Tomas Winkler | a55360e | 2008-05-05 10:22:28 +0800 | [diff] [blame^] | 1 | /****************************************************************************** |
| 2 | * |
| 3 | * Copyright(c) 2003 - 2008 Intel Corporation. All rights reserved. |
| 4 | * |
| 5 | * Portions of this file are derived from the ipw3945 project, as well |
| 6 | * as portions of the ieee80211 subsystem header files. |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or modify it |
| 9 | * under the terms of version 2 of the GNU General Public License as |
| 10 | * published by the Free Software Foundation. |
| 11 | * |
| 12 | * This program is distributed in the hope that it will be useful, but WITHOUT |
| 13 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 14 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 15 | * more details. |
| 16 | * |
| 17 | * You should have received a copy of the GNU General Public License along with |
| 18 | * this program; if not, write to the Free Software Foundation, Inc., |
| 19 | * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA |
| 20 | * |
| 21 | * The full GNU General Public License is included in this distribution in the |
| 22 | * file called LICENSE. |
| 23 | * |
| 24 | * Contact Information: |
| 25 | * James P. Ketrenos <ipw2100-admin@linux.intel.com> |
| 26 | * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| 27 | * |
| 28 | *****************************************************************************/ |
| 29 | |
| 30 | #include <net/mac80211.h> |
| 31 | #include "iwl-eeprom.h" |
| 32 | #include "iwl-dev.h" |
| 33 | #include "iwl-core.h" |
| 34 | #include "iwl-sta.h" |
| 35 | #include "iwl-io.h" |
| 36 | #include "iwl-helpers.h" |
| 37 | /************************** RX-FUNCTIONS ****************************/ |
| 38 | /* |
| 39 | * Rx theory of operation |
| 40 | * |
| 41 | * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs), |
| 42 | * each of which point to Receive Buffers to be filled by the NIC. These get |
| 43 | * used not only for Rx frames, but for any command response or notification |
| 44 | * from the NIC. The driver and NIC manage the Rx buffers by means |
| 45 | * of indexes into the circular buffer. |
| 46 | * |
| 47 | * Rx Queue Indexes |
| 48 | * The host/firmware share two index registers for managing the Rx buffers. |
| 49 | * |
| 50 | * The READ index maps to the first position that the firmware may be writing |
| 51 | * to -- the driver can read up to (but not including) this position and get |
| 52 | * good data. |
| 53 | * The READ index is managed by the firmware once the card is enabled. |
| 54 | * |
| 55 | * The WRITE index maps to the last position the driver has read from -- the |
| 56 | * position preceding WRITE is the last slot the firmware can place a packet. |
| 57 | * |
| 58 | * The queue is empty (no good data) if WRITE = READ - 1, and is full if |
| 59 | * WRITE = READ. |
| 60 | * |
| 61 | * During initialization, the host sets up the READ queue position to the first |
| 62 | * INDEX position, and WRITE to the last (READ - 1 wrapped) |
| 63 | * |
| 64 | * When the firmware places a packet in a buffer, it will advance the READ index |
| 65 | * and fire the RX interrupt. The driver can then query the READ index and |
| 66 | * process as many packets as possible, moving the WRITE index forward as it |
| 67 | * resets the Rx queue buffers with new memory. |
| 68 | * |
| 69 | * The management in the driver is as follows: |
| 70 | * + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free. When |
| 71 | * iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled |
| 72 | * to replenish the iwl->rxq->rx_free. |
| 73 | * + In iwl_rx_replenish (scheduled) if 'processed' != 'read' then the |
| 74 | * iwl->rxq is replenished and the READ INDEX is updated (updating the |
| 75 | * 'processed' and 'read' driver indexes as well) |
| 76 | * + A received packet is processed and handed to the kernel network stack, |
| 77 | * detached from the iwl->rxq. The driver 'processed' index is updated. |
| 78 | * + The Host/Firmware iwl->rxq is replenished at tasklet time from the rx_free |
| 79 | * list. If there are no allocated buffers in iwl->rxq->rx_free, the READ |
| 80 | * INDEX is not incremented and iwl->status(RX_STALLED) is set. If there |
| 81 | * were enough free buffers and RX_STALLED is set it is cleared. |
| 82 | * |
| 83 | * |
| 84 | * Driver sequence: |
| 85 | * |
| 86 | * iwl_rx_queue_alloc() Allocates rx_free |
| 87 | * iwl_rx_replenish() Replenishes rx_free list from rx_used, and calls |
| 88 | * iwl_rx_queue_restock |
| 89 | * iwl_rx_queue_restock() Moves available buffers from rx_free into Rx |
| 90 | * queue, updates firmware pointers, and updates |
| 91 | * the WRITE index. If insufficient rx_free buffers |
| 92 | * are available, schedules iwl_rx_replenish |
| 93 | * |
| 94 | * -- enable interrupts -- |
| 95 | * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the |
| 96 | * READ INDEX, detaching the SKB from the pool. |
| 97 | * Moves the packet buffer from queue to rx_used. |
| 98 | * Calls iwl_rx_queue_restock to refill any empty |
| 99 | * slots. |
| 100 | * ... |
| 101 | * |
| 102 | */ |
| 103 | |
| 104 | /** |
| 105 | * iwl_rx_queue_space - Return number of free slots available in queue. |
| 106 | */ |
| 107 | int iwl_rx_queue_space(const struct iwl_rx_queue *q) |
| 108 | { |
| 109 | int s = q->read - q->write; |
| 110 | if (s <= 0) |
| 111 | s += RX_QUEUE_SIZE; |
| 112 | /* keep some buffer to not confuse full and empty queue */ |
| 113 | s -= 2; |
| 114 | if (s < 0) |
| 115 | s = 0; |
| 116 | return s; |
| 117 | } |
| 118 | EXPORT_SYMBOL(iwl_rx_queue_space); |
| 119 | |
| 120 | /** |
| 121 | * iwl_rx_queue_update_write_ptr - Update the write pointer for the RX queue |
| 122 | */ |
| 123 | int iwl_rx_queue_update_write_ptr(struct iwl_priv *priv, struct iwl_rx_queue *q) |
| 124 | { |
| 125 | u32 reg = 0; |
| 126 | int ret = 0; |
| 127 | unsigned long flags; |
| 128 | |
| 129 | spin_lock_irqsave(&q->lock, flags); |
| 130 | |
| 131 | if (q->need_update == 0) |
| 132 | goto exit_unlock; |
| 133 | |
| 134 | /* If power-saving is in use, make sure device is awake */ |
| 135 | if (test_bit(STATUS_POWER_PMI, &priv->status)) { |
| 136 | reg = iwl_read32(priv, CSR_UCODE_DRV_GP1); |
| 137 | |
| 138 | if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { |
| 139 | iwl_set_bit(priv, CSR_GP_CNTRL, |
| 140 | CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); |
| 141 | goto exit_unlock; |
| 142 | } |
| 143 | |
| 144 | ret = iwl_grab_nic_access(priv); |
| 145 | if (ret) |
| 146 | goto exit_unlock; |
| 147 | |
| 148 | /* Device expects a multiple of 8 */ |
| 149 | iwl_write_direct32(priv, FH_RSCSR_CHNL0_WPTR, |
| 150 | q->write & ~0x7); |
| 151 | iwl_release_nic_access(priv); |
| 152 | |
| 153 | /* Else device is assumed to be awake */ |
| 154 | } else |
| 155 | /* Device expects a multiple of 8 */ |
| 156 | iwl_write32(priv, FH_RSCSR_CHNL0_WPTR, q->write & ~0x7); |
| 157 | |
| 158 | |
| 159 | q->need_update = 0; |
| 160 | |
| 161 | exit_unlock: |
| 162 | spin_unlock_irqrestore(&q->lock, flags); |
| 163 | return ret; |
| 164 | } |
| 165 | EXPORT_SYMBOL(iwl_rx_queue_update_write_ptr); |
| 166 | /** |
| 167 | * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr |
| 168 | */ |
| 169 | static inline __le32 iwl_dma_addr2rbd_ptr(struct iwl_priv *priv, |
| 170 | dma_addr_t dma_addr) |
| 171 | { |
| 172 | return cpu_to_le32((u32)(dma_addr >> 8)); |
| 173 | } |
| 174 | |
| 175 | /** |
| 176 | * iwl_rx_queue_restock - refill RX queue from pre-allocated pool |
| 177 | * |
| 178 | * If there are slots in the RX queue that need to be restocked, |
| 179 | * and we have free pre-allocated buffers, fill the ranks as much |
| 180 | * as we can, pulling from rx_free. |
| 181 | * |
| 182 | * This moves the 'write' index forward to catch up with 'processed', and |
| 183 | * also updates the memory address in the firmware to reference the new |
| 184 | * target buffer. |
| 185 | */ |
| 186 | int iwl_rx_queue_restock(struct iwl_priv *priv) |
| 187 | { |
| 188 | struct iwl_rx_queue *rxq = &priv->rxq; |
| 189 | struct list_head *element; |
| 190 | struct iwl_rx_mem_buffer *rxb; |
| 191 | unsigned long flags; |
| 192 | int write; |
| 193 | int ret = 0; |
| 194 | |
| 195 | spin_lock_irqsave(&rxq->lock, flags); |
| 196 | write = rxq->write & ~0x7; |
| 197 | while ((iwl_rx_queue_space(rxq) > 0) && (rxq->free_count)) { |
| 198 | /* Get next free Rx buffer, remove from free list */ |
| 199 | element = rxq->rx_free.next; |
| 200 | rxb = list_entry(element, struct iwl_rx_mem_buffer, list); |
| 201 | list_del(element); |
| 202 | |
| 203 | /* Point to Rx buffer via next RBD in circular buffer */ |
| 204 | rxq->bd[rxq->write] = iwl_dma_addr2rbd_ptr(priv, rxb->dma_addr); |
| 205 | rxq->queue[rxq->write] = rxb; |
| 206 | rxq->write = (rxq->write + 1) & RX_QUEUE_MASK; |
| 207 | rxq->free_count--; |
| 208 | } |
| 209 | spin_unlock_irqrestore(&rxq->lock, flags); |
| 210 | /* If the pre-allocated buffer pool is dropping low, schedule to |
| 211 | * refill it */ |
| 212 | if (rxq->free_count <= RX_LOW_WATERMARK) |
| 213 | queue_work(priv->workqueue, &priv->rx_replenish); |
| 214 | |
| 215 | |
| 216 | /* If we've added more space for the firmware to place data, tell it. |
| 217 | * Increment device's write pointer in multiples of 8. */ |
| 218 | if ((write != (rxq->write & ~0x7)) |
| 219 | || (abs(rxq->write - rxq->read) > 7)) { |
| 220 | spin_lock_irqsave(&rxq->lock, flags); |
| 221 | rxq->need_update = 1; |
| 222 | spin_unlock_irqrestore(&rxq->lock, flags); |
| 223 | ret = iwl_rx_queue_update_write_ptr(priv, rxq); |
| 224 | } |
| 225 | |
| 226 | return ret; |
| 227 | } |
| 228 | EXPORT_SYMBOL(iwl_rx_queue_restock); |
| 229 | |
| 230 | |
| 231 | /** |
| 232 | * iwl_rx_replenish - Move all used packet from rx_used to rx_free |
| 233 | * |
| 234 | * When moving to rx_free an SKB is allocated for the slot. |
| 235 | * |
| 236 | * Also restock the Rx queue via iwl_rx_queue_restock. |
| 237 | * This is called as a scheduled work item (except for during initialization) |
| 238 | */ |
| 239 | void iwl_rx_allocate(struct iwl_priv *priv) |
| 240 | { |
| 241 | struct iwl_rx_queue *rxq = &priv->rxq; |
| 242 | struct list_head *element; |
| 243 | struct iwl_rx_mem_buffer *rxb; |
| 244 | unsigned long flags; |
| 245 | spin_lock_irqsave(&rxq->lock, flags); |
| 246 | while (!list_empty(&rxq->rx_used)) { |
| 247 | element = rxq->rx_used.next; |
| 248 | rxb = list_entry(element, struct iwl_rx_mem_buffer, list); |
| 249 | |
| 250 | /* Alloc a new receive buffer */ |
| 251 | rxb->skb = alloc_skb(priv->hw_params.rx_buf_size, |
| 252 | __GFP_NOWARN | GFP_ATOMIC); |
| 253 | if (!rxb->skb) { |
| 254 | if (net_ratelimit()) |
| 255 | printk(KERN_CRIT DRV_NAME |
| 256 | ": Can not allocate SKB buffers\n"); |
| 257 | /* We don't reschedule replenish work here -- we will |
| 258 | * call the restock method and if it still needs |
| 259 | * more buffers it will schedule replenish */ |
| 260 | break; |
| 261 | } |
| 262 | priv->alloc_rxb_skb++; |
| 263 | list_del(element); |
| 264 | |
| 265 | /* Get physical address of RB/SKB */ |
| 266 | rxb->dma_addr = |
| 267 | pci_map_single(priv->pci_dev, rxb->skb->data, |
| 268 | priv->hw_params.rx_buf_size, PCI_DMA_FROMDEVICE); |
| 269 | list_add_tail(&rxb->list, &rxq->rx_free); |
| 270 | rxq->free_count++; |
| 271 | } |
| 272 | spin_unlock_irqrestore(&rxq->lock, flags); |
| 273 | } |
| 274 | EXPORT_SYMBOL(iwl_rx_allocate); |
| 275 | |
| 276 | void iwl_rx_replenish(struct iwl_priv *priv) |
| 277 | { |
| 278 | unsigned long flags; |
| 279 | |
| 280 | iwl_rx_allocate(priv); |
| 281 | |
| 282 | spin_lock_irqsave(&priv->lock, flags); |
| 283 | iwl_rx_queue_restock(priv); |
| 284 | spin_unlock_irqrestore(&priv->lock, flags); |
| 285 | } |
| 286 | EXPORT_SYMBOL(iwl_rx_replenish); |
| 287 | |
| 288 | |
| 289 | /* Assumes that the skb field of the buffers in 'pool' is kept accurate. |
| 290 | * If an SKB has been detached, the POOL needs to have its SKB set to NULL |
| 291 | * This free routine walks the list of POOL entries and if SKB is set to |
| 292 | * non NULL it is unmapped and freed |
| 293 | */ |
| 294 | void iwl_rx_queue_free(struct iwl_priv *priv, struct iwl_rx_queue *rxq) |
| 295 | { |
| 296 | int i; |
| 297 | for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) { |
| 298 | if (rxq->pool[i].skb != NULL) { |
| 299 | pci_unmap_single(priv->pci_dev, |
| 300 | rxq->pool[i].dma_addr, |
| 301 | priv->hw_params.rx_buf_size, |
| 302 | PCI_DMA_FROMDEVICE); |
| 303 | dev_kfree_skb(rxq->pool[i].skb); |
| 304 | } |
| 305 | } |
| 306 | |
| 307 | pci_free_consistent(priv->pci_dev, 4 * RX_QUEUE_SIZE, rxq->bd, |
| 308 | rxq->dma_addr); |
| 309 | rxq->bd = NULL; |
| 310 | } |
| 311 | EXPORT_SYMBOL(iwl_rx_queue_free); |
| 312 | |
| 313 | int iwl_rx_queue_alloc(struct iwl_priv *priv) |
| 314 | { |
| 315 | struct iwl_rx_queue *rxq = &priv->rxq; |
| 316 | struct pci_dev *dev = priv->pci_dev; |
| 317 | int i; |
| 318 | |
| 319 | spin_lock_init(&rxq->lock); |
| 320 | INIT_LIST_HEAD(&rxq->rx_free); |
| 321 | INIT_LIST_HEAD(&rxq->rx_used); |
| 322 | |
| 323 | /* Alloc the circular buffer of Read Buffer Descriptors (RBDs) */ |
| 324 | rxq->bd = pci_alloc_consistent(dev, 4 * RX_QUEUE_SIZE, &rxq->dma_addr); |
| 325 | if (!rxq->bd) |
| 326 | return -ENOMEM; |
| 327 | |
| 328 | /* Fill the rx_used queue with _all_ of the Rx buffers */ |
| 329 | for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) |
| 330 | list_add_tail(&rxq->pool[i].list, &rxq->rx_used); |
| 331 | |
| 332 | /* Set us so that we have processed and used all buffers, but have |
| 333 | * not restocked the Rx queue with fresh buffers */ |
| 334 | rxq->read = rxq->write = 0; |
| 335 | rxq->free_count = 0; |
| 336 | rxq->need_update = 0; |
| 337 | return 0; |
| 338 | } |
| 339 | EXPORT_SYMBOL(iwl_rx_queue_alloc); |
| 340 | |
| 341 | void iwl_rx_queue_reset(struct iwl_priv *priv, struct iwl_rx_queue *rxq) |
| 342 | { |
| 343 | unsigned long flags; |
| 344 | int i; |
| 345 | spin_lock_irqsave(&rxq->lock, flags); |
| 346 | INIT_LIST_HEAD(&rxq->rx_free); |
| 347 | INIT_LIST_HEAD(&rxq->rx_used); |
| 348 | /* Fill the rx_used queue with _all_ of the Rx buffers */ |
| 349 | for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) { |
| 350 | /* In the reset function, these buffers may have been allocated |
| 351 | * to an SKB, so we need to unmap and free potential storage */ |
| 352 | if (rxq->pool[i].skb != NULL) { |
| 353 | pci_unmap_single(priv->pci_dev, |
| 354 | rxq->pool[i].dma_addr, |
| 355 | priv->hw_params.rx_buf_size, |
| 356 | PCI_DMA_FROMDEVICE); |
| 357 | priv->alloc_rxb_skb--; |
| 358 | dev_kfree_skb(rxq->pool[i].skb); |
| 359 | rxq->pool[i].skb = NULL; |
| 360 | } |
| 361 | list_add_tail(&rxq->pool[i].list, &rxq->rx_used); |
| 362 | } |
| 363 | |
| 364 | /* Set us so that we have processed and used all buffers, but have |
| 365 | * not restocked the Rx queue with fresh buffers */ |
| 366 | rxq->read = rxq->write = 0; |
| 367 | rxq->free_count = 0; |
| 368 | spin_unlock_irqrestore(&rxq->lock, flags); |
| 369 | } |
| 370 | EXPORT_SYMBOL(iwl_rx_queue_reset); |
| 371 | |