp);
2370 xfs_buf_relse(bp);
2371 xfs_fs_cmn_err(CE_ALERT, mp,
2372 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2373 item, dip, bp, ino);
Tim Shimmin6d192a92006-06-09 14:55:38 +10002374 error = EFSCORRUPTED;
2375 goto error;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002376 }
2377 }
2378 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2379 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2380 XFS_ERRLEVEL_LOW, mp, dicp);
2381 xfs_buf_relse(bp);
2382 xfs_fs_cmn_err(CE_ALERT, mp,
2383 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2384 item, dip, bp, ino,
2385 dicp->di_nextents + dicp->di_anextents,
2386 dicp->di_nblocks);
Tim Shimmin6d192a92006-06-09 14:55:38 +10002387 error = EFSCORRUPTED;
2388 goto error;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002389 }
2390 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2391 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2392 XFS_ERRLEVEL_LOW, mp, dicp);
2393 xfs_buf_relse(bp);
2394 xfs_fs_cmn_err(CE_ALERT, mp,
2395 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2396 item, dip, bp, ino, dicp->di_forkoff);
Tim Shimmin6d192a92006-06-09 14:55:38 +10002397 error = EFSCORRUPTED;
2398 goto error;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002399 }
2400 if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
2401 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2402 XFS_ERRLEVEL_LOW, mp, dicp);
2403 xfs_buf_relse(bp);
2404 xfs_fs_cmn_err(CE_ALERT, mp,
2405 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2406 item->ri_buf[1].i_len, item);
Tim Shimmin6d192a92006-06-09 14:55:38 +10002407 error = EFSCORRUPTED;
2408 goto error;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002409 }
2410
2411 /* The core is in in-core format */
Christoph Hellwig347d1c02007-08-28 13:57:51 +10002412 xfs_dinode_to_disk(&dip->di_core,
2413 (xfs_icdinode_t *)item->ri_buf[1].i_addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002414
2415 /* the rest is in on-disk format */
2416 if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
2417 memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
2418 item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
2419 item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t));
2420 }
2421
2422 fields = in_f->ilf_fields;
2423 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2424 case XFS_ILOG_DEV:
Christoph Hellwig347d1c02007-08-28 13:57:51 +10002425 dip->di_u.di_dev = cpu_to_be32(in_f->ilf_u.ilfu_rdev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002426 break;
2427 case XFS_ILOG_UUID:
2428 dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
2429 break;
2430 }
2431
2432 if (in_f->ilf_size == 2)
2433 goto write_inode_buffer;
2434 len = item->ri_buf[2].i_len;
2435 src = item->ri_buf[2].i_addr;
2436 ASSERT(in_f->ilf_size <= 4);
2437 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2438 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2439 (len == in_f->ilf_dsize));
2440
2441 switch (fields & XFS_ILOG_DFORK) {
2442 case XFS_ILOG_DDATA:
2443 case XFS_ILOG_DEXT:
2444 memcpy(&dip->di_u, src, len);
2445 break;
2446
2447 case XFS_ILOG_DBROOT:
2448 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2449 &(dip->di_u.di_bmbt),
2450 XFS_DFORK_DSIZE(dip, mp));
2451 break;
2452
2453 default:
2454 /*
2455 * There are no data fork flags set.
2456 */
2457 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2458 break;
2459 }
2460
2461 /*
2462 * If we logged any attribute data, recover it. There may or
2463 * may not have been any other non-core data logged in this
2464 * transaction.
2465 */
2466 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2467 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2468 attr_index = 3;
2469 } else {
2470 attr_index = 2;
2471 }
2472 len = item->ri_buf[attr_index].i_len;
2473 src = item->ri_buf[attr_index].i_addr;
2474 ASSERT(len == in_f->ilf_asize);
2475
2476 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2477 case XFS_ILOG_ADATA:
2478 case XFS_ILOG_AEXT:
2479 dest = XFS_DFORK_APTR(dip);
2480 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2481 memcpy(dest, src, len);
2482 break;
2483
2484 case XFS_ILOG_ABROOT:
2485 dest = XFS_DFORK_APTR(dip);
2486 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2487 (xfs_bmdr_block_t*)dest,
2488 XFS_DFORK_ASIZE(dip, mp));
2489 break;
2490
2491 default:
2492 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2493 ASSERT(0);
2494 xfs_buf_relse(bp);
Tim Shimmin6d192a92006-06-09 14:55:38 +10002495 error = EIO;
2496 goto error;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002497 }
2498 }
2499
2500write_inode_buffer:
2501 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2502 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2503 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2504 XFS_BUF_SET_FSPRIVATE(bp, mp);
2505 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2506 xfs_bdwrite(mp, bp);
2507 } else {
2508 XFS_BUF_STALE(bp);
2509 error = xfs_bwrite(mp, bp);
2510 }
2511
Tim Shimmin6d192a92006-06-09 14:55:38 +10002512error:
2513 if (need_free)
2514 kmem_free(in_f, sizeof(*in_f));
2515 return XFS_ERROR(error);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002516}
2517
2518/*
2519 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2520 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2521 * of that type.
2522 */
2523STATIC int
2524xlog_recover_do_quotaoff_trans(
2525 xlog_t *log,
2526 xlog_recover_item_t *item,
2527 int pass)
2528{
2529 xfs_qoff_logformat_t *qoff_f;
2530
2531 if (pass == XLOG_RECOVER_PASS2) {
2532 return (0);
2533 }
2534
2535 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2536 ASSERT(qoff_f);
2537
2538 /*
2539 * The logitem format's flag tells us if this was user quotaoff,
Nathan Scott77a7cce2006-01-11 15:35:57 +11002540 * group/project quotaoff or both.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002541 */
2542 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2543 log->l_quotaoffs_flag |= XFS_DQ_USER;
Nathan Scott77a7cce2006-01-11 15:35:57 +11002544 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2545 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002546 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2547 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2548
2549 return (0);
2550}
2551
2552/*
2553 * Recover a dquot record
2554 */
2555STATIC int
2556xlog_recover_do_dquot_trans(
2557 xlog_t *log,
2558 xlog_recover_item_t *item,
2559 int pass)
2560{
2561 xfs_mount_t *mp;
2562 xfs_buf_t *bp;
2563 struct xfs_disk_dquot *ddq, *recddq;
2564 int error;
2565 xfs_dq_logformat_t *dq_f;
2566 uint type;
2567
2568 if (pass == XLOG_RECOVER_PASS1) {
2569 return 0;
2570 }
2571 mp = log->l_mp;
2572
2573 /*
2574 * Filesystems are required to send in quota flags at mount time.
2575 */
2576 if (mp->m_qflags == 0)
2577 return (0);
2578
2579 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2580 ASSERT(recddq);
2581 /*
2582 * This type of quotas was turned off, so ignore this record.
2583 */
Christoph Hellwigb53e6752007-10-12 10:59:34 +10002584 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002585 ASSERT(type);
2586 if (log->l_quotaoffs_flag & type)
2587 return (0);
2588
2589 /*
2590 * At this point we know that quota was _not_ turned off.
2591 * Since the mount flags are not indicating to us otherwise, this
2592 * must mean that quota is on, and the dquot needs to be replayed.
2593 * Remember that we may not have fully recovered the superblock yet,
2594 * so we can't do the usual trick of looking at the SB quota bits.
2595 *
2596 * The other possibility, of course, is that the quota subsystem was
2597 * removed since the last mount - ENOSYS.
2598 */
2599 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2600 ASSERT(dq_f);
2601 if ((error = xfs_qm_dqcheck(recddq,
2602 dq_f->qlf_id,
2603 0, XFS_QMOPT_DOWARN,
2604 "xlog_recover_do_dquot_trans (log copy)"))) {
2605 return XFS_ERROR(EIO);
2606 }
2607 ASSERT(dq_f->qlf_len == 1);
2608
2609 error = xfs_read_buf(mp, mp->m_ddev_targp,
2610 dq_f->qlf_blkno,
2611 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2612 0, &bp);
2613 if (error) {
2614 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2615 bp, dq_f->qlf_blkno);
2616 return error;
2617 }
2618 ASSERT(bp);
2619 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2620
2621 /*
2622 * At least the magic num portion should be on disk because this
2623 * was among a chunk of dquots created earlier, and we did some
2624 * minimal initialization then.
2625 */
2626 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2627 "xlog_recover_do_dquot_trans")) {
2628 xfs_buf_relse(bp);
2629 return XFS_ERROR(EIO);
2630 }
2631
2632 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2633
2634 ASSERT(dq_f->qlf_size == 2);
2635 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2636 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2637 XFS_BUF_SET_FSPRIVATE(bp, mp);
2638 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2639 xfs_bdwrite(mp, bp);
2640
2641 return (0);
2642}
2643
2644/*
2645 * This routine is called to create an in-core extent free intent
2646 * item from the efi format structure which was logged on disk.
2647 * It allocates an in-core efi, copies the extents from the format
2648 * structure into it, and adds the efi to the AIL with the given
2649 * LSN.
2650 */
Tim Shimmin6d192a92006-06-09 14:55:38 +10002651STATIC int
Linus Torvalds1da177e2005-04-16 15:20:36 -07002652xlog_recover_do_efi_trans(
2653 xlog_t *log,
2654 xlog_recover_item_t *item,
2655 xfs_lsn_t lsn,
2656 int pass)
2657{
Tim Shimmin6d192a92006-06-09 14:55:38 +10002658 int error;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002659 xfs_mount_t *mp;
2660 xfs_efi_log_item_t *efip;
2661 xfs_efi_log_format_t *efi_formatp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002662
2663 if (pass == XLOG_RECOVER_PASS1) {
Tim Shimmin6d192a92006-06-09 14:55:38 +10002664 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002665 }
2666
2667 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002668
2669 mp = log->l_mp;
2670 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
Tim Shimmin6d192a92006-06-09 14:55:38 +10002671 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2672 &(efip->efi_format)))) {
2673 xfs_efi_item_free(efip);
2674 return error;
2675 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002676 efip->efi_next_extent = efi_formatp->efi_nextents;
2677 efip->efi_flags |= XFS_EFI_COMMITTED;
2678
Donald Douwsma287f3da2007-10-11 17:36:05 +10002679 spin_lock(&mp->m_ail_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002680 /*
2681 * xfs_trans_update_ail() drops the AIL lock.
2682 */
Donald Douwsma287f3da2007-10-11 17:36:05 +10002683 xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn);
Tim Shimmin6d192a92006-06-09 14:55:38 +10002684 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002685}
2686
2687
2688/*
2689 * This routine is called when an efd format structure is found in
2690 * a committed transaction in the log. It's purpose is to cancel
2691 * the corresponding efi if it was still in the log. To do this
2692 * it searches the AIL for the efi with an id equal to that in the
2693 * efd format structure. If we find it, we remove the efi from the
2694 * AIL and free it.
2695 */
2696STATIC void
2697xlog_recover_do_efd_trans(
2698 xlog_t *log,
2699 xlog_recover_item_t *item,
2700 int pass)
2701{
2702 xfs_mount_t *mp;
2703 xfs_efd_log_format_t *efd_formatp;
2704 xfs_efi_log_item_t *efip = NULL;
2705 xfs_log_item_t *lip;
2706 int gen;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002707 __uint64_t efi_id;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002708
2709 if (pass == XLOG_RECOVER_PASS1) {
2710 return;
2711 }
2712
2713 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
Tim Shimmin6d192a92006-06-09 14:55:38 +10002714 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2715 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2716 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2717 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002718 efi_id = efd_formatp->efd_efi_id;
2719
2720 /*
2721 * Search for the efi with the id in the efd format structure
2722 * in the AIL.
2723 */
2724 mp = log->l_mp;
Donald Douwsma287f3da2007-10-11 17:36:05 +10002725 spin_lock(&mp->m_ail_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002726 lip = xfs_trans_first_ail(mp, &gen);
2727 while (lip != NULL) {
2728 if (lip->li_type == XFS_LI_EFI) {
2729 efip = (xfs_efi_log_item_t *)lip;
2730 if (efip->efi_format.efi_id == efi_id) {
2731 /*
2732 * xfs_trans_delete_ail() drops the
2733 * AIL lock.
2734 */
Donald Douwsma287f3da2007-10-11 17:36:05 +10002735 xfs_trans_delete_ail(mp, lip);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002736 break;
2737 }
2738 }
2739 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
2740 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002741
2742 /*
2743 * If we found it, then free it up. If it wasn't there, it
2744 * must have been overwritten in the log. Oh well.
2745 */
2746 if (lip != NULL) {
Christoph Hellwig7d795ca2005-06-21 15:41:19 +10002747 xfs_efi_item_free(efip);
2748 } else {
Donald Douwsma287f3da2007-10-11 17:36:05 +10002749 spin_unlock(&mp->m_ail_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002750 }
2751}
2752
2753/*
2754 * Perform the transaction
2755 *
2756 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2757 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2758 */
2759STATIC int
2760xlog_recover_do_trans(
2761 xlog_t *log,
2762 xlog_recover_t *trans,
2763 int pass)
2764{
2765 int error = 0;
2766 xlog_recover_item_t *item, *first_item;
2767
Eric Sandeene9ed9d22007-05-08 13:48:56 +10002768 if ((error = xlog_recover_reorder_trans(trans)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002769 return error;
2770 first_item = item = trans->r_itemq;
2771 do {
2772 /*
2773 * we don't need to worry about the block number being
2774 * truncated in > 1 TB buffers because in user-land,
2775 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
Nathan Scottc41564b2006-03-29 08:55:14 +10002776 * the blknos will get through the user-mode buffer
Linus Torvalds1da177e2005-04-16 15:20:36 -07002777 * cache properly. The only bad case is o32 kernels
2778 * where xfs_daddr_t is 32-bits but mount will warn us
2779 * off a > 1 TB filesystem before we get here.
2780 */
Eric Sandeen804195b2007-02-10 18:35:02 +11002781 if ((ITEM_TYPE(item) == XFS_LI_BUF)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002782 if ((error = xlog_recover_do_buffer_trans(log, item,
2783 pass)))
2784 break;
Tim Shimmin6d192a92006-06-09 14:55:38 +10002785 } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002786 if ((error = xlog_recover_do_inode_trans(log, item,
2787 pass)))
2788 break;
2789 } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
Tim Shimmin6d192a92006-06-09 14:55:38 +10002790 if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2791 pass)))
2792 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002793 } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2794 xlog_recover_do_efd_trans(log, item, pass);
2795 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2796 if ((error = xlog_recover_do_dquot_trans(log, item,
2797 pass)))
2798 break;
2799 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2800 if ((error = xlog_recover_do_quotaoff_trans(log, item,
2801 pass)))
2802 break;
2803 } else {
2804 xlog_warn("XFS: xlog_recover_do_trans");
2805 ASSERT(0);
2806 error = XFS_ERROR(EIO);
2807 break;
2808 }
2809 item = item->ri_next;
2810 } while (first_item != item);
2811
2812 return error;
2813}
2814
2815/*
2816 * Free up any resources allocated by the transaction
2817 *
2818 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2819 */
2820STATIC void
2821xlog_recover_free_trans(
2822 xlog_recover_t *trans)
2823{
2824 xlog_recover_item_t *first_item, *item, *free_item;
2825 int i;
2826
2827 item = first_item = trans->r_itemq;
2828 do {
2829 free_item = item;
2830 item = item->ri_next;
2831 /* Free the regions in the item. */
2832 for (i = 0; i < free_item->ri_cnt; i++) {
2833 kmem_free(free_item->ri_buf[i].i_addr,
2834 free_item->ri_buf[i].i_len);
2835 }
2836 /* Free the item itself */
2837 kmem_free(free_item->ri_buf,
2838 (free_item->ri_total * sizeof(xfs_log_iovec_t)));
2839 kmem_free(free_item, sizeof(xlog_recover_item_t));
2840 } while (first_item != item);
2841 /* Free the transaction recover structure */
2842 kmem_free(trans, sizeof(xlog_recover_t));
2843}
2844
2845STATIC int
2846xlog_recover_commit_trans(
2847 xlog_t *log,
2848 xlog_recover_t **q,
2849 xlog_recover_t *trans,
2850 int pass)
2851{
2852 int error;
2853
2854 if ((error = xlog_recover_unlink_tid(q, trans)))
2855 return error;
2856 if ((error = xlog_recover_do_trans(log, trans, pass)))
2857 return error;
2858 xlog_recover_free_trans(trans); /* no error */
2859 return 0;
2860}
2861
2862STATIC int
2863xlog_recover_unmount_trans(
2864 xlog_recover_t *trans)
2865{
2866 /* Do nothing now */
2867 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2868 return 0;
2869}
2870
2871/*
2872 * There are two valid states of the r_state field. 0 indicates that the
2873 * transaction structure is in a normal state. We have either seen the
2874 * start of the transaction or the last operation we added was not a partial
2875 * operation. If the last operation we added to the transaction was a
2876 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2877 *
2878 * NOTE: skip LRs with 0 data length.
2879 */
2880STATIC int
2881xlog_recover_process_data(
2882 xlog_t *log,
2883 xlog_recover_t *rhash[],
2884 xlog_rec_header_t *rhead,
2885 xfs_caddr_t dp,
2886 int pass)
2887{
2888 xfs_caddr_t lp;
2889 int num_logops;
2890 xlog_op_header_t *ohead;
2891 xlog_recover_t *trans;
2892 xlog_tid_t tid;
2893 int error;
2894 unsigned long hash;
2895 uint flags;
2896
Christoph Hellwigb53e6752007-10-12 10:59:34 +10002897 lp = dp + be32_to_cpu(rhead->h_len);
2898 num_logops = be32_to_cpu(rhead->h_num_logops);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002899
2900 /* check the log format matches our own - else we can't recover */
2901 if (xlog_header_check_recover(log->l_mp, rhead))
2902 return (XFS_ERROR(EIO));
2903
2904 while ((dp < lp) && num_logops) {
2905 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2906 ohead = (xlog_op_header_t *)dp;
2907 dp += sizeof(xlog_op_header_t);
2908 if (ohead->oh_clientid != XFS_TRANSACTION &&
2909 ohead->oh_clientid != XFS_LOG) {
2910 xlog_warn(
2911 "XFS: xlog_recover_process_data: bad clientid");
2912 ASSERT(0);
2913 return (XFS_ERROR(EIO));
2914 }
Christoph Hellwig67fcb7b2007-10-12 10:58:59 +10002915 tid = be32_to_cpu(ohead->oh_tid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002916 hash = XLOG_RHASH(tid);
2917 trans = xlog_recover_find_tid(rhash[hash], tid);
2918 if (trans == NULL) { /* not found; add new tid */
2919 if (ohead->oh_flags & XLOG_START_TRANS)
2920 xlog_recover_new_tid(&rhash[hash], tid,
Christoph Hellwigb53e6752007-10-12 10:59:34 +10002921 be64_to_cpu(rhead->h_lsn));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002922 } else {
Christoph Hellwig67fcb7b2007-10-12 10:58:59 +10002923 ASSERT(dp + be32_to_cpu(ohead->oh_len) <= lp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002924 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2925 if (flags & XLOG_WAS_CONT_TRANS)
2926 flags &= ~XLOG_CONTINUE_TRANS;
2927 switch (flags) {
2928 case XLOG_COMMIT_TRANS:
2929 error = xlog_recover_commit_trans(log,
2930 &rhash[hash], trans, pass);
2931 break;
2932 case XLOG_UNMOUNT_TRANS:
2933 error = xlog_recover_unmount_trans(trans);
2934 break;
2935 case XLOG_WAS_CONT_TRANS:
2936 error = xlog_recover_add_to_cont_trans(trans,
Christoph Hellwig67fcb7b2007-10-12 10:58:59 +10002937 dp, be32_to_cpu(ohead->oh_len));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002938 break;
2939 case XLOG_START_TRANS:
2940 xlog_warn(
2941 "XFS: xlog_recover_process_data: bad transaction");
2942 ASSERT(0);
2943 error = XFS_ERROR(EIO);
2944 break;
2945 case 0:
2946 case XLOG_CONTINUE_TRANS:
2947 error = xlog_recover_add_to_trans(trans,
Christoph Hellwig67fcb7b2007-10-12 10:58:59 +10002948 dp, be32_to_cpu(ohead->oh_len));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002949 break;
2950 default:
2951 xlog_warn(
2952 "XFS: xlog_recover_process_data: bad flag");
2953 ASSERT(0);
2954 error = XFS_ERROR(EIO);
2955 break;
2956 }
2957 if (error)
2958 return error;
2959 }
Christoph Hellwig67fcb7b2007-10-12 10:58:59 +10002960 dp += be32_to_cpu(ohead->oh_len);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002961 num_logops--;
2962 }
2963 return 0;
2964}
2965
2966/*
2967 * Process an extent free intent item that was recovered from
2968 * the log. We need to free the extents that it describes.
2969 */
2970STATIC void
2971xlog_recover_process_efi(
2972 xfs_mount_t *mp,
2973 xfs_efi_log_item_t *efip)
2974{
2975 xfs_efd_log_item_t *efdp;
2976 xfs_trans_t *tp;
2977 int i;
2978 xfs_extent_t *extp;
2979 xfs_fsblock_t startblock_fsb;
2980
2981 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
2982
2983 /*
2984 * First check the validity of the extents described by the
2985 * EFI. If any are bad, then assume that all are bad and
2986 * just toss the EFI.
2987 */
2988 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2989 extp = &(efip->efi_format.efi_extents[i]);
2990 startblock_fsb = XFS_BB_TO_FSB(mp,
2991 XFS_FSB_TO_DADDR(mp, extp->ext_start));
2992 if ((startblock_fsb == 0) ||
2993 (extp->ext_len == 0) ||
2994 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2995 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2996 /*
2997 * This will pull the EFI from the AIL and
2998 * free the memory associated with it.
2999 */
3000 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3001 return;
3002 }
3003 }
3004
3005 tp = xfs_trans_alloc(mp, 0);
3006 xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3007 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3008
3009 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3010 extp = &(efip->efi_format.efi_extents[i]);
3011 xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3012 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3013 extp->ext_len);
3014 }
3015
3016 efip->efi_flags |= XFS_EFI_RECOVERED;
Eric Sandeen1c72bf92007-05-08 13:48:42 +10003017 xfs_trans_commit(tp, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003018}
3019
3020/*
3021 * Verify that once we've encountered something other than an EFI
3022 * in the AIL that there are no more EFIs in the AIL.
3023 */
3024#if defined(DEBUG)
3025STATIC void
3026xlog_recover_check_ail(
3027 xfs_mount_t *mp,
3028 xfs_log_item_t *lip,
3029 int gen)
3030{
3031 int orig_gen = gen;
3032
3033 do {
3034 ASSERT(lip->li_type != XFS_LI_EFI);
3035 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3036 /*
3037 * The check will be bogus if we restart from the
3038 * beginning of the AIL, so ASSERT that we don't.
3039 * We never should since we're holding the AIL lock
3040 * the entire time.
3041 */
3042 ASSERT(gen == orig_gen);
3043 } while (lip != NULL);
3044}
3045#endif /* DEBUG */
3046
3047/*
3048 * When this is called, all of the EFIs which did not have
3049 * corresponding EFDs should be in the AIL. What we do now
3050 * is free the extents associated with each one.
3051 *
3052 * Since we process the EFIs in normal transactions, they
3053 * will be removed at some point after the commit. This prevents
3054 * us from just walking down the list processing each one.
3055 * We'll use a flag in the EFI to skip those that we've already
3056 * processed and use the AIL iteration mechanism's generation
3057 * count to try to speed this up at least a bit.
3058 *
3059 * When we start, we know that the EFIs are the only things in
3060 * the AIL. As we process them, however, other items are added
3061 * to the AIL. Since everything added to the AIL must come after
3062 * everything already in the AIL, we stop processing as soon as
3063 * we see something other than an EFI in the AIL.
3064 */
3065STATIC void
3066xlog_recover_process_efis(
3067 xlog_t *log)
3068{
3069 xfs_log_item_t *lip;
3070 xfs_efi_log_item_t *efip;
3071 int gen;
3072 xfs_mount_t *mp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003073
3074 mp = log->l_mp;
Donald Douwsma287f3da2007-10-11 17:36:05 +10003075 spin_lock(&mp->m_ail_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003076
3077 lip = xfs_trans_first_ail(mp, &gen);
3078 while (lip != NULL) {
3079 /*
3080 * We're done when we see something other than an EFI.
3081 */
3082 if (lip->li_type != XFS_LI_EFI) {
3083 xlog_recover_check_ail(mp, lip, gen);
3084 break;
3085 }
3086
3087 /*
3088 * Skip EFIs that we've already processed.
3089 */
3090 efip = (xfs_efi_log_item_t *)lip;
3091 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3092 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3093 continue;
3094 }
3095
Donald Douwsma287f3da2007-10-11 17:36:05 +10003096 spin_unlock(&mp->m_ail_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003097 xlog_recover_process_efi(mp, efip);
Donald Douwsma287f3da2007-10-11 17:36:05 +10003098 spin_lock(&mp->m_ail_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003099 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3100 }
Donald Douwsma287f3da2007-10-11 17:36:05 +10003101 spin_unlock(&mp->m_ail_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003102}
3103
3104/*
3105 * This routine performs a transaction to null out a bad inode pointer
3106 * in an agi unlinked inode hash bucket.
3107 */
3108STATIC void
3109xlog_recover_clear_agi_bucket(
3110 xfs_mount_t *mp,
3111 xfs_agnumber_t agno,
3112 int bucket)
3113{
3114 xfs_trans_t *tp;
3115 xfs_agi_t *agi;
3116 xfs_buf_t *agibp;
3117 int offset;
3118 int error;
3119
3120 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3121 xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
3122
3123 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3124 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3125 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
3126 if (error) {
3127 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3128 return;
3129 }
3130
3131 agi = XFS_BUF_TO_AGI(agibp);
Christoph Hellwig16259e72005-11-02 15:11:25 +11003132 if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003133 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3134 return;
3135 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003136
Christoph Hellwig16259e72005-11-02 15:11:25 +11003137 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003138 offset = offsetof(xfs_agi_t, agi_unlinked) +
3139 (sizeof(xfs_agino_t) * bucket);
3140 xfs_trans_log_buf(tp, agibp, offset,
3141 (offset + sizeof(xfs_agino_t) - 1));
3142
Eric Sandeen1c72bf92007-05-08 13:48:42 +10003143 (void) xfs_trans_commit(tp, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003144}
3145
3146/*
3147 * xlog_iunlink_recover
3148 *
3149 * This is called during recovery to process any inodes which
3150 * we unlinked but not freed when the system crashed. These
3151 * inodes will be on the lists in the AGI blocks. What we do
3152 * here is scan all the AGIs and fully truncate and free any
3153 * inodes found on the lists. Each inode is removed from the
3154 * lists when it has been fully truncated and is freed. The
3155 * freeing of the inode and its removal from the list must be
3156 * atomic.
3157 */
3158void
3159xlog_recover_process_iunlinks(
3160 xlog_t *log)
3161{
3162 xfs_mount_t *mp;
3163 xfs_agnumber_t agno;
3164 xfs_agi_t *agi;
3165 xfs_buf_t *agibp;
3166 xfs_buf_t *ibp;
3167 xfs_dinode_t *dip;
3168 xfs_inode_t *ip;
3169 xfs_agino_t agino;
3170 xfs_ino_t ino;
3171 int bucket;
3172 int error;
3173 uint mp_dmevmask;
3174
3175 mp = log->l_mp;
3176
3177 /*
3178 * Prevent any DMAPI event from being sent while in this function.
3179 */
3180 mp_dmevmask = mp->m_dmevmask;
3181 mp->m_dmevmask = 0;
3182
3183 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3184 /*
3185 * Find the agi for this ag.
3186 */
3187 agibp = xfs_buf_read(mp->m_ddev_targp,
3188 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3189 XFS_FSS_TO_BB(mp, 1), 0);
3190 if (XFS_BUF_ISERROR(agibp)) {
3191 xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
3192 log->l_mp, agibp,
3193 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
3194 }
3195 agi = XFS_BUF_TO_AGI(agibp);
Christoph Hellwig16259e72005-11-02 15:11:25 +11003196 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003197
3198 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3199
Christoph Hellwig16259e72005-11-02 15:11:25 +11003200 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003201 while (agino != NULLAGINO) {
3202
3203 /*
3204 * Release the agi buffer so that it can
3205 * be acquired in the normal course of the
3206 * transaction to truncate and free the inode.
3207 */
3208 xfs_buf_relse(agibp);
3209
3210 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3211 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3212 ASSERT(error || (ip != NULL));
3213
3214 if (!error) {
3215 /*
3216 * Get the on disk inode to find the
3217 * next inode in the bucket.
3218 */
3219 error = xfs_itobp(mp, NULL, ip, &dip,
Nathan Scottb12dd342006-03-17 17:26:04 +11003220 &ibp, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003221 ASSERT(error || (dip != NULL));
3222 }
3223
3224 if (!error) {
3225 ASSERT(ip->i_d.di_nlink == 0);
3226
3227 /* setup for the next pass */
Christoph Hellwig347d1c02007-08-28 13:57:51 +10003228 agino = be32_to_cpu(
3229 dip->di_next_unlinked);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003230 xfs_buf_relse(ibp);
3231 /*
3232 * Prevent any DMAPI event from
3233 * being sent when the
3234 * reference on the inode is
3235 * dropped.
3236 */
3237 ip->i_d.di_dmevmask = 0;
3238
3239 /*
3240 * If this is a new inode, handle
3241 * it specially. Otherwise,
3242 * just drop our reference to the
3243 * inode. If there are no
3244 * other references, this will
3245 * send the inode to
3246 * xfs_inactive() which will
3247 * truncate the file and free
3248 * the inode.
3249 */
3250 if (ip->i_d.di_mode == 0)
3251 xfs_iput_new(ip, 0);
3252 else
3253 VN_RELE(XFS_ITOV(ip));
3254 } else {
3255 /*
3256 * We can't read in the inode
3257 * this bucket points to, or
3258 * this inode is messed up. Just
3259 * ditch this bucket of inodes. We
3260 * will lose some inodes and space,
3261 * but at least we won't hang. Call
3262 * xlog_recover_clear_agi_bucket()
3263 * to perform a transaction to clear
3264 * the inode pointer in the bucket.
3265 */
3266 xlog_recover_clear_agi_bucket(mp, agno,
3267 bucket);
3268
3269 agino = NULLAGINO;
3270 }
3271
3272 /*
3273 * Reacquire the agibuffer and continue around
3274 * the loop.
3275 */
3276 agibp = xfs_buf_read(mp->m_ddev_targp,
3277 XFS_AG_DADDR(mp, agno,
3278 XFS_AGI_DADDR(mp)),
3279 XFS_FSS_TO_BB(mp, 1), 0);
3280 if (XFS_BUF_ISERROR(agibp)) {
3281 xfs_ioerror_alert(
3282 "xlog_recover_process_iunlinks(#2)",
3283 log->l_mp, agibp,
3284 XFS_AG_DADDR(mp, agno,
3285 XFS_AGI_DADDR(mp)));
3286 }
3287 agi = XFS_BUF_TO_AGI(agibp);
Christoph Hellwig16259e72005-11-02 15:11:25 +11003288 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
3289 agi->agi_magicnum));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003290 }
3291 }
3292
3293 /*
3294 * Release the buffer for the current agi so we can
3295 * go on to the next one.
3296 */
3297 xfs_buf_relse(agibp);
3298 }
3299
3300 mp->m_dmevmask = mp_dmevmask;
3301}
3302
3303
3304#ifdef DEBUG
3305STATIC void
3306xlog_pack_data_checksum(
3307 xlog_t *log,
3308 xlog_in_core_t *iclog,
3309 int size)
3310{
3311 int i;
Christoph Hellwigb53e6752007-10-12 10:59:34 +10003312 __be32 *up;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003313 uint chksum = 0;
3314
Christoph Hellwigb53e6752007-10-12 10:59:34 +10003315 up = (__be32 *)iclog->ic_datap;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003316 /* divide length by 4 to get # words */
3317 for (i = 0; i < (size >> 2); i++) {
Christoph Hellwigb53e6752007-10-12 10:59:34 +10003318 chksum ^= be32_to_cpu(*up);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003319 up++;
3320 }
Christoph Hellwigb53e6752007-10-12 10:59:34 +10003321 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003322}
3323#else
3324#define xlog_pack_data_checksum(log, iclog, size)
3325#endif
3326
3327/*
3328 * Stamp cycle number in every block
3329 */
3330void
3331xlog_pack_data(
3332 xlog_t *log,
3333 xlog_in_core_t *iclog,
3334 int roundoff)
3335{
3336 int i, j, k;
3337 int size = iclog->ic_offset + roundoff;
Christoph Hellwigb53e6752007-10-12 10:59:34 +10003338 __be32 cycle_lsn;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003339 xfs_caddr_t dp;
3340 xlog_in_core_2_t *xhdr;
3341
3342 xlog_pack_data_checksum(log, iclog, size);
3343
3344 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3345
3346 dp = iclog->ic_datap;
3347 for (i = 0; i < BTOBB(size) &&
3348 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
Christoph Hellwigb53e6752007-10-12 10:59:34 +10003349 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3350 *(__be32 *)dp = cycle_lsn;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003351 dp += BBSIZE;
3352 }
3353
3354 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3355 xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
3356 for ( ; i < BTOBB(size); i++) {
3357 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3358 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
Christoph Hellwigb53e6752007-10-12 10:59:34 +10003359 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3360 *(__be32 *)dp = cycle_lsn;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003361 dp += BBSIZE;
3362 }
3363
3364 for (i = 1; i < log->l_iclog_heads; i++) {
3365 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3366 }
3367 }
3368}
3369
3370#if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3371STATIC void
3372xlog_unpack_data_checksum(
3373 xlog_rec_header_t *rhead,
3374 xfs_caddr_t dp,
3375 xlog_t *log)
3376{
Christoph Hellwigb53e6752007-10-12 10:59:34 +10003377 __be32 *up = (__be32 *)dp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003378 uint chksum = 0;
3379 int i;
3380
3381 /* divide length by 4 to get # words */
Christoph Hellwigb53e6752007-10-12 10:59:34 +10003382 for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
3383 chksum ^= be32_to_cpu(*up);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003384 up++;
3385 }
Christoph Hellwigb53e6752007-10-12 10:59:34 +10003386 if (chksum != be32_to_cpu(rhead->h_chksum)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003387 if (rhead->h_chksum ||
3388 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3389 cmn_err(CE_DEBUG,
Nathan Scottb6574522006-06-09 15:29:40 +10003390 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
Christoph Hellwigb53e6752007-10-12 10:59:34 +10003391 be32_to_cpu(rhead->h_chksum), chksum);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003392 cmn_err(CE_DEBUG,
3393"XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3394 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3395 cmn_err(CE_DEBUG,
Nathan Scottb6574522006-06-09 15:29:40 +10003396 "XFS: LogR this is a LogV2 filesystem\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003397 }
3398 log->l_flags |= XLOG_CHKSUM_MISMATCH;
3399 }
3400 }
3401}
3402#else
3403#define xlog_unpack_data_checksum(rhead, dp, log)
3404#endif
3405
3406STATIC void
3407xlog_unpack_data(
3408 xlog_rec_header_t *rhead,
3409 xfs_caddr_t dp,
3410 xlog_t *log)
3411{
3412 int i, j, k;
3413 xlog_in_core_2_t *xhdr;
3414
Christoph Hellwigb53e6752007-10-12 10:59:34 +10003415 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07003416 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
Christoph Hellwigb53e6752007-10-12 10:59:34 +10003417 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003418 dp += BBSIZE;
3419 }
3420
3421 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3422 xhdr = (xlog_in_core_2_t *)rhead;
Christoph Hellwigb53e6752007-10-12 10:59:34 +10003423 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003424 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3425 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
Christoph Hellwigb53e6752007-10-12 10:59:34 +10003426 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003427 dp += BBSIZE;
3428 }
3429 }
3430
3431 xlog_unpack_data_checksum(rhead, dp, log);
3432}
3433
3434STATIC int
3435xlog_valid_rec_header(
3436 xlog_t *log,
3437 xlog_rec_header_t *rhead,
3438 xfs_daddr_t blkno)
3439{
3440 int hlen;
3441
Christoph Hellwigb53e6752007-10-12 10:59:34 +10003442 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003443 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3444 XFS_ERRLEVEL_LOW, log->l_mp);
3445 return XFS_ERROR(EFSCORRUPTED);
3446 }
3447 if (unlikely(
3448 (!rhead->h_version ||
Christoph Hellwigb53e6752007-10-12 10:59:34 +10003449 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003450 xlog_warn("XFS: %s: unrecognised log version (%d).",
Christoph Hellwigb53e6752007-10-12 10:59:34 +10003451 __FUNCTION__, be32_to_cpu(rhead->h_version));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003452 return XFS_ERROR(EIO);
3453 }
3454
3455 /* LR body must have data or it wouldn't have been written */
Christoph Hellwigb53e6752007-10-12 10:59:34 +10003456 hlen = be32_to_cpu(rhead->h_len);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003457 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3458 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3459 XFS_ERRLEVEL_LOW, log->l_mp);
3460 return XFS_ERROR(EFSCORRUPTED);
3461 }
3462 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3463 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3464 XFS_ERRLEVEL_LOW, log->l_mp);
3465 return XFS_ERROR(EFSCORRUPTED);
3466 }
3467 return 0;
3468}
3469
3470/*
3471 * Read the log from tail to head and process the log records found.
3472 * Handle the two cases where the tail and head are in the same cycle
3473 * and where the active portion of the log wraps around the end of
3474 * the physical log separately. The pass parameter is passed through
3475 * to the routines called to process the data and is not looked at
3476 * here.
3477 */
3478STATIC int
3479xlog_do_recovery_pass(
3480 xlog_t *log,
3481 xfs_daddr_t head_blk,
3482 xfs_daddr_t tail_blk,
3483 int pass)
3484{
3485 xlog_rec_header_t *rhead;
3486 xfs_daddr_t blk_no;
3487 xfs_caddr_t bufaddr, offset;
3488 xfs_buf_t *hbp, *dbp;
3489 int error = 0, h_size;
3490 int bblks, split_bblks;
3491 int hblks, split_hblks, wrapped_hblks;
3492 xlog_recover_t *rhash[XLOG_RHASH_SIZE];
3493
3494 ASSERT(head_blk != tail_blk);
3495
3496 /*
3497 * Read the header of the tail block and get the iclog buffer size from
3498 * h_size. Use this to tell how many sectors make up the log header.
3499 */
3500 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3501 /*
3502 * When using variable length iclogs, read first sector of
3503 * iclog header and extract the header size from it. Get a
3504 * new hbp that is the correct size.
3505 */
3506 hbp = xlog_get_bp(log, 1);
3507 if (!hbp)
3508 return ENOMEM;
3509 if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3510 goto bread_err1;
3511 offset = xlog_align(log, tail_blk, 1, hbp);
3512 rhead = (xlog_rec_header_t *)offset;
3513 error = xlog_valid_rec_header(log, rhead, tail_blk);
3514 if (error)
3515 goto bread_err1;
Christoph Hellwigb53e6752007-10-12 10:59:34 +10003516 h_size = be32_to_cpu(rhead->h_size);
3517 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07003518 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3519 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3520 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3521 hblks++;
3522 xlog_put_bp(hbp);
3523 hbp = xlog_get_bp(log, hblks);
3524 } else {
3525 hblks = 1;
3526 }
3527 } else {
3528 ASSERT(log->l_sectbb_log == 0);
3529 hblks = 1;
3530 hbp = xlog_get_bp(log, 1);
3531 h_size = XLOG_BIG_RECORD_BSIZE;
3532 }
3533
3534 if (!hbp)
3535 return ENOMEM;
3536 dbp = xlog_get_bp(log, BTOBB(h_size));
3537 if (!dbp) {
3538 xlog_put_bp(hbp);
3539 return ENOMEM;
3540 }
3541
3542 memset(rhash, 0, sizeof(rhash));
3543 if (tail_blk <= head_blk) {
3544 for (blk_no = tail_blk; blk_no < head_blk; ) {
3545 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3546 goto bread_err2;
3547 offset = xlog_align(log, blk_no, hblks, hbp);
3548 rhead = (xlog_rec_header_t *)offset;
3549 error = xlog_valid_rec_header(log, rhead, blk_no);
3550 if (error)
3551 goto bread_err2;
3552
3553 /* blocks in data section */
Christoph Hellwigb53e6752007-10-12 10:59:34 +10003554 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003555 error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3556 if (error)
3557 goto bread_err2;
3558 offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3559 xlog_unpack_data(rhead, offset, log);
3560 if ((error = xlog_recover_process_data(log,
3561 rhash, rhead, offset, pass)))
3562 goto bread_err2;
3563 blk_no += bblks + hblks;
3564 }
3565 } else {
3566 /*
3567 * Perform recovery around the end of the physical log.
3568 * When the head is not on the same cycle number as the tail,
3569 * we can't do a sequential recovery as above.
3570 */
3571 blk_no = tail_blk;
3572 while (blk_no < log->l_logBBsize) {
3573 /*
3574 * Check for header wrapping around physical end-of-log
3575 */
3576 offset = NULL;
3577 split_hblks = 0;
3578 wrapped_hblks = 0;
3579 if (blk_no + hblks <= log->l_logBBsize) {
3580 /* Read header in one read */
3581 error = xlog_bread(log, blk_no, hblks, hbp);
3582 if (error)
3583 goto bread_err2;
3584 offset = xlog_align(log, blk_no, hblks, hbp);
3585 } else {
3586 /* This LR is split across physical log end */
3587 if (blk_no != log->l_logBBsize) {
3588 /* some data before physical log end */
3589 ASSERT(blk_no <= INT_MAX);
3590 split_hblks = log->l_logBBsize - (int)blk_no;
3591 ASSERT(split_hblks > 0);
3592 if ((error = xlog_bread(log, blk_no,
3593 split_hblks, hbp)))
3594 goto bread_err2;
3595 offset = xlog_align(log, blk_no,
3596 split_hblks, hbp);
3597 }
3598 /*
3599 * Note: this black magic still works with
3600 * large sector sizes (non-512) only because:
3601 * - we increased the buffer size originally
3602 * by 1 sector giving us enough extra space
3603 * for the second read;
3604 * - the log start is guaranteed to be sector
3605 * aligned;
3606 * - we read the log end (LR header start)
3607 * _first_, then the log start (LR header end)
3608 * - order is important.
3609 */
3610 bufaddr = XFS_BUF_PTR(hbp);
3611 XFS_BUF_SET_PTR(hbp,
3612 bufaddr + BBTOB(split_hblks),
3613 BBTOB(hblks - split_hblks));
3614 wrapped_hblks = hblks - split_hblks;
3615 error = xlog_bread(log, 0, wrapped_hblks, hbp);
3616 if (error)
3617 goto bread_err2;
3618 XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks));
3619 if (!offset)
3620 offset = xlog_align(log, 0,
3621 wrapped_hblks, hbp);
3622 }
3623 rhead = (xlog_rec_header_t *)offset;
3624 error = xlog_valid_rec_header(log, rhead,
3625 split_hblks ? blk_no : 0);
3626 if (error)
3627 goto bread_err2;
3628
Christoph Hellwigb53e6752007-10-12 10:59:34 +10003629 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003630 blk_no += hblks;
3631
3632 /* Read in data for log record */
3633 if (blk_no + bblks <= log->l_logBBsize) {
3634 error = xlog_bread(log, blk_no, bblks, dbp);
3635 if (error)
3636 goto bread_err2;
3637 offset = xlog_align(log, blk_no, bblks, dbp);
3638 } else {
3639 /* This log record is split across the
3640 * physical end of log */
3641 offset = NULL;
3642 split_bblks = 0;
3643 if (blk_no != log->l_logBBsize) {
3644 /* some data is before the physical
3645 * end of log */
3646 ASSERT(!wrapped_hblks);
3647 ASSERT(blk_no <= INT_MAX);
3648 split_bblks =
3649 log->l_logBBsize - (int)blk_no;
3650 ASSERT(split_bblks > 0);
3651 if ((error = xlog_bread(log, blk_no,
3652 split_bblks, dbp)))
3653 goto bread_err2;
3654 offset = xlog_align(log, blk_no,
3655 split_bblks, dbp);
3656 }
3657 /*
3658 * Note: this black magic still works with
3659 * large sector sizes (non-512) only because:
3660 * - we increased the buffer size originally
3661 * by 1 sector giving us enough extra space
3662 * for the second read;
3663 * - the log start is guaranteed to be sector
3664 * aligned;
3665 * - we read the log end (LR header start)
3666 * _first_, then the log start (LR header end)
3667 * - order is important.
3668 */
3669 bufaddr = XFS_BUF_PTR(dbp);
3670 XFS_BUF_SET_PTR(dbp,
3671 bufaddr + BBTOB(split_bblks),
3672 BBTOB(bblks - split_bblks));
3673 if ((error = xlog_bread(log, wrapped_hblks,
3674 bblks - split_bblks, dbp)))
3675 goto bread_err2;
3676 XFS_BUF_SET_PTR(dbp, bufaddr, h_size);
3677 if (!offset)
3678 offset = xlog_align(log, wrapped_hblks,
3679 bblks - split_bblks, dbp);
3680 }
3681 xlog_unpack_data(rhead, offset, log);
3682 if ((error = xlog_recover_process_data(log, rhash,
3683 rhead, offset, pass)))
3684 goto bread_err2;
3685 blk_no += bblks;
3686 }
3687
3688 ASSERT(blk_no >= log->l_logBBsize);
3689 blk_no -= log->l_logBBsize;
3690
3691 /* read first part of physical log */
3692 while (blk_no < head_blk) {
3693 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3694 goto bread_err2;
3695 offset = xlog_align(log, blk_no, hblks, hbp);
3696 rhead = (xlog_rec_header_t *)offset;
3697 error = xlog_valid_rec_header(log, rhead, blk_no);
3698 if (error)
3699 goto bread_err2;
Christoph Hellwigb53e6752007-10-12 10:59:34 +10003700 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003701 if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3702 goto bread_err2;
3703 offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3704 xlog_unpack_data(rhead, offset, log);
3705 if ((error = xlog_recover_process_data(log, rhash,
3706 rhead, offset, pass)))
3707 goto bread_err2;
3708 blk_no += bblks + hblks;
3709 }
3710 }
3711
3712 bread_err2:
3713 xlog_put_bp(dbp);
3714 bread_err1:
3715 xlog_put_bp(hbp);
3716 return error;
3717}
3718
3719/*
3720 * Do the recovery of the log. We actually do this in two phases.
3721 * The two passes are necessary in order to implement the function
3722 * of cancelling a record written into the log. The first pass
3723 * determines those things which have been cancelled, and the
3724 * second pass replays log items normally except for those which
3725 * have been cancelled. The handling of the replay and cancellations
3726 * takes place in the log item type specific routines.
3727 *
3728 * The table of items which have cancel records in the log is allocated
3729 * and freed at this level, since only here do we know when all of
3730 * the log recovery has been completed.
3731 */
3732STATIC int
3733xlog_do_log_recovery(
3734 xlog_t *log,
3735 xfs_daddr_t head_blk,
3736 xfs_daddr_t tail_blk)
3737{
3738 int error;
3739
3740 ASSERT(head_blk != tail_blk);
3741
3742 /*
3743 * First do a pass to find all of the cancelled buf log items.
3744 * Store them in the buf_cancel_table for use in the second pass.
3745 */
3746 log->l_buf_cancel_table =
3747 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3748 sizeof(xfs_buf_cancel_t*),
3749 KM_SLEEP);
3750 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3751 XLOG_RECOVER_PASS1);
3752 if (error != 0) {
3753 kmem_free(log->l_buf_cancel_table,
3754 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3755 log->l_buf_cancel_table = NULL;
3756 return error;
3757 }
3758 /*
3759 * Then do a second pass to actually recover the items in the log.
3760 * When it is complete free the table of buf cancel items.
3761 */
3762 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3763 XLOG_RECOVER_PASS2);
3764#ifdef DEBUG
Tim Shimmin6d192a92006-06-09 14:55:38 +10003765 if (!error) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003766 int i;
3767
3768 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3769 ASSERT(log->l_buf_cancel_table[i] == NULL);
3770 }
3771#endif /* DEBUG */
3772
3773 kmem_free(log->l_buf_cancel_table,
3774 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3775 log->l_buf_cancel_table = NULL;
3776
3777 return error;
3778}
3779
3780/*
3781 * Do the actual recovery
3782 */
3783STATIC int
3784xlog_do_recover(
3785 xlog_t *log,
3786 xfs_daddr_t head_blk,
3787 xfs_daddr_t tail_blk)
3788{
3789 int error;
3790 xfs_buf_t *bp;
3791 xfs_sb_t *sbp;
3792
3793 /*
3794 * First replay the images in the log.
3795 */
3796 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3797 if (error) {
3798 return error;
3799 }
3800
3801 XFS_bflush(log->l_mp->m_ddev_targp);
3802
3803 /*
3804 * If IO errors happened during recovery, bail out.
3805 */
3806 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3807 return (EIO);
3808 }
3809
3810 /*
3811 * We now update the tail_lsn since much of the recovery has completed
3812 * and there may be space available to use. If there were no extent
3813 * or iunlinks, we can free up the entire log and set the tail_lsn to
3814 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3815 * lsn of the last known good LR on disk. If there are extent frees
3816 * or iunlinks they will have some entries in the AIL; so we look at
3817 * the AIL to determine how to set the tail_lsn.
3818 */
3819 xlog_assign_tail_lsn(log->l_mp);
3820
3821 /*
3822 * Now that we've finished replaying all buffer and inode
3823 * updates, re-read in the superblock.
3824 */
3825 bp = xfs_getsb(log->l_mp, 0);
3826 XFS_BUF_UNDONE(bp);
Lachlan McIlroybebf9632007-10-15 13:18:02 +10003827 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3828 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003829 XFS_BUF_READ(bp);
Lachlan McIlroybebf9632007-10-15 13:18:02 +10003830 XFS_BUF_UNASYNC(bp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003831 xfsbdstrat(log->l_mp, bp);
3832 if ((error = xfs_iowait(bp))) {
3833 xfs_ioerror_alert("xlog_do_recover",
3834 log->l_mp, bp, XFS_BUF_ADDR(bp));
3835 ASSERT(0);
3836 xfs_buf_relse(bp);
3837 return error;
3838 }
3839
3840 /* Convert superblock from on-disk format */
3841 sbp = &log->l_mp->m_sb;
Christoph Hellwig2bdf7cd2007-08-28 13:58:06 +10003842 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003843 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3844 ASSERT(XFS_SB_GOOD_VERSION(sbp));
3845 xfs_buf_relse(bp);
3846
Lachlan McIlroy5478eea2007-02-10 18:36:29 +11003847 /* We've re-read the superblock so re-initialize per-cpu counters */
3848 xfs_icsb_reinit_counters(log->l_mp);
3849
Linus Torvalds1da177e2005-04-16 15:20:36 -07003850 xlog_recover_check_summary(log);
3851
3852 /* Normal transactions can now occur */
3853 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3854 return 0;
3855}
3856
3857/*
3858 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3859 *
3860 * Return error or zero.
3861 */
3862int
3863xlog_recover(
Eric Sandeen65be6052006-01-11 15:34:19 +11003864 xlog_t *log)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003865{
3866 xfs_daddr_t head_blk, tail_blk;
3867 int error;
3868
3869 /* find the tail of the log */
Eric Sandeen65be6052006-01-11 15:34:19 +11003870 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003871 return error;
3872
3873 if (tail_blk != head_blk) {
3874 /* There used to be a comment here:
3875 *
3876 * disallow recovery on read-only mounts. note -- mount
3877 * checks for ENOSPC and turns it into an intelligent
3878 * error message.
3879 * ...but this is no longer true. Now, unless you specify
3880 * NORECOVERY (in which case this function would never be
3881 * called), we just go ahead and recover. We do this all
3882 * under the vfs layer, so we can get away with it unless
3883 * the device itself is read-only, in which case we fail.
3884 */
Utako Kusaka3a02ee12007-05-08 13:50:06 +10003885 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003886 return error;
3887 }
3888
3889 cmn_err(CE_NOTE,
Nathan Scottfc1f8c12005-11-02 11:44:33 +11003890 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3891 log->l_mp->m_fsname, log->l_mp->m_logname ?
3892 log->l_mp->m_logname : "internal");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003893
3894 error = xlog_do_recover(log, head_blk, tail_blk);
3895 log->l_flags |= XLOG_RECOVERY_NEEDED;
3896 }
3897 return error;
3898}
3899
3900/*
3901 * In the first part of recovery we replay inodes and buffers and build
3902 * up the list of extent free items which need to be processed. Here
3903 * we process the extent free items and clean up the on disk unlinked
3904 * inode lists. This is separated from the first part of recovery so
3905 * that the root and real-time bitmap inodes can be read in from disk in
3906 * between the two stages. This is necessary so that we can free space
3907 * in the real-time portion of the file system.
3908 */
3909int
3910xlog_recover_finish(
3911 xlog_t *log,
3912 int mfsi_flags)
3913{
3914 /*
3915 * Now we're ready to do the transactions needed for the
3916 * rest of recovery. Start with completing all the extent
3917 * free intent records and then process the unlinked inode
3918 * lists. At this point, we essentially run in normal mode
3919 * except that we're still performing recovery actions
3920 * rather than accepting new requests.
3921 */
3922 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3923 xlog_recover_process_efis(log);
3924 /*
3925 * Sync the log to get all the EFIs out of the AIL.
3926 * This isn't absolutely necessary, but it helps in
3927 * case the unlink transactions would have problems
3928 * pushing the EFIs out of the way.
3929 */
3930 xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3931 (XFS_LOG_FORCE | XFS_LOG_SYNC));
3932
3933 if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) {
3934 xlog_recover_process_iunlinks(log);
3935 }
3936
3937 xlog_recover_check_summary(log);
3938
3939 cmn_err(CE_NOTE,
Nathan Scottfc1f8c12005-11-02 11:44:33 +11003940 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3941 log->l_mp->m_fsname, log->l_mp->m_logname ?
3942 log->l_mp->m_logname : "internal");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003943 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3944 } else {
3945 cmn_err(CE_DEBUG,
Nathan Scottb6574522006-06-09 15:29:40 +10003946 "!Ending clean XFS mount for filesystem: %s\n",
Linus Torvalds1da177e2005-04-16 15:20:36 -07003947 log->l_mp->m_fsname);
3948 }
3949 return 0;
3950}
3951
3952
3953#if defined(DEBUG)
3954/*
3955 * Read all of the agf and agi counters and check that they
3956 * are consistent with the superblock counters.
3957 */
3958void
3959xlog_recover_check_summary(
3960 xlog_t *log)
3961{
3962 xfs_mount_t *mp;
3963 xfs_agf_t *agfp;
3964 xfs_agi_t *agip;
3965 xfs_buf_t *agfbp;
3966 xfs_buf_t *agibp;
3967 xfs_daddr_t agfdaddr;
3968 xfs_daddr_t agidaddr;
3969 xfs_buf_t *sbbp;
3970#ifdef XFS_LOUD_RECOVERY
3971 xfs_sb_t *sbp;
3972#endif
3973 xfs_agnumber_t agno;
3974 __uint64_t freeblks;
3975 __uint64_t itotal;
3976 __uint64_t ifree;
3977
3978 mp = log->l_mp;
3979
3980 freeblks = 0LL;
3981 itotal = 0LL;
3982 ifree = 0LL;
3983 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3984 agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
3985 agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
3986 XFS_FSS_TO_BB(mp, 1), 0);
3987 if (XFS_BUF_ISERROR(agfbp)) {
3988 xfs_ioerror_alert("xlog_recover_check_summary(agf)",
3989 mp, agfbp, agfdaddr);
3990 }
3991 agfp = XFS_BUF_TO_AGF(agfbp);
Christoph Hellwig16259e72005-11-02 15:11:25 +11003992 ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
3993 ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
3994 ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003995
Christoph Hellwig16259e72005-11-02 15:11:25 +11003996 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3997 be32_to_cpu(agfp->agf_flcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003998 xfs_buf_relse(agfbp);
3999
4000 agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
4001 agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
4002 XFS_FSS_TO_BB(mp, 1), 0);
4003 if (XFS_BUF_ISERROR(agibp)) {
4004 xfs_ioerror_alert("xlog_recover_check_summary(agi)",
4005 mp, agibp, agidaddr);
4006 }
4007 agip = XFS_BUF_TO_AGI(agibp);
Christoph Hellwig16259e72005-11-02 15:11:25 +11004008 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
4009 ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
4010 ASSERT(be32_to_cpu(agip->agi_seqno) == agno);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004011
Christoph Hellwig16259e72005-11-02 15:11:25 +11004012 itotal += be32_to_cpu(agip->agi_count);
4013 ifree += be32_to_cpu(agip->agi_freecount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004014 xfs_buf_relse(agibp);
4015 }
4016
4017 sbbp = xfs_getsb(mp, 0);
4018#ifdef XFS_LOUD_RECOVERY
4019 sbp = &mp->m_sb;
Christoph Hellwig2bdf7cd2007-08-28 13:58:06 +10004020 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004021 cmn_err(CE_NOTE,
4022 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4023 sbp->sb_icount, itotal);
4024 cmn_err(CE_NOTE,
4025 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4026 sbp->sb_ifree, ifree);
4027 cmn_err(CE_NOTE,
4028 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4029 sbp->sb_fdblocks, freeblks);
4030#if 0
4031 /*
4032 * This is turned off until I account for the allocation
4033 * btree blocks which live in free space.
4034 */
4035 ASSERT(sbp->sb_icount == itotal);
4036 ASSERT(sbp->sb_ifree == ifree);
4037 ASSERT(sbp->sb_fdblocks == freeblks);
4038#endif
4039#endif
4040 xfs_buf_relse(sbbp);
4041}
4042#endif /* DEBUG */