blob: a753598a5e35004c3759160a244fd75fc1e49ecf [file] [log] [blame]
Thomas Hellstromba4e7d92009-06-10 15:20:19 +02001/**************************************************************************
2 *
3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27/*
28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29 */
30
31#include "ttm/ttm_module.h"
32#include "ttm/ttm_bo_driver.h"
33#include "ttm/ttm_placement.h"
34#include <linux/jiffies.h>
35#include <linux/slab.h>
36#include <linux/sched.h>
37#include <linux/mm.h>
38#include <linux/file.h>
39#include <linux/module.h>
40
41#define TTM_ASSERT_LOCKED(param)
42#define TTM_DEBUG(fmt, arg...)
43#define TTM_BO_HASH_ORDER 13
44
45static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
46static void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo);
47static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
48
49static inline uint32_t ttm_bo_type_flags(unsigned type)
50{
51 return 1 << (type);
52}
53
54static void ttm_bo_release_list(struct kref *list_kref)
55{
56 struct ttm_buffer_object *bo =
57 container_of(list_kref, struct ttm_buffer_object, list_kref);
58 struct ttm_bo_device *bdev = bo->bdev;
59
60 BUG_ON(atomic_read(&bo->list_kref.refcount));
61 BUG_ON(atomic_read(&bo->kref.refcount));
62 BUG_ON(atomic_read(&bo->cpu_writers));
63 BUG_ON(bo->sync_obj != NULL);
64 BUG_ON(bo->mem.mm_node != NULL);
65 BUG_ON(!list_empty(&bo->lru));
66 BUG_ON(!list_empty(&bo->ddestroy));
67
68 if (bo->ttm)
69 ttm_tt_destroy(bo->ttm);
70 if (bo->destroy)
71 bo->destroy(bo);
72 else {
73 ttm_mem_global_free(bdev->mem_glob, bo->acc_size, false);
74 kfree(bo);
75 }
76}
77
78int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
79{
80
81 if (interruptible) {
82 int ret = 0;
83
84 ret = wait_event_interruptible(bo->event_queue,
85 atomic_read(&bo->reserved) == 0);
86 if (unlikely(ret != 0))
87 return -ERESTART;
88 } else {
89 wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
90 }
91 return 0;
92}
93
94static void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
95{
96 struct ttm_bo_device *bdev = bo->bdev;
97 struct ttm_mem_type_manager *man;
98
99 BUG_ON(!atomic_read(&bo->reserved));
100
101 if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
102
103 BUG_ON(!list_empty(&bo->lru));
104
105 man = &bdev->man[bo->mem.mem_type];
106 list_add_tail(&bo->lru, &man->lru);
107 kref_get(&bo->list_kref);
108
109 if (bo->ttm != NULL) {
110 list_add_tail(&bo->swap, &bdev->swap_lru);
111 kref_get(&bo->list_kref);
112 }
113 }
114}
115
116/**
117 * Call with the lru_lock held.
118 */
119
120static int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
121{
122 int put_count = 0;
123
124 if (!list_empty(&bo->swap)) {
125 list_del_init(&bo->swap);
126 ++put_count;
127 }
128 if (!list_empty(&bo->lru)) {
129 list_del_init(&bo->lru);
130 ++put_count;
131 }
132
133 /*
134 * TODO: Add a driver hook to delete from
135 * driver-specific LRU's here.
136 */
137
138 return put_count;
139}
140
141int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
142 bool interruptible,
143 bool no_wait, bool use_sequence, uint32_t sequence)
144{
145 struct ttm_bo_device *bdev = bo->bdev;
146 int ret;
147
148 while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
149 if (use_sequence && bo->seq_valid &&
150 (sequence - bo->val_seq < (1 << 31))) {
151 return -EAGAIN;
152 }
153
154 if (no_wait)
155 return -EBUSY;
156
157 spin_unlock(&bdev->lru_lock);
158 ret = ttm_bo_wait_unreserved(bo, interruptible);
159 spin_lock(&bdev->lru_lock);
160
161 if (unlikely(ret))
162 return ret;
163 }
164
165 if (use_sequence) {
166 bo->val_seq = sequence;
167 bo->seq_valid = true;
168 } else {
169 bo->seq_valid = false;
170 }
171
172 return 0;
173}
174EXPORT_SYMBOL(ttm_bo_reserve);
175
176static void ttm_bo_ref_bug(struct kref *list_kref)
177{
178 BUG();
179}
180
181int ttm_bo_reserve(struct ttm_buffer_object *bo,
182 bool interruptible,
183 bool no_wait, bool use_sequence, uint32_t sequence)
184{
185 struct ttm_bo_device *bdev = bo->bdev;
186 int put_count = 0;
187 int ret;
188
189 spin_lock(&bdev->lru_lock);
190 ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
191 sequence);
192 if (likely(ret == 0))
193 put_count = ttm_bo_del_from_lru(bo);
194 spin_unlock(&bdev->lru_lock);
195
196 while (put_count--)
197 kref_put(&bo->list_kref, ttm_bo_ref_bug);
198
199 return ret;
200}
201
202void ttm_bo_unreserve(struct ttm_buffer_object *bo)
203{
204 struct ttm_bo_device *bdev = bo->bdev;
205
206 spin_lock(&bdev->lru_lock);
207 ttm_bo_add_to_lru(bo);
208 atomic_set(&bo->reserved, 0);
209 wake_up_all(&bo->event_queue);
210 spin_unlock(&bdev->lru_lock);
211}
212EXPORT_SYMBOL(ttm_bo_unreserve);
213
214/*
215 * Call bo->mutex locked.
216 */
217
218static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
219{
220 struct ttm_bo_device *bdev = bo->bdev;
221 int ret = 0;
222 uint32_t page_flags = 0;
223
224 TTM_ASSERT_LOCKED(&bo->mutex);
225 bo->ttm = NULL;
226
227 switch (bo->type) {
228 case ttm_bo_type_device:
229 if (zero_alloc)
230 page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
231 case ttm_bo_type_kernel:
232 bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
233 page_flags, bdev->dummy_read_page);
234 if (unlikely(bo->ttm == NULL))
235 ret = -ENOMEM;
236 break;
237 case ttm_bo_type_user:
238 bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
239 page_flags | TTM_PAGE_FLAG_USER,
240 bdev->dummy_read_page);
241 if (unlikely(bo->ttm == NULL))
242 ret = -ENOMEM;
243 break;
244
245 ret = ttm_tt_set_user(bo->ttm, current,
246 bo->buffer_start, bo->num_pages);
247 if (unlikely(ret != 0))
248 ttm_tt_destroy(bo->ttm);
249 break;
250 default:
251 printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
252 ret = -EINVAL;
253 break;
254 }
255
256 return ret;
257}
258
259static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
260 struct ttm_mem_reg *mem,
261 bool evict, bool interruptible, bool no_wait)
262{
263 struct ttm_bo_device *bdev = bo->bdev;
264 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
265 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
266 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
267 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
268 int ret = 0;
269
270 if (old_is_pci || new_is_pci ||
271 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0))
272 ttm_bo_unmap_virtual(bo);
273
274 /*
275 * Create and bind a ttm if required.
276 */
277
278 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && (bo->ttm == NULL)) {
279 ret = ttm_bo_add_ttm(bo, false);
280 if (ret)
281 goto out_err;
282
283 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
284 if (ret)
Thomas Hellstrom87ef9202009-06-17 12:29:57 +0200285 goto out_err;
Thomas Hellstromba4e7d92009-06-10 15:20:19 +0200286
287 if (mem->mem_type != TTM_PL_SYSTEM) {
288 ret = ttm_tt_bind(bo->ttm, mem);
289 if (ret)
290 goto out_err;
291 }
292
293 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
294
295 struct ttm_mem_reg *old_mem = &bo->mem;
296 uint32_t save_flags = old_mem->placement;
297
298 *old_mem = *mem;
299 mem->mm_node = NULL;
300 ttm_flag_masked(&save_flags, mem->placement,
301 TTM_PL_MASK_MEMTYPE);
302 goto moved;
303 }
304
305 }
306
307 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
308 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
309 ret = ttm_bo_move_ttm(bo, evict, no_wait, mem);
310 else if (bdev->driver->move)
311 ret = bdev->driver->move(bo, evict, interruptible,
312 no_wait, mem);
313 else
314 ret = ttm_bo_move_memcpy(bo, evict, no_wait, mem);
315
316 if (ret)
317 goto out_err;
318
319moved:
320 if (bo->evicted) {
321 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
322 if (ret)
323 printk(KERN_ERR TTM_PFX "Can not flush read caches\n");
324 bo->evicted = false;
325 }
326
327 if (bo->mem.mm_node) {
328 spin_lock(&bo->lock);
329 bo->offset = (bo->mem.mm_node->start << PAGE_SHIFT) +
330 bdev->man[bo->mem.mem_type].gpu_offset;
331 bo->cur_placement = bo->mem.placement;
332 spin_unlock(&bo->lock);
333 }
334
335 return 0;
336
337out_err:
338 new_man = &bdev->man[bo->mem.mem_type];
339 if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
340 ttm_tt_unbind(bo->ttm);
341 ttm_tt_destroy(bo->ttm);
342 bo->ttm = NULL;
343 }
344
345 return ret;
346}
347
348/**
349 * If bo idle, remove from delayed- and lru lists, and unref.
350 * If not idle, and already on delayed list, do nothing.
351 * If not idle, and not on delayed list, put on delayed list,
352 * up the list_kref and schedule a delayed list check.
353 */
354
355static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo, bool remove_all)
356{
357 struct ttm_bo_device *bdev = bo->bdev;
358 struct ttm_bo_driver *driver = bdev->driver;
359 int ret;
360
361 spin_lock(&bo->lock);
362 (void) ttm_bo_wait(bo, false, false, !remove_all);
363
364 if (!bo->sync_obj) {
365 int put_count;
366
367 spin_unlock(&bo->lock);
368
369 spin_lock(&bdev->lru_lock);
370 ret = ttm_bo_reserve_locked(bo, false, false, false, 0);
371 BUG_ON(ret);
372 if (bo->ttm)
373 ttm_tt_unbind(bo->ttm);
374
375 if (!list_empty(&bo->ddestroy)) {
376 list_del_init(&bo->ddestroy);
377 kref_put(&bo->list_kref, ttm_bo_ref_bug);
378 }
379 if (bo->mem.mm_node) {
380 drm_mm_put_block(bo->mem.mm_node);
381 bo->mem.mm_node = NULL;
382 }
383 put_count = ttm_bo_del_from_lru(bo);
384 spin_unlock(&bdev->lru_lock);
385
386 atomic_set(&bo->reserved, 0);
387
388 while (put_count--)
389 kref_put(&bo->list_kref, ttm_bo_release_list);
390
391 return 0;
392 }
393
394 spin_lock(&bdev->lru_lock);
395 if (list_empty(&bo->ddestroy)) {
396 void *sync_obj = bo->sync_obj;
397 void *sync_obj_arg = bo->sync_obj_arg;
398
399 kref_get(&bo->list_kref);
400 list_add_tail(&bo->ddestroy, &bdev->ddestroy);
401 spin_unlock(&bdev->lru_lock);
402 spin_unlock(&bo->lock);
403
404 if (sync_obj)
405 driver->sync_obj_flush(sync_obj, sync_obj_arg);
406 schedule_delayed_work(&bdev->wq,
407 ((HZ / 100) < 1) ? 1 : HZ / 100);
408 ret = 0;
409
410 } else {
411 spin_unlock(&bdev->lru_lock);
412 spin_unlock(&bo->lock);
413 ret = -EBUSY;
414 }
415
416 return ret;
417}
418
419/**
420 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
421 * encountered buffers.
422 */
423
424static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
425{
426 struct ttm_buffer_object *entry, *nentry;
427 struct list_head *list, *next;
428 int ret;
429
430 spin_lock(&bdev->lru_lock);
431 list_for_each_safe(list, next, &bdev->ddestroy) {
432 entry = list_entry(list, struct ttm_buffer_object, ddestroy);
433 nentry = NULL;
434
435 /*
436 * Protect the next list entry from destruction while we
437 * unlock the lru_lock.
438 */
439
440 if (next != &bdev->ddestroy) {
441 nentry = list_entry(next, struct ttm_buffer_object,
442 ddestroy);
443 kref_get(&nentry->list_kref);
444 }
445 kref_get(&entry->list_kref);
446
447 spin_unlock(&bdev->lru_lock);
448 ret = ttm_bo_cleanup_refs(entry, remove_all);
449 kref_put(&entry->list_kref, ttm_bo_release_list);
450
451 spin_lock(&bdev->lru_lock);
452 if (nentry) {
453 bool next_onlist = !list_empty(next);
454 spin_unlock(&bdev->lru_lock);
455 kref_put(&nentry->list_kref, ttm_bo_release_list);
456 spin_lock(&bdev->lru_lock);
457 /*
458 * Someone might have raced us and removed the
459 * next entry from the list. We don't bother restarting
460 * list traversal.
461 */
462
463 if (!next_onlist)
464 break;
465 }
466 if (ret)
467 break;
468 }
469 ret = !list_empty(&bdev->ddestroy);
470 spin_unlock(&bdev->lru_lock);
471
472 return ret;
473}
474
475static void ttm_bo_delayed_workqueue(struct work_struct *work)
476{
477 struct ttm_bo_device *bdev =
478 container_of(work, struct ttm_bo_device, wq.work);
479
480 if (ttm_bo_delayed_delete(bdev, false)) {
481 schedule_delayed_work(&bdev->wq,
482 ((HZ / 100) < 1) ? 1 : HZ / 100);
483 }
484}
485
486static void ttm_bo_release(struct kref *kref)
487{
488 struct ttm_buffer_object *bo =
489 container_of(kref, struct ttm_buffer_object, kref);
490 struct ttm_bo_device *bdev = bo->bdev;
491
492 if (likely(bo->vm_node != NULL)) {
493 rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
494 drm_mm_put_block(bo->vm_node);
495 bo->vm_node = NULL;
496 }
497 write_unlock(&bdev->vm_lock);
498 ttm_bo_cleanup_refs(bo, false);
499 kref_put(&bo->list_kref, ttm_bo_release_list);
500 write_lock(&bdev->vm_lock);
501}
502
503void ttm_bo_unref(struct ttm_buffer_object **p_bo)
504{
505 struct ttm_buffer_object *bo = *p_bo;
506 struct ttm_bo_device *bdev = bo->bdev;
507
508 *p_bo = NULL;
509 write_lock(&bdev->vm_lock);
510 kref_put(&bo->kref, ttm_bo_release);
511 write_unlock(&bdev->vm_lock);
512}
513EXPORT_SYMBOL(ttm_bo_unref);
514
515static int ttm_bo_evict(struct ttm_buffer_object *bo, unsigned mem_type,
516 bool interruptible, bool no_wait)
517{
518 int ret = 0;
519 struct ttm_bo_device *bdev = bo->bdev;
520 struct ttm_mem_reg evict_mem;
521 uint32_t proposed_placement;
522
523 if (bo->mem.mem_type != mem_type)
524 goto out;
525
526 spin_lock(&bo->lock);
527 ret = ttm_bo_wait(bo, false, interruptible, no_wait);
528 spin_unlock(&bo->lock);
529
Thomas Hellstrom78ecf092009-06-17 12:29:55 +0200530 if (unlikely(ret != 0)) {
531 if (ret != -ERESTART) {
532 printk(KERN_ERR TTM_PFX
533 "Failed to expire sync object before "
534 "buffer eviction.\n");
535 }
Thomas Hellstromba4e7d92009-06-10 15:20:19 +0200536 goto out;
537 }
538
539 BUG_ON(!atomic_read(&bo->reserved));
540
541 evict_mem = bo->mem;
542 evict_mem.mm_node = NULL;
543
544 proposed_placement = bdev->driver->evict_flags(bo);
545
546 ret = ttm_bo_mem_space(bo, proposed_placement,
547 &evict_mem, interruptible, no_wait);
548 if (unlikely(ret != 0 && ret != -ERESTART))
549 ret = ttm_bo_mem_space(bo, TTM_PL_FLAG_SYSTEM,
550 &evict_mem, interruptible, no_wait);
551
552 if (ret) {
553 if (ret != -ERESTART)
554 printk(KERN_ERR TTM_PFX
555 "Failed to find memory space for "
556 "buffer 0x%p eviction.\n", bo);
557 goto out;
558 }
559
560 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
561 no_wait);
562 if (ret) {
563 if (ret != -ERESTART)
564 printk(KERN_ERR TTM_PFX "Buffer eviction failed\n");
565 goto out;
566 }
567
568 spin_lock(&bdev->lru_lock);
569 if (evict_mem.mm_node) {
570 drm_mm_put_block(evict_mem.mm_node);
571 evict_mem.mm_node = NULL;
572 }
573 spin_unlock(&bdev->lru_lock);
574 bo->evicted = true;
575out:
576 return ret;
577}
578
579/**
580 * Repeatedly evict memory from the LRU for @mem_type until we create enough
581 * space, or we've evicted everything and there isn't enough space.
582 */
583static int ttm_bo_mem_force_space(struct ttm_bo_device *bdev,
584 struct ttm_mem_reg *mem,
585 uint32_t mem_type,
586 bool interruptible, bool no_wait)
587{
588 struct drm_mm_node *node;
589 struct ttm_buffer_object *entry;
590 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
591 struct list_head *lru;
592 unsigned long num_pages = mem->num_pages;
593 int put_count = 0;
594 int ret;
595
596retry_pre_get:
597 ret = drm_mm_pre_get(&man->manager);
598 if (unlikely(ret != 0))
599 return ret;
600
601 spin_lock(&bdev->lru_lock);
602 do {
603 node = drm_mm_search_free(&man->manager, num_pages,
604 mem->page_alignment, 1);
605 if (node)
606 break;
607
608 lru = &man->lru;
609 if (list_empty(lru))
610 break;
611
612 entry = list_first_entry(lru, struct ttm_buffer_object, lru);
613 kref_get(&entry->list_kref);
614
615 ret =
616 ttm_bo_reserve_locked(entry, interruptible, no_wait,
617 false, 0);
618
619 if (likely(ret == 0))
620 put_count = ttm_bo_del_from_lru(entry);
621
622 spin_unlock(&bdev->lru_lock);
623
624 if (unlikely(ret != 0))
625 return ret;
626
627 while (put_count--)
628 kref_put(&entry->list_kref, ttm_bo_ref_bug);
629
630 ret = ttm_bo_evict(entry, mem_type, interruptible, no_wait);
631
632 ttm_bo_unreserve(entry);
633
634 kref_put(&entry->list_kref, ttm_bo_release_list);
635 if (ret)
636 return ret;
637
638 spin_lock(&bdev->lru_lock);
639 } while (1);
640
641 if (!node) {
642 spin_unlock(&bdev->lru_lock);
643 return -ENOMEM;
644 }
645
646 node = drm_mm_get_block_atomic(node, num_pages, mem->page_alignment);
647 if (unlikely(!node)) {
648 spin_unlock(&bdev->lru_lock);
649 goto retry_pre_get;
650 }
651
652 spin_unlock(&bdev->lru_lock);
653 mem->mm_node = node;
654 mem->mem_type = mem_type;
655 return 0;
656}
657
Thomas Hellstromae3e8122009-06-24 19:57:34 +0200658static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
659 uint32_t cur_placement,
660 uint32_t proposed_placement)
661{
662 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
663 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
664
665 /**
666 * Keep current caching if possible.
667 */
668
669 if ((cur_placement & caching) != 0)
670 result |= (cur_placement & caching);
671 else if ((man->default_caching & caching) != 0)
672 result |= man->default_caching;
673 else if ((TTM_PL_FLAG_CACHED & caching) != 0)
674 result |= TTM_PL_FLAG_CACHED;
675 else if ((TTM_PL_FLAG_WC & caching) != 0)
676 result |= TTM_PL_FLAG_WC;
677 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
678 result |= TTM_PL_FLAG_UNCACHED;
679
680 return result;
681}
682
683
Thomas Hellstromba4e7d92009-06-10 15:20:19 +0200684static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
685 bool disallow_fixed,
686 uint32_t mem_type,
Thomas Hellstromae3e8122009-06-24 19:57:34 +0200687 uint32_t proposed_placement,
688 uint32_t *masked_placement)
Thomas Hellstromba4e7d92009-06-10 15:20:19 +0200689{
690 uint32_t cur_flags = ttm_bo_type_flags(mem_type);
691
692 if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && disallow_fixed)
693 return false;
694
Thomas Hellstromae3e8122009-06-24 19:57:34 +0200695 if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
Thomas Hellstromba4e7d92009-06-10 15:20:19 +0200696 return false;
697
Thomas Hellstromae3e8122009-06-24 19:57:34 +0200698 if ((proposed_placement & man->available_caching) == 0)
Thomas Hellstromba4e7d92009-06-10 15:20:19 +0200699 return false;
Thomas Hellstromba4e7d92009-06-10 15:20:19 +0200700
Thomas Hellstromae3e8122009-06-24 19:57:34 +0200701 cur_flags |= (proposed_placement & man->available_caching);
702
703 *masked_placement = cur_flags;
Thomas Hellstromba4e7d92009-06-10 15:20:19 +0200704 return true;
705}
706
707/**
708 * Creates space for memory region @mem according to its type.
709 *
710 * This function first searches for free space in compatible memory types in
711 * the priority order defined by the driver. If free space isn't found, then
712 * ttm_bo_mem_force_space is attempted in priority order to evict and find
713 * space.
714 */
715int ttm_bo_mem_space(struct ttm_buffer_object *bo,
716 uint32_t proposed_placement,
717 struct ttm_mem_reg *mem,
718 bool interruptible, bool no_wait)
719{
720 struct ttm_bo_device *bdev = bo->bdev;
721 struct ttm_mem_type_manager *man;
722
723 uint32_t num_prios = bdev->driver->num_mem_type_prio;
724 const uint32_t *prios = bdev->driver->mem_type_prio;
725 uint32_t i;
726 uint32_t mem_type = TTM_PL_SYSTEM;
727 uint32_t cur_flags = 0;
728 bool type_found = false;
729 bool type_ok = false;
730 bool has_eagain = false;
731 struct drm_mm_node *node = NULL;
732 int ret;
733
734 mem->mm_node = NULL;
735 for (i = 0; i < num_prios; ++i) {
736 mem_type = prios[i];
737 man = &bdev->man[mem_type];
738
739 type_ok = ttm_bo_mt_compatible(man,
740 bo->type == ttm_bo_type_user,
741 mem_type, proposed_placement,
742 &cur_flags);
743
744 if (!type_ok)
745 continue;
746
Thomas Hellstromae3e8122009-06-24 19:57:34 +0200747 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
748 cur_flags);
749
Thomas Hellstromba4e7d92009-06-10 15:20:19 +0200750 if (mem_type == TTM_PL_SYSTEM)
751 break;
752
753 if (man->has_type && man->use_type) {
754 type_found = true;
755 do {
756 ret = drm_mm_pre_get(&man->manager);
757 if (unlikely(ret))
758 return ret;
759
760 spin_lock(&bdev->lru_lock);
761 node = drm_mm_search_free(&man->manager,
762 mem->num_pages,
763 mem->page_alignment,
764 1);
765 if (unlikely(!node)) {
766 spin_unlock(&bdev->lru_lock);
767 break;
768 }
769 node = drm_mm_get_block_atomic(node,
770 mem->num_pages,
771 mem->
772 page_alignment);
773 spin_unlock(&bdev->lru_lock);
774 } while (!node);
775 }
776 if (node)
777 break;
778 }
779
780 if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || node) {
781 mem->mm_node = node;
782 mem->mem_type = mem_type;
783 mem->placement = cur_flags;
784 return 0;
785 }
786
787 if (!type_found)
788 return -EINVAL;
789
790 num_prios = bdev->driver->num_mem_busy_prio;
791 prios = bdev->driver->mem_busy_prio;
792
793 for (i = 0; i < num_prios; ++i) {
794 mem_type = prios[i];
795 man = &bdev->man[mem_type];
796
797 if (!man->has_type)
798 continue;
799
800 if (!ttm_bo_mt_compatible(man,
801 bo->type == ttm_bo_type_user,
802 mem_type,
803 proposed_placement, &cur_flags))
804 continue;
805
Thomas Hellstromae3e8122009-06-24 19:57:34 +0200806 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
807 cur_flags);
808
Thomas Hellstromba4e7d92009-06-10 15:20:19 +0200809 ret = ttm_bo_mem_force_space(bdev, mem, mem_type,
810 interruptible, no_wait);
811
812 if (ret == 0 && mem->mm_node) {
813 mem->placement = cur_flags;
814 return 0;
815 }
816
817 if (ret == -ERESTART)
818 has_eagain = true;
819 }
820
821 ret = (has_eagain) ? -ERESTART : -ENOMEM;
822 return ret;
823}
824EXPORT_SYMBOL(ttm_bo_mem_space);
825
826int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
827{
828 int ret = 0;
829
830 if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
831 return -EBUSY;
832
833 ret = wait_event_interruptible(bo->event_queue,
834 atomic_read(&bo->cpu_writers) == 0);
835
836 if (ret == -ERESTARTSYS)
837 ret = -ERESTART;
838
839 return ret;
840}
841
842int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
843 uint32_t proposed_placement,
844 bool interruptible, bool no_wait)
845{
846 struct ttm_bo_device *bdev = bo->bdev;
847 int ret = 0;
848 struct ttm_mem_reg mem;
849
850 BUG_ON(!atomic_read(&bo->reserved));
851
852 /*
853 * FIXME: It's possible to pipeline buffer moves.
854 * Have the driver move function wait for idle when necessary,
855 * instead of doing it here.
856 */
857
858 spin_lock(&bo->lock);
859 ret = ttm_bo_wait(bo, false, interruptible, no_wait);
860 spin_unlock(&bo->lock);
861
862 if (ret)
863 return ret;
864
865 mem.num_pages = bo->num_pages;
866 mem.size = mem.num_pages << PAGE_SHIFT;
867 mem.page_alignment = bo->mem.page_alignment;
868
869 /*
870 * Determine where to move the buffer.
871 */
872
873 ret = ttm_bo_mem_space(bo, proposed_placement, &mem,
874 interruptible, no_wait);
875 if (ret)
876 goto out_unlock;
877
878 ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait);
879
880out_unlock:
881 if (ret && mem.mm_node) {
882 spin_lock(&bdev->lru_lock);
883 drm_mm_put_block(mem.mm_node);
884 spin_unlock(&bdev->lru_lock);
885 }
886 return ret;
887}
888
889static int ttm_bo_mem_compat(uint32_t proposed_placement,
890 struct ttm_mem_reg *mem)
891{
892 if ((proposed_placement & mem->placement & TTM_PL_MASK_MEM) == 0)
893 return 0;
894 if ((proposed_placement & mem->placement & TTM_PL_MASK_CACHING) == 0)
895 return 0;
896
897 return 1;
898}
899
900int ttm_buffer_object_validate(struct ttm_buffer_object *bo,
901 uint32_t proposed_placement,
902 bool interruptible, bool no_wait)
903{
904 int ret;
905
906 BUG_ON(!atomic_read(&bo->reserved));
907 bo->proposed_placement = proposed_placement;
908
909 TTM_DEBUG("Proposed placement 0x%08lx, Old flags 0x%08lx\n",
910 (unsigned long)proposed_placement,
911 (unsigned long)bo->mem.placement);
912
913 /*
914 * Check whether we need to move buffer.
915 */
916
917 if (!ttm_bo_mem_compat(bo->proposed_placement, &bo->mem)) {
918 ret = ttm_bo_move_buffer(bo, bo->proposed_placement,
919 interruptible, no_wait);
920 if (ret) {
921 if (ret != -ERESTART)
922 printk(KERN_ERR TTM_PFX
923 "Failed moving buffer. "
924 "Proposed placement 0x%08x\n",
925 bo->proposed_placement);
926 if (ret == -ENOMEM)
927 printk(KERN_ERR TTM_PFX
928 "Out of aperture space or "
929 "DRM memory quota.\n");
930 return ret;
931 }
932 }
933
934 /*
935 * We might need to add a TTM.
936 */
937
938 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
939 ret = ttm_bo_add_ttm(bo, true);
940 if (ret)
941 return ret;
942 }
943 /*
944 * Validation has succeeded, move the access and other
945 * non-mapping-related flag bits from the proposed flags to
946 * the active flags
947 */
948
949 ttm_flag_masked(&bo->mem.placement, bo->proposed_placement,
950 ~TTM_PL_MASK_MEMTYPE);
951
952 return 0;
953}
954EXPORT_SYMBOL(ttm_buffer_object_validate);
955
956int
957ttm_bo_check_placement(struct ttm_buffer_object *bo,
958 uint32_t set_flags, uint32_t clr_flags)
959{
960 uint32_t new_mask = set_flags | clr_flags;
961
962 if ((bo->type == ttm_bo_type_user) &&
963 (clr_flags & TTM_PL_FLAG_CACHED)) {
964 printk(KERN_ERR TTM_PFX
965 "User buffers require cache-coherent memory.\n");
966 return -EINVAL;
967 }
968
969 if (!capable(CAP_SYS_ADMIN)) {
970 if (new_mask & TTM_PL_FLAG_NO_EVICT) {
971 printk(KERN_ERR TTM_PFX "Need to be root to modify"
972 " NO_EVICT status.\n");
973 return -EINVAL;
974 }
975
976 if ((clr_flags & bo->mem.placement & TTM_PL_MASK_MEMTYPE) &&
977 (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
978 printk(KERN_ERR TTM_PFX
979 "Incompatible memory specification"
980 " for NO_EVICT buffer.\n");
981 return -EINVAL;
982 }
983 }
984 return 0;
985}
986
987int ttm_buffer_object_init(struct ttm_bo_device *bdev,
988 struct ttm_buffer_object *bo,
989 unsigned long size,
990 enum ttm_bo_type type,
991 uint32_t flags,
992 uint32_t page_alignment,
993 unsigned long buffer_start,
994 bool interruptible,
995 struct file *persistant_swap_storage,
996 size_t acc_size,
997 void (*destroy) (struct ttm_buffer_object *))
998{
999 int ret = 0;
1000 unsigned long num_pages;
1001
1002 size += buffer_start & ~PAGE_MASK;
1003 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1004 if (num_pages == 0) {
1005 printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n");
1006 return -EINVAL;
1007 }
1008 bo->destroy = destroy;
1009
1010 spin_lock_init(&bo->lock);
1011 kref_init(&bo->kref);
1012 kref_init(&bo->list_kref);
1013 atomic_set(&bo->cpu_writers, 0);
1014 atomic_set(&bo->reserved, 1);
1015 init_waitqueue_head(&bo->event_queue);
1016 INIT_LIST_HEAD(&bo->lru);
1017 INIT_LIST_HEAD(&bo->ddestroy);
1018 INIT_LIST_HEAD(&bo->swap);
1019 bo->bdev = bdev;
1020 bo->type = type;
1021 bo->num_pages = num_pages;
1022 bo->mem.mem_type = TTM_PL_SYSTEM;
1023 bo->mem.num_pages = bo->num_pages;
1024 bo->mem.mm_node = NULL;
1025 bo->mem.page_alignment = page_alignment;
1026 bo->buffer_start = buffer_start & PAGE_MASK;
1027 bo->priv_flags = 0;
1028 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1029 bo->seq_valid = false;
1030 bo->persistant_swap_storage = persistant_swap_storage;
1031 bo->acc_size = acc_size;
1032
1033 ret = ttm_bo_check_placement(bo, flags, 0ULL);
1034 if (unlikely(ret != 0))
1035 goto out_err;
1036
1037 /*
1038 * If no caching attributes are set, accept any form of caching.
1039 */
1040
1041 if ((flags & TTM_PL_MASK_CACHING) == 0)
1042 flags |= TTM_PL_MASK_CACHING;
1043
1044 /*
1045 * For ttm_bo_type_device buffers, allocate
1046 * address space from the device.
1047 */
1048
1049 if (bo->type == ttm_bo_type_device) {
1050 ret = ttm_bo_setup_vm(bo);
1051 if (ret)
1052 goto out_err;
1053 }
1054
1055 ret = ttm_buffer_object_validate(bo, flags, interruptible, false);
1056 if (ret)
1057 goto out_err;
1058
1059 ttm_bo_unreserve(bo);
1060 return 0;
1061
1062out_err:
1063 ttm_bo_unreserve(bo);
1064 ttm_bo_unref(&bo);
1065
1066 return ret;
1067}
1068EXPORT_SYMBOL(ttm_buffer_object_init);
1069
1070static inline size_t ttm_bo_size(struct ttm_bo_device *bdev,
1071 unsigned long num_pages)
1072{
1073 size_t page_array_size = (num_pages * sizeof(void *) + PAGE_SIZE - 1) &
1074 PAGE_MASK;
1075
1076 return bdev->ttm_bo_size + 2 * page_array_size;
1077}
1078
1079int ttm_buffer_object_create(struct ttm_bo_device *bdev,
1080 unsigned long size,
1081 enum ttm_bo_type type,
1082 uint32_t flags,
1083 uint32_t page_alignment,
1084 unsigned long buffer_start,
1085 bool interruptible,
1086 struct file *persistant_swap_storage,
1087 struct ttm_buffer_object **p_bo)
1088{
1089 struct ttm_buffer_object *bo;
1090 int ret;
1091 struct ttm_mem_global *mem_glob = bdev->mem_glob;
1092
1093 size_t acc_size =
1094 ttm_bo_size(bdev, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1095 ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false, false);
1096 if (unlikely(ret != 0))
1097 return ret;
1098
1099 bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1100
1101 if (unlikely(bo == NULL)) {
1102 ttm_mem_global_free(mem_glob, acc_size, false);
1103 return -ENOMEM;
1104 }
1105
1106 ret = ttm_buffer_object_init(bdev, bo, size, type, flags,
1107 page_alignment, buffer_start,
1108 interruptible,
1109 persistant_swap_storage, acc_size, NULL);
1110 if (likely(ret == 0))
1111 *p_bo = bo;
1112
1113 return ret;
1114}
1115
1116static int ttm_bo_leave_list(struct ttm_buffer_object *bo,
1117 uint32_t mem_type, bool allow_errors)
1118{
1119 int ret;
1120
1121 spin_lock(&bo->lock);
1122 ret = ttm_bo_wait(bo, false, false, false);
1123 spin_unlock(&bo->lock);
1124
1125 if (ret && allow_errors)
1126 goto out;
1127
1128 if (bo->mem.mem_type == mem_type)
1129 ret = ttm_bo_evict(bo, mem_type, false, false);
1130
1131 if (ret) {
1132 if (allow_errors) {
1133 goto out;
1134 } else {
1135 ret = 0;
1136 printk(KERN_ERR TTM_PFX "Cleanup eviction failed\n");
1137 }
1138 }
1139
1140out:
1141 return ret;
1142}
1143
1144static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1145 struct list_head *head,
1146 unsigned mem_type, bool allow_errors)
1147{
1148 struct ttm_buffer_object *entry;
1149 int ret;
1150 int put_count;
1151
1152 /*
1153 * Can't use standard list traversal since we're unlocking.
1154 */
1155
1156 spin_lock(&bdev->lru_lock);
1157
1158 while (!list_empty(head)) {
1159 entry = list_first_entry(head, struct ttm_buffer_object, lru);
1160 kref_get(&entry->list_kref);
1161 ret = ttm_bo_reserve_locked(entry, false, false, false, 0);
1162 put_count = ttm_bo_del_from_lru(entry);
1163 spin_unlock(&bdev->lru_lock);
1164 while (put_count--)
1165 kref_put(&entry->list_kref, ttm_bo_ref_bug);
1166 BUG_ON(ret);
1167 ret = ttm_bo_leave_list(entry, mem_type, allow_errors);
1168 ttm_bo_unreserve(entry);
1169 kref_put(&entry->list_kref, ttm_bo_release_list);
1170 spin_lock(&bdev->lru_lock);
1171 }
1172
1173 spin_unlock(&bdev->lru_lock);
1174
1175 return 0;
1176}
1177
1178int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1179{
1180 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1181 int ret = -EINVAL;
1182
1183 if (mem_type >= TTM_NUM_MEM_TYPES) {
1184 printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type);
1185 return ret;
1186 }
1187
1188 if (!man->has_type) {
1189 printk(KERN_ERR TTM_PFX "Trying to take down uninitialized "
1190 "memory manager type %u\n", mem_type);
1191 return ret;
1192 }
1193
1194 man->use_type = false;
1195 man->has_type = false;
1196
1197 ret = 0;
1198 if (mem_type > 0) {
1199 ttm_bo_force_list_clean(bdev, &man->lru, mem_type, false);
1200
1201 spin_lock(&bdev->lru_lock);
1202 if (drm_mm_clean(&man->manager))
1203 drm_mm_takedown(&man->manager);
1204 else
1205 ret = -EBUSY;
1206
1207 spin_unlock(&bdev->lru_lock);
1208 }
1209
1210 return ret;
1211}
1212EXPORT_SYMBOL(ttm_bo_clean_mm);
1213
1214int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1215{
1216 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1217
1218 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1219 printk(KERN_ERR TTM_PFX
1220 "Illegal memory manager memory type %u.\n",
1221 mem_type);
1222 return -EINVAL;
1223 }
1224
1225 if (!man->has_type) {
1226 printk(KERN_ERR TTM_PFX
1227 "Memory type %u has not been initialized.\n",
1228 mem_type);
1229 return 0;
1230 }
1231
1232 return ttm_bo_force_list_clean(bdev, &man->lru, mem_type, true);
1233}
1234EXPORT_SYMBOL(ttm_bo_evict_mm);
1235
1236int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1237 unsigned long p_offset, unsigned long p_size)
1238{
1239 int ret = -EINVAL;
1240 struct ttm_mem_type_manager *man;
1241
1242 if (type >= TTM_NUM_MEM_TYPES) {
1243 printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", type);
1244 return ret;
1245 }
1246
1247 man = &bdev->man[type];
1248 if (man->has_type) {
1249 printk(KERN_ERR TTM_PFX
1250 "Memory manager already initialized for type %d\n",
1251 type);
1252 return ret;
1253 }
1254
1255 ret = bdev->driver->init_mem_type(bdev, type, man);
1256 if (ret)
1257 return ret;
1258
1259 ret = 0;
1260 if (type != TTM_PL_SYSTEM) {
1261 if (!p_size) {
1262 printk(KERN_ERR TTM_PFX
1263 "Zero size memory manager type %d\n",
1264 type);
1265 return ret;
1266 }
1267 ret = drm_mm_init(&man->manager, p_offset, p_size);
1268 if (ret)
1269 return ret;
1270 }
1271 man->has_type = true;
1272 man->use_type = true;
1273 man->size = p_size;
1274
1275 INIT_LIST_HEAD(&man->lru);
1276
1277 return 0;
1278}
1279EXPORT_SYMBOL(ttm_bo_init_mm);
1280
1281int ttm_bo_device_release(struct ttm_bo_device *bdev)
1282{
1283 int ret = 0;
1284 unsigned i = TTM_NUM_MEM_TYPES;
1285 struct ttm_mem_type_manager *man;
1286
1287 while (i--) {
1288 man = &bdev->man[i];
1289 if (man->has_type) {
1290 man->use_type = false;
1291 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1292 ret = -EBUSY;
1293 printk(KERN_ERR TTM_PFX
1294 "DRM memory manager type %d "
1295 "is not clean.\n", i);
1296 }
1297 man->has_type = false;
1298 }
1299 }
1300
1301 if (!cancel_delayed_work(&bdev->wq))
1302 flush_scheduled_work();
1303
1304 while (ttm_bo_delayed_delete(bdev, true))
1305 ;
1306
1307 spin_lock(&bdev->lru_lock);
1308 if (list_empty(&bdev->ddestroy))
1309 TTM_DEBUG("Delayed destroy list was clean\n");
1310
1311 if (list_empty(&bdev->man[0].lru))
1312 TTM_DEBUG("Swap list was clean\n");
1313 spin_unlock(&bdev->lru_lock);
1314
1315 ttm_mem_unregister_shrink(bdev->mem_glob, &bdev->shrink);
1316 BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1317 write_lock(&bdev->vm_lock);
1318 drm_mm_takedown(&bdev->addr_space_mm);
1319 write_unlock(&bdev->vm_lock);
1320
1321 __free_page(bdev->dummy_read_page);
1322 return ret;
1323}
1324EXPORT_SYMBOL(ttm_bo_device_release);
1325
1326/*
1327 * This function is intended to be called on drm driver load.
1328 * If you decide to call it from firstopen, you must protect the call
1329 * from a potentially racing ttm_bo_driver_finish in lastclose.
1330 * (This may happen on X server restart).
1331 */
1332
1333int ttm_bo_device_init(struct ttm_bo_device *bdev,
1334 struct ttm_mem_global *mem_glob,
1335 struct ttm_bo_driver *driver, uint64_t file_page_offset)
1336{
1337 int ret = -EINVAL;
1338
1339 bdev->dummy_read_page = NULL;
1340 rwlock_init(&bdev->vm_lock);
1341 spin_lock_init(&bdev->lru_lock);
1342
1343 bdev->driver = driver;
1344 bdev->mem_glob = mem_glob;
1345
1346 memset(bdev->man, 0, sizeof(bdev->man));
1347
1348 bdev->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1349 if (unlikely(bdev->dummy_read_page == NULL)) {
1350 ret = -ENOMEM;
1351 goto out_err0;
1352 }
1353
1354 /*
1355 * Initialize the system memory buffer type.
1356 * Other types need to be driver / IOCTL initialized.
1357 */
1358 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0, 0);
1359 if (unlikely(ret != 0))
1360 goto out_err1;
1361
1362 bdev->addr_space_rb = RB_ROOT;
1363 ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1364 if (unlikely(ret != 0))
1365 goto out_err2;
1366
1367 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1368 bdev->nice_mode = true;
1369 INIT_LIST_HEAD(&bdev->ddestroy);
1370 INIT_LIST_HEAD(&bdev->swap_lru);
1371 bdev->dev_mapping = NULL;
1372 ttm_mem_init_shrink(&bdev->shrink, ttm_bo_swapout);
1373 ret = ttm_mem_register_shrink(mem_glob, &bdev->shrink);
1374 if (unlikely(ret != 0)) {
1375 printk(KERN_ERR TTM_PFX
1376 "Could not register buffer object swapout.\n");
1377 goto out_err2;
1378 }
1379
1380 bdev->ttm_bo_extra_size =
1381 ttm_round_pot(sizeof(struct ttm_tt)) +
1382 ttm_round_pot(sizeof(struct ttm_backend));
1383
1384 bdev->ttm_bo_size = bdev->ttm_bo_extra_size +
1385 ttm_round_pot(sizeof(struct ttm_buffer_object));
1386
1387 return 0;
1388out_err2:
1389 ttm_bo_clean_mm(bdev, 0);
1390out_err1:
1391 __free_page(bdev->dummy_read_page);
1392out_err0:
1393 return ret;
1394}
1395EXPORT_SYMBOL(ttm_bo_device_init);
1396
1397/*
1398 * buffer object vm functions.
1399 */
1400
1401bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1402{
1403 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1404
1405 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1406 if (mem->mem_type == TTM_PL_SYSTEM)
1407 return false;
1408
1409 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1410 return false;
1411
1412 if (mem->placement & TTM_PL_FLAG_CACHED)
1413 return false;
1414 }
1415 return true;
1416}
1417
1418int ttm_bo_pci_offset(struct ttm_bo_device *bdev,
1419 struct ttm_mem_reg *mem,
1420 unsigned long *bus_base,
1421 unsigned long *bus_offset, unsigned long *bus_size)
1422{
1423 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1424
1425 *bus_size = 0;
1426 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
1427 return -EINVAL;
1428
1429 if (ttm_mem_reg_is_pci(bdev, mem)) {
1430 *bus_offset = mem->mm_node->start << PAGE_SHIFT;
1431 *bus_size = mem->num_pages << PAGE_SHIFT;
1432 *bus_base = man->io_offset;
1433 }
1434
1435 return 0;
1436}
1437
1438void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1439{
1440 struct ttm_bo_device *bdev = bo->bdev;
1441 loff_t offset = (loff_t) bo->addr_space_offset;
1442 loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1443
1444 if (!bdev->dev_mapping)
1445 return;
1446
1447 unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1448}
1449
1450static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1451{
1452 struct ttm_bo_device *bdev = bo->bdev;
1453 struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1454 struct rb_node *parent = NULL;
1455 struct ttm_buffer_object *cur_bo;
1456 unsigned long offset = bo->vm_node->start;
1457 unsigned long cur_offset;
1458
1459 while (*cur) {
1460 parent = *cur;
1461 cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1462 cur_offset = cur_bo->vm_node->start;
1463 if (offset < cur_offset)
1464 cur = &parent->rb_left;
1465 else if (offset > cur_offset)
1466 cur = &parent->rb_right;
1467 else
1468 BUG();
1469 }
1470
1471 rb_link_node(&bo->vm_rb, parent, cur);
1472 rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1473}
1474
1475/**
1476 * ttm_bo_setup_vm:
1477 *
1478 * @bo: the buffer to allocate address space for
1479 *
1480 * Allocate address space in the drm device so that applications
1481 * can mmap the buffer and access the contents. This only
1482 * applies to ttm_bo_type_device objects as others are not
1483 * placed in the drm device address space.
1484 */
1485
1486static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1487{
1488 struct ttm_bo_device *bdev = bo->bdev;
1489 int ret;
1490
1491retry_pre_get:
1492 ret = drm_mm_pre_get(&bdev->addr_space_mm);
1493 if (unlikely(ret != 0))
1494 return ret;
1495
1496 write_lock(&bdev->vm_lock);
1497 bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1498 bo->mem.num_pages, 0, 0);
1499
1500 if (unlikely(bo->vm_node == NULL)) {
1501 ret = -ENOMEM;
1502 goto out_unlock;
1503 }
1504
1505 bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1506 bo->mem.num_pages, 0);
1507
1508 if (unlikely(bo->vm_node == NULL)) {
1509 write_unlock(&bdev->vm_lock);
1510 goto retry_pre_get;
1511 }
1512
1513 ttm_bo_vm_insert_rb(bo);
1514 write_unlock(&bdev->vm_lock);
1515 bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1516
1517 return 0;
1518out_unlock:
1519 write_unlock(&bdev->vm_lock);
1520 return ret;
1521}
1522
1523int ttm_bo_wait(struct ttm_buffer_object *bo,
1524 bool lazy, bool interruptible, bool no_wait)
1525{
1526 struct ttm_bo_driver *driver = bo->bdev->driver;
1527 void *sync_obj;
1528 void *sync_obj_arg;
1529 int ret = 0;
1530
1531 if (likely(bo->sync_obj == NULL))
1532 return 0;
1533
1534 while (bo->sync_obj) {
1535
1536 if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1537 void *tmp_obj = bo->sync_obj;
1538 bo->sync_obj = NULL;
1539 clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1540 spin_unlock(&bo->lock);
1541 driver->sync_obj_unref(&tmp_obj);
1542 spin_lock(&bo->lock);
1543 continue;
1544 }
1545
1546 if (no_wait)
1547 return -EBUSY;
1548
1549 sync_obj = driver->sync_obj_ref(bo->sync_obj);
1550 sync_obj_arg = bo->sync_obj_arg;
1551 spin_unlock(&bo->lock);
1552 ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1553 lazy, interruptible);
1554 if (unlikely(ret != 0)) {
1555 driver->sync_obj_unref(&sync_obj);
1556 spin_lock(&bo->lock);
1557 return ret;
1558 }
1559 spin_lock(&bo->lock);
1560 if (likely(bo->sync_obj == sync_obj &&
1561 bo->sync_obj_arg == sync_obj_arg)) {
1562 void *tmp_obj = bo->sync_obj;
1563 bo->sync_obj = NULL;
1564 clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1565 &bo->priv_flags);
1566 spin_unlock(&bo->lock);
1567 driver->sync_obj_unref(&sync_obj);
1568 driver->sync_obj_unref(&tmp_obj);
1569 spin_lock(&bo->lock);
1570 }
1571 }
1572 return 0;
1573}
1574EXPORT_SYMBOL(ttm_bo_wait);
1575
1576void ttm_bo_unblock_reservation(struct ttm_buffer_object *bo)
1577{
1578 atomic_set(&bo->reserved, 0);
1579 wake_up_all(&bo->event_queue);
1580}
1581
1582int ttm_bo_block_reservation(struct ttm_buffer_object *bo, bool interruptible,
1583 bool no_wait)
1584{
1585 int ret;
1586
1587 while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
1588 if (no_wait)
1589 return -EBUSY;
1590 else if (interruptible) {
1591 ret = wait_event_interruptible
1592 (bo->event_queue, atomic_read(&bo->reserved) == 0);
1593 if (unlikely(ret != 0))
1594 return -ERESTART;
1595 } else {
1596 wait_event(bo->event_queue,
1597 atomic_read(&bo->reserved) == 0);
1598 }
1599 }
1600 return 0;
1601}
1602
1603int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1604{
1605 int ret = 0;
1606
1607 /*
1608 * Using ttm_bo_reserve instead of ttm_bo_block_reservation
1609 * makes sure the lru lists are updated.
1610 */
1611
1612 ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1613 if (unlikely(ret != 0))
1614 return ret;
1615 spin_lock(&bo->lock);
1616 ret = ttm_bo_wait(bo, false, true, no_wait);
1617 spin_unlock(&bo->lock);
1618 if (likely(ret == 0))
1619 atomic_inc(&bo->cpu_writers);
1620 ttm_bo_unreserve(bo);
1621 return ret;
1622}
1623
1624void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1625{
1626 if (atomic_dec_and_test(&bo->cpu_writers))
1627 wake_up_all(&bo->event_queue);
1628}
1629
1630/**
1631 * A buffer object shrink method that tries to swap out the first
1632 * buffer object on the bo_global::swap_lru list.
1633 */
1634
1635static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1636{
1637 struct ttm_bo_device *bdev =
1638 container_of(shrink, struct ttm_bo_device, shrink);
1639 struct ttm_buffer_object *bo;
1640 int ret = -EBUSY;
1641 int put_count;
1642 uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1643
1644 spin_lock(&bdev->lru_lock);
1645 while (ret == -EBUSY) {
1646 if (unlikely(list_empty(&bdev->swap_lru))) {
1647 spin_unlock(&bdev->lru_lock);
1648 return -EBUSY;
1649 }
1650
1651 bo = list_first_entry(&bdev->swap_lru,
1652 struct ttm_buffer_object, swap);
1653 kref_get(&bo->list_kref);
1654
1655 /**
1656 * Reserve buffer. Since we unlock while sleeping, we need
1657 * to re-check that nobody removed us from the swap-list while
1658 * we slept.
1659 */
1660
1661 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1662 if (unlikely(ret == -EBUSY)) {
1663 spin_unlock(&bdev->lru_lock);
1664 ttm_bo_wait_unreserved(bo, false);
1665 kref_put(&bo->list_kref, ttm_bo_release_list);
1666 spin_lock(&bdev->lru_lock);
1667 }
1668 }
1669
1670 BUG_ON(ret != 0);
1671 put_count = ttm_bo_del_from_lru(bo);
1672 spin_unlock(&bdev->lru_lock);
1673
1674 while (put_count--)
1675 kref_put(&bo->list_kref, ttm_bo_ref_bug);
1676
1677 /**
1678 * Wait for GPU, then move to system cached.
1679 */
1680
1681 spin_lock(&bo->lock);
1682 ret = ttm_bo_wait(bo, false, false, false);
1683 spin_unlock(&bo->lock);
1684
1685 if (unlikely(ret != 0))
1686 goto out;
1687
1688 if ((bo->mem.placement & swap_placement) != swap_placement) {
1689 struct ttm_mem_reg evict_mem;
1690
1691 evict_mem = bo->mem;
1692 evict_mem.mm_node = NULL;
1693 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1694 evict_mem.mem_type = TTM_PL_SYSTEM;
1695
1696 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1697 false, false);
1698 if (unlikely(ret != 0))
1699 goto out;
1700 }
1701
1702 ttm_bo_unmap_virtual(bo);
1703
1704 /**
1705 * Swap out. Buffer will be swapped in again as soon as
1706 * anyone tries to access a ttm page.
1707 */
1708
1709 ret = ttm_tt_swapout(bo->ttm, bo->persistant_swap_storage);
1710out:
1711
1712 /**
1713 *
1714 * Unreserve without putting on LRU to avoid swapping out an
1715 * already swapped buffer.
1716 */
1717
1718 atomic_set(&bo->reserved, 0);
1719 wake_up_all(&bo->event_queue);
1720 kref_put(&bo->list_kref, ttm_bo_release_list);
1721 return ret;
1722}
1723
1724void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1725{
1726 while (ttm_bo_swapout(&bdev->shrink) == 0)
1727 ;
1728}