blob: 07ba675401e24172ea762ec3e62b6c65702a822b [file] [log] [blame]
Markos Chandrase24c3be2015-08-13 09:56:31 +02001/*
2 * IEEE754 floating point arithmetic
3 * single precision: MADDF.f (Fused Multiply Add)
4 * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft])
5 *
6 * MIPS floating point support
7 * Copyright (C) 2015 Imagination Technologies, Ltd.
8 * Author: Markos Chandras <markos.chandras@imgtec.com>
9 *
10 * This program is free software; you can distribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; version 2 of the License.
13 */
14
15#include "ieee754sp.h"
16
Paul Burton61620512016-04-21 14:04:49 +010017
18static union ieee754sp _sp_maddf(union ieee754sp z, union ieee754sp x,
19 union ieee754sp y, enum maddf_flags flags)
Markos Chandrase24c3be2015-08-13 09:56:31 +020020{
21 int re;
22 int rs;
Aleksandar Markovica58f85b2017-11-02 12:13:59 +010023 unsigned int rm;
24 u64 rm64;
25 u64 zm64;
Markos Chandrase24c3be2015-08-13 09:56:31 +020026 int s;
27
28 COMPXSP;
29 COMPYSP;
Paul Burtone2d11e12016-04-21 14:04:51 +010030 COMPZSP;
Markos Chandrase24c3be2015-08-13 09:56:31 +020031
32 EXPLODEXSP;
33 EXPLODEYSP;
Paul Burtone2d11e12016-04-21 14:04:51 +010034 EXPLODEZSP;
Markos Chandrase24c3be2015-08-13 09:56:31 +020035
36 FLUSHXSP;
37 FLUSHYSP;
Paul Burtone2d11e12016-04-21 14:04:51 +010038 FLUSHZSP;
Markos Chandrase24c3be2015-08-13 09:56:31 +020039
40 ieee754_clearcx();
41
Aleksandar Markovice840be62017-07-27 18:08:54 +020042 /*
43 * Handle the cases when at least one of x, y or z is a NaN.
44 * Order of precedence is sNaN, qNaN and z, x, y.
45 */
46 if (zc == IEEE754_CLASS_SNAN)
Markos Chandrase24c3be2015-08-13 09:56:31 +020047 return ieee754sp_nanxcpt(z);
Aleksandar Markovice840be62017-07-27 18:08:54 +020048 if (xc == IEEE754_CLASS_SNAN)
Markos Chandrase24c3be2015-08-13 09:56:31 +020049 return ieee754sp_nanxcpt(x);
Aleksandar Markovice840be62017-07-27 18:08:54 +020050 if (yc == IEEE754_CLASS_SNAN)
51 return ieee754sp_nanxcpt(y);
52 if (zc == IEEE754_CLASS_QNAN)
53 return z;
54 if (xc == IEEE754_CLASS_QNAN)
55 return x;
56 if (yc == IEEE754_CLASS_QNAN)
Markos Chandrase24c3be2015-08-13 09:56:31 +020057 return y;
58
Aleksandar Markovice840be62017-07-27 18:08:54 +020059 if (zc == IEEE754_CLASS_DNORM)
60 SPDNORMZ;
61 /* ZERO z cases are handled separately below */
62
63 switch (CLPAIR(xc, yc)) {
64
Markos Chandrase24c3be2015-08-13 09:56:31 +020065
66 /*
67 * Infinity handling
68 */
69 case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO):
70 case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF):
Markos Chandrase24c3be2015-08-13 09:56:31 +020071 ieee754_setcx(IEEE754_INVALID_OPERATION);
72 return ieee754sp_indef();
73
74 case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF):
75 case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF):
76 case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM):
77 case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM):
78 case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF):
Aleksandar Markovic0c64fe62017-07-27 18:08:55 +020079 if ((zc == IEEE754_CLASS_INF) &&
Aleksandar Markovicae11c062017-07-27 18:08:57 +020080 ((!(flags & MADDF_NEGATE_PRODUCT) && (zs != (xs ^ ys))) ||
81 ((flags & MADDF_NEGATE_PRODUCT) && (zs == (xs ^ ys))))) {
Aleksandar Markovic0c64fe62017-07-27 18:08:55 +020082 /*
83 * Cases of addition of infinities with opposite signs
84 * or subtraction of infinities with same signs.
85 */
86 ieee754_setcx(IEEE754_INVALID_OPERATION);
87 return ieee754sp_indef();
88 }
89 /*
90 * z is here either not an infinity, or an infinity having the
91 * same sign as product (x*y) (in case of MADDF.D instruction)
92 * or product -(x*y) (in MSUBF.D case). The result must be an
93 * infinity, and its sign is determined only by the value of
Aleksandar Markovicae11c062017-07-27 18:08:57 +020094 * (flags & MADDF_NEGATE_PRODUCT) and the signs of x and y.
Aleksandar Markovic0c64fe62017-07-27 18:08:55 +020095 */
Aleksandar Markovicae11c062017-07-27 18:08:57 +020096 if (flags & MADDF_NEGATE_PRODUCT)
Aleksandar Markovic0c64fe62017-07-27 18:08:55 +020097 return ieee754sp_inf(1 ^ (xs ^ ys));
98 else
99 return ieee754sp_inf(xs ^ ys);
Markos Chandrase24c3be2015-08-13 09:56:31 +0200100
101 case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO):
102 case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM):
103 case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM):
104 case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO):
105 case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO):
106 if (zc == IEEE754_CLASS_INF)
107 return ieee754sp_inf(zs);
Aleksandar Markovic7cf64ce2017-07-27 18:08:56 +0200108 if (zc == IEEE754_CLASS_ZERO) {
109 /* Handle cases +0 + (-0) and similar ones. */
Aleksandar Markovicae11c062017-07-27 18:08:57 +0200110 if ((!(flags & MADDF_NEGATE_PRODUCT)
Aleksandar Markovic7cf64ce2017-07-27 18:08:56 +0200111 && (zs == (xs ^ ys))) ||
Aleksandar Markovicae11c062017-07-27 18:08:57 +0200112 ((flags & MADDF_NEGATE_PRODUCT)
Aleksandar Markovic7cf64ce2017-07-27 18:08:56 +0200113 && (zs != (xs ^ ys))))
114 /*
115 * Cases of addition of zeros of equal signs
116 * or subtraction of zeroes of opposite signs.
117 * The sign of the resulting zero is in any
118 * such case determined only by the sign of z.
119 */
120 return z;
121
122 return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD);
123 }
124 /* x*y is here 0, and z is not 0, so just return z */
Markos Chandrase24c3be2015-08-13 09:56:31 +0200125 return z;
126
127 case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM):
128 SPDNORMX;
Aleksandar Markovic2a14b212017-11-02 12:14:05 +0100129 /* fall through */
Markos Chandrase24c3be2015-08-13 09:56:31 +0200130
131 case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM):
Aleksandar Markovice840be62017-07-27 18:08:54 +0200132 if (zc == IEEE754_CLASS_INF)
Markos Chandrase24c3be2015-08-13 09:56:31 +0200133 return ieee754sp_inf(zs);
134 SPDNORMY;
135 break;
136
137 case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM):
Aleksandar Markovice840be62017-07-27 18:08:54 +0200138 if (zc == IEEE754_CLASS_INF)
Markos Chandrase24c3be2015-08-13 09:56:31 +0200139 return ieee754sp_inf(zs);
140 SPDNORMX;
141 break;
142
143 case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM):
Aleksandar Markovice840be62017-07-27 18:08:54 +0200144 if (zc == IEEE754_CLASS_INF)
Markos Chandrase24c3be2015-08-13 09:56:31 +0200145 return ieee754sp_inf(zs);
Aleksandar Markovic2a14b212017-11-02 12:14:05 +0100146 /* continue to real computations */
Markos Chandrase24c3be2015-08-13 09:56:31 +0200147 }
148
149 /* Finally get to do some computation */
150
151 /*
152 * Do the multiplication bit first
153 *
154 * rm = xm * ym, re = xe + ye basically
155 *
156 * At this point xm and ym should have been normalized.
157 */
158
159 /* rm = xm * ym, re = xe+ye basically */
160 assert(xm & SP_HIDDEN_BIT);
161 assert(ym & SP_HIDDEN_BIT);
162
163 re = xe + ye;
164 rs = xs ^ ys;
Aleksandar Markovicae11c062017-07-27 18:08:57 +0200165 if (flags & MADDF_NEGATE_PRODUCT)
Paul Burton61620512016-04-21 14:04:49 +0100166 rs ^= 1;
Markos Chandrase24c3be2015-08-13 09:56:31 +0200167
Douglas Leungb3b8e1e2017-07-27 18:08:58 +0200168 /* Multiple 24 bit xm and ym to give 48 bit results */
169 rm64 = (uint64_t)xm * ym;
Markos Chandrase24c3be2015-08-13 09:56:31 +0200170
Douglas Leungb3b8e1e2017-07-27 18:08:58 +0200171 /* Shunt to top of word */
172 rm64 = rm64 << 16;
Markos Chandrase24c3be2015-08-13 09:56:31 +0200173
Douglas Leungb3b8e1e2017-07-27 18:08:58 +0200174 /* Put explicit bit at bit 62 if necessary */
175 if ((int64_t) rm64 < 0) {
176 rm64 = rm64 >> 1;
Markos Chandrase24c3be2015-08-13 09:56:31 +0200177 re++;
Markos Chandrase24c3be2015-08-13 09:56:31 +0200178 }
Markos Chandrase24c3be2015-08-13 09:56:31 +0200179
Douglas Leungb3b8e1e2017-07-27 18:08:58 +0200180 assert(rm64 & (1 << 62));
181
182 if (zc == IEEE754_CLASS_ZERO) {
183 /*
184 * Move explicit bit from bit 62 to bit 26 since the
185 * ieee754sp_format code expects the mantissa to be
186 * 27 bits wide (24 + 3 rounding bits).
187 */
188 rm = XSPSRS64(rm64, (62 - 26));
Aleksandar Markovicddbfff72017-06-19 17:50:12 +0200189 return ieee754sp_format(rs, re, rm);
Douglas Leungb3b8e1e2017-07-27 18:08:58 +0200190 }
Aleksandar Markovicddbfff72017-06-19 17:50:12 +0200191
Douglas Leungb3b8e1e2017-07-27 18:08:58 +0200192 /* Move explicit bit from bit 23 to bit 62 */
193 zm64 = (uint64_t)zm << (62 - 23);
194 assert(zm64 & (1 << 62));
Markos Chandrase24c3be2015-08-13 09:56:31 +0200195
Douglas Leungb3b8e1e2017-07-27 18:08:58 +0200196 /* Make the exponents the same */
Markos Chandrase24c3be2015-08-13 09:56:31 +0200197 if (ze > re) {
198 /*
Paul Burtondb57f292016-04-21 14:04:54 +0100199 * Have to shift r fraction right to align.
Markos Chandrase24c3be2015-08-13 09:56:31 +0200200 */
201 s = ze - re;
Douglas Leungb3b8e1e2017-07-27 18:08:58 +0200202 rm64 = XSPSRS64(rm64, s);
Paul Burtondb57f292016-04-21 14:04:54 +0100203 re += s;
Markos Chandrase24c3be2015-08-13 09:56:31 +0200204 } else if (re > ze) {
205 /*
Paul Burtondb57f292016-04-21 14:04:54 +0100206 * Have to shift z fraction right to align.
Markos Chandrase24c3be2015-08-13 09:56:31 +0200207 */
208 s = re - ze;
Douglas Leungb3b8e1e2017-07-27 18:08:58 +0200209 zm64 = XSPSRS64(zm64, s);
Paul Burtondb57f292016-04-21 14:04:54 +0100210 ze += s;
Markos Chandrase24c3be2015-08-13 09:56:31 +0200211 }
212 assert(ze == re);
213 assert(ze <= SP_EMAX);
214
Douglas Leungb3b8e1e2017-07-27 18:08:58 +0200215 /* Do the addition */
Markos Chandrase24c3be2015-08-13 09:56:31 +0200216 if (zs == rs) {
217 /*
Douglas Leungb3b8e1e2017-07-27 18:08:58 +0200218 * Generate 64 bit result by adding two 63 bit numbers
219 * leaving result in zm64, zs and ze.
Markos Chandrase24c3be2015-08-13 09:56:31 +0200220 */
Douglas Leungb3b8e1e2017-07-27 18:08:58 +0200221 zm64 = zm64 + rm64;
222 if ((int64_t)zm64 < 0) { /* carry out */
223 zm64 = XSPSRS1(zm64);
Paul Burtondb57f292016-04-21 14:04:54 +0100224 ze++;
Markos Chandrase24c3be2015-08-13 09:56:31 +0200225 }
226 } else {
Douglas Leungb3b8e1e2017-07-27 18:08:58 +0200227 if (zm64 >= rm64) {
228 zm64 = zm64 - rm64;
Markos Chandrase24c3be2015-08-13 09:56:31 +0200229 } else {
Douglas Leungb3b8e1e2017-07-27 18:08:58 +0200230 zm64 = rm64 - zm64;
Markos Chandrase24c3be2015-08-13 09:56:31 +0200231 zs = rs;
232 }
Douglas Leungb3b8e1e2017-07-27 18:08:58 +0200233 if (zm64 == 0)
Markos Chandrase24c3be2015-08-13 09:56:31 +0200234 return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD);
235
236 /*
Douglas Leungb3b8e1e2017-07-27 18:08:58 +0200237 * Put explicit bit at bit 62 if necessary.
Markos Chandrase24c3be2015-08-13 09:56:31 +0200238 */
Douglas Leungb3b8e1e2017-07-27 18:08:58 +0200239 while ((zm64 >> 62) == 0) {
240 zm64 <<= 1;
Markos Chandrase24c3be2015-08-13 09:56:31 +0200241 ze--;
242 }
Markos Chandrase24c3be2015-08-13 09:56:31 +0200243 }
Douglas Leungb3b8e1e2017-07-27 18:08:58 +0200244
245 /*
246 * Move explicit bit from bit 62 to bit 26 since the
247 * ieee754sp_format code expects the mantissa to be
248 * 27 bits wide (24 + 3 rounding bits).
249 */
250 zm = XSPSRS64(zm64, (62 - 26));
251
Markos Chandrase24c3be2015-08-13 09:56:31 +0200252 return ieee754sp_format(zs, ze, zm);
253}
Paul Burton61620512016-04-21 14:04:49 +0100254
255union ieee754sp ieee754sp_maddf(union ieee754sp z, union ieee754sp x,
256 union ieee754sp y)
257{
258 return _sp_maddf(z, x, y, 0);
259}
260
261union ieee754sp ieee754sp_msubf(union ieee754sp z, union ieee754sp x,
262 union ieee754sp y)
263{
Aleksandar Markovicae11c062017-07-27 18:08:57 +0200264 return _sp_maddf(z, x, y, MADDF_NEGATE_PRODUCT);
Paul Burton61620512016-04-21 14:04:49 +0100265}