blob: 7bf65d9a9bd3230616ecbd6e994390cee8cc4b31 [file] [log] [blame]
David Woodhouse53b381b2013-01-29 18:40:14 -05001/*
2 * Copyright (C) 2012 Fusion-io All rights reserved.
3 * Copyright (C) 2012 Intel Corp. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19#include <linux/sched.h>
20#include <linux/wait.h>
21#include <linux/bio.h>
22#include <linux/slab.h>
23#include <linux/buffer_head.h>
24#include <linux/blkdev.h>
25#include <linux/random.h>
26#include <linux/iocontext.h>
27#include <linux/capability.h>
28#include <linux/ratelimit.h>
29#include <linux/kthread.h>
30#include <linux/raid/pq.h>
31#include <linux/hash.h>
32#include <linux/list_sort.h>
33#include <linux/raid/xor.h>
Geert Uytterhoevend7011f52013-03-03 04:44:41 -070034#include <linux/vmalloc.h>
David Woodhouse53b381b2013-01-29 18:40:14 -050035#include <asm/div64.h>
David Woodhouse53b381b2013-01-29 18:40:14 -050036#include "ctree.h"
37#include "extent_map.h"
38#include "disk-io.h"
39#include "transaction.h"
40#include "print-tree.h"
41#include "volumes.h"
42#include "raid56.h"
43#include "async-thread.h"
44#include "check-integrity.h"
45#include "rcu-string.h"
46
47/* set when additional merges to this rbio are not allowed */
48#define RBIO_RMW_LOCKED_BIT 1
49
Chris Mason4ae10b32013-01-31 14:42:09 -050050/*
51 * set when this rbio is sitting in the hash, but it is just a cache
52 * of past RMW
53 */
54#define RBIO_CACHE_BIT 2
55
56/*
57 * set when it is safe to trust the stripe_pages for caching
58 */
59#define RBIO_CACHE_READY_BIT 3
60
Chris Mason4ae10b32013-01-31 14:42:09 -050061#define RBIO_CACHE_SIZE 1024
62
Miao Xie1b94b552014-11-06 16:14:21 +080063enum btrfs_rbio_ops {
Omar Sandovalb4ee1782015-06-19 11:52:50 -070064 BTRFS_RBIO_WRITE,
65 BTRFS_RBIO_READ_REBUILD,
66 BTRFS_RBIO_PARITY_SCRUB,
67 BTRFS_RBIO_REBUILD_MISSING,
Miao Xie1b94b552014-11-06 16:14:21 +080068};
69
David Woodhouse53b381b2013-01-29 18:40:14 -050070struct btrfs_raid_bio {
71 struct btrfs_fs_info *fs_info;
72 struct btrfs_bio *bbio;
73
David Woodhouse53b381b2013-01-29 18:40:14 -050074 /* while we're doing rmw on a stripe
75 * we put it into a hash table so we can
76 * lock the stripe and merge more rbios
77 * into it.
78 */
79 struct list_head hash_list;
80
81 /*
Chris Mason4ae10b32013-01-31 14:42:09 -050082 * LRU list for the stripe cache
83 */
84 struct list_head stripe_cache;
85
86 /*
David Woodhouse53b381b2013-01-29 18:40:14 -050087 * for scheduling work in the helper threads
88 */
89 struct btrfs_work work;
90
91 /*
92 * bio list and bio_list_lock are used
93 * to add more bios into the stripe
94 * in hopes of avoiding the full rmw
95 */
96 struct bio_list bio_list;
97 spinlock_t bio_list_lock;
98
Chris Mason6ac0f482013-01-31 14:42:28 -050099 /* also protected by the bio_list_lock, the
100 * plug list is used by the plugging code
101 * to collect partial bios while plugged. The
102 * stripe locking code also uses it to hand off
David Woodhouse53b381b2013-01-29 18:40:14 -0500103 * the stripe lock to the next pending IO
104 */
105 struct list_head plug_list;
106
107 /*
108 * flags that tell us if it is safe to
109 * merge with this bio
110 */
111 unsigned long flags;
112
113 /* size of each individual stripe on disk */
114 int stripe_len;
115
116 /* number of data stripes (no p/q) */
117 int nr_data;
118
Miao Xie2c8cdd62014-11-14 16:06:25 +0800119 int real_stripes;
120
Miao Xie5a6ac9e2014-11-06 17:20:58 +0800121 int stripe_npages;
David Woodhouse53b381b2013-01-29 18:40:14 -0500122 /*
123 * set if we're doing a parity rebuild
124 * for a read from higher up, which is handled
125 * differently from a parity rebuild as part of
126 * rmw
127 */
Miao Xie1b94b552014-11-06 16:14:21 +0800128 enum btrfs_rbio_ops operation;
David Woodhouse53b381b2013-01-29 18:40:14 -0500129
130 /* first bad stripe */
131 int faila;
132
133 /* second bad stripe (for raid6 use) */
134 int failb;
135
Miao Xie5a6ac9e2014-11-06 17:20:58 +0800136 int scrubp;
David Woodhouse53b381b2013-01-29 18:40:14 -0500137 /*
138 * number of pages needed to represent the full
139 * stripe
140 */
141 int nr_pages;
142
143 /*
144 * size of all the bios in the bio_list. This
145 * helps us decide if the rbio maps to a full
146 * stripe or not
147 */
148 int bio_list_bytes;
149
Miao Xie42452152014-11-25 16:39:28 +0800150 int generic_bio_cnt;
151
Elena Reshetovadec95572017-03-03 10:55:26 +0200152 refcount_t refs;
David Woodhouse53b381b2013-01-29 18:40:14 -0500153
Miao Xieb89e1b02014-10-15 11:18:44 +0800154 atomic_t stripes_pending;
155
156 atomic_t error;
David Woodhouse53b381b2013-01-29 18:40:14 -0500157 /*
158 * these are two arrays of pointers. We allocate the
159 * rbio big enough to hold them both and setup their
160 * locations when the rbio is allocated
161 */
162
163 /* pointers to pages that we allocated for
164 * reading/writing stripes directly from the disk (including P/Q)
165 */
166 struct page **stripe_pages;
167
168 /*
169 * pointers to the pages in the bio_list. Stored
170 * here for faster lookup
171 */
172 struct page **bio_pages;
Miao Xie5a6ac9e2014-11-06 17:20:58 +0800173
174 /*
175 * bitmap to record which horizontal stripe has data
176 */
177 unsigned long *dbitmap;
David Woodhouse53b381b2013-01-29 18:40:14 -0500178};
179
180static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182static void rmw_work(struct btrfs_work *work);
183static void read_rebuild_work(struct btrfs_work *work);
184static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
191
Miao Xie5a6ac9e2014-11-06 17:20:58 +0800192static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
193 int need_check);
194static void async_scrub_parity(struct btrfs_raid_bio *rbio);
195
David Woodhouse53b381b2013-01-29 18:40:14 -0500196/*
197 * the stripe hash table is used for locking, and to collect
198 * bios in hopes of making a full stripe
199 */
200int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
201{
202 struct btrfs_stripe_hash_table *table;
203 struct btrfs_stripe_hash_table *x;
204 struct btrfs_stripe_hash *cur;
205 struct btrfs_stripe_hash *h;
206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
207 int i;
David Sterba83c82662013-03-01 15:03:00 +0000208 int table_size;
David Woodhouse53b381b2013-01-29 18:40:14 -0500209
210 if (info->stripe_hash_table)
211 return 0;
212
David Sterba83c82662013-03-01 15:03:00 +0000213 /*
214 * The table is large, starting with order 4 and can go as high as
215 * order 7 in case lock debugging is turned on.
216 *
217 * Try harder to allocate and fallback to vmalloc to lower the chance
218 * of a failing mount.
219 */
220 table_size = sizeof(*table) + sizeof(*h) * num_entries;
221 table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
222 if (!table) {
223 table = vzalloc(table_size);
224 if (!table)
225 return -ENOMEM;
226 }
David Woodhouse53b381b2013-01-29 18:40:14 -0500227
Chris Mason4ae10b32013-01-31 14:42:09 -0500228 spin_lock_init(&table->cache_lock);
229 INIT_LIST_HEAD(&table->stripe_cache);
230
David Woodhouse53b381b2013-01-29 18:40:14 -0500231 h = table->table;
232
233 for (i = 0; i < num_entries; i++) {
234 cur = h + i;
235 INIT_LIST_HEAD(&cur->hash_list);
236 spin_lock_init(&cur->lock);
237 init_waitqueue_head(&cur->wait);
238 }
239
240 x = cmpxchg(&info->stripe_hash_table, NULL, table);
Wang Shilongf7493032014-11-22 21:13:10 +0800241 if (x)
242 kvfree(x);
David Woodhouse53b381b2013-01-29 18:40:14 -0500243 return 0;
244}
245
246/*
Chris Mason4ae10b32013-01-31 14:42:09 -0500247 * caching an rbio means to copy anything from the
248 * bio_pages array into the stripe_pages array. We
249 * use the page uptodate bit in the stripe cache array
250 * to indicate if it has valid data
251 *
252 * once the caching is done, we set the cache ready
253 * bit.
254 */
255static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
256{
257 int i;
258 char *s;
259 char *d;
260 int ret;
261
262 ret = alloc_rbio_pages(rbio);
263 if (ret)
264 return;
265
266 for (i = 0; i < rbio->nr_pages; i++) {
267 if (!rbio->bio_pages[i])
268 continue;
269
270 s = kmap(rbio->bio_pages[i]);
271 d = kmap(rbio->stripe_pages[i]);
272
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300273 memcpy(d, s, PAGE_SIZE);
Chris Mason4ae10b32013-01-31 14:42:09 -0500274
275 kunmap(rbio->bio_pages[i]);
276 kunmap(rbio->stripe_pages[i]);
277 SetPageUptodate(rbio->stripe_pages[i]);
278 }
279 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
280}
281
282/*
David Woodhouse53b381b2013-01-29 18:40:14 -0500283 * we hash on the first logical address of the stripe
284 */
285static int rbio_bucket(struct btrfs_raid_bio *rbio)
286{
Zhao Lei8e5cfb52015-01-20 15:11:33 +0800287 u64 num = rbio->bbio->raid_map[0];
David Woodhouse53b381b2013-01-29 18:40:14 -0500288
289 /*
290 * we shift down quite a bit. We're using byte
291 * addressing, and most of the lower bits are zeros.
292 * This tends to upset hash_64, and it consistently
293 * returns just one or two different values.
294 *
295 * shifting off the lower bits fixes things.
296 */
297 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
298}
299
300/*
Chris Mason4ae10b32013-01-31 14:42:09 -0500301 * stealing an rbio means taking all the uptodate pages from the stripe
302 * array in the source rbio and putting them into the destination rbio
303 */
304static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
305{
306 int i;
307 struct page *s;
308 struct page *d;
309
310 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
311 return;
312
313 for (i = 0; i < dest->nr_pages; i++) {
314 s = src->stripe_pages[i];
315 if (!s || !PageUptodate(s)) {
316 continue;
317 }
318
319 d = dest->stripe_pages[i];
320 if (d)
321 __free_page(d);
322
323 dest->stripe_pages[i] = s;
324 src->stripe_pages[i] = NULL;
325 }
326}
327
328/*
David Woodhouse53b381b2013-01-29 18:40:14 -0500329 * merging means we take the bio_list from the victim and
330 * splice it into the destination. The victim should
331 * be discarded afterwards.
332 *
333 * must be called with dest->rbio_list_lock held
334 */
335static void merge_rbio(struct btrfs_raid_bio *dest,
336 struct btrfs_raid_bio *victim)
337{
338 bio_list_merge(&dest->bio_list, &victim->bio_list);
339 dest->bio_list_bytes += victim->bio_list_bytes;
Miao Xie42452152014-11-25 16:39:28 +0800340 dest->generic_bio_cnt += victim->generic_bio_cnt;
David Woodhouse53b381b2013-01-29 18:40:14 -0500341 bio_list_init(&victim->bio_list);
342}
343
344/*
Chris Mason4ae10b32013-01-31 14:42:09 -0500345 * used to prune items that are in the cache. The caller
346 * must hold the hash table lock.
347 */
348static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
349{
350 int bucket = rbio_bucket(rbio);
351 struct btrfs_stripe_hash_table *table;
352 struct btrfs_stripe_hash *h;
353 int freeit = 0;
354
355 /*
356 * check the bit again under the hash table lock.
357 */
358 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
359 return;
360
361 table = rbio->fs_info->stripe_hash_table;
362 h = table->table + bucket;
363
364 /* hold the lock for the bucket because we may be
365 * removing it from the hash table
366 */
367 spin_lock(&h->lock);
368
369 /*
370 * hold the lock for the bio list because we need
371 * to make sure the bio list is empty
372 */
373 spin_lock(&rbio->bio_list_lock);
374
375 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
376 list_del_init(&rbio->stripe_cache);
377 table->cache_size -= 1;
378 freeit = 1;
379
380 /* if the bio list isn't empty, this rbio is
381 * still involved in an IO. We take it out
382 * of the cache list, and drop the ref that
383 * was held for the list.
384 *
385 * If the bio_list was empty, we also remove
386 * the rbio from the hash_table, and drop
387 * the corresponding ref
388 */
389 if (bio_list_empty(&rbio->bio_list)) {
390 if (!list_empty(&rbio->hash_list)) {
391 list_del_init(&rbio->hash_list);
Elena Reshetovadec95572017-03-03 10:55:26 +0200392 refcount_dec(&rbio->refs);
Chris Mason4ae10b32013-01-31 14:42:09 -0500393 BUG_ON(!list_empty(&rbio->plug_list));
394 }
395 }
396 }
397
398 spin_unlock(&rbio->bio_list_lock);
399 spin_unlock(&h->lock);
400
401 if (freeit)
402 __free_raid_bio(rbio);
403}
404
405/*
406 * prune a given rbio from the cache
407 */
408static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
409{
410 struct btrfs_stripe_hash_table *table;
411 unsigned long flags;
412
413 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
414 return;
415
416 table = rbio->fs_info->stripe_hash_table;
417
418 spin_lock_irqsave(&table->cache_lock, flags);
419 __remove_rbio_from_cache(rbio);
420 spin_unlock_irqrestore(&table->cache_lock, flags);
421}
422
423/*
424 * remove everything in the cache
425 */
Eric Sandeen48a3b632013-04-25 20:41:01 +0000426static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
Chris Mason4ae10b32013-01-31 14:42:09 -0500427{
428 struct btrfs_stripe_hash_table *table;
429 unsigned long flags;
430 struct btrfs_raid_bio *rbio;
431
432 table = info->stripe_hash_table;
433
434 spin_lock_irqsave(&table->cache_lock, flags);
435 while (!list_empty(&table->stripe_cache)) {
436 rbio = list_entry(table->stripe_cache.next,
437 struct btrfs_raid_bio,
438 stripe_cache);
439 __remove_rbio_from_cache(rbio);
440 }
441 spin_unlock_irqrestore(&table->cache_lock, flags);
442}
443
444/*
445 * remove all cached entries and free the hash table
446 * used by unmount
David Woodhouse53b381b2013-01-29 18:40:14 -0500447 */
448void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
449{
450 if (!info->stripe_hash_table)
451 return;
Chris Mason4ae10b32013-01-31 14:42:09 -0500452 btrfs_clear_rbio_cache(info);
Wang Shilongf7493032014-11-22 21:13:10 +0800453 kvfree(info->stripe_hash_table);
David Woodhouse53b381b2013-01-29 18:40:14 -0500454 info->stripe_hash_table = NULL;
455}
456
457/*
Chris Mason4ae10b32013-01-31 14:42:09 -0500458 * insert an rbio into the stripe cache. It
459 * must have already been prepared by calling
460 * cache_rbio_pages
461 *
462 * If this rbio was already cached, it gets
463 * moved to the front of the lru.
464 *
465 * If the size of the rbio cache is too big, we
466 * prune an item.
467 */
468static void cache_rbio(struct btrfs_raid_bio *rbio)
469{
470 struct btrfs_stripe_hash_table *table;
471 unsigned long flags;
472
473 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
474 return;
475
476 table = rbio->fs_info->stripe_hash_table;
477
478 spin_lock_irqsave(&table->cache_lock, flags);
479 spin_lock(&rbio->bio_list_lock);
480
481 /* bump our ref if we were not in the list before */
482 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
Elena Reshetovadec95572017-03-03 10:55:26 +0200483 refcount_inc(&rbio->refs);
Chris Mason4ae10b32013-01-31 14:42:09 -0500484
485 if (!list_empty(&rbio->stripe_cache)){
486 list_move(&rbio->stripe_cache, &table->stripe_cache);
487 } else {
488 list_add(&rbio->stripe_cache, &table->stripe_cache);
489 table->cache_size += 1;
490 }
491
492 spin_unlock(&rbio->bio_list_lock);
493
494 if (table->cache_size > RBIO_CACHE_SIZE) {
495 struct btrfs_raid_bio *found;
496
497 found = list_entry(table->stripe_cache.prev,
498 struct btrfs_raid_bio,
499 stripe_cache);
500
501 if (found != rbio)
502 __remove_rbio_from_cache(found);
503 }
504
505 spin_unlock_irqrestore(&table->cache_lock, flags);
Chris Mason4ae10b32013-01-31 14:42:09 -0500506}
507
508/*
David Woodhouse53b381b2013-01-29 18:40:14 -0500509 * helper function to run the xor_blocks api. It is only
510 * able to do MAX_XOR_BLOCKS at a time, so we need to
511 * loop through.
512 */
513static void run_xor(void **pages, int src_cnt, ssize_t len)
514{
515 int src_off = 0;
516 int xor_src_cnt = 0;
517 void *dest = pages[src_cnt];
518
519 while(src_cnt > 0) {
520 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
521 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
522
523 src_cnt -= xor_src_cnt;
524 src_off += xor_src_cnt;
525 }
526}
527
528/*
529 * returns true if the bio list inside this rbio
530 * covers an entire stripe (no rmw required).
531 * Must be called with the bio list lock held, or
532 * at a time when you know it is impossible to add
533 * new bios into the list
534 */
535static int __rbio_is_full(struct btrfs_raid_bio *rbio)
536{
537 unsigned long size = rbio->bio_list_bytes;
538 int ret = 1;
539
540 if (size != rbio->nr_data * rbio->stripe_len)
541 ret = 0;
542
543 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
544 return ret;
545}
546
547static int rbio_is_full(struct btrfs_raid_bio *rbio)
548{
549 unsigned long flags;
550 int ret;
551
552 spin_lock_irqsave(&rbio->bio_list_lock, flags);
553 ret = __rbio_is_full(rbio);
554 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
555 return ret;
556}
557
558/*
559 * returns 1 if it is safe to merge two rbios together.
560 * The merging is safe if the two rbios correspond to
561 * the same stripe and if they are both going in the same
562 * direction (read vs write), and if neither one is
563 * locked for final IO
564 *
565 * The caller is responsible for locking such that
566 * rmw_locked is safe to test
567 */
568static int rbio_can_merge(struct btrfs_raid_bio *last,
569 struct btrfs_raid_bio *cur)
570{
571 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
572 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
573 return 0;
574
Chris Mason4ae10b32013-01-31 14:42:09 -0500575 /*
576 * we can't merge with cached rbios, since the
577 * idea is that when we merge the destination
578 * rbio is going to run our IO for us. We can
Nicholas D Steeves01327612016-05-19 21:18:45 -0400579 * steal from cached rbios though, other functions
Chris Mason4ae10b32013-01-31 14:42:09 -0500580 * handle that.
581 */
582 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
583 test_bit(RBIO_CACHE_BIT, &cur->flags))
584 return 0;
585
Zhao Lei8e5cfb52015-01-20 15:11:33 +0800586 if (last->bbio->raid_map[0] !=
587 cur->bbio->raid_map[0])
David Woodhouse53b381b2013-01-29 18:40:14 -0500588 return 0;
589
Miao Xie5a6ac9e2014-11-06 17:20:58 +0800590 /* we can't merge with different operations */
591 if (last->operation != cur->operation)
David Woodhouse53b381b2013-01-29 18:40:14 -0500592 return 0;
Miao Xie5a6ac9e2014-11-06 17:20:58 +0800593 /*
594 * We've need read the full stripe from the drive.
595 * check and repair the parity and write the new results.
596 *
597 * We're not allowed to add any new bios to the
598 * bio list here, anyone else that wants to
599 * change this stripe needs to do their own rmw.
600 */
601 if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
602 cur->operation == BTRFS_RBIO_PARITY_SCRUB)
603 return 0;
David Woodhouse53b381b2013-01-29 18:40:14 -0500604
Omar Sandovalb4ee1782015-06-19 11:52:50 -0700605 if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
606 cur->operation == BTRFS_RBIO_REBUILD_MISSING)
607 return 0;
608
David Woodhouse53b381b2013-01-29 18:40:14 -0500609 return 1;
610}
611
Zhao Leib7178a52015-03-03 20:38:46 +0800612static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
613 int index)
614{
615 return stripe * rbio->stripe_npages + index;
616}
617
618/*
619 * these are just the pages from the rbio array, not from anything
620 * the FS sent down to us
621 */
622static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
623 int index)
624{
625 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
626}
627
David Woodhouse53b381b2013-01-29 18:40:14 -0500628/*
629 * helper to index into the pstripe
630 */
631static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
632{
Zhao Leib7178a52015-03-03 20:38:46 +0800633 return rbio_stripe_page(rbio, rbio->nr_data, index);
David Woodhouse53b381b2013-01-29 18:40:14 -0500634}
635
636/*
637 * helper to index into the qstripe, returns null
638 * if there is no qstripe
639 */
640static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
641{
Miao Xie2c8cdd62014-11-14 16:06:25 +0800642 if (rbio->nr_data + 1 == rbio->real_stripes)
David Woodhouse53b381b2013-01-29 18:40:14 -0500643 return NULL;
Zhao Leib7178a52015-03-03 20:38:46 +0800644 return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
David Woodhouse53b381b2013-01-29 18:40:14 -0500645}
646
647/*
648 * The first stripe in the table for a logical address
649 * has the lock. rbios are added in one of three ways:
650 *
651 * 1) Nobody has the stripe locked yet. The rbio is given
652 * the lock and 0 is returned. The caller must start the IO
653 * themselves.
654 *
655 * 2) Someone has the stripe locked, but we're able to merge
656 * with the lock owner. The rbio is freed and the IO will
657 * start automatically along with the existing rbio. 1 is returned.
658 *
659 * 3) Someone has the stripe locked, but we're not able to merge.
660 * The rbio is added to the lock owner's plug list, or merged into
661 * an rbio already on the plug list. When the lock owner unlocks,
662 * the next rbio on the list is run and the IO is started automatically.
663 * 1 is returned
664 *
665 * If we return 0, the caller still owns the rbio and must continue with
666 * IO submission. If we return 1, the caller must assume the rbio has
667 * already been freed.
668 */
669static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
670{
671 int bucket = rbio_bucket(rbio);
672 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
673 struct btrfs_raid_bio *cur;
674 struct btrfs_raid_bio *pending;
675 unsigned long flags;
676 DEFINE_WAIT(wait);
677 struct btrfs_raid_bio *freeit = NULL;
Chris Mason4ae10b32013-01-31 14:42:09 -0500678 struct btrfs_raid_bio *cache_drop = NULL;
David Woodhouse53b381b2013-01-29 18:40:14 -0500679 int ret = 0;
David Woodhouse53b381b2013-01-29 18:40:14 -0500680
681 spin_lock_irqsave(&h->lock, flags);
682 list_for_each_entry(cur, &h->hash_list, hash_list) {
Zhao Lei8e5cfb52015-01-20 15:11:33 +0800683 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
David Woodhouse53b381b2013-01-29 18:40:14 -0500684 spin_lock(&cur->bio_list_lock);
685
Chris Mason4ae10b32013-01-31 14:42:09 -0500686 /* can we steal this cached rbio's pages? */
687 if (bio_list_empty(&cur->bio_list) &&
688 list_empty(&cur->plug_list) &&
689 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
690 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
691 list_del_init(&cur->hash_list);
Elena Reshetovadec95572017-03-03 10:55:26 +0200692 refcount_dec(&cur->refs);
Chris Mason4ae10b32013-01-31 14:42:09 -0500693
694 steal_rbio(cur, rbio);
695 cache_drop = cur;
696 spin_unlock(&cur->bio_list_lock);
697
698 goto lockit;
699 }
700
David Woodhouse53b381b2013-01-29 18:40:14 -0500701 /* can we merge into the lock owner? */
702 if (rbio_can_merge(cur, rbio)) {
703 merge_rbio(cur, rbio);
704 spin_unlock(&cur->bio_list_lock);
705 freeit = rbio;
706 ret = 1;
707 goto out;
708 }
709
Chris Mason4ae10b32013-01-31 14:42:09 -0500710
David Woodhouse53b381b2013-01-29 18:40:14 -0500711 /*
712 * we couldn't merge with the running
713 * rbio, see if we can merge with the
714 * pending ones. We don't have to
715 * check for rmw_locked because there
716 * is no way they are inside finish_rmw
717 * right now
718 */
719 list_for_each_entry(pending, &cur->plug_list,
720 plug_list) {
721 if (rbio_can_merge(pending, rbio)) {
722 merge_rbio(pending, rbio);
723 spin_unlock(&cur->bio_list_lock);
724 freeit = rbio;
725 ret = 1;
726 goto out;
727 }
728 }
729
730 /* no merging, put us on the tail of the plug list,
731 * our rbio will be started with the currently
732 * running rbio unlocks
733 */
734 list_add_tail(&rbio->plug_list, &cur->plug_list);
735 spin_unlock(&cur->bio_list_lock);
736 ret = 1;
737 goto out;
738 }
739 }
Chris Mason4ae10b32013-01-31 14:42:09 -0500740lockit:
Elena Reshetovadec95572017-03-03 10:55:26 +0200741 refcount_inc(&rbio->refs);
David Woodhouse53b381b2013-01-29 18:40:14 -0500742 list_add(&rbio->hash_list, &h->hash_list);
743out:
744 spin_unlock_irqrestore(&h->lock, flags);
Chris Mason4ae10b32013-01-31 14:42:09 -0500745 if (cache_drop)
746 remove_rbio_from_cache(cache_drop);
David Woodhouse53b381b2013-01-29 18:40:14 -0500747 if (freeit)
748 __free_raid_bio(freeit);
749 return ret;
750}
751
752/*
753 * called as rmw or parity rebuild is completed. If the plug list has more
754 * rbios waiting for this stripe, the next one on the list will be started
755 */
756static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
757{
758 int bucket;
759 struct btrfs_stripe_hash *h;
760 unsigned long flags;
Chris Mason4ae10b32013-01-31 14:42:09 -0500761 int keep_cache = 0;
David Woodhouse53b381b2013-01-29 18:40:14 -0500762
763 bucket = rbio_bucket(rbio);
764 h = rbio->fs_info->stripe_hash_table->table + bucket;
765
Chris Mason4ae10b32013-01-31 14:42:09 -0500766 if (list_empty(&rbio->plug_list))
767 cache_rbio(rbio);
768
David Woodhouse53b381b2013-01-29 18:40:14 -0500769 spin_lock_irqsave(&h->lock, flags);
770 spin_lock(&rbio->bio_list_lock);
771
772 if (!list_empty(&rbio->hash_list)) {
Chris Mason4ae10b32013-01-31 14:42:09 -0500773 /*
774 * if we're still cached and there is no other IO
775 * to perform, just leave this rbio here for others
776 * to steal from later
777 */
778 if (list_empty(&rbio->plug_list) &&
779 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
780 keep_cache = 1;
781 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
782 BUG_ON(!bio_list_empty(&rbio->bio_list));
783 goto done;
784 }
David Woodhouse53b381b2013-01-29 18:40:14 -0500785
786 list_del_init(&rbio->hash_list);
Elena Reshetovadec95572017-03-03 10:55:26 +0200787 refcount_dec(&rbio->refs);
David Woodhouse53b381b2013-01-29 18:40:14 -0500788
789 /*
790 * we use the plug list to hold all the rbios
791 * waiting for the chance to lock this stripe.
792 * hand the lock over to one of them.
793 */
794 if (!list_empty(&rbio->plug_list)) {
795 struct btrfs_raid_bio *next;
796 struct list_head *head = rbio->plug_list.next;
797
798 next = list_entry(head, struct btrfs_raid_bio,
799 plug_list);
800
801 list_del_init(&rbio->plug_list);
802
803 list_add(&next->hash_list, &h->hash_list);
Elena Reshetovadec95572017-03-03 10:55:26 +0200804 refcount_inc(&next->refs);
David Woodhouse53b381b2013-01-29 18:40:14 -0500805 spin_unlock(&rbio->bio_list_lock);
806 spin_unlock_irqrestore(&h->lock, flags);
807
Miao Xie1b94b552014-11-06 16:14:21 +0800808 if (next->operation == BTRFS_RBIO_READ_REBUILD)
David Woodhouse53b381b2013-01-29 18:40:14 -0500809 async_read_rebuild(next);
Omar Sandovalb4ee1782015-06-19 11:52:50 -0700810 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
811 steal_rbio(rbio, next);
812 async_read_rebuild(next);
813 } else if (next->operation == BTRFS_RBIO_WRITE) {
Chris Mason4ae10b32013-01-31 14:42:09 -0500814 steal_rbio(rbio, next);
David Woodhouse53b381b2013-01-29 18:40:14 -0500815 async_rmw_stripe(next);
Miao Xie5a6ac9e2014-11-06 17:20:58 +0800816 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
817 steal_rbio(rbio, next);
818 async_scrub_parity(next);
Chris Mason4ae10b32013-01-31 14:42:09 -0500819 }
David Woodhouse53b381b2013-01-29 18:40:14 -0500820
821 goto done_nolock;
David Sterba33a9eca2015-10-10 18:35:10 +0200822 /*
823 * The barrier for this waitqueue_active is not needed,
824 * we're protected by h->lock and can't miss a wakeup.
825 */
826 } else if (waitqueue_active(&h->wait)) {
David Woodhouse53b381b2013-01-29 18:40:14 -0500827 spin_unlock(&rbio->bio_list_lock);
828 spin_unlock_irqrestore(&h->lock, flags);
829 wake_up(&h->wait);
830 goto done_nolock;
831 }
832 }
Chris Mason4ae10b32013-01-31 14:42:09 -0500833done:
David Woodhouse53b381b2013-01-29 18:40:14 -0500834 spin_unlock(&rbio->bio_list_lock);
835 spin_unlock_irqrestore(&h->lock, flags);
836
837done_nolock:
Chris Mason4ae10b32013-01-31 14:42:09 -0500838 if (!keep_cache)
839 remove_rbio_from_cache(rbio);
David Woodhouse53b381b2013-01-29 18:40:14 -0500840}
841
842static void __free_raid_bio(struct btrfs_raid_bio *rbio)
843{
844 int i;
845
Elena Reshetovadec95572017-03-03 10:55:26 +0200846 if (!refcount_dec_and_test(&rbio->refs))
David Woodhouse53b381b2013-01-29 18:40:14 -0500847 return;
848
Chris Mason4ae10b32013-01-31 14:42:09 -0500849 WARN_ON(!list_empty(&rbio->stripe_cache));
David Woodhouse53b381b2013-01-29 18:40:14 -0500850 WARN_ON(!list_empty(&rbio->hash_list));
851 WARN_ON(!bio_list_empty(&rbio->bio_list));
852
853 for (i = 0; i < rbio->nr_pages; i++) {
854 if (rbio->stripe_pages[i]) {
855 __free_page(rbio->stripe_pages[i]);
856 rbio->stripe_pages[i] = NULL;
857 }
858 }
Miao Xieaf8e2d12014-10-23 14:42:50 +0800859
Zhao Lei6e9606d2015-01-20 15:11:34 +0800860 btrfs_put_bbio(rbio->bbio);
David Woodhouse53b381b2013-01-29 18:40:14 -0500861 kfree(rbio);
862}
863
864static void free_raid_bio(struct btrfs_raid_bio *rbio)
865{
866 unlock_stripe(rbio);
867 __free_raid_bio(rbio);
868}
869
870/*
871 * this frees the rbio and runs through all the bios in the
872 * bio_list and calls end_io on them
873 */
Christoph Hellwig4246a0b2015-07-20 15:29:37 +0200874static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err)
David Woodhouse53b381b2013-01-29 18:40:14 -0500875{
876 struct bio *cur = bio_list_get(&rbio->bio_list);
877 struct bio *next;
Miao Xie42452152014-11-25 16:39:28 +0800878
879 if (rbio->generic_bio_cnt)
880 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
881
David Woodhouse53b381b2013-01-29 18:40:14 -0500882 free_raid_bio(rbio);
883
884 while (cur) {
885 next = cur->bi_next;
886 cur->bi_next = NULL;
Christoph Hellwig4246a0b2015-07-20 15:29:37 +0200887 cur->bi_error = err;
888 bio_endio(cur);
David Woodhouse53b381b2013-01-29 18:40:14 -0500889 cur = next;
890 }
891}
892
893/*
894 * end io function used by finish_rmw. When we finally
895 * get here, we've written a full stripe
896 */
Christoph Hellwig4246a0b2015-07-20 15:29:37 +0200897static void raid_write_end_io(struct bio *bio)
David Woodhouse53b381b2013-01-29 18:40:14 -0500898{
899 struct btrfs_raid_bio *rbio = bio->bi_private;
Christoph Hellwig4246a0b2015-07-20 15:29:37 +0200900 int err = bio->bi_error;
Zhao Leia6111d11b2016-01-12 17:52:13 +0800901 int max_errors;
David Woodhouse53b381b2013-01-29 18:40:14 -0500902
903 if (err)
904 fail_bio_stripe(rbio, bio);
905
906 bio_put(bio);
907
Miao Xieb89e1b02014-10-15 11:18:44 +0800908 if (!atomic_dec_and_test(&rbio->stripes_pending))
David Woodhouse53b381b2013-01-29 18:40:14 -0500909 return;
910
911 err = 0;
912
913 /* OK, we have read all the stripes we need to. */
Zhao Leia6111d11b2016-01-12 17:52:13 +0800914 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
915 0 : rbio->bbio->max_errors;
916 if (atomic_read(&rbio->error) > max_errors)
David Woodhouse53b381b2013-01-29 18:40:14 -0500917 err = -EIO;
918
Christoph Hellwig4246a0b2015-07-20 15:29:37 +0200919 rbio_orig_end_io(rbio, err);
David Woodhouse53b381b2013-01-29 18:40:14 -0500920}
921
922/*
923 * the read/modify/write code wants to use the original bio for
924 * any pages it included, and then use the rbio for everything
925 * else. This function decides if a given index (stripe number)
926 * and page number in that stripe fall inside the original bio
927 * or the rbio.
928 *
929 * if you set bio_list_only, you'll get a NULL back for any ranges
930 * that are outside the bio_list
931 *
932 * This doesn't take any refs on anything, you get a bare page pointer
933 * and the caller must bump refs as required.
934 *
935 * You must call index_rbio_pages once before you can trust
936 * the answers from this function.
937 */
938static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
939 int index, int pagenr, int bio_list_only)
940{
941 int chunk_page;
942 struct page *p = NULL;
943
944 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
945
946 spin_lock_irq(&rbio->bio_list_lock);
947 p = rbio->bio_pages[chunk_page];
948 spin_unlock_irq(&rbio->bio_list_lock);
949
950 if (p || bio_list_only)
951 return p;
952
953 return rbio->stripe_pages[chunk_page];
954}
955
956/*
957 * number of pages we need for the entire stripe across all the
958 * drives
959 */
960static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
961{
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300962 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
David Woodhouse53b381b2013-01-29 18:40:14 -0500963}
964
965/*
966 * allocation and initial setup for the btrfs_raid_bio. Not
967 * this does not allocate any pages for rbio->pages.
968 */
Jeff Mahoney2ff7e612016-06-22 18:54:24 -0400969static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
970 struct btrfs_bio *bbio,
971 u64 stripe_len)
David Woodhouse53b381b2013-01-29 18:40:14 -0500972{
973 struct btrfs_raid_bio *rbio;
974 int nr_data = 0;
Miao Xie2c8cdd62014-11-14 16:06:25 +0800975 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
976 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
Miao Xie5a6ac9e2014-11-06 17:20:58 +0800977 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
David Woodhouse53b381b2013-01-29 18:40:14 -0500978 void *p;
979
Miao Xie5a6ac9e2014-11-06 17:20:58 +0800980 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
Zhao Leibfca9a62014-12-08 19:55:57 +0800981 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
982 sizeof(long), GFP_NOFS);
Miao Xieaf8e2d12014-10-23 14:42:50 +0800983 if (!rbio)
David Woodhouse53b381b2013-01-29 18:40:14 -0500984 return ERR_PTR(-ENOMEM);
David Woodhouse53b381b2013-01-29 18:40:14 -0500985
986 bio_list_init(&rbio->bio_list);
987 INIT_LIST_HEAD(&rbio->plug_list);
988 spin_lock_init(&rbio->bio_list_lock);
Chris Mason4ae10b32013-01-31 14:42:09 -0500989 INIT_LIST_HEAD(&rbio->stripe_cache);
David Woodhouse53b381b2013-01-29 18:40:14 -0500990 INIT_LIST_HEAD(&rbio->hash_list);
991 rbio->bbio = bbio;
Jeff Mahoney2ff7e612016-06-22 18:54:24 -0400992 rbio->fs_info = fs_info;
David Woodhouse53b381b2013-01-29 18:40:14 -0500993 rbio->stripe_len = stripe_len;
994 rbio->nr_pages = num_pages;
Miao Xie2c8cdd62014-11-14 16:06:25 +0800995 rbio->real_stripes = real_stripes;
Miao Xie5a6ac9e2014-11-06 17:20:58 +0800996 rbio->stripe_npages = stripe_npages;
David Woodhouse53b381b2013-01-29 18:40:14 -0500997 rbio->faila = -1;
998 rbio->failb = -1;
Elena Reshetovadec95572017-03-03 10:55:26 +0200999 refcount_set(&rbio->refs, 1);
Miao Xieb89e1b02014-10-15 11:18:44 +08001000 atomic_set(&rbio->error, 0);
1001 atomic_set(&rbio->stripes_pending, 0);
David Woodhouse53b381b2013-01-29 18:40:14 -05001002
1003 /*
1004 * the stripe_pages and bio_pages array point to the extra
1005 * memory we allocated past the end of the rbio
1006 */
1007 p = rbio + 1;
1008 rbio->stripe_pages = p;
1009 rbio->bio_pages = p + sizeof(struct page *) * num_pages;
Miao Xie5a6ac9e2014-11-06 17:20:58 +08001010 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
David Woodhouse53b381b2013-01-29 18:40:14 -05001011
Zhao Lei10f11902015-01-20 15:11:43 +08001012 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1013 nr_data = real_stripes - 1;
1014 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
Miao Xie2c8cdd62014-11-14 16:06:25 +08001015 nr_data = real_stripes - 2;
David Woodhouse53b381b2013-01-29 18:40:14 -05001016 else
Zhao Lei10f11902015-01-20 15:11:43 +08001017 BUG();
David Woodhouse53b381b2013-01-29 18:40:14 -05001018
1019 rbio->nr_data = nr_data;
1020 return rbio;
1021}
1022
1023/* allocate pages for all the stripes in the bio, including parity */
1024static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1025{
1026 int i;
1027 struct page *page;
1028
1029 for (i = 0; i < rbio->nr_pages; i++) {
1030 if (rbio->stripe_pages[i])
1031 continue;
1032 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1033 if (!page)
1034 return -ENOMEM;
1035 rbio->stripe_pages[i] = page;
David Woodhouse53b381b2013-01-29 18:40:14 -05001036 }
1037 return 0;
1038}
1039
Zhao Leib7178a52015-03-03 20:38:46 +08001040/* only allocate pages for p/q stripes */
David Woodhouse53b381b2013-01-29 18:40:14 -05001041static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1042{
1043 int i;
1044 struct page *page;
1045
Zhao Leib7178a52015-03-03 20:38:46 +08001046 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
David Woodhouse53b381b2013-01-29 18:40:14 -05001047
1048 for (; i < rbio->nr_pages; i++) {
1049 if (rbio->stripe_pages[i])
1050 continue;
1051 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1052 if (!page)
1053 return -ENOMEM;
1054 rbio->stripe_pages[i] = page;
1055 }
1056 return 0;
1057}
1058
1059/*
1060 * add a single page from a specific stripe into our list of bios for IO
1061 * this will try to merge into existing bios if possible, and returns
1062 * zero if all went well.
1063 */
Eric Sandeen48a3b632013-04-25 20:41:01 +00001064static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1065 struct bio_list *bio_list,
1066 struct page *page,
1067 int stripe_nr,
1068 unsigned long page_index,
1069 unsigned long bio_max_len)
David Woodhouse53b381b2013-01-29 18:40:14 -05001070{
1071 struct bio *last = bio_list->tail;
1072 u64 last_end = 0;
1073 int ret;
1074 struct bio *bio;
1075 struct btrfs_bio_stripe *stripe;
1076 u64 disk_start;
1077
1078 stripe = &rbio->bbio->stripes[stripe_nr];
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +03001079 disk_start = stripe->physical + (page_index << PAGE_SHIFT);
David Woodhouse53b381b2013-01-29 18:40:14 -05001080
1081 /* if the device is missing, just fail this stripe */
1082 if (!stripe->dev->bdev)
1083 return fail_rbio_index(rbio, stripe_nr);
1084
1085 /* see if we can add this page onto our existing bio */
1086 if (last) {
Kent Overstreet4f024f32013-10-11 15:44:27 -07001087 last_end = (u64)last->bi_iter.bi_sector << 9;
1088 last_end += last->bi_iter.bi_size;
David Woodhouse53b381b2013-01-29 18:40:14 -05001089
1090 /*
1091 * we can't merge these if they are from different
1092 * devices or if they are not contiguous
1093 */
1094 if (last_end == disk_start && stripe->dev->bdev &&
Christoph Hellwig4246a0b2015-07-20 15:29:37 +02001095 !last->bi_error &&
David Woodhouse53b381b2013-01-29 18:40:14 -05001096 last->bi_bdev == stripe->dev->bdev) {
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +03001097 ret = bio_add_page(last, page, PAGE_SIZE, 0);
1098 if (ret == PAGE_SIZE)
David Woodhouse53b381b2013-01-29 18:40:14 -05001099 return 0;
1100 }
1101 }
1102
1103 /* put a new bio on the list */
Chris Mason9be33952013-05-17 18:30:14 -04001104 bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
David Woodhouse53b381b2013-01-29 18:40:14 -05001105 if (!bio)
1106 return -ENOMEM;
1107
Kent Overstreet4f024f32013-10-11 15:44:27 -07001108 bio->bi_iter.bi_size = 0;
David Woodhouse53b381b2013-01-29 18:40:14 -05001109 bio->bi_bdev = stripe->dev->bdev;
Kent Overstreet4f024f32013-10-11 15:44:27 -07001110 bio->bi_iter.bi_sector = disk_start >> 9;
David Woodhouse53b381b2013-01-29 18:40:14 -05001111
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +03001112 bio_add_page(bio, page, PAGE_SIZE, 0);
David Woodhouse53b381b2013-01-29 18:40:14 -05001113 bio_list_add(bio_list, bio);
1114 return 0;
1115}
1116
1117/*
1118 * while we're doing the read/modify/write cycle, we could
1119 * have errors in reading pages off the disk. This checks
1120 * for errors and if we're not able to read the page it'll
1121 * trigger parity reconstruction. The rmw will be finished
1122 * after we've reconstructed the failed stripes
1123 */
1124static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1125{
1126 if (rbio->faila >= 0 || rbio->failb >= 0) {
Miao Xie2c8cdd62014-11-14 16:06:25 +08001127 BUG_ON(rbio->faila == rbio->real_stripes - 1);
David Woodhouse53b381b2013-01-29 18:40:14 -05001128 __raid56_parity_recover(rbio);
1129 } else {
1130 finish_rmw(rbio);
1131 }
1132}
1133
1134/*
David Woodhouse53b381b2013-01-29 18:40:14 -05001135 * helper function to walk our bio list and populate the bio_pages array with
1136 * the result. This seems expensive, but it is faster than constantly
1137 * searching through the bio list as we setup the IO in finish_rmw or stripe
1138 * reconstruction.
1139 *
1140 * This must be called before you trust the answers from page_in_rbio
1141 */
1142static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1143{
1144 struct bio *bio;
Christoph Hellwig80ace3e2016-11-25 09:07:47 +01001145 struct bio_vec *bvec;
David Woodhouse53b381b2013-01-29 18:40:14 -05001146 u64 start;
1147 unsigned long stripe_offset;
1148 unsigned long page_index;
David Woodhouse53b381b2013-01-29 18:40:14 -05001149 int i;
1150
1151 spin_lock_irq(&rbio->bio_list_lock);
1152 bio_list_for_each(bio, &rbio->bio_list) {
Kent Overstreet4f024f32013-10-11 15:44:27 -07001153 start = (u64)bio->bi_iter.bi_sector << 9;
Zhao Lei8e5cfb52015-01-20 15:11:33 +08001154 stripe_offset = start - rbio->bbio->raid_map[0];
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +03001155 page_index = stripe_offset >> PAGE_SHIFT;
David Woodhouse53b381b2013-01-29 18:40:14 -05001156
Christoph Hellwig80ace3e2016-11-25 09:07:47 +01001157 bio_for_each_segment_all(bvec, bio, i)
1158 rbio->bio_pages[page_index + i] = bvec->bv_page;
David Woodhouse53b381b2013-01-29 18:40:14 -05001159 }
1160 spin_unlock_irq(&rbio->bio_list_lock);
1161}
1162
1163/*
1164 * this is called from one of two situations. We either
1165 * have a full stripe from the higher layers, or we've read all
1166 * the missing bits off disk.
1167 *
1168 * This will calculate the parity and then send down any
1169 * changed blocks.
1170 */
1171static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1172{
1173 struct btrfs_bio *bbio = rbio->bbio;
Miao Xie2c8cdd62014-11-14 16:06:25 +08001174 void *pointers[rbio->real_stripes];
David Woodhouse53b381b2013-01-29 18:40:14 -05001175 int nr_data = rbio->nr_data;
1176 int stripe;
1177 int pagenr;
1178 int p_stripe = -1;
1179 int q_stripe = -1;
1180 struct bio_list bio_list;
1181 struct bio *bio;
David Woodhouse53b381b2013-01-29 18:40:14 -05001182 int ret;
1183
1184 bio_list_init(&bio_list);
1185
Miao Xie2c8cdd62014-11-14 16:06:25 +08001186 if (rbio->real_stripes - rbio->nr_data == 1) {
1187 p_stripe = rbio->real_stripes - 1;
1188 } else if (rbio->real_stripes - rbio->nr_data == 2) {
1189 p_stripe = rbio->real_stripes - 2;
1190 q_stripe = rbio->real_stripes - 1;
David Woodhouse53b381b2013-01-29 18:40:14 -05001191 } else {
1192 BUG();
1193 }
1194
1195 /* at this point we either have a full stripe,
1196 * or we've read the full stripe from the drive.
1197 * recalculate the parity and write the new results.
1198 *
1199 * We're not allowed to add any new bios to the
1200 * bio list here, anyone else that wants to
1201 * change this stripe needs to do their own rmw.
1202 */
1203 spin_lock_irq(&rbio->bio_list_lock);
1204 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1205 spin_unlock_irq(&rbio->bio_list_lock);
1206
Miao Xieb89e1b02014-10-15 11:18:44 +08001207 atomic_set(&rbio->error, 0);
David Woodhouse53b381b2013-01-29 18:40:14 -05001208
1209 /*
1210 * now that we've set rmw_locked, run through the
1211 * bio list one last time and map the page pointers
Chris Mason4ae10b32013-01-31 14:42:09 -05001212 *
1213 * We don't cache full rbios because we're assuming
1214 * the higher layers are unlikely to use this area of
1215 * the disk again soon. If they do use it again,
1216 * hopefully they will send another full bio.
David Woodhouse53b381b2013-01-29 18:40:14 -05001217 */
1218 index_rbio_pages(rbio);
Chris Mason4ae10b32013-01-31 14:42:09 -05001219 if (!rbio_is_full(rbio))
1220 cache_rbio_pages(rbio);
1221 else
1222 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
David Woodhouse53b381b2013-01-29 18:40:14 -05001223
Zhao Lei915e2292015-03-03 20:42:48 +08001224 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
David Woodhouse53b381b2013-01-29 18:40:14 -05001225 struct page *p;
1226 /* first collect one page from each data stripe */
1227 for (stripe = 0; stripe < nr_data; stripe++) {
1228 p = page_in_rbio(rbio, stripe, pagenr, 0);
1229 pointers[stripe] = kmap(p);
1230 }
1231
1232 /* then add the parity stripe */
1233 p = rbio_pstripe_page(rbio, pagenr);
1234 SetPageUptodate(p);
1235 pointers[stripe++] = kmap(p);
1236
1237 if (q_stripe != -1) {
1238
1239 /*
1240 * raid6, add the qstripe and call the
1241 * library function to fill in our p/q
1242 */
1243 p = rbio_qstripe_page(rbio, pagenr);
1244 SetPageUptodate(p);
1245 pointers[stripe++] = kmap(p);
1246
Miao Xie2c8cdd62014-11-14 16:06:25 +08001247 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
David Woodhouse53b381b2013-01-29 18:40:14 -05001248 pointers);
1249 } else {
1250 /* raid5 */
1251 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +03001252 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
David Woodhouse53b381b2013-01-29 18:40:14 -05001253 }
1254
1255
Miao Xie2c8cdd62014-11-14 16:06:25 +08001256 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
David Woodhouse53b381b2013-01-29 18:40:14 -05001257 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1258 }
1259
1260 /*
1261 * time to start writing. Make bios for everything from the
1262 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1263 * everything else.
1264 */
Miao Xie2c8cdd62014-11-14 16:06:25 +08001265 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
Zhao Lei915e2292015-03-03 20:42:48 +08001266 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
David Woodhouse53b381b2013-01-29 18:40:14 -05001267 struct page *page;
1268 if (stripe < rbio->nr_data) {
1269 page = page_in_rbio(rbio, stripe, pagenr, 1);
1270 if (!page)
1271 continue;
1272 } else {
1273 page = rbio_stripe_page(rbio, stripe, pagenr);
1274 }
1275
1276 ret = rbio_add_io_page(rbio, &bio_list,
1277 page, stripe, pagenr, rbio->stripe_len);
1278 if (ret)
1279 goto cleanup;
1280 }
1281 }
1282
Miao Xie2c8cdd62014-11-14 16:06:25 +08001283 if (likely(!bbio->num_tgtdevs))
1284 goto write_data;
1285
1286 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1287 if (!bbio->tgtdev_map[stripe])
1288 continue;
1289
Zhao Lei915e2292015-03-03 20:42:48 +08001290 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
Miao Xie2c8cdd62014-11-14 16:06:25 +08001291 struct page *page;
1292 if (stripe < rbio->nr_data) {
1293 page = page_in_rbio(rbio, stripe, pagenr, 1);
1294 if (!page)
1295 continue;
1296 } else {
1297 page = rbio_stripe_page(rbio, stripe, pagenr);
1298 }
1299
1300 ret = rbio_add_io_page(rbio, &bio_list, page,
1301 rbio->bbio->tgtdev_map[stripe],
1302 pagenr, rbio->stripe_len);
1303 if (ret)
1304 goto cleanup;
1305 }
1306 }
1307
1308write_data:
Miao Xieb89e1b02014-10-15 11:18:44 +08001309 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1310 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
David Woodhouse53b381b2013-01-29 18:40:14 -05001311
1312 while (1) {
1313 bio = bio_list_pop(&bio_list);
1314 if (!bio)
1315 break;
1316
1317 bio->bi_private = rbio;
1318 bio->bi_end_io = raid_write_end_io;
Mike Christie37226b22016-06-05 14:31:52 -05001319 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
Mike Christie4e49ea42016-06-05 14:31:41 -05001320
1321 submit_bio(bio);
David Woodhouse53b381b2013-01-29 18:40:14 -05001322 }
1323 return;
1324
1325cleanup:
Christoph Hellwig4246a0b2015-07-20 15:29:37 +02001326 rbio_orig_end_io(rbio, -EIO);
David Woodhouse53b381b2013-01-29 18:40:14 -05001327}
1328
1329/*
1330 * helper to find the stripe number for a given bio. Used to figure out which
1331 * stripe has failed. This expects the bio to correspond to a physical disk,
1332 * so it looks up based on physical sector numbers.
1333 */
1334static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1335 struct bio *bio)
1336{
Kent Overstreet4f024f32013-10-11 15:44:27 -07001337 u64 physical = bio->bi_iter.bi_sector;
David Woodhouse53b381b2013-01-29 18:40:14 -05001338 u64 stripe_start;
1339 int i;
1340 struct btrfs_bio_stripe *stripe;
1341
1342 physical <<= 9;
1343
1344 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1345 stripe = &rbio->bbio->stripes[i];
1346 stripe_start = stripe->physical;
1347 if (physical >= stripe_start &&
Miao Xie2c8cdd62014-11-14 16:06:25 +08001348 physical < stripe_start + rbio->stripe_len &&
1349 bio->bi_bdev == stripe->dev->bdev) {
David Woodhouse53b381b2013-01-29 18:40:14 -05001350 return i;
1351 }
1352 }
1353 return -1;
1354}
1355
1356/*
1357 * helper to find the stripe number for a given
1358 * bio (before mapping). Used to figure out which stripe has
1359 * failed. This looks up based on logical block numbers.
1360 */
1361static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1362 struct bio *bio)
1363{
Kent Overstreet4f024f32013-10-11 15:44:27 -07001364 u64 logical = bio->bi_iter.bi_sector;
David Woodhouse53b381b2013-01-29 18:40:14 -05001365 u64 stripe_start;
1366 int i;
1367
1368 logical <<= 9;
1369
1370 for (i = 0; i < rbio->nr_data; i++) {
Zhao Lei8e5cfb52015-01-20 15:11:33 +08001371 stripe_start = rbio->bbio->raid_map[i];
David Woodhouse53b381b2013-01-29 18:40:14 -05001372 if (logical >= stripe_start &&
1373 logical < stripe_start + rbio->stripe_len) {
1374 return i;
1375 }
1376 }
1377 return -1;
1378}
1379
1380/*
1381 * returns -EIO if we had too many failures
1382 */
1383static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1384{
1385 unsigned long flags;
1386 int ret = 0;
1387
1388 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1389
1390 /* we already know this stripe is bad, move on */
1391 if (rbio->faila == failed || rbio->failb == failed)
1392 goto out;
1393
1394 if (rbio->faila == -1) {
1395 /* first failure on this rbio */
1396 rbio->faila = failed;
Miao Xieb89e1b02014-10-15 11:18:44 +08001397 atomic_inc(&rbio->error);
David Woodhouse53b381b2013-01-29 18:40:14 -05001398 } else if (rbio->failb == -1) {
1399 /* second failure on this rbio */
1400 rbio->failb = failed;
Miao Xieb89e1b02014-10-15 11:18:44 +08001401 atomic_inc(&rbio->error);
David Woodhouse53b381b2013-01-29 18:40:14 -05001402 } else {
1403 ret = -EIO;
1404 }
1405out:
1406 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1407
1408 return ret;
1409}
1410
1411/*
1412 * helper to fail a stripe based on a physical disk
1413 * bio.
1414 */
1415static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1416 struct bio *bio)
1417{
1418 int failed = find_bio_stripe(rbio, bio);
1419
1420 if (failed < 0)
1421 return -EIO;
1422
1423 return fail_rbio_index(rbio, failed);
1424}
1425
1426/*
1427 * this sets each page in the bio uptodate. It should only be used on private
1428 * rbio pages, nothing that comes in from the higher layers
1429 */
1430static void set_bio_pages_uptodate(struct bio *bio)
1431{
Christoph Hellwig80ace3e2016-11-25 09:07:47 +01001432 struct bio_vec *bvec;
David Woodhouse53b381b2013-01-29 18:40:14 -05001433 int i;
David Woodhouse53b381b2013-01-29 18:40:14 -05001434
Christoph Hellwig80ace3e2016-11-25 09:07:47 +01001435 bio_for_each_segment_all(bvec, bio, i)
1436 SetPageUptodate(bvec->bv_page);
David Woodhouse53b381b2013-01-29 18:40:14 -05001437}
1438
1439/*
1440 * end io for the read phase of the rmw cycle. All the bios here are physical
1441 * stripe bios we've read from the disk so we can recalculate the parity of the
1442 * stripe.
1443 *
1444 * This will usually kick off finish_rmw once all the bios are read in, but it
1445 * may trigger parity reconstruction if we had any errors along the way
1446 */
Christoph Hellwig4246a0b2015-07-20 15:29:37 +02001447static void raid_rmw_end_io(struct bio *bio)
David Woodhouse53b381b2013-01-29 18:40:14 -05001448{
1449 struct btrfs_raid_bio *rbio = bio->bi_private;
1450
Christoph Hellwig4246a0b2015-07-20 15:29:37 +02001451 if (bio->bi_error)
David Woodhouse53b381b2013-01-29 18:40:14 -05001452 fail_bio_stripe(rbio, bio);
1453 else
1454 set_bio_pages_uptodate(bio);
1455
1456 bio_put(bio);
1457
Miao Xieb89e1b02014-10-15 11:18:44 +08001458 if (!atomic_dec_and_test(&rbio->stripes_pending))
David Woodhouse53b381b2013-01-29 18:40:14 -05001459 return;
1460
Miao Xieb89e1b02014-10-15 11:18:44 +08001461 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
David Woodhouse53b381b2013-01-29 18:40:14 -05001462 goto cleanup;
1463
1464 /*
1465 * this will normally call finish_rmw to start our write
1466 * but if there are any failed stripes we'll reconstruct
1467 * from parity first
1468 */
1469 validate_rbio_for_rmw(rbio);
1470 return;
1471
1472cleanup:
1473
Christoph Hellwig4246a0b2015-07-20 15:29:37 +02001474 rbio_orig_end_io(rbio, -EIO);
David Woodhouse53b381b2013-01-29 18:40:14 -05001475}
1476
1477static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1478{
Jeff Mahoney0b246af2016-06-22 18:54:23 -04001479 btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL);
1480 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
David Woodhouse53b381b2013-01-29 18:40:14 -05001481}
1482
1483static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1484{
Liu Bo9e0af232014-08-15 23:36:53 +08001485 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1486 read_rebuild_work, NULL, NULL);
David Woodhouse53b381b2013-01-29 18:40:14 -05001487
Jeff Mahoney0b246af2016-06-22 18:54:23 -04001488 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
David Woodhouse53b381b2013-01-29 18:40:14 -05001489}
1490
1491/*
1492 * the stripe must be locked by the caller. It will
1493 * unlock after all the writes are done
1494 */
1495static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1496{
1497 int bios_to_read = 0;
David Woodhouse53b381b2013-01-29 18:40:14 -05001498 struct bio_list bio_list;
1499 int ret;
David Woodhouse53b381b2013-01-29 18:40:14 -05001500 int pagenr;
1501 int stripe;
1502 struct bio *bio;
1503
1504 bio_list_init(&bio_list);
1505
1506 ret = alloc_rbio_pages(rbio);
1507 if (ret)
1508 goto cleanup;
1509
1510 index_rbio_pages(rbio);
1511
Miao Xieb89e1b02014-10-15 11:18:44 +08001512 atomic_set(&rbio->error, 0);
David Woodhouse53b381b2013-01-29 18:40:14 -05001513 /*
1514 * build a list of bios to read all the missing parts of this
1515 * stripe
1516 */
1517 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
Zhao Lei915e2292015-03-03 20:42:48 +08001518 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
David Woodhouse53b381b2013-01-29 18:40:14 -05001519 struct page *page;
1520 /*
1521 * we want to find all the pages missing from
1522 * the rbio and read them from the disk. If
1523 * page_in_rbio finds a page in the bio list
1524 * we don't need to read it off the stripe.
1525 */
1526 page = page_in_rbio(rbio, stripe, pagenr, 1);
1527 if (page)
1528 continue;
1529
1530 page = rbio_stripe_page(rbio, stripe, pagenr);
Chris Mason4ae10b32013-01-31 14:42:09 -05001531 /*
1532 * the bio cache may have handed us an uptodate
1533 * page. If so, be happy and use it
1534 */
1535 if (PageUptodate(page))
1536 continue;
1537
David Woodhouse53b381b2013-01-29 18:40:14 -05001538 ret = rbio_add_io_page(rbio, &bio_list, page,
1539 stripe, pagenr, rbio->stripe_len);
1540 if (ret)
1541 goto cleanup;
1542 }
1543 }
1544
1545 bios_to_read = bio_list_size(&bio_list);
1546 if (!bios_to_read) {
1547 /*
1548 * this can happen if others have merged with
1549 * us, it means there is nothing left to read.
1550 * But if there are missing devices it may not be
1551 * safe to do the full stripe write yet.
1552 */
1553 goto finish;
1554 }
1555
1556 /*
1557 * the bbio may be freed once we submit the last bio. Make sure
1558 * not to touch it after that
1559 */
Miao Xieb89e1b02014-10-15 11:18:44 +08001560 atomic_set(&rbio->stripes_pending, bios_to_read);
David Woodhouse53b381b2013-01-29 18:40:14 -05001561 while (1) {
1562 bio = bio_list_pop(&bio_list);
1563 if (!bio)
1564 break;
1565
1566 bio->bi_private = rbio;
1567 bio->bi_end_io = raid_rmw_end_io;
Mike Christie37226b22016-06-05 14:31:52 -05001568 bio_set_op_attrs(bio, REQ_OP_READ, 0);
David Woodhouse53b381b2013-01-29 18:40:14 -05001569
Jeff Mahoney0b246af2016-06-22 18:54:23 -04001570 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
David Woodhouse53b381b2013-01-29 18:40:14 -05001571
Mike Christie4e49ea42016-06-05 14:31:41 -05001572 submit_bio(bio);
David Woodhouse53b381b2013-01-29 18:40:14 -05001573 }
1574 /* the actual write will happen once the reads are done */
1575 return 0;
1576
1577cleanup:
Christoph Hellwig4246a0b2015-07-20 15:29:37 +02001578 rbio_orig_end_io(rbio, -EIO);
David Woodhouse53b381b2013-01-29 18:40:14 -05001579 return -EIO;
1580
1581finish:
1582 validate_rbio_for_rmw(rbio);
1583 return 0;
1584}
1585
1586/*
1587 * if the upper layers pass in a full stripe, we thank them by only allocating
1588 * enough pages to hold the parity, and sending it all down quickly.
1589 */
1590static int full_stripe_write(struct btrfs_raid_bio *rbio)
1591{
1592 int ret;
1593
1594 ret = alloc_rbio_parity_pages(rbio);
Miao Xie3cd846d2013-07-22 16:36:57 +08001595 if (ret) {
1596 __free_raid_bio(rbio);
David Woodhouse53b381b2013-01-29 18:40:14 -05001597 return ret;
Miao Xie3cd846d2013-07-22 16:36:57 +08001598 }
David Woodhouse53b381b2013-01-29 18:40:14 -05001599
1600 ret = lock_stripe_add(rbio);
1601 if (ret == 0)
1602 finish_rmw(rbio);
1603 return 0;
1604}
1605
1606/*
1607 * partial stripe writes get handed over to async helpers.
1608 * We're really hoping to merge a few more writes into this
1609 * rbio before calculating new parity
1610 */
1611static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1612{
1613 int ret;
1614
1615 ret = lock_stripe_add(rbio);
1616 if (ret == 0)
1617 async_rmw_stripe(rbio);
1618 return 0;
1619}
1620
1621/*
1622 * sometimes while we were reading from the drive to
1623 * recalculate parity, enough new bios come into create
1624 * a full stripe. So we do a check here to see if we can
1625 * go directly to finish_rmw
1626 */
1627static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1628{
1629 /* head off into rmw land if we don't have a full stripe */
1630 if (!rbio_is_full(rbio))
1631 return partial_stripe_write(rbio);
1632 return full_stripe_write(rbio);
1633}
1634
1635/*
Chris Mason6ac0f482013-01-31 14:42:28 -05001636 * We use plugging call backs to collect full stripes.
1637 * Any time we get a partial stripe write while plugged
1638 * we collect it into a list. When the unplug comes down,
1639 * we sort the list by logical block number and merge
1640 * everything we can into the same rbios
1641 */
1642struct btrfs_plug_cb {
1643 struct blk_plug_cb cb;
1644 struct btrfs_fs_info *info;
1645 struct list_head rbio_list;
1646 struct btrfs_work work;
1647};
1648
1649/*
1650 * rbios on the plug list are sorted for easier merging.
1651 */
1652static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1653{
1654 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1655 plug_list);
1656 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1657 plug_list);
Kent Overstreet4f024f32013-10-11 15:44:27 -07001658 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1659 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
Chris Mason6ac0f482013-01-31 14:42:28 -05001660
1661 if (a_sector < b_sector)
1662 return -1;
1663 if (a_sector > b_sector)
1664 return 1;
1665 return 0;
1666}
1667
1668static void run_plug(struct btrfs_plug_cb *plug)
1669{
1670 struct btrfs_raid_bio *cur;
1671 struct btrfs_raid_bio *last = NULL;
1672
1673 /*
1674 * sort our plug list then try to merge
1675 * everything we can in hopes of creating full
1676 * stripes.
1677 */
1678 list_sort(NULL, &plug->rbio_list, plug_cmp);
1679 while (!list_empty(&plug->rbio_list)) {
1680 cur = list_entry(plug->rbio_list.next,
1681 struct btrfs_raid_bio, plug_list);
1682 list_del_init(&cur->plug_list);
1683
1684 if (rbio_is_full(cur)) {
1685 /* we have a full stripe, send it down */
1686 full_stripe_write(cur);
1687 continue;
1688 }
1689 if (last) {
1690 if (rbio_can_merge(last, cur)) {
1691 merge_rbio(last, cur);
1692 __free_raid_bio(cur);
1693 continue;
1694
1695 }
1696 __raid56_parity_write(last);
1697 }
1698 last = cur;
1699 }
1700 if (last) {
1701 __raid56_parity_write(last);
1702 }
1703 kfree(plug);
1704}
1705
1706/*
1707 * if the unplug comes from schedule, we have to push the
1708 * work off to a helper thread
1709 */
1710static void unplug_work(struct btrfs_work *work)
1711{
1712 struct btrfs_plug_cb *plug;
1713 plug = container_of(work, struct btrfs_plug_cb, work);
1714 run_plug(plug);
1715}
1716
1717static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1718{
1719 struct btrfs_plug_cb *plug;
1720 plug = container_of(cb, struct btrfs_plug_cb, cb);
1721
1722 if (from_schedule) {
Liu Bo9e0af232014-08-15 23:36:53 +08001723 btrfs_init_work(&plug->work, btrfs_rmw_helper,
1724 unplug_work, NULL, NULL);
Qu Wenruod05a33a2014-02-28 10:46:11 +08001725 btrfs_queue_work(plug->info->rmw_workers,
1726 &plug->work);
Chris Mason6ac0f482013-01-31 14:42:28 -05001727 return;
1728 }
1729 run_plug(plug);
1730}
1731
1732/*
David Woodhouse53b381b2013-01-29 18:40:14 -05001733 * our main entry point for writes from the rest of the FS.
1734 */
Jeff Mahoney2ff7e612016-06-22 18:54:24 -04001735int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
Zhao Lei8e5cfb52015-01-20 15:11:33 +08001736 struct btrfs_bio *bbio, u64 stripe_len)
David Woodhouse53b381b2013-01-29 18:40:14 -05001737{
1738 struct btrfs_raid_bio *rbio;
Chris Mason6ac0f482013-01-31 14:42:28 -05001739 struct btrfs_plug_cb *plug = NULL;
1740 struct blk_plug_cb *cb;
Miao Xie42452152014-11-25 16:39:28 +08001741 int ret;
David Woodhouse53b381b2013-01-29 18:40:14 -05001742
Jeff Mahoney2ff7e612016-06-22 18:54:24 -04001743 rbio = alloc_rbio(fs_info, bbio, stripe_len);
Miao Xieaf8e2d12014-10-23 14:42:50 +08001744 if (IS_ERR(rbio)) {
Zhao Lei6e9606d2015-01-20 15:11:34 +08001745 btrfs_put_bbio(bbio);
David Woodhouse53b381b2013-01-29 18:40:14 -05001746 return PTR_ERR(rbio);
Miao Xieaf8e2d12014-10-23 14:42:50 +08001747 }
David Woodhouse53b381b2013-01-29 18:40:14 -05001748 bio_list_add(&rbio->bio_list, bio);
Kent Overstreet4f024f32013-10-11 15:44:27 -07001749 rbio->bio_list_bytes = bio->bi_iter.bi_size;
Miao Xie1b94b552014-11-06 16:14:21 +08001750 rbio->operation = BTRFS_RBIO_WRITE;
Chris Mason6ac0f482013-01-31 14:42:28 -05001751
Jeff Mahoney0b246af2016-06-22 18:54:23 -04001752 btrfs_bio_counter_inc_noblocked(fs_info);
Miao Xie42452152014-11-25 16:39:28 +08001753 rbio->generic_bio_cnt = 1;
1754
Chris Mason6ac0f482013-01-31 14:42:28 -05001755 /*
1756 * don't plug on full rbios, just get them out the door
1757 * as quickly as we can
1758 */
Miao Xie42452152014-11-25 16:39:28 +08001759 if (rbio_is_full(rbio)) {
1760 ret = full_stripe_write(rbio);
1761 if (ret)
Jeff Mahoney0b246af2016-06-22 18:54:23 -04001762 btrfs_bio_counter_dec(fs_info);
Miao Xie42452152014-11-25 16:39:28 +08001763 return ret;
1764 }
Chris Mason6ac0f482013-01-31 14:42:28 -05001765
Jeff Mahoney0b246af2016-06-22 18:54:23 -04001766 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
Chris Mason6ac0f482013-01-31 14:42:28 -05001767 if (cb) {
1768 plug = container_of(cb, struct btrfs_plug_cb, cb);
1769 if (!plug->info) {
Jeff Mahoney0b246af2016-06-22 18:54:23 -04001770 plug->info = fs_info;
Chris Mason6ac0f482013-01-31 14:42:28 -05001771 INIT_LIST_HEAD(&plug->rbio_list);
1772 }
1773 list_add_tail(&rbio->plug_list, &plug->rbio_list);
Miao Xie42452152014-11-25 16:39:28 +08001774 ret = 0;
Chris Mason6ac0f482013-01-31 14:42:28 -05001775 } else {
Miao Xie42452152014-11-25 16:39:28 +08001776 ret = __raid56_parity_write(rbio);
1777 if (ret)
Jeff Mahoney0b246af2016-06-22 18:54:23 -04001778 btrfs_bio_counter_dec(fs_info);
Chris Mason6ac0f482013-01-31 14:42:28 -05001779 }
Miao Xie42452152014-11-25 16:39:28 +08001780 return ret;
David Woodhouse53b381b2013-01-29 18:40:14 -05001781}
1782
1783/*
1784 * all parity reconstruction happens here. We've read in everything
1785 * we can find from the drives and this does the heavy lifting of
1786 * sorting the good from the bad.
1787 */
1788static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1789{
1790 int pagenr, stripe;
1791 void **pointers;
1792 int faila = -1, failb = -1;
David Woodhouse53b381b2013-01-29 18:40:14 -05001793 struct page *page;
1794 int err;
1795 int i;
1796
David Sterba31e818f2015-02-20 18:00:26 +01001797 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
David Woodhouse53b381b2013-01-29 18:40:14 -05001798 if (!pointers) {
1799 err = -ENOMEM;
1800 goto cleanup_io;
1801 }
1802
1803 faila = rbio->faila;
1804 failb = rbio->failb;
1805
Omar Sandovalb4ee1782015-06-19 11:52:50 -07001806 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1807 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
David Woodhouse53b381b2013-01-29 18:40:14 -05001808 spin_lock_irq(&rbio->bio_list_lock);
1809 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1810 spin_unlock_irq(&rbio->bio_list_lock);
1811 }
1812
1813 index_rbio_pages(rbio);
1814
Zhao Lei915e2292015-03-03 20:42:48 +08001815 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
Miao Xie5a6ac9e2014-11-06 17:20:58 +08001816 /*
1817 * Now we just use bitmap to mark the horizontal stripes in
1818 * which we have data when doing parity scrub.
1819 */
1820 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1821 !test_bit(pagenr, rbio->dbitmap))
1822 continue;
1823
David Woodhouse53b381b2013-01-29 18:40:14 -05001824 /* setup our array of pointers with pages
1825 * from each stripe
1826 */
Miao Xie2c8cdd62014-11-14 16:06:25 +08001827 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
David Woodhouse53b381b2013-01-29 18:40:14 -05001828 /*
1829 * if we're rebuilding a read, we have to use
1830 * pages from the bio list
1831 */
Omar Sandovalb4ee1782015-06-19 11:52:50 -07001832 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1833 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
David Woodhouse53b381b2013-01-29 18:40:14 -05001834 (stripe == faila || stripe == failb)) {
1835 page = page_in_rbio(rbio, stripe, pagenr, 0);
1836 } else {
1837 page = rbio_stripe_page(rbio, stripe, pagenr);
1838 }
1839 pointers[stripe] = kmap(page);
1840 }
1841
1842 /* all raid6 handling here */
Zhao Lei10f11902015-01-20 15:11:43 +08001843 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
David Woodhouse53b381b2013-01-29 18:40:14 -05001844 /*
1845 * single failure, rebuild from parity raid5
1846 * style
1847 */
1848 if (failb < 0) {
1849 if (faila == rbio->nr_data) {
1850 /*
1851 * Just the P stripe has failed, without
1852 * a bad data or Q stripe.
1853 * TODO, we should redo the xor here.
1854 */
1855 err = -EIO;
1856 goto cleanup;
1857 }
1858 /*
1859 * a single failure in raid6 is rebuilt
1860 * in the pstripe code below
1861 */
1862 goto pstripe;
1863 }
1864
1865 /* make sure our ps and qs are in order */
1866 if (faila > failb) {
1867 int tmp = failb;
1868 failb = faila;
1869 faila = tmp;
1870 }
1871
1872 /* if the q stripe is failed, do a pstripe reconstruction
1873 * from the xors.
1874 * If both the q stripe and the P stripe are failed, we're
1875 * here due to a crc mismatch and we can't give them the
1876 * data they want
1877 */
Zhao Lei8e5cfb52015-01-20 15:11:33 +08001878 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1879 if (rbio->bbio->raid_map[faila] ==
1880 RAID5_P_STRIPE) {
David Woodhouse53b381b2013-01-29 18:40:14 -05001881 err = -EIO;
1882 goto cleanup;
1883 }
1884 /*
1885 * otherwise we have one bad data stripe and
1886 * a good P stripe. raid5!
1887 */
1888 goto pstripe;
1889 }
1890
Zhao Lei8e5cfb52015-01-20 15:11:33 +08001891 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
Miao Xie2c8cdd62014-11-14 16:06:25 +08001892 raid6_datap_recov(rbio->real_stripes,
David Woodhouse53b381b2013-01-29 18:40:14 -05001893 PAGE_SIZE, faila, pointers);
1894 } else {
Miao Xie2c8cdd62014-11-14 16:06:25 +08001895 raid6_2data_recov(rbio->real_stripes,
David Woodhouse53b381b2013-01-29 18:40:14 -05001896 PAGE_SIZE, faila, failb,
1897 pointers);
1898 }
1899 } else {
1900 void *p;
1901
1902 /* rebuild from P stripe here (raid5 or raid6) */
1903 BUG_ON(failb != -1);
1904pstripe:
1905 /* Copy parity block into failed block to start with */
1906 memcpy(pointers[faila],
1907 pointers[rbio->nr_data],
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +03001908 PAGE_SIZE);
David Woodhouse53b381b2013-01-29 18:40:14 -05001909
1910 /* rearrange the pointer array */
1911 p = pointers[faila];
1912 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1913 pointers[stripe] = pointers[stripe + 1];
1914 pointers[rbio->nr_data - 1] = p;
1915
1916 /* xor in the rest */
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +03001917 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
David Woodhouse53b381b2013-01-29 18:40:14 -05001918 }
1919 /* if we're doing this rebuild as part of an rmw, go through
1920 * and set all of our private rbio pages in the
1921 * failed stripes as uptodate. This way finish_rmw will
1922 * know they can be trusted. If this was a read reconstruction,
1923 * other endio functions will fiddle the uptodate bits
1924 */
Miao Xie1b94b552014-11-06 16:14:21 +08001925 if (rbio->operation == BTRFS_RBIO_WRITE) {
Zhao Lei915e2292015-03-03 20:42:48 +08001926 for (i = 0; i < rbio->stripe_npages; i++) {
David Woodhouse53b381b2013-01-29 18:40:14 -05001927 if (faila != -1) {
1928 page = rbio_stripe_page(rbio, faila, i);
1929 SetPageUptodate(page);
1930 }
1931 if (failb != -1) {
1932 page = rbio_stripe_page(rbio, failb, i);
1933 SetPageUptodate(page);
1934 }
1935 }
1936 }
Miao Xie2c8cdd62014-11-14 16:06:25 +08001937 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
David Woodhouse53b381b2013-01-29 18:40:14 -05001938 /*
1939 * if we're rebuilding a read, we have to use
1940 * pages from the bio list
1941 */
Omar Sandovalb4ee1782015-06-19 11:52:50 -07001942 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1943 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
David Woodhouse53b381b2013-01-29 18:40:14 -05001944 (stripe == faila || stripe == failb)) {
1945 page = page_in_rbio(rbio, stripe, pagenr, 0);
1946 } else {
1947 page = rbio_stripe_page(rbio, stripe, pagenr);
1948 }
1949 kunmap(page);
1950 }
1951 }
1952
1953 err = 0;
1954cleanup:
1955 kfree(pointers);
1956
1957cleanup_io:
Miao Xie1b94b552014-11-06 16:14:21 +08001958 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
Zhao Lei6e9606d2015-01-20 15:11:34 +08001959 if (err == 0)
Chris Mason4ae10b32013-01-31 14:42:09 -05001960 cache_rbio_pages(rbio);
1961 else
1962 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1963
Christoph Hellwig4246a0b2015-07-20 15:29:37 +02001964 rbio_orig_end_io(rbio, err);
Omar Sandovalb4ee1782015-06-19 11:52:50 -07001965 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
Linus Torvalds22365972015-09-05 15:14:43 -07001966 rbio_orig_end_io(rbio, err);
David Woodhouse53b381b2013-01-29 18:40:14 -05001967 } else if (err == 0) {
1968 rbio->faila = -1;
1969 rbio->failb = -1;
Miao Xie5a6ac9e2014-11-06 17:20:58 +08001970
1971 if (rbio->operation == BTRFS_RBIO_WRITE)
1972 finish_rmw(rbio);
1973 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1974 finish_parity_scrub(rbio, 0);
1975 else
1976 BUG();
David Woodhouse53b381b2013-01-29 18:40:14 -05001977 } else {
Christoph Hellwig4246a0b2015-07-20 15:29:37 +02001978 rbio_orig_end_io(rbio, err);
David Woodhouse53b381b2013-01-29 18:40:14 -05001979 }
1980}
1981
1982/*
1983 * This is called only for stripes we've read from disk to
1984 * reconstruct the parity.
1985 */
Christoph Hellwig4246a0b2015-07-20 15:29:37 +02001986static void raid_recover_end_io(struct bio *bio)
David Woodhouse53b381b2013-01-29 18:40:14 -05001987{
1988 struct btrfs_raid_bio *rbio = bio->bi_private;
1989
1990 /*
1991 * we only read stripe pages off the disk, set them
1992 * up to date if there were no errors
1993 */
Christoph Hellwig4246a0b2015-07-20 15:29:37 +02001994 if (bio->bi_error)
David Woodhouse53b381b2013-01-29 18:40:14 -05001995 fail_bio_stripe(rbio, bio);
1996 else
1997 set_bio_pages_uptodate(bio);
1998 bio_put(bio);
1999
Miao Xieb89e1b02014-10-15 11:18:44 +08002000 if (!atomic_dec_and_test(&rbio->stripes_pending))
David Woodhouse53b381b2013-01-29 18:40:14 -05002001 return;
2002
Miao Xieb89e1b02014-10-15 11:18:44 +08002003 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
Christoph Hellwig4246a0b2015-07-20 15:29:37 +02002004 rbio_orig_end_io(rbio, -EIO);
David Woodhouse53b381b2013-01-29 18:40:14 -05002005 else
2006 __raid_recover_end_io(rbio);
2007}
2008
2009/*
2010 * reads everything we need off the disk to reconstruct
2011 * the parity. endio handlers trigger final reconstruction
2012 * when the IO is done.
2013 *
2014 * This is used both for reads from the higher layers and for
2015 * parity construction required to finish a rmw cycle.
2016 */
2017static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2018{
2019 int bios_to_read = 0;
David Woodhouse53b381b2013-01-29 18:40:14 -05002020 struct bio_list bio_list;
2021 int ret;
David Woodhouse53b381b2013-01-29 18:40:14 -05002022 int pagenr;
2023 int stripe;
2024 struct bio *bio;
2025
2026 bio_list_init(&bio_list);
2027
2028 ret = alloc_rbio_pages(rbio);
2029 if (ret)
2030 goto cleanup;
2031
Miao Xieb89e1b02014-10-15 11:18:44 +08002032 atomic_set(&rbio->error, 0);
David Woodhouse53b381b2013-01-29 18:40:14 -05002033
2034 /*
Chris Mason4ae10b32013-01-31 14:42:09 -05002035 * read everything that hasn't failed. Thanks to the
2036 * stripe cache, it is possible that some or all of these
2037 * pages are going to be uptodate.
David Woodhouse53b381b2013-01-29 18:40:14 -05002038 */
Miao Xie2c8cdd62014-11-14 16:06:25 +08002039 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
Liu Bo55883832014-06-24 15:39:16 +08002040 if (rbio->faila == stripe || rbio->failb == stripe) {
Miao Xieb89e1b02014-10-15 11:18:44 +08002041 atomic_inc(&rbio->error);
David Woodhouse53b381b2013-01-29 18:40:14 -05002042 continue;
Liu Bo55883832014-06-24 15:39:16 +08002043 }
David Woodhouse53b381b2013-01-29 18:40:14 -05002044
Zhao Lei915e2292015-03-03 20:42:48 +08002045 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
David Woodhouse53b381b2013-01-29 18:40:14 -05002046 struct page *p;
2047
2048 /*
2049 * the rmw code may have already read this
2050 * page in
2051 */
2052 p = rbio_stripe_page(rbio, stripe, pagenr);
2053 if (PageUptodate(p))
2054 continue;
2055
2056 ret = rbio_add_io_page(rbio, &bio_list,
2057 rbio_stripe_page(rbio, stripe, pagenr),
2058 stripe, pagenr, rbio->stripe_len);
2059 if (ret < 0)
2060 goto cleanup;
2061 }
2062 }
2063
2064 bios_to_read = bio_list_size(&bio_list);
2065 if (!bios_to_read) {
2066 /*
2067 * we might have no bios to read just because the pages
2068 * were up to date, or we might have no bios to read because
2069 * the devices were gone.
2070 */
Miao Xieb89e1b02014-10-15 11:18:44 +08002071 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
David Woodhouse53b381b2013-01-29 18:40:14 -05002072 __raid_recover_end_io(rbio);
2073 goto out;
2074 } else {
2075 goto cleanup;
2076 }
2077 }
2078
2079 /*
2080 * the bbio may be freed once we submit the last bio. Make sure
2081 * not to touch it after that
2082 */
Miao Xieb89e1b02014-10-15 11:18:44 +08002083 atomic_set(&rbio->stripes_pending, bios_to_read);
David Woodhouse53b381b2013-01-29 18:40:14 -05002084 while (1) {
2085 bio = bio_list_pop(&bio_list);
2086 if (!bio)
2087 break;
2088
2089 bio->bi_private = rbio;
2090 bio->bi_end_io = raid_recover_end_io;
Mike Christie37226b22016-06-05 14:31:52 -05002091 bio_set_op_attrs(bio, REQ_OP_READ, 0);
David Woodhouse53b381b2013-01-29 18:40:14 -05002092
Jeff Mahoney0b246af2016-06-22 18:54:23 -04002093 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
David Woodhouse53b381b2013-01-29 18:40:14 -05002094
Mike Christie4e49ea42016-06-05 14:31:41 -05002095 submit_bio(bio);
David Woodhouse53b381b2013-01-29 18:40:14 -05002096 }
2097out:
2098 return 0;
2099
2100cleanup:
Omar Sandovalb4ee1782015-06-19 11:52:50 -07002101 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2102 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
Christoph Hellwig4246a0b2015-07-20 15:29:37 +02002103 rbio_orig_end_io(rbio, -EIO);
David Woodhouse53b381b2013-01-29 18:40:14 -05002104 return -EIO;
2105}
2106
2107/*
2108 * the main entry point for reads from the higher layers. This
2109 * is really only called when the normal read path had a failure,
2110 * so we assume the bio they send down corresponds to a failed part
2111 * of the drive.
2112 */
Jeff Mahoney2ff7e612016-06-22 18:54:24 -04002113int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
Zhao Lei8e5cfb52015-01-20 15:11:33 +08002114 struct btrfs_bio *bbio, u64 stripe_len,
2115 int mirror_num, int generic_io)
David Woodhouse53b381b2013-01-29 18:40:14 -05002116{
2117 struct btrfs_raid_bio *rbio;
2118 int ret;
2119
Liu Boabad60c2017-03-29 10:54:26 -07002120 if (generic_io) {
2121 ASSERT(bbio->mirror_num == mirror_num);
2122 btrfs_io_bio(bio)->mirror_num = mirror_num;
2123 }
2124
Jeff Mahoney2ff7e612016-06-22 18:54:24 -04002125 rbio = alloc_rbio(fs_info, bbio, stripe_len);
Miao Xieaf8e2d12014-10-23 14:42:50 +08002126 if (IS_ERR(rbio)) {
Zhao Lei6e9606d2015-01-20 15:11:34 +08002127 if (generic_io)
2128 btrfs_put_bbio(bbio);
David Woodhouse53b381b2013-01-29 18:40:14 -05002129 return PTR_ERR(rbio);
Miao Xieaf8e2d12014-10-23 14:42:50 +08002130 }
David Woodhouse53b381b2013-01-29 18:40:14 -05002131
Miao Xie1b94b552014-11-06 16:14:21 +08002132 rbio->operation = BTRFS_RBIO_READ_REBUILD;
David Woodhouse53b381b2013-01-29 18:40:14 -05002133 bio_list_add(&rbio->bio_list, bio);
Kent Overstreet4f024f32013-10-11 15:44:27 -07002134 rbio->bio_list_bytes = bio->bi_iter.bi_size;
David Woodhouse53b381b2013-01-29 18:40:14 -05002135
2136 rbio->faila = find_logical_bio_stripe(rbio, bio);
2137 if (rbio->faila == -1) {
Jeff Mahoney0b246af2016-06-22 18:54:23 -04002138 btrfs_warn(fs_info,
Liu Boe46a28c2016-07-29 10:57:55 -07002139 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2140 __func__, (u64)bio->bi_iter.bi_sector << 9,
2141 (u64)bio->bi_iter.bi_size, bbio->map_type);
Zhao Lei6e9606d2015-01-20 15:11:34 +08002142 if (generic_io)
2143 btrfs_put_bbio(bbio);
David Woodhouse53b381b2013-01-29 18:40:14 -05002144 kfree(rbio);
2145 return -EIO;
2146 }
2147
Miao Xie42452152014-11-25 16:39:28 +08002148 if (generic_io) {
Jeff Mahoney0b246af2016-06-22 18:54:23 -04002149 btrfs_bio_counter_inc_noblocked(fs_info);
Miao Xie42452152014-11-25 16:39:28 +08002150 rbio->generic_bio_cnt = 1;
2151 } else {
Zhao Lei6e9606d2015-01-20 15:11:34 +08002152 btrfs_get_bbio(bbio);
Miao Xie42452152014-11-25 16:39:28 +08002153 }
2154
David Woodhouse53b381b2013-01-29 18:40:14 -05002155 /*
2156 * reconstruct from the q stripe if they are
2157 * asking for mirror 3
2158 */
2159 if (mirror_num == 3)
Miao Xie2c8cdd62014-11-14 16:06:25 +08002160 rbio->failb = rbio->real_stripes - 2;
David Woodhouse53b381b2013-01-29 18:40:14 -05002161
2162 ret = lock_stripe_add(rbio);
2163
2164 /*
2165 * __raid56_parity_recover will end the bio with
2166 * any errors it hits. We don't want to return
2167 * its error value up the stack because our caller
2168 * will end up calling bio_endio with any nonzero
2169 * return
2170 */
2171 if (ret == 0)
2172 __raid56_parity_recover(rbio);
2173 /*
2174 * our rbio has been added to the list of
2175 * rbios that will be handled after the
2176 * currently lock owner is done
2177 */
2178 return 0;
2179
2180}
2181
2182static void rmw_work(struct btrfs_work *work)
2183{
2184 struct btrfs_raid_bio *rbio;
2185
2186 rbio = container_of(work, struct btrfs_raid_bio, work);
2187 raid56_rmw_stripe(rbio);
2188}
2189
2190static void read_rebuild_work(struct btrfs_work *work)
2191{
2192 struct btrfs_raid_bio *rbio;
2193
2194 rbio = container_of(work, struct btrfs_raid_bio, work);
2195 __raid56_parity_recover(rbio);
2196}
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002197
2198/*
2199 * The following code is used to scrub/replace the parity stripe
2200 *
2201 * Note: We need make sure all the pages that add into the scrub/replace
2202 * raid bio are correct and not be changed during the scrub/replace. That
2203 * is those pages just hold metadata or file data with checksum.
2204 */
2205
2206struct btrfs_raid_bio *
Jeff Mahoney2ff7e612016-06-22 18:54:24 -04002207raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
Zhao Lei8e5cfb52015-01-20 15:11:33 +08002208 struct btrfs_bio *bbio, u64 stripe_len,
2209 struct btrfs_device *scrub_dev,
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002210 unsigned long *dbitmap, int stripe_nsectors)
2211{
2212 struct btrfs_raid_bio *rbio;
2213 int i;
2214
Jeff Mahoney2ff7e612016-06-22 18:54:24 -04002215 rbio = alloc_rbio(fs_info, bbio, stripe_len);
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002216 if (IS_ERR(rbio))
2217 return NULL;
2218 bio_list_add(&rbio->bio_list, bio);
2219 /*
2220 * This is a special bio which is used to hold the completion handler
2221 * and make the scrub rbio is similar to the other types
2222 */
2223 ASSERT(!bio->bi_iter.bi_size);
2224 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2225
Miao Xie2c8cdd62014-11-14 16:06:25 +08002226 for (i = 0; i < rbio->real_stripes; i++) {
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002227 if (bbio->stripes[i].dev == scrub_dev) {
2228 rbio->scrubp = i;
2229 break;
2230 }
2231 }
2232
2233 /* Now we just support the sectorsize equals to page size */
Jeff Mahoney0b246af2016-06-22 18:54:23 -04002234 ASSERT(fs_info->sectorsize == PAGE_SIZE);
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002235 ASSERT(rbio->stripe_npages == stripe_nsectors);
2236 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2237
2238 return rbio;
2239}
2240
Omar Sandovalb4ee1782015-06-19 11:52:50 -07002241/* Used for both parity scrub and missing. */
2242void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2243 u64 logical)
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002244{
2245 int stripe_offset;
2246 int index;
2247
Zhao Lei8e5cfb52015-01-20 15:11:33 +08002248 ASSERT(logical >= rbio->bbio->raid_map[0]);
2249 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002250 rbio->stripe_len * rbio->nr_data);
Zhao Lei8e5cfb52015-01-20 15:11:33 +08002251 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +03002252 index = stripe_offset >> PAGE_SHIFT;
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002253 rbio->bio_pages[index] = page;
2254}
2255
2256/*
2257 * We just scrub the parity that we have correct data on the same horizontal,
2258 * so we needn't allocate all pages for all the stripes.
2259 */
2260static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2261{
2262 int i;
2263 int bit;
2264 int index;
2265 struct page *page;
2266
2267 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
Miao Xie2c8cdd62014-11-14 16:06:25 +08002268 for (i = 0; i < rbio->real_stripes; i++) {
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002269 index = i * rbio->stripe_npages + bit;
2270 if (rbio->stripe_pages[index])
2271 continue;
2272
2273 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2274 if (!page)
2275 return -ENOMEM;
2276 rbio->stripe_pages[index] = page;
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002277 }
2278 }
2279 return 0;
2280}
2281
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002282static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2283 int need_check)
2284{
Miao Xie76035972014-11-14 17:45:42 +08002285 struct btrfs_bio *bbio = rbio->bbio;
Miao Xie2c8cdd62014-11-14 16:06:25 +08002286 void *pointers[rbio->real_stripes];
Miao Xie76035972014-11-14 17:45:42 +08002287 DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002288 int nr_data = rbio->nr_data;
2289 int stripe;
2290 int pagenr;
2291 int p_stripe = -1;
2292 int q_stripe = -1;
2293 struct page *p_page = NULL;
2294 struct page *q_page = NULL;
2295 struct bio_list bio_list;
2296 struct bio *bio;
Miao Xie76035972014-11-14 17:45:42 +08002297 int is_replace = 0;
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002298 int ret;
2299
2300 bio_list_init(&bio_list);
2301
Miao Xie2c8cdd62014-11-14 16:06:25 +08002302 if (rbio->real_stripes - rbio->nr_data == 1) {
2303 p_stripe = rbio->real_stripes - 1;
2304 } else if (rbio->real_stripes - rbio->nr_data == 2) {
2305 p_stripe = rbio->real_stripes - 2;
2306 q_stripe = rbio->real_stripes - 1;
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002307 } else {
2308 BUG();
2309 }
2310
Miao Xie76035972014-11-14 17:45:42 +08002311 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2312 is_replace = 1;
2313 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2314 }
2315
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002316 /*
2317 * Because the higher layers(scrubber) are unlikely to
2318 * use this area of the disk again soon, so don't cache
2319 * it.
2320 */
2321 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2322
2323 if (!need_check)
2324 goto writeback;
2325
2326 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2327 if (!p_page)
2328 goto cleanup;
2329 SetPageUptodate(p_page);
2330
2331 if (q_stripe != -1) {
2332 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2333 if (!q_page) {
2334 __free_page(p_page);
2335 goto cleanup;
2336 }
2337 SetPageUptodate(q_page);
2338 }
2339
2340 atomic_set(&rbio->error, 0);
2341
2342 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2343 struct page *p;
2344 void *parity;
2345 /* first collect one page from each data stripe */
2346 for (stripe = 0; stripe < nr_data; stripe++) {
2347 p = page_in_rbio(rbio, stripe, pagenr, 0);
2348 pointers[stripe] = kmap(p);
2349 }
2350
2351 /* then add the parity stripe */
2352 pointers[stripe++] = kmap(p_page);
2353
2354 if (q_stripe != -1) {
2355
2356 /*
2357 * raid6, add the qstripe and call the
2358 * library function to fill in our p/q
2359 */
2360 pointers[stripe++] = kmap(q_page);
2361
Miao Xie2c8cdd62014-11-14 16:06:25 +08002362 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002363 pointers);
2364 } else {
2365 /* raid5 */
2366 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +03002367 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002368 }
2369
Nicholas D Steeves01327612016-05-19 21:18:45 -04002370 /* Check scrubbing parity and repair it */
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002371 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2372 parity = kmap(p);
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +03002373 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2374 memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002375 else
2376 /* Parity is right, needn't writeback */
2377 bitmap_clear(rbio->dbitmap, pagenr, 1);
2378 kunmap(p);
2379
Miao Xie2c8cdd62014-11-14 16:06:25 +08002380 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002381 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2382 }
2383
2384 __free_page(p_page);
2385 if (q_page)
2386 __free_page(q_page);
2387
2388writeback:
2389 /*
2390 * time to start writing. Make bios for everything from the
2391 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2392 * everything else.
2393 */
2394 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2395 struct page *page;
2396
2397 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2398 ret = rbio_add_io_page(rbio, &bio_list,
2399 page, rbio->scrubp, pagenr, rbio->stripe_len);
2400 if (ret)
2401 goto cleanup;
2402 }
2403
Miao Xie76035972014-11-14 17:45:42 +08002404 if (!is_replace)
2405 goto submit_write;
2406
2407 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2408 struct page *page;
2409
2410 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2411 ret = rbio_add_io_page(rbio, &bio_list, page,
2412 bbio->tgtdev_map[rbio->scrubp],
2413 pagenr, rbio->stripe_len);
2414 if (ret)
2415 goto cleanup;
2416 }
2417
2418submit_write:
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002419 nr_data = bio_list_size(&bio_list);
2420 if (!nr_data) {
2421 /* Every parity is right */
Christoph Hellwig4246a0b2015-07-20 15:29:37 +02002422 rbio_orig_end_io(rbio, 0);
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002423 return;
2424 }
2425
2426 atomic_set(&rbio->stripes_pending, nr_data);
2427
2428 while (1) {
2429 bio = bio_list_pop(&bio_list);
2430 if (!bio)
2431 break;
2432
2433 bio->bi_private = rbio;
Zhao Leia6111d11b2016-01-12 17:52:13 +08002434 bio->bi_end_io = raid_write_end_io;
Mike Christie37226b22016-06-05 14:31:52 -05002435 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
Mike Christie4e49ea42016-06-05 14:31:41 -05002436
2437 submit_bio(bio);
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002438 }
2439 return;
2440
2441cleanup:
Christoph Hellwig4246a0b2015-07-20 15:29:37 +02002442 rbio_orig_end_io(rbio, -EIO);
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002443}
2444
2445static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2446{
2447 if (stripe >= 0 && stripe < rbio->nr_data)
2448 return 1;
2449 return 0;
2450}
2451
2452/*
2453 * While we're doing the parity check and repair, we could have errors
2454 * in reading pages off the disk. This checks for errors and if we're
2455 * not able to read the page it'll trigger parity reconstruction. The
2456 * parity scrub will be finished after we've reconstructed the failed
2457 * stripes
2458 */
2459static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2460{
2461 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2462 goto cleanup;
2463
2464 if (rbio->faila >= 0 || rbio->failb >= 0) {
2465 int dfail = 0, failp = -1;
2466
2467 if (is_data_stripe(rbio, rbio->faila))
2468 dfail++;
2469 else if (is_parity_stripe(rbio->faila))
2470 failp = rbio->faila;
2471
2472 if (is_data_stripe(rbio, rbio->failb))
2473 dfail++;
2474 else if (is_parity_stripe(rbio->failb))
2475 failp = rbio->failb;
2476
2477 /*
2478 * Because we can not use a scrubbing parity to repair
2479 * the data, so the capability of the repair is declined.
2480 * (In the case of RAID5, we can not repair anything)
2481 */
2482 if (dfail > rbio->bbio->max_errors - 1)
2483 goto cleanup;
2484
2485 /*
2486 * If all data is good, only parity is correctly, just
2487 * repair the parity.
2488 */
2489 if (dfail == 0) {
2490 finish_parity_scrub(rbio, 0);
2491 return;
2492 }
2493
2494 /*
2495 * Here means we got one corrupted data stripe and one
2496 * corrupted parity on RAID6, if the corrupted parity
Nicholas D Steeves01327612016-05-19 21:18:45 -04002497 * is scrubbing parity, luckily, use the other one to repair
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002498 * the data, or we can not repair the data stripe.
2499 */
2500 if (failp != rbio->scrubp)
2501 goto cleanup;
2502
2503 __raid_recover_end_io(rbio);
2504 } else {
2505 finish_parity_scrub(rbio, 1);
2506 }
2507 return;
2508
2509cleanup:
Christoph Hellwig4246a0b2015-07-20 15:29:37 +02002510 rbio_orig_end_io(rbio, -EIO);
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002511}
2512
2513/*
2514 * end io for the read phase of the rmw cycle. All the bios here are physical
2515 * stripe bios we've read from the disk so we can recalculate the parity of the
2516 * stripe.
2517 *
2518 * This will usually kick off finish_rmw once all the bios are read in, but it
2519 * may trigger parity reconstruction if we had any errors along the way
2520 */
Christoph Hellwig4246a0b2015-07-20 15:29:37 +02002521static void raid56_parity_scrub_end_io(struct bio *bio)
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002522{
2523 struct btrfs_raid_bio *rbio = bio->bi_private;
2524
Christoph Hellwig4246a0b2015-07-20 15:29:37 +02002525 if (bio->bi_error)
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002526 fail_bio_stripe(rbio, bio);
2527 else
2528 set_bio_pages_uptodate(bio);
2529
2530 bio_put(bio);
2531
2532 if (!atomic_dec_and_test(&rbio->stripes_pending))
2533 return;
2534
2535 /*
2536 * this will normally call finish_rmw to start our write
2537 * but if there are any failed stripes we'll reconstruct
2538 * from parity first
2539 */
2540 validate_rbio_for_parity_scrub(rbio);
2541}
2542
2543static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2544{
2545 int bios_to_read = 0;
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002546 struct bio_list bio_list;
2547 int ret;
2548 int pagenr;
2549 int stripe;
2550 struct bio *bio;
2551
2552 ret = alloc_rbio_essential_pages(rbio);
2553 if (ret)
2554 goto cleanup;
2555
2556 bio_list_init(&bio_list);
2557
2558 atomic_set(&rbio->error, 0);
2559 /*
2560 * build a list of bios to read all the missing parts of this
2561 * stripe
2562 */
Miao Xie2c8cdd62014-11-14 16:06:25 +08002563 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002564 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2565 struct page *page;
2566 /*
2567 * we want to find all the pages missing from
2568 * the rbio and read them from the disk. If
2569 * page_in_rbio finds a page in the bio list
2570 * we don't need to read it off the stripe.
2571 */
2572 page = page_in_rbio(rbio, stripe, pagenr, 1);
2573 if (page)
2574 continue;
2575
2576 page = rbio_stripe_page(rbio, stripe, pagenr);
2577 /*
2578 * the bio cache may have handed us an uptodate
2579 * page. If so, be happy and use it
2580 */
2581 if (PageUptodate(page))
2582 continue;
2583
2584 ret = rbio_add_io_page(rbio, &bio_list, page,
2585 stripe, pagenr, rbio->stripe_len);
2586 if (ret)
2587 goto cleanup;
2588 }
2589 }
2590
2591 bios_to_read = bio_list_size(&bio_list);
2592 if (!bios_to_read) {
2593 /*
2594 * this can happen if others have merged with
2595 * us, it means there is nothing left to read.
2596 * But if there are missing devices it may not be
2597 * safe to do the full stripe write yet.
2598 */
2599 goto finish;
2600 }
2601
2602 /*
2603 * the bbio may be freed once we submit the last bio. Make sure
2604 * not to touch it after that
2605 */
2606 atomic_set(&rbio->stripes_pending, bios_to_read);
2607 while (1) {
2608 bio = bio_list_pop(&bio_list);
2609 if (!bio)
2610 break;
2611
2612 bio->bi_private = rbio;
2613 bio->bi_end_io = raid56_parity_scrub_end_io;
Mike Christie37226b22016-06-05 14:31:52 -05002614 bio_set_op_attrs(bio, REQ_OP_READ, 0);
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002615
Jeff Mahoney0b246af2016-06-22 18:54:23 -04002616 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002617
Mike Christie4e49ea42016-06-05 14:31:41 -05002618 submit_bio(bio);
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002619 }
2620 /* the actual write will happen once the reads are done */
2621 return;
2622
2623cleanup:
Christoph Hellwig4246a0b2015-07-20 15:29:37 +02002624 rbio_orig_end_io(rbio, -EIO);
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002625 return;
2626
2627finish:
2628 validate_rbio_for_parity_scrub(rbio);
2629}
2630
2631static void scrub_parity_work(struct btrfs_work *work)
2632{
2633 struct btrfs_raid_bio *rbio;
2634
2635 rbio = container_of(work, struct btrfs_raid_bio, work);
2636 raid56_parity_scrub_stripe(rbio);
2637}
2638
2639static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2640{
2641 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2642 scrub_parity_work, NULL, NULL);
2643
Jeff Mahoney0b246af2016-06-22 18:54:23 -04002644 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
Miao Xie5a6ac9e2014-11-06 17:20:58 +08002645}
2646
2647void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2648{
2649 if (!lock_stripe_add(rbio))
2650 async_scrub_parity(rbio);
2651}
Omar Sandovalb4ee1782015-06-19 11:52:50 -07002652
2653/* The following code is used for dev replace of a missing RAID 5/6 device. */
2654
2655struct btrfs_raid_bio *
Jeff Mahoney2ff7e612016-06-22 18:54:24 -04002656raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
Omar Sandovalb4ee1782015-06-19 11:52:50 -07002657 struct btrfs_bio *bbio, u64 length)
2658{
2659 struct btrfs_raid_bio *rbio;
2660
Jeff Mahoney2ff7e612016-06-22 18:54:24 -04002661 rbio = alloc_rbio(fs_info, bbio, length);
Omar Sandovalb4ee1782015-06-19 11:52:50 -07002662 if (IS_ERR(rbio))
2663 return NULL;
2664
2665 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2666 bio_list_add(&rbio->bio_list, bio);
2667 /*
2668 * This is a special bio which is used to hold the completion handler
2669 * and make the scrub rbio is similar to the other types
2670 */
2671 ASSERT(!bio->bi_iter.bi_size);
2672
2673 rbio->faila = find_logical_bio_stripe(rbio, bio);
2674 if (rbio->faila == -1) {
2675 BUG();
2676 kfree(rbio);
2677 return NULL;
2678 }
2679
2680 return rbio;
2681}
2682
2683static void missing_raid56_work(struct btrfs_work *work)
2684{
2685 struct btrfs_raid_bio *rbio;
2686
2687 rbio = container_of(work, struct btrfs_raid_bio, work);
2688 __raid56_parity_recover(rbio);
2689}
2690
2691static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2692{
2693 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2694 missing_raid56_work, NULL, NULL);
2695
2696 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2697}
2698
2699void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2700{
2701 if (!lock_stripe_add(rbio))
2702 async_missing_raid56(rbio);
2703}