Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Ethernet driver for Motorola MPC8260. |
| 3 | * Copyright (c) 1999 Dan Malek (dmalek@jlc.net) |
| 4 | * Copyright (c) 2000 MontaVista Software Inc. (source@mvista.com) |
| 5 | * 2.3.99 Updates |
| 6 | * |
| 7 | * I copied this from the 8xx CPM Ethernet driver, so follow the |
| 8 | * credits back through that. |
| 9 | * |
| 10 | * This version of the driver is somewhat selectable for the different |
| 11 | * processor/board combinations. It works for the boards I know about |
| 12 | * now, and should be easily modified to include others. Some of the |
| 13 | * configuration information is contained in <asm/commproc.h> and the |
| 14 | * remainder is here. |
| 15 | * |
| 16 | * Buffer descriptors are kept in the CPM dual port RAM, and the frame |
| 17 | * buffers are in the host memory. |
| 18 | * |
| 19 | * Right now, I am very watseful with the buffers. I allocate memory |
| 20 | * pages and then divide them into 2K frame buffers. This way I know I |
| 21 | * have buffers large enough to hold one frame within one buffer descriptor. |
| 22 | * Once I get this working, I will use 64 or 128 byte CPM buffers, which |
| 23 | * will be much more memory efficient and will easily handle lots of |
| 24 | * small packets. |
| 25 | * |
| 26 | */ |
| 27 | #include <linux/kernel.h> |
| 28 | #include <linux/sched.h> |
| 29 | #include <linux/string.h> |
| 30 | #include <linux/ptrace.h> |
| 31 | #include <linux/errno.h> |
| 32 | #include <linux/ioport.h> |
| 33 | #include <linux/slab.h> |
| 34 | #include <linux/interrupt.h> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 35 | #include <linux/init.h> |
| 36 | #include <linux/delay.h> |
| 37 | #include <linux/netdevice.h> |
| 38 | #include <linux/etherdevice.h> |
| 39 | #include <linux/skbuff.h> |
| 40 | #include <linux/spinlock.h> |
| 41 | #include <linux/bitops.h> |
| 42 | |
| 43 | #include <asm/immap_cpm2.h> |
| 44 | #include <asm/pgtable.h> |
| 45 | #include <asm/mpc8260.h> |
| 46 | #include <asm/uaccess.h> |
| 47 | #include <asm/cpm2.h> |
| 48 | #include <asm/irq.h> |
| 49 | |
| 50 | /* |
| 51 | * Theory of Operation |
| 52 | * |
| 53 | * The MPC8260 CPM performs the Ethernet processing on an SCC. It can use |
| 54 | * an aribtrary number of buffers on byte boundaries, but must have at |
| 55 | * least two receive buffers to prevent constant overrun conditions. |
| 56 | * |
| 57 | * The buffer descriptors are allocated from the CPM dual port memory |
| 58 | * with the data buffers allocated from host memory, just like all other |
| 59 | * serial communication protocols. The host memory buffers are allocated |
| 60 | * from the free page pool, and then divided into smaller receive and |
| 61 | * transmit buffers. The size of the buffers should be a power of two, |
| 62 | * since that nicely divides the page. This creates a ring buffer |
| 63 | * structure similar to the LANCE and other controllers. |
| 64 | * |
| 65 | * Like the LANCE driver: |
| 66 | * The driver runs as two independent, single-threaded flows of control. One |
| 67 | * is the send-packet routine, which enforces single-threaded use by the |
| 68 | * cep->tx_busy flag. The other thread is the interrupt handler, which is |
| 69 | * single threaded by the hardware and other software. |
| 70 | */ |
| 71 | |
| 72 | /* The transmitter timeout |
| 73 | */ |
| 74 | #define TX_TIMEOUT (2*HZ) |
| 75 | |
| 76 | /* The number of Tx and Rx buffers. These are allocated from the page |
| 77 | * pool. The code may assume these are power of two, so it is best |
| 78 | * to keep them that size. |
| 79 | * We don't need to allocate pages for the transmitter. We just use |
| 80 | * the skbuffer directly. |
| 81 | */ |
| 82 | #define CPM_ENET_RX_PAGES 4 |
| 83 | #define CPM_ENET_RX_FRSIZE 2048 |
| 84 | #define CPM_ENET_RX_FRPPG (PAGE_SIZE / CPM_ENET_RX_FRSIZE) |
| 85 | #define RX_RING_SIZE (CPM_ENET_RX_FRPPG * CPM_ENET_RX_PAGES) |
| 86 | #define TX_RING_SIZE 8 /* Must be power of two */ |
| 87 | #define TX_RING_MOD_MASK 7 /* for this to work */ |
| 88 | |
| 89 | /* The CPM stores dest/src/type, data, and checksum for receive packets. |
| 90 | */ |
| 91 | #define PKT_MAXBUF_SIZE 1518 |
| 92 | #define PKT_MINBUF_SIZE 64 |
| 93 | #define PKT_MAXBLR_SIZE 1520 |
| 94 | |
| 95 | /* The CPM buffer descriptors track the ring buffers. The rx_bd_base and |
| 96 | * tx_bd_base always point to the base of the buffer descriptors. The |
| 97 | * cur_rx and cur_tx point to the currently available buffer. |
| 98 | * The dirty_tx tracks the current buffer that is being sent by the |
| 99 | * controller. The cur_tx and dirty_tx are equal under both completely |
| 100 | * empty and completely full conditions. The empty/ready indicator in |
| 101 | * the buffer descriptor determines the actual condition. |
| 102 | */ |
| 103 | struct scc_enet_private { |
| 104 | /* The saved address of a sent-in-place packet/buffer, for skfree(). */ |
| 105 | struct sk_buff* tx_skbuff[TX_RING_SIZE]; |
| 106 | ushort skb_cur; |
| 107 | ushort skb_dirty; |
| 108 | |
| 109 | /* CPM dual port RAM relative addresses. |
| 110 | */ |
| 111 | cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */ |
| 112 | cbd_t *tx_bd_base; |
| 113 | cbd_t *cur_rx, *cur_tx; /* The next free ring entry */ |
| 114 | cbd_t *dirty_tx; /* The ring entries to be free()ed. */ |
| 115 | scc_t *sccp; |
| 116 | struct net_device_stats stats; |
| 117 | uint tx_full; |
| 118 | spinlock_t lock; |
| 119 | }; |
| 120 | |
| 121 | static int scc_enet_open(struct net_device *dev); |
| 122 | static int scc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev); |
| 123 | static int scc_enet_rx(struct net_device *dev); |
Al Viro | 39e3eb7 | 2006-10-09 12:48:42 +0100 | [diff] [blame] | 124 | static irqreturn_t scc_enet_interrupt(int irq, void *dev_id); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 125 | static int scc_enet_close(struct net_device *dev); |
| 126 | static struct net_device_stats *scc_enet_get_stats(struct net_device *dev); |
| 127 | static void set_multicast_list(struct net_device *dev); |
| 128 | |
| 129 | /* These will be configurable for the SCC choice. |
| 130 | */ |
| 131 | #define CPM_ENET_BLOCK CPM_CR_SCC1_SBLOCK |
| 132 | #define CPM_ENET_PAGE CPM_CR_SCC1_PAGE |
| 133 | #define PROFF_ENET PROFF_SCC1 |
| 134 | #define SCC_ENET 0 |
| 135 | #define SIU_INT_ENET SIU_INT_SCC1 |
| 136 | |
| 137 | /* These are both board and SCC dependent.... |
| 138 | */ |
| 139 | #define PD_ENET_RXD ((uint)0x00000001) |
| 140 | #define PD_ENET_TXD ((uint)0x00000002) |
| 141 | #define PD_ENET_TENA ((uint)0x00000004) |
| 142 | #define PC_ENET_RENA ((uint)0x00020000) |
| 143 | #define PC_ENET_CLSN ((uint)0x00000004) |
| 144 | #define PC_ENET_TXCLK ((uint)0x00000800) |
| 145 | #define PC_ENET_RXCLK ((uint)0x00000400) |
| 146 | #define CMX_CLK_ROUTE ((uint)0x25000000) |
| 147 | #define CMX_CLK_MASK ((uint)0xff000000) |
| 148 | |
| 149 | /* Specific to a board. |
| 150 | */ |
| 151 | #define PC_EST8260_ENET_LOOPBACK ((uint)0x80000000) |
| 152 | #define PC_EST8260_ENET_SQE ((uint)0x40000000) |
| 153 | #define PC_EST8260_ENET_NOTFD ((uint)0x20000000) |
| 154 | |
| 155 | static int |
| 156 | scc_enet_open(struct net_device *dev) |
| 157 | { |
| 158 | |
| 159 | /* I should reset the ring buffers here, but I don't yet know |
| 160 | * a simple way to do that. |
| 161 | */ |
| 162 | netif_start_queue(dev); |
| 163 | return 0; /* Always succeed */ |
| 164 | } |
| 165 | |
| 166 | static int |
| 167 | scc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| 168 | { |
| 169 | struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv; |
| 170 | volatile cbd_t *bdp; |
| 171 | |
| 172 | |
| 173 | /* Fill in a Tx ring entry */ |
| 174 | bdp = cep->cur_tx; |
| 175 | |
| 176 | #ifndef final_version |
| 177 | if (bdp->cbd_sc & BD_ENET_TX_READY) { |
| 178 | /* Ooops. All transmit buffers are full. Bail out. |
| 179 | * This should not happen, since cep->tx_full should be set. |
| 180 | */ |
| 181 | printk("%s: tx queue full!.\n", dev->name); |
| 182 | return 1; |
| 183 | } |
| 184 | #endif |
| 185 | |
| 186 | /* Clear all of the status flags. |
| 187 | */ |
| 188 | bdp->cbd_sc &= ~BD_ENET_TX_STATS; |
| 189 | |
| 190 | /* If the frame is short, tell CPM to pad it. |
| 191 | */ |
| 192 | if (skb->len <= ETH_ZLEN) |
| 193 | bdp->cbd_sc |= BD_ENET_TX_PAD; |
| 194 | else |
| 195 | bdp->cbd_sc &= ~BD_ENET_TX_PAD; |
| 196 | |
| 197 | /* Set buffer length and buffer pointer. |
| 198 | */ |
| 199 | bdp->cbd_datlen = skb->len; |
| 200 | bdp->cbd_bufaddr = __pa(skb->data); |
| 201 | |
| 202 | /* Save skb pointer. |
| 203 | */ |
| 204 | cep->tx_skbuff[cep->skb_cur] = skb; |
| 205 | |
| 206 | cep->stats.tx_bytes += skb->len; |
| 207 | cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK; |
| 208 | |
| 209 | spin_lock_irq(&cep->lock); |
| 210 | |
| 211 | /* Send it on its way. Tell CPM its ready, interrupt when done, |
| 212 | * its the last BD of the frame, and to put the CRC on the end. |
| 213 | */ |
| 214 | bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC); |
| 215 | |
| 216 | dev->trans_start = jiffies; |
| 217 | |
| 218 | /* If this was the last BD in the ring, start at the beginning again. |
| 219 | */ |
| 220 | if (bdp->cbd_sc & BD_ENET_TX_WRAP) |
| 221 | bdp = cep->tx_bd_base; |
| 222 | else |
| 223 | bdp++; |
| 224 | |
| 225 | if (bdp->cbd_sc & BD_ENET_TX_READY) { |
| 226 | netif_stop_queue(dev); |
| 227 | cep->tx_full = 1; |
| 228 | } |
| 229 | |
| 230 | cep->cur_tx = (cbd_t *)bdp; |
| 231 | |
| 232 | spin_unlock_irq(&cep->lock); |
| 233 | |
| 234 | return 0; |
| 235 | } |
| 236 | |
| 237 | static void |
| 238 | scc_enet_timeout(struct net_device *dev) |
| 239 | { |
| 240 | struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv; |
| 241 | |
| 242 | printk("%s: transmit timed out.\n", dev->name); |
| 243 | cep->stats.tx_errors++; |
| 244 | #ifndef final_version |
| 245 | { |
| 246 | int i; |
| 247 | cbd_t *bdp; |
| 248 | printk(" Ring data dump: cur_tx %p%s cur_rx %p.\n", |
| 249 | cep->cur_tx, cep->tx_full ? " (full)" : "", |
| 250 | cep->cur_rx); |
| 251 | bdp = cep->tx_bd_base; |
| 252 | printk(" Tx @base %p :\n", bdp); |
| 253 | for (i = 0 ; i < TX_RING_SIZE; i++, bdp++) |
| 254 | printk("%04x %04x %08x\n", |
| 255 | bdp->cbd_sc, |
| 256 | bdp->cbd_datlen, |
| 257 | bdp->cbd_bufaddr); |
| 258 | bdp = cep->rx_bd_base; |
| 259 | printk(" Rx @base %p :\n", bdp); |
| 260 | for (i = 0 ; i < RX_RING_SIZE; i++, bdp++) |
| 261 | printk("%04x %04x %08x\n", |
| 262 | bdp->cbd_sc, |
| 263 | bdp->cbd_datlen, |
| 264 | bdp->cbd_bufaddr); |
| 265 | } |
| 266 | #endif |
| 267 | if (!cep->tx_full) |
| 268 | netif_wake_queue(dev); |
| 269 | } |
| 270 | |
| 271 | /* The interrupt handler. |
| 272 | * This is called from the CPM handler, not the MPC core interrupt. |
| 273 | */ |
| 274 | static irqreturn_t |
Al Viro | 39e3eb7 | 2006-10-09 12:48:42 +0100 | [diff] [blame] | 275 | scc_enet_interrupt(int irq, void * dev_id) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 276 | { |
| 277 | struct net_device *dev = dev_id; |
| 278 | volatile struct scc_enet_private *cep; |
| 279 | volatile cbd_t *bdp; |
| 280 | ushort int_events; |
| 281 | int must_restart; |
| 282 | |
| 283 | cep = (struct scc_enet_private *)dev->priv; |
| 284 | |
| 285 | /* Get the interrupt events that caused us to be here. |
| 286 | */ |
| 287 | int_events = cep->sccp->scc_scce; |
| 288 | cep->sccp->scc_scce = int_events; |
| 289 | must_restart = 0; |
| 290 | |
| 291 | /* Handle receive event in its own function. |
| 292 | */ |
| 293 | if (int_events & SCCE_ENET_RXF) |
| 294 | scc_enet_rx(dev_id); |
| 295 | |
| 296 | /* Check for a transmit error. The manual is a little unclear |
| 297 | * about this, so the debug code until I get it figured out. It |
| 298 | * appears that if TXE is set, then TXB is not set. However, |
| 299 | * if carrier sense is lost during frame transmission, the TXE |
| 300 | * bit is set, "and continues the buffer transmission normally." |
| 301 | * I don't know if "normally" implies TXB is set when the buffer |
| 302 | * descriptor is closed.....trial and error :-). |
| 303 | */ |
| 304 | |
| 305 | /* Transmit OK, or non-fatal error. Update the buffer descriptors. |
| 306 | */ |
| 307 | if (int_events & (SCCE_ENET_TXE | SCCE_ENET_TXB)) { |
| 308 | spin_lock(&cep->lock); |
| 309 | bdp = cep->dirty_tx; |
| 310 | while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) { |
| 311 | if ((bdp==cep->cur_tx) && (cep->tx_full == 0)) |
| 312 | break; |
| 313 | |
| 314 | if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */ |
| 315 | cep->stats.tx_heartbeat_errors++; |
| 316 | if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */ |
| 317 | cep->stats.tx_window_errors++; |
| 318 | if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */ |
| 319 | cep->stats.tx_aborted_errors++; |
| 320 | if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */ |
| 321 | cep->stats.tx_fifo_errors++; |
| 322 | if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */ |
| 323 | cep->stats.tx_carrier_errors++; |
| 324 | |
| 325 | |
| 326 | /* No heartbeat or Lost carrier are not really bad errors. |
| 327 | * The others require a restart transmit command. |
| 328 | */ |
| 329 | if (bdp->cbd_sc & |
| 330 | (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) { |
| 331 | must_restart = 1; |
| 332 | cep->stats.tx_errors++; |
| 333 | } |
| 334 | |
| 335 | cep->stats.tx_packets++; |
| 336 | |
| 337 | /* Deferred means some collisions occurred during transmit, |
| 338 | * but we eventually sent the packet OK. |
| 339 | */ |
| 340 | if (bdp->cbd_sc & BD_ENET_TX_DEF) |
| 341 | cep->stats.collisions++; |
| 342 | |
| 343 | /* Free the sk buffer associated with this last transmit. |
| 344 | */ |
| 345 | dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]); |
| 346 | cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK; |
| 347 | |
| 348 | /* Update pointer to next buffer descriptor to be transmitted. |
| 349 | */ |
| 350 | if (bdp->cbd_sc & BD_ENET_TX_WRAP) |
| 351 | bdp = cep->tx_bd_base; |
| 352 | else |
| 353 | bdp++; |
| 354 | |
| 355 | /* I don't know if we can be held off from processing these |
| 356 | * interrupts for more than one frame time. I really hope |
| 357 | * not. In such a case, we would now want to check the |
| 358 | * currently available BD (cur_tx) and determine if any |
| 359 | * buffers between the dirty_tx and cur_tx have also been |
| 360 | * sent. We would want to process anything in between that |
| 361 | * does not have BD_ENET_TX_READY set. |
| 362 | */ |
| 363 | |
| 364 | /* Since we have freed up a buffer, the ring is no longer |
| 365 | * full. |
| 366 | */ |
| 367 | if (cep->tx_full) { |
| 368 | cep->tx_full = 0; |
| 369 | if (netif_queue_stopped(dev)) { |
| 370 | netif_wake_queue(dev); |
| 371 | } |
| 372 | } |
| 373 | |
| 374 | cep->dirty_tx = (cbd_t *)bdp; |
| 375 | } |
| 376 | |
| 377 | if (must_restart) { |
| 378 | volatile cpm_cpm2_t *cp; |
| 379 | |
| 380 | /* Some transmit errors cause the transmitter to shut |
| 381 | * down. We now issue a restart transmit. Since the |
| 382 | * errors close the BD and update the pointers, the restart |
| 383 | * _should_ pick up without having to reset any of our |
| 384 | * pointers either. |
| 385 | */ |
| 386 | |
| 387 | cp = cpmp; |
| 388 | cp->cp_cpcr = |
| 389 | mk_cr_cmd(CPM_ENET_PAGE, CPM_ENET_BLOCK, 0, |
| 390 | CPM_CR_RESTART_TX) | CPM_CR_FLG; |
| 391 | while (cp->cp_cpcr & CPM_CR_FLG); |
| 392 | } |
| 393 | spin_unlock(&cep->lock); |
| 394 | } |
| 395 | |
| 396 | /* Check for receive busy, i.e. packets coming but no place to |
| 397 | * put them. This "can't happen" because the receive interrupt |
| 398 | * is tossing previous frames. |
| 399 | */ |
| 400 | if (int_events & SCCE_ENET_BSY) { |
| 401 | cep->stats.rx_dropped++; |
| 402 | printk("SCC ENET: BSY can't happen.\n"); |
| 403 | } |
| 404 | |
| 405 | return IRQ_HANDLED; |
| 406 | } |
| 407 | |
| 408 | /* During a receive, the cur_rx points to the current incoming buffer. |
| 409 | * When we update through the ring, if the next incoming buffer has |
| 410 | * not been given to the system, we just set the empty indicator, |
| 411 | * effectively tossing the packet. |
| 412 | */ |
| 413 | static int |
| 414 | scc_enet_rx(struct net_device *dev) |
| 415 | { |
| 416 | struct scc_enet_private *cep; |
| 417 | volatile cbd_t *bdp; |
| 418 | struct sk_buff *skb; |
| 419 | ushort pkt_len; |
| 420 | |
| 421 | cep = (struct scc_enet_private *)dev->priv; |
| 422 | |
| 423 | /* First, grab all of the stats for the incoming packet. |
| 424 | * These get messed up if we get called due to a busy condition. |
| 425 | */ |
| 426 | bdp = cep->cur_rx; |
| 427 | |
| 428 | for (;;) { |
| 429 | if (bdp->cbd_sc & BD_ENET_RX_EMPTY) |
| 430 | break; |
| 431 | |
| 432 | #ifndef final_version |
| 433 | /* Since we have allocated space to hold a complete frame, both |
| 434 | * the first and last indicators should be set. |
| 435 | */ |
| 436 | if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) != |
| 437 | (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) |
| 438 | printk("CPM ENET: rcv is not first+last\n"); |
| 439 | #endif |
| 440 | |
| 441 | /* Frame too long or too short. |
| 442 | */ |
| 443 | if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) |
| 444 | cep->stats.rx_length_errors++; |
| 445 | if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */ |
| 446 | cep->stats.rx_frame_errors++; |
| 447 | if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */ |
| 448 | cep->stats.rx_crc_errors++; |
| 449 | if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */ |
| 450 | cep->stats.rx_crc_errors++; |
| 451 | |
| 452 | /* Report late collisions as a frame error. |
| 453 | * On this error, the BD is closed, but we don't know what we |
| 454 | * have in the buffer. So, just drop this frame on the floor. |
| 455 | */ |
| 456 | if (bdp->cbd_sc & BD_ENET_RX_CL) { |
| 457 | cep->stats.rx_frame_errors++; |
| 458 | } |
| 459 | else { |
| 460 | |
| 461 | /* Process the incoming frame. |
| 462 | */ |
| 463 | cep->stats.rx_packets++; |
| 464 | pkt_len = bdp->cbd_datlen; |
| 465 | cep->stats.rx_bytes += pkt_len; |
| 466 | |
| 467 | /* This does 16 byte alignment, much more than we need. |
| 468 | * The packet length includes FCS, but we don't want to |
| 469 | * include that when passing upstream as it messes up |
| 470 | * bridging applications. |
| 471 | */ |
| 472 | skb = dev_alloc_skb(pkt_len-4); |
| 473 | |
| 474 | if (skb == NULL) { |
| 475 | printk("%s: Memory squeeze, dropping packet.\n", dev->name); |
| 476 | cep->stats.rx_dropped++; |
| 477 | } |
| 478 | else { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 479 | skb_put(skb,pkt_len-4); /* Make room */ |
David S. Miller | 8c7b7fa | 2007-07-10 22:08:12 -0700 | [diff] [blame] | 480 | skb_copy_to_linear_data(skb, |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 481 | (unsigned char *)__va(bdp->cbd_bufaddr), |
David S. Miller | 8c7b7fa | 2007-07-10 22:08:12 -0700 | [diff] [blame] | 482 | pkt_len-4); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 483 | skb->protocol=eth_type_trans(skb,dev); |
| 484 | netif_rx(skb); |
| 485 | } |
| 486 | } |
| 487 | |
| 488 | /* Clear the status flags for this buffer. |
| 489 | */ |
| 490 | bdp->cbd_sc &= ~BD_ENET_RX_STATS; |
| 491 | |
| 492 | /* Mark the buffer empty. |
| 493 | */ |
| 494 | bdp->cbd_sc |= BD_ENET_RX_EMPTY; |
| 495 | |
| 496 | /* Update BD pointer to next entry. |
| 497 | */ |
| 498 | if (bdp->cbd_sc & BD_ENET_RX_WRAP) |
| 499 | bdp = cep->rx_bd_base; |
| 500 | else |
| 501 | bdp++; |
| 502 | |
| 503 | } |
| 504 | cep->cur_rx = (cbd_t *)bdp; |
| 505 | |
| 506 | return 0; |
| 507 | } |
| 508 | |
| 509 | static int |
| 510 | scc_enet_close(struct net_device *dev) |
| 511 | { |
| 512 | /* Don't know what to do yet. |
| 513 | */ |
| 514 | netif_stop_queue(dev); |
| 515 | |
| 516 | return 0; |
| 517 | } |
| 518 | |
| 519 | static struct net_device_stats *scc_enet_get_stats(struct net_device *dev) |
| 520 | { |
| 521 | struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv; |
| 522 | |
| 523 | return &cep->stats; |
| 524 | } |
| 525 | |
| 526 | /* Set or clear the multicast filter for this adaptor. |
| 527 | * Skeleton taken from sunlance driver. |
| 528 | * The CPM Ethernet implementation allows Multicast as well as individual |
| 529 | * MAC address filtering. Some of the drivers check to make sure it is |
| 530 | * a group multicast address, and discard those that are not. I guess I |
| 531 | * will do the same for now, but just remove the test if you want |
| 532 | * individual filtering as well (do the upper net layers want or support |
| 533 | * this kind of feature?). |
| 534 | */ |
| 535 | |
| 536 | static void set_multicast_list(struct net_device *dev) |
| 537 | { |
| 538 | struct scc_enet_private *cep; |
| 539 | struct dev_mc_list *dmi; |
| 540 | u_char *mcptr, *tdptr; |
| 541 | volatile scc_enet_t *ep; |
| 542 | int i, j; |
| 543 | cep = (struct scc_enet_private *)dev->priv; |
| 544 | |
| 545 | /* Get pointer to SCC area in parameter RAM. |
| 546 | */ |
| 547 | ep = (scc_enet_t *)dev->base_addr; |
| 548 | |
| 549 | if (dev->flags&IFF_PROMISC) { |
| 550 | |
| 551 | /* Log any net taps. */ |
| 552 | printk("%s: Promiscuous mode enabled.\n", dev->name); |
| 553 | cep->sccp->scc_psmr |= SCC_PSMR_PRO; |
| 554 | } else { |
| 555 | |
| 556 | cep->sccp->scc_psmr &= ~SCC_PSMR_PRO; |
| 557 | |
| 558 | if (dev->flags & IFF_ALLMULTI) { |
| 559 | /* Catch all multicast addresses, so set the |
| 560 | * filter to all 1's. |
| 561 | */ |
| 562 | ep->sen_gaddr1 = 0xffff; |
| 563 | ep->sen_gaddr2 = 0xffff; |
| 564 | ep->sen_gaddr3 = 0xffff; |
| 565 | ep->sen_gaddr4 = 0xffff; |
| 566 | } |
| 567 | else { |
| 568 | /* Clear filter and add the addresses in the list. |
| 569 | */ |
| 570 | ep->sen_gaddr1 = 0; |
| 571 | ep->sen_gaddr2 = 0; |
| 572 | ep->sen_gaddr3 = 0; |
| 573 | ep->sen_gaddr4 = 0; |
| 574 | |
| 575 | dmi = dev->mc_list; |
| 576 | |
| 577 | for (i=0; i<dev->mc_count; i++) { |
| 578 | |
| 579 | /* Only support group multicast for now. |
| 580 | */ |
| 581 | if (!(dmi->dmi_addr[0] & 1)) |
| 582 | continue; |
| 583 | |
| 584 | /* The address in dmi_addr is LSB first, |
| 585 | * and taddr is MSB first. We have to |
| 586 | * copy bytes MSB first from dmi_addr. |
| 587 | */ |
| 588 | mcptr = (u_char *)dmi->dmi_addr + 5; |
| 589 | tdptr = (u_char *)&ep->sen_taddrh; |
| 590 | for (j=0; j<6; j++) |
| 591 | *tdptr++ = *mcptr--; |
| 592 | |
| 593 | /* Ask CPM to run CRC and set bit in |
| 594 | * filter mask. |
| 595 | */ |
| 596 | cpmp->cp_cpcr = mk_cr_cmd(CPM_ENET_PAGE, |
| 597 | CPM_ENET_BLOCK, 0, |
| 598 | CPM_CR_SET_GADDR) | CPM_CR_FLG; |
| 599 | /* this delay is necessary here -- Cort */ |
| 600 | udelay(10); |
| 601 | while (cpmp->cp_cpcr & CPM_CR_FLG); |
| 602 | } |
| 603 | } |
| 604 | } |
| 605 | } |
| 606 | |
| 607 | /* Initialize the CPM Ethernet on SCC. |
| 608 | */ |
| 609 | static int __init scc_enet_init(void) |
| 610 | { |
| 611 | struct net_device *dev; |
| 612 | struct scc_enet_private *cep; |
| 613 | int i, j, err; |
| 614 | uint dp_offset; |
| 615 | unsigned char *eap; |
| 616 | unsigned long mem_addr; |
| 617 | bd_t *bd; |
| 618 | volatile cbd_t *bdp; |
| 619 | volatile cpm_cpm2_t *cp; |
| 620 | volatile scc_t *sccp; |
| 621 | volatile scc_enet_t *ep; |
| 622 | volatile cpm2_map_t *immap; |
| 623 | volatile iop_cpm2_t *io; |
| 624 | |
| 625 | cp = cpmp; /* Get pointer to Communication Processor */ |
| 626 | |
| 627 | immap = (cpm2_map_t *)CPM_MAP_ADDR; /* and to internal registers */ |
| 628 | io = &immap->im_ioport; |
| 629 | |
| 630 | bd = (bd_t *)__res; |
| 631 | |
| 632 | /* Create an Ethernet device instance. |
| 633 | */ |
| 634 | dev = alloc_etherdev(sizeof(*cep)); |
| 635 | if (!dev) |
| 636 | return -ENOMEM; |
| 637 | |
| 638 | cep = dev->priv; |
| 639 | spin_lock_init(&cep->lock); |
| 640 | |
| 641 | /* Get pointer to SCC area in parameter RAM. |
| 642 | */ |
| 643 | ep = (scc_enet_t *)(&immap->im_dprambase[PROFF_ENET]); |
| 644 | |
| 645 | /* And another to the SCC register area. |
| 646 | */ |
| 647 | sccp = (volatile scc_t *)(&immap->im_scc[SCC_ENET]); |
| 648 | cep->sccp = (scc_t *)sccp; /* Keep the pointer handy */ |
| 649 | |
| 650 | /* Disable receive and transmit in case someone left it running. |
| 651 | */ |
| 652 | sccp->scc_gsmrl &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT); |
| 653 | |
| 654 | /* Configure port C and D pins for SCC Ethernet. This |
| 655 | * won't work for all SCC possibilities....it will be |
| 656 | * board/port specific. |
| 657 | */ |
| 658 | io->iop_pparc |= |
| 659 | (PC_ENET_RENA | PC_ENET_CLSN | PC_ENET_TXCLK | PC_ENET_RXCLK); |
| 660 | io->iop_pdirc &= |
| 661 | ~(PC_ENET_RENA | PC_ENET_CLSN | PC_ENET_TXCLK | PC_ENET_RXCLK); |
| 662 | io->iop_psorc &= |
| 663 | ~(PC_ENET_RENA | PC_ENET_TXCLK | PC_ENET_RXCLK); |
| 664 | io->iop_psorc |= PC_ENET_CLSN; |
| 665 | |
| 666 | io->iop_ppard |= (PD_ENET_RXD | PD_ENET_TXD | PD_ENET_TENA); |
| 667 | io->iop_pdird |= (PD_ENET_TXD | PD_ENET_TENA); |
| 668 | io->iop_pdird &= ~PD_ENET_RXD; |
| 669 | io->iop_psord |= PD_ENET_TXD; |
| 670 | io->iop_psord &= ~(PD_ENET_RXD | PD_ENET_TENA); |
| 671 | |
| 672 | /* Configure Serial Interface clock routing. |
| 673 | * First, clear all SCC bits to zero, then set the ones we want. |
| 674 | */ |
| 675 | immap->im_cpmux.cmx_scr &= ~CMX_CLK_MASK; |
| 676 | immap->im_cpmux.cmx_scr |= CMX_CLK_ROUTE; |
| 677 | |
| 678 | /* Allocate space for the buffer descriptors in the DP ram. |
| 679 | * These are relative offsets in the DP ram address space. |
| 680 | * Initialize base addresses for the buffer descriptors. |
| 681 | */ |
| 682 | dp_offset = cpm_dpalloc(sizeof(cbd_t) * RX_RING_SIZE, 8); |
| 683 | ep->sen_genscc.scc_rbase = dp_offset; |
| 684 | cep->rx_bd_base = (cbd_t *)cpm_dpram_addr(dp_offset); |
| 685 | |
| 686 | dp_offset = cpm_dpalloc(sizeof(cbd_t) * TX_RING_SIZE, 8); |
| 687 | ep->sen_genscc.scc_tbase = dp_offset; |
| 688 | cep->tx_bd_base = (cbd_t *)cpm_dpram_addr(dp_offset); |
| 689 | |
| 690 | cep->dirty_tx = cep->cur_tx = cep->tx_bd_base; |
| 691 | cep->cur_rx = cep->rx_bd_base; |
| 692 | |
| 693 | ep->sen_genscc.scc_rfcr = CPMFCR_GBL | CPMFCR_EB; |
| 694 | ep->sen_genscc.scc_tfcr = CPMFCR_GBL | CPMFCR_EB; |
| 695 | |
| 696 | /* Set maximum bytes per receive buffer. |
| 697 | * This appears to be an Ethernet frame size, not the buffer |
| 698 | * fragment size. It must be a multiple of four. |
| 699 | */ |
| 700 | ep->sen_genscc.scc_mrblr = PKT_MAXBLR_SIZE; |
| 701 | |
| 702 | /* Set CRC preset and mask. |
| 703 | */ |
| 704 | ep->sen_cpres = 0xffffffff; |
| 705 | ep->sen_cmask = 0xdebb20e3; |
| 706 | |
| 707 | ep->sen_crcec = 0; /* CRC Error counter */ |
| 708 | ep->sen_alec = 0; /* alignment error counter */ |
| 709 | ep->sen_disfc = 0; /* discard frame counter */ |
| 710 | |
| 711 | ep->sen_pads = 0x8888; /* Tx short frame pad character */ |
| 712 | ep->sen_retlim = 15; /* Retry limit threshold */ |
| 713 | |
| 714 | ep->sen_maxflr = PKT_MAXBUF_SIZE; /* maximum frame length register */ |
| 715 | ep->sen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */ |
| 716 | |
| 717 | ep->sen_maxd1 = PKT_MAXBLR_SIZE; /* maximum DMA1 length */ |
| 718 | ep->sen_maxd2 = PKT_MAXBLR_SIZE; /* maximum DMA2 length */ |
| 719 | |
| 720 | /* Clear hash tables. |
| 721 | */ |
| 722 | ep->sen_gaddr1 = 0; |
| 723 | ep->sen_gaddr2 = 0; |
| 724 | ep->sen_gaddr3 = 0; |
| 725 | ep->sen_gaddr4 = 0; |
| 726 | ep->sen_iaddr1 = 0; |
| 727 | ep->sen_iaddr2 = 0; |
| 728 | ep->sen_iaddr3 = 0; |
| 729 | ep->sen_iaddr4 = 0; |
| 730 | |
| 731 | /* Set Ethernet station address. |
| 732 | * |
| 733 | * This is supplied in the board information structure, so we |
| 734 | * copy that into the controller. |
| 735 | */ |
| 736 | eap = (unsigned char *)&(ep->sen_paddrh); |
| 737 | for (i=5; i>=0; i--) |
| 738 | *eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i]; |
| 739 | |
| 740 | ep->sen_pper = 0; /* 'cause the book says so */ |
| 741 | ep->sen_taddrl = 0; /* temp address (LSB) */ |
| 742 | ep->sen_taddrm = 0; |
| 743 | ep->sen_taddrh = 0; /* temp address (MSB) */ |
| 744 | |
| 745 | /* Now allocate the host memory pages and initialize the |
| 746 | * buffer descriptors. |
| 747 | */ |
| 748 | bdp = cep->tx_bd_base; |
| 749 | for (i=0; i<TX_RING_SIZE; i++) { |
| 750 | |
| 751 | /* Initialize the BD for every fragment in the page. |
| 752 | */ |
| 753 | bdp->cbd_sc = 0; |
| 754 | bdp->cbd_bufaddr = 0; |
| 755 | bdp++; |
| 756 | } |
| 757 | |
| 758 | /* Set the last buffer to wrap. |
| 759 | */ |
| 760 | bdp--; |
| 761 | bdp->cbd_sc |= BD_SC_WRAP; |
| 762 | |
| 763 | bdp = cep->rx_bd_base; |
| 764 | for (i=0; i<CPM_ENET_RX_PAGES; i++) { |
| 765 | |
| 766 | /* Allocate a page. |
| 767 | */ |
| 768 | mem_addr = __get_free_page(GFP_KERNEL); |
| 769 | /* BUG: no check for failure */ |
| 770 | |
| 771 | /* Initialize the BD for every fragment in the page. |
| 772 | */ |
| 773 | for (j=0; j<CPM_ENET_RX_FRPPG; j++) { |
| 774 | bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR; |
| 775 | bdp->cbd_bufaddr = __pa(mem_addr); |
| 776 | mem_addr += CPM_ENET_RX_FRSIZE; |
| 777 | bdp++; |
| 778 | } |
| 779 | } |
| 780 | |
| 781 | /* Set the last buffer to wrap. |
| 782 | */ |
| 783 | bdp--; |
| 784 | bdp->cbd_sc |= BD_SC_WRAP; |
| 785 | |
| 786 | /* Let's re-initialize the channel now. We have to do it later |
| 787 | * than the manual describes because we have just now finished |
| 788 | * the BD initialization. |
| 789 | */ |
| 790 | cpmp->cp_cpcr = mk_cr_cmd(CPM_ENET_PAGE, CPM_ENET_BLOCK, 0, |
| 791 | CPM_CR_INIT_TRX) | CPM_CR_FLG; |
| 792 | while (cp->cp_cpcr & CPM_CR_FLG); |
| 793 | |
| 794 | cep->skb_cur = cep->skb_dirty = 0; |
| 795 | |
| 796 | sccp->scc_scce = 0xffff; /* Clear any pending events */ |
| 797 | |
| 798 | /* Enable interrupts for transmit error, complete frame |
| 799 | * received, and any transmit buffer we have also set the |
| 800 | * interrupt flag. |
| 801 | */ |
| 802 | sccp->scc_sccm = (SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB); |
| 803 | |
| 804 | /* Install our interrupt handler. |
| 805 | */ |
| 806 | request_irq(SIU_INT_ENET, scc_enet_interrupt, 0, "enet", dev); |
| 807 | /* BUG: no check for failure */ |
| 808 | |
| 809 | /* Set GSMR_H to enable all normal operating modes. |
| 810 | * Set GSMR_L to enable Ethernet to MC68160. |
| 811 | */ |
| 812 | sccp->scc_gsmrh = 0; |
| 813 | sccp->scc_gsmrl = (SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 | SCC_GSMRL_MODE_ENET); |
| 814 | |
| 815 | /* Set sync/delimiters. |
| 816 | */ |
| 817 | sccp->scc_dsr = 0xd555; |
| 818 | |
| 819 | /* Set processing mode. Use Ethernet CRC, catch broadcast, and |
| 820 | * start frame search 22 bit times after RENA. |
| 821 | */ |
| 822 | sccp->scc_psmr = (SCC_PSMR_ENCRC | SCC_PSMR_NIB22); |
| 823 | |
| 824 | /* It is now OK to enable the Ethernet transmitter. |
| 825 | * Unfortunately, there are board implementation differences here. |
| 826 | */ |
| 827 | io->iop_pparc &= ~(PC_EST8260_ENET_LOOPBACK | |
| 828 | PC_EST8260_ENET_SQE | PC_EST8260_ENET_NOTFD); |
| 829 | io->iop_psorc &= ~(PC_EST8260_ENET_LOOPBACK | |
| 830 | PC_EST8260_ENET_SQE | PC_EST8260_ENET_NOTFD); |
| 831 | io->iop_pdirc |= (PC_EST8260_ENET_LOOPBACK | |
| 832 | PC_EST8260_ENET_SQE | PC_EST8260_ENET_NOTFD); |
| 833 | io->iop_pdatc &= ~(PC_EST8260_ENET_LOOPBACK | PC_EST8260_ENET_SQE); |
| 834 | io->iop_pdatc |= PC_EST8260_ENET_NOTFD; |
| 835 | |
| 836 | dev->base_addr = (unsigned long)ep; |
| 837 | |
| 838 | /* The CPM Ethernet specific entries in the device structure. */ |
| 839 | dev->open = scc_enet_open; |
| 840 | dev->hard_start_xmit = scc_enet_start_xmit; |
| 841 | dev->tx_timeout = scc_enet_timeout; |
| 842 | dev->watchdog_timeo = TX_TIMEOUT; |
| 843 | dev->stop = scc_enet_close; |
| 844 | dev->get_stats = scc_enet_get_stats; |
| 845 | dev->set_multicast_list = set_multicast_list; |
| 846 | |
| 847 | /* And last, enable the transmit and receive processing. |
| 848 | */ |
| 849 | sccp->scc_gsmrl |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT); |
| 850 | |
| 851 | err = register_netdev(dev); |
| 852 | if (err) { |
| 853 | free_netdev(dev); |
| 854 | return err; |
| 855 | } |
| 856 | |
| 857 | printk("%s: SCC ENET Version 0.1, ", dev->name); |
| 858 | for (i=0; i<5; i++) |
| 859 | printk("%02x:", dev->dev_addr[i]); |
| 860 | printk("%02x\n", dev->dev_addr[5]); |
| 861 | |
| 862 | return 0; |
| 863 | } |
| 864 | |
| 865 | module_init(scc_enet_init); |