Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * JFFS2 -- Journalling Flash File System, Version 2. |
| 3 | * |
| 4 | * Copyright (C) 2001-2003 Red Hat, Inc. |
| 5 | * |
| 6 | * Created by David Woodhouse <dwmw2@infradead.org> |
| 7 | * |
| 8 | * For licensing information, see the file 'LICENCE' in this directory. |
| 9 | * |
Artem B. Bityuckiy | a42163d | 2005-03-20 17:45:29 +0000 | [diff] [blame^] | 10 | * $Id: gc.c,v 1.146 2005/03/20 17:45:25 dedekind Exp $ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 11 | * |
| 12 | */ |
| 13 | |
| 14 | #include <linux/kernel.h> |
| 15 | #include <linux/mtd/mtd.h> |
| 16 | #include <linux/slab.h> |
| 17 | #include <linux/pagemap.h> |
| 18 | #include <linux/crc32.h> |
| 19 | #include <linux/compiler.h> |
| 20 | #include <linux/stat.h> |
| 21 | #include "nodelist.h" |
| 22 | #include "compr.h" |
| 23 | |
| 24 | static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c, |
| 25 | struct jffs2_inode_cache *ic, |
| 26 | struct jffs2_raw_node_ref *raw); |
| 27 | static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| 28 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fd); |
| 29 | static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| 30 | struct jffs2_inode_info *f, struct jffs2_full_dirent *fd); |
| 31 | static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| 32 | struct jffs2_inode_info *f, struct jffs2_full_dirent *fd); |
| 33 | static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| 34 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, |
| 35 | uint32_t start, uint32_t end); |
| 36 | static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| 37 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, |
| 38 | uint32_t start, uint32_t end); |
| 39 | static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| 40 | struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f); |
| 41 | |
| 42 | /* Called with erase_completion_lock held */ |
| 43 | static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c) |
| 44 | { |
| 45 | struct jffs2_eraseblock *ret; |
| 46 | struct list_head *nextlist = NULL; |
| 47 | int n = jiffies % 128; |
| 48 | |
| 49 | /* Pick an eraseblock to garbage collect next. This is where we'll |
| 50 | put the clever wear-levelling algorithms. Eventually. */ |
| 51 | /* We possibly want to favour the dirtier blocks more when the |
| 52 | number of free blocks is low. */ |
Artem B. Bityuckiy | a42163d | 2005-03-20 17:45:29 +0000 | [diff] [blame^] | 53 | again: |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 54 | if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) { |
| 55 | D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n")); |
| 56 | nextlist = &c->bad_used_list; |
| 57 | } else if (n < 50 && !list_empty(&c->erasable_list)) { |
| 58 | /* Note that most of them will have gone directly to be erased. |
| 59 | So don't favour the erasable_list _too_ much. */ |
| 60 | D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n")); |
| 61 | nextlist = &c->erasable_list; |
| 62 | } else if (n < 110 && !list_empty(&c->very_dirty_list)) { |
| 63 | /* Most of the time, pick one off the very_dirty list */ |
| 64 | D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n")); |
| 65 | nextlist = &c->very_dirty_list; |
| 66 | } else if (n < 126 && !list_empty(&c->dirty_list)) { |
| 67 | D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n")); |
| 68 | nextlist = &c->dirty_list; |
| 69 | } else if (!list_empty(&c->clean_list)) { |
| 70 | D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n")); |
| 71 | nextlist = &c->clean_list; |
| 72 | } else if (!list_empty(&c->dirty_list)) { |
| 73 | D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n")); |
| 74 | |
| 75 | nextlist = &c->dirty_list; |
| 76 | } else if (!list_empty(&c->very_dirty_list)) { |
| 77 | D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n")); |
| 78 | nextlist = &c->very_dirty_list; |
| 79 | } else if (!list_empty(&c->erasable_list)) { |
| 80 | D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n")); |
| 81 | |
| 82 | nextlist = &c->erasable_list; |
Artem B. Bityuckiy | a42163d | 2005-03-20 17:45:29 +0000 | [diff] [blame^] | 83 | } else if (!list_empty(&c->erasable_pending_wbuf_list)) { |
| 84 | /* There are blocks are wating for the wbuf sync */ |
| 85 | D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n")); |
| 86 | jffs2_flush_wbuf_pad(c); |
| 87 | goto again; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 88 | } else { |
| 89 | /* Eep. All were empty */ |
| 90 | D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n")); |
| 91 | return NULL; |
| 92 | } |
| 93 | |
| 94 | ret = list_entry(nextlist->next, struct jffs2_eraseblock, list); |
| 95 | list_del(&ret->list); |
| 96 | c->gcblock = ret; |
| 97 | ret->gc_node = ret->first_node; |
| 98 | if (!ret->gc_node) { |
| 99 | printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset); |
| 100 | BUG(); |
| 101 | } |
| 102 | |
| 103 | /* Have we accidentally picked a clean block with wasted space ? */ |
| 104 | if (ret->wasted_size) { |
| 105 | D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size)); |
| 106 | ret->dirty_size += ret->wasted_size; |
| 107 | c->wasted_size -= ret->wasted_size; |
| 108 | c->dirty_size += ret->wasted_size; |
| 109 | ret->wasted_size = 0; |
| 110 | } |
| 111 | |
| 112 | D2(jffs2_dump_block_lists(c)); |
| 113 | return ret; |
| 114 | } |
| 115 | |
| 116 | /* jffs2_garbage_collect_pass |
| 117 | * Make a single attempt to progress GC. Move one node, and possibly |
| 118 | * start erasing one eraseblock. |
| 119 | */ |
| 120 | int jffs2_garbage_collect_pass(struct jffs2_sb_info *c) |
| 121 | { |
| 122 | struct jffs2_inode_info *f; |
| 123 | struct jffs2_inode_cache *ic; |
| 124 | struct jffs2_eraseblock *jeb; |
| 125 | struct jffs2_raw_node_ref *raw; |
| 126 | int ret = 0, inum, nlink; |
| 127 | |
| 128 | if (down_interruptible(&c->alloc_sem)) |
| 129 | return -EINTR; |
| 130 | |
| 131 | for (;;) { |
| 132 | spin_lock(&c->erase_completion_lock); |
| 133 | if (!c->unchecked_size) |
| 134 | break; |
| 135 | |
| 136 | /* We can't start doing GC yet. We haven't finished checking |
| 137 | the node CRCs etc. Do it now. */ |
| 138 | |
| 139 | /* checked_ino is protected by the alloc_sem */ |
| 140 | if (c->checked_ino > c->highest_ino) { |
| 141 | printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n", |
| 142 | c->unchecked_size); |
| 143 | D2(jffs2_dump_block_lists(c)); |
| 144 | spin_unlock(&c->erase_completion_lock); |
| 145 | BUG(); |
| 146 | } |
| 147 | |
| 148 | spin_unlock(&c->erase_completion_lock); |
| 149 | |
| 150 | spin_lock(&c->inocache_lock); |
| 151 | |
| 152 | ic = jffs2_get_ino_cache(c, c->checked_ino++); |
| 153 | |
| 154 | if (!ic) { |
| 155 | spin_unlock(&c->inocache_lock); |
| 156 | continue; |
| 157 | } |
| 158 | |
| 159 | if (!ic->nlink) { |
| 160 | D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink zero\n", |
| 161 | ic->ino)); |
| 162 | spin_unlock(&c->inocache_lock); |
| 163 | continue; |
| 164 | } |
| 165 | switch(ic->state) { |
| 166 | case INO_STATE_CHECKEDABSENT: |
| 167 | case INO_STATE_PRESENT: |
| 168 | D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino)); |
| 169 | spin_unlock(&c->inocache_lock); |
| 170 | continue; |
| 171 | |
| 172 | case INO_STATE_GC: |
| 173 | case INO_STATE_CHECKING: |
| 174 | printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state); |
| 175 | spin_unlock(&c->inocache_lock); |
| 176 | BUG(); |
| 177 | |
| 178 | case INO_STATE_READING: |
| 179 | /* We need to wait for it to finish, lest we move on |
| 180 | and trigger the BUG() above while we haven't yet |
| 181 | finished checking all its nodes */ |
| 182 | D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino)); |
| 183 | up(&c->alloc_sem); |
| 184 | sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock); |
| 185 | return 0; |
| 186 | |
| 187 | default: |
| 188 | BUG(); |
| 189 | |
| 190 | case INO_STATE_UNCHECKED: |
| 191 | ; |
| 192 | } |
| 193 | ic->state = INO_STATE_CHECKING; |
| 194 | spin_unlock(&c->inocache_lock); |
| 195 | |
| 196 | D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino)); |
| 197 | |
| 198 | ret = jffs2_do_crccheck_inode(c, ic); |
| 199 | if (ret) |
| 200 | printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino); |
| 201 | |
| 202 | jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT); |
| 203 | up(&c->alloc_sem); |
| 204 | return ret; |
| 205 | } |
| 206 | |
| 207 | /* First, work out which block we're garbage-collecting */ |
| 208 | jeb = c->gcblock; |
| 209 | |
| 210 | if (!jeb) |
| 211 | jeb = jffs2_find_gc_block(c); |
| 212 | |
| 213 | if (!jeb) { |
| 214 | D1 (printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n")); |
| 215 | spin_unlock(&c->erase_completion_lock); |
| 216 | up(&c->alloc_sem); |
| 217 | return -EIO; |
| 218 | } |
| 219 | |
| 220 | D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size)); |
| 221 | D1(if (c->nextblock) |
| 222 | printk(KERN_DEBUG "Nextblock at %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size)); |
| 223 | |
| 224 | if (!jeb->used_size) { |
| 225 | up(&c->alloc_sem); |
| 226 | goto eraseit; |
| 227 | } |
| 228 | |
| 229 | raw = jeb->gc_node; |
| 230 | |
| 231 | while(ref_obsolete(raw)) { |
| 232 | D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw))); |
| 233 | raw = raw->next_phys; |
| 234 | if (unlikely(!raw)) { |
| 235 | printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n"); |
| 236 | printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n", |
| 237 | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size); |
| 238 | jeb->gc_node = raw; |
| 239 | spin_unlock(&c->erase_completion_lock); |
| 240 | up(&c->alloc_sem); |
| 241 | BUG(); |
| 242 | } |
| 243 | } |
| 244 | jeb->gc_node = raw; |
| 245 | |
| 246 | D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw))); |
| 247 | |
| 248 | if (!raw->next_in_ino) { |
| 249 | /* Inode-less node. Clean marker, snapshot or something like that */ |
| 250 | /* FIXME: If it's something that needs to be copied, including something |
| 251 | we don't grok that has JFFS2_NODETYPE_RWCOMPAT_COPY, we should do so */ |
| 252 | spin_unlock(&c->erase_completion_lock); |
| 253 | jffs2_mark_node_obsolete(c, raw); |
| 254 | up(&c->alloc_sem); |
| 255 | goto eraseit_lock; |
| 256 | } |
| 257 | |
| 258 | ic = jffs2_raw_ref_to_ic(raw); |
| 259 | |
| 260 | /* We need to hold the inocache. Either the erase_completion_lock or |
| 261 | the inocache_lock are sufficient; we trade down since the inocache_lock |
| 262 | causes less contention. */ |
| 263 | spin_lock(&c->inocache_lock); |
| 264 | |
| 265 | spin_unlock(&c->erase_completion_lock); |
| 266 | |
| 267 | D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino)); |
| 268 | |
| 269 | /* Three possibilities: |
| 270 | 1. Inode is already in-core. We must iget it and do proper |
| 271 | updating to its fragtree, etc. |
| 272 | 2. Inode is not in-core, node is REF_PRISTINE. We lock the |
| 273 | inocache to prevent a read_inode(), copy the node intact. |
| 274 | 3. Inode is not in-core, node is not pristine. We must iget() |
| 275 | and take the slow path. |
| 276 | */ |
| 277 | |
| 278 | switch(ic->state) { |
| 279 | case INO_STATE_CHECKEDABSENT: |
| 280 | /* It's been checked, but it's not currently in-core. |
| 281 | We can just copy any pristine nodes, but have |
| 282 | to prevent anyone else from doing read_inode() while |
| 283 | we're at it, so we set the state accordingly */ |
| 284 | if (ref_flags(raw) == REF_PRISTINE) |
| 285 | ic->state = INO_STATE_GC; |
| 286 | else { |
| 287 | D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n", |
| 288 | ic->ino)); |
| 289 | } |
| 290 | break; |
| 291 | |
| 292 | case INO_STATE_PRESENT: |
| 293 | /* It's in-core. GC must iget() it. */ |
| 294 | break; |
| 295 | |
| 296 | case INO_STATE_UNCHECKED: |
| 297 | case INO_STATE_CHECKING: |
| 298 | case INO_STATE_GC: |
| 299 | /* Should never happen. We should have finished checking |
| 300 | by the time we actually start doing any GC, and since |
| 301 | we're holding the alloc_sem, no other garbage collection |
| 302 | can happen. |
| 303 | */ |
| 304 | printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n", |
| 305 | ic->ino, ic->state); |
| 306 | up(&c->alloc_sem); |
| 307 | spin_unlock(&c->inocache_lock); |
| 308 | BUG(); |
| 309 | |
| 310 | case INO_STATE_READING: |
| 311 | /* Someone's currently trying to read it. We must wait for |
| 312 | them to finish and then go through the full iget() route |
| 313 | to do the GC. However, sometimes read_inode() needs to get |
| 314 | the alloc_sem() (for marking nodes invalid) so we must |
| 315 | drop the alloc_sem before sleeping. */ |
| 316 | |
| 317 | up(&c->alloc_sem); |
| 318 | D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n", |
| 319 | ic->ino, ic->state)); |
| 320 | sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock); |
| 321 | /* And because we dropped the alloc_sem we must start again from the |
| 322 | beginning. Ponder chance of livelock here -- we're returning success |
| 323 | without actually making any progress. |
| 324 | |
| 325 | Q: What are the chances that the inode is back in INO_STATE_READING |
| 326 | again by the time we next enter this function? And that this happens |
| 327 | enough times to cause a real delay? |
| 328 | |
| 329 | A: Small enough that I don't care :) |
| 330 | */ |
| 331 | return 0; |
| 332 | } |
| 333 | |
| 334 | /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the |
| 335 | node intact, and we don't have to muck about with the fragtree etc. |
| 336 | because we know it's not in-core. If it _was_ in-core, we go through |
| 337 | all the iget() crap anyway */ |
| 338 | |
| 339 | if (ic->state == INO_STATE_GC) { |
| 340 | spin_unlock(&c->inocache_lock); |
| 341 | |
| 342 | ret = jffs2_garbage_collect_pristine(c, ic, raw); |
| 343 | |
| 344 | spin_lock(&c->inocache_lock); |
| 345 | ic->state = INO_STATE_CHECKEDABSENT; |
| 346 | wake_up(&c->inocache_wq); |
| 347 | |
| 348 | if (ret != -EBADFD) { |
| 349 | spin_unlock(&c->inocache_lock); |
| 350 | goto release_sem; |
| 351 | } |
| 352 | |
| 353 | /* Fall through if it wanted us to, with inocache_lock held */ |
| 354 | } |
| 355 | |
| 356 | /* Prevent the fairly unlikely race where the gcblock is |
| 357 | entirely obsoleted by the final close of a file which had |
| 358 | the only valid nodes in the block, followed by erasure, |
| 359 | followed by freeing of the ic because the erased block(s) |
| 360 | held _all_ the nodes of that inode.... never been seen but |
| 361 | it's vaguely possible. */ |
| 362 | |
| 363 | inum = ic->ino; |
| 364 | nlink = ic->nlink; |
| 365 | spin_unlock(&c->inocache_lock); |
| 366 | |
| 367 | f = jffs2_gc_fetch_inode(c, inum, nlink); |
| 368 | if (IS_ERR(f)) { |
| 369 | ret = PTR_ERR(f); |
| 370 | goto release_sem; |
| 371 | } |
| 372 | if (!f) { |
| 373 | ret = 0; |
| 374 | goto release_sem; |
| 375 | } |
| 376 | |
| 377 | ret = jffs2_garbage_collect_live(c, jeb, raw, f); |
| 378 | |
| 379 | jffs2_gc_release_inode(c, f); |
| 380 | |
| 381 | release_sem: |
| 382 | up(&c->alloc_sem); |
| 383 | |
| 384 | eraseit_lock: |
| 385 | /* If we've finished this block, start it erasing */ |
| 386 | spin_lock(&c->erase_completion_lock); |
| 387 | |
| 388 | eraseit: |
| 389 | if (c->gcblock && !c->gcblock->used_size) { |
| 390 | D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset)); |
| 391 | /* We're GC'ing an empty block? */ |
| 392 | list_add_tail(&c->gcblock->list, &c->erase_pending_list); |
| 393 | c->gcblock = NULL; |
| 394 | c->nr_erasing_blocks++; |
| 395 | jffs2_erase_pending_trigger(c); |
| 396 | } |
| 397 | spin_unlock(&c->erase_completion_lock); |
| 398 | |
| 399 | return ret; |
| 400 | } |
| 401 | |
| 402 | static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| 403 | struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f) |
| 404 | { |
| 405 | struct jffs2_node_frag *frag; |
| 406 | struct jffs2_full_dnode *fn = NULL; |
| 407 | struct jffs2_full_dirent *fd; |
| 408 | uint32_t start = 0, end = 0, nrfrags = 0; |
| 409 | int ret = 0; |
| 410 | |
| 411 | down(&f->sem); |
| 412 | |
| 413 | /* Now we have the lock for this inode. Check that it's still the one at the head |
| 414 | of the list. */ |
| 415 | |
| 416 | spin_lock(&c->erase_completion_lock); |
| 417 | |
| 418 | if (c->gcblock != jeb) { |
| 419 | spin_unlock(&c->erase_completion_lock); |
| 420 | D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n")); |
| 421 | goto upnout; |
| 422 | } |
| 423 | if (ref_obsolete(raw)) { |
| 424 | spin_unlock(&c->erase_completion_lock); |
| 425 | D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n")); |
| 426 | /* They'll call again */ |
| 427 | goto upnout; |
| 428 | } |
| 429 | spin_unlock(&c->erase_completion_lock); |
| 430 | |
| 431 | /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */ |
| 432 | if (f->metadata && f->metadata->raw == raw) { |
| 433 | fn = f->metadata; |
| 434 | ret = jffs2_garbage_collect_metadata(c, jeb, f, fn); |
| 435 | goto upnout; |
| 436 | } |
| 437 | |
| 438 | /* FIXME. Read node and do lookup? */ |
| 439 | for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) { |
| 440 | if (frag->node && frag->node->raw == raw) { |
| 441 | fn = frag->node; |
| 442 | end = frag->ofs + frag->size; |
| 443 | if (!nrfrags++) |
| 444 | start = frag->ofs; |
| 445 | if (nrfrags == frag->node->frags) |
| 446 | break; /* We've found them all */ |
| 447 | } |
| 448 | } |
| 449 | if (fn) { |
| 450 | if (ref_flags(raw) == REF_PRISTINE) { |
| 451 | ret = jffs2_garbage_collect_pristine(c, f->inocache, raw); |
| 452 | if (!ret) { |
| 453 | /* Urgh. Return it sensibly. */ |
| 454 | frag->node->raw = f->inocache->nodes; |
| 455 | } |
| 456 | if (ret != -EBADFD) |
| 457 | goto upnout; |
| 458 | } |
| 459 | /* We found a datanode. Do the GC */ |
| 460 | if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) { |
| 461 | /* It crosses a page boundary. Therefore, it must be a hole. */ |
| 462 | ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end); |
| 463 | } else { |
| 464 | /* It could still be a hole. But we GC the page this way anyway */ |
| 465 | ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end); |
| 466 | } |
| 467 | goto upnout; |
| 468 | } |
| 469 | |
| 470 | /* Wasn't a dnode. Try dirent */ |
| 471 | for (fd = f->dents; fd; fd=fd->next) { |
| 472 | if (fd->raw == raw) |
| 473 | break; |
| 474 | } |
| 475 | |
| 476 | if (fd && fd->ino) { |
| 477 | ret = jffs2_garbage_collect_dirent(c, jeb, f, fd); |
| 478 | } else if (fd) { |
| 479 | ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd); |
| 480 | } else { |
| 481 | printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n", |
| 482 | ref_offset(raw), f->inocache->ino); |
| 483 | if (ref_obsolete(raw)) { |
| 484 | printk(KERN_WARNING "But it's obsolete so we don't mind too much\n"); |
| 485 | } else { |
| 486 | ret = -EIO; |
| 487 | } |
| 488 | } |
| 489 | upnout: |
| 490 | up(&f->sem); |
| 491 | |
| 492 | return ret; |
| 493 | } |
| 494 | |
| 495 | static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c, |
| 496 | struct jffs2_inode_cache *ic, |
| 497 | struct jffs2_raw_node_ref *raw) |
| 498 | { |
| 499 | union jffs2_node_union *node; |
| 500 | struct jffs2_raw_node_ref *nraw; |
| 501 | size_t retlen; |
| 502 | int ret; |
| 503 | uint32_t phys_ofs, alloclen; |
| 504 | uint32_t crc, rawlen; |
| 505 | int retried = 0; |
| 506 | |
| 507 | D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw))); |
| 508 | |
| 509 | rawlen = ref_totlen(c, c->gcblock, raw); |
| 510 | |
| 511 | /* Ask for a small amount of space (or the totlen if smaller) because we |
| 512 | don't want to force wastage of the end of a block if splitting would |
| 513 | work. */ |
| 514 | ret = jffs2_reserve_space_gc(c, min_t(uint32_t, sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN, |
| 515 | rawlen), &phys_ofs, &alloclen); |
| 516 | if (ret) |
| 517 | return ret; |
| 518 | |
| 519 | if (alloclen < rawlen) { |
| 520 | /* Doesn't fit untouched. We'll go the old route and split it */ |
| 521 | return -EBADFD; |
| 522 | } |
| 523 | |
| 524 | node = kmalloc(rawlen, GFP_KERNEL); |
| 525 | if (!node) |
| 526 | return -ENOMEM; |
| 527 | |
| 528 | ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node); |
| 529 | if (!ret && retlen != rawlen) |
| 530 | ret = -EIO; |
| 531 | if (ret) |
| 532 | goto out_node; |
| 533 | |
| 534 | crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4); |
| 535 | if (je32_to_cpu(node->u.hdr_crc) != crc) { |
| 536 | printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", |
| 537 | ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc); |
| 538 | goto bail; |
| 539 | } |
| 540 | |
| 541 | switch(je16_to_cpu(node->u.nodetype)) { |
| 542 | case JFFS2_NODETYPE_INODE: |
| 543 | crc = crc32(0, node, sizeof(node->i)-8); |
| 544 | if (je32_to_cpu(node->i.node_crc) != crc) { |
| 545 | printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", |
| 546 | ref_offset(raw), je32_to_cpu(node->i.node_crc), crc); |
| 547 | goto bail; |
| 548 | } |
| 549 | |
| 550 | if (je32_to_cpu(node->i.dsize)) { |
| 551 | crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize)); |
| 552 | if (je32_to_cpu(node->i.data_crc) != crc) { |
| 553 | printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", |
| 554 | ref_offset(raw), je32_to_cpu(node->i.data_crc), crc); |
| 555 | goto bail; |
| 556 | } |
| 557 | } |
| 558 | break; |
| 559 | |
| 560 | case JFFS2_NODETYPE_DIRENT: |
| 561 | crc = crc32(0, node, sizeof(node->d)-8); |
| 562 | if (je32_to_cpu(node->d.node_crc) != crc) { |
| 563 | printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", |
| 564 | ref_offset(raw), je32_to_cpu(node->d.node_crc), crc); |
| 565 | goto bail; |
| 566 | } |
| 567 | |
| 568 | if (node->d.nsize) { |
| 569 | crc = crc32(0, node->d.name, node->d.nsize); |
| 570 | if (je32_to_cpu(node->d.name_crc) != crc) { |
| 571 | printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent ode at 0x%08x: Read 0x%08x, calculated 0x%08x\n", |
| 572 | ref_offset(raw), je32_to_cpu(node->d.name_crc), crc); |
| 573 | goto bail; |
| 574 | } |
| 575 | } |
| 576 | break; |
| 577 | default: |
| 578 | printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n", |
| 579 | ref_offset(raw), je16_to_cpu(node->u.nodetype)); |
| 580 | goto bail; |
| 581 | } |
| 582 | |
| 583 | nraw = jffs2_alloc_raw_node_ref(); |
| 584 | if (!nraw) { |
| 585 | ret = -ENOMEM; |
| 586 | goto out_node; |
| 587 | } |
| 588 | |
| 589 | /* OK, all the CRCs are good; this node can just be copied as-is. */ |
| 590 | retry: |
| 591 | nraw->flash_offset = phys_ofs; |
| 592 | nraw->__totlen = rawlen; |
| 593 | nraw->next_phys = NULL; |
| 594 | |
| 595 | ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node); |
| 596 | |
| 597 | if (ret || (retlen != rawlen)) { |
| 598 | printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n", |
| 599 | rawlen, phys_ofs, ret, retlen); |
| 600 | if (retlen) { |
| 601 | /* Doesn't belong to any inode */ |
| 602 | nraw->next_in_ino = NULL; |
| 603 | |
| 604 | nraw->flash_offset |= REF_OBSOLETE; |
| 605 | jffs2_add_physical_node_ref(c, nraw); |
| 606 | jffs2_mark_node_obsolete(c, nraw); |
| 607 | } else { |
| 608 | printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", nraw->flash_offset); |
| 609 | jffs2_free_raw_node_ref(nraw); |
| 610 | } |
| 611 | if (!retried && (nraw = jffs2_alloc_raw_node_ref())) { |
| 612 | /* Try to reallocate space and retry */ |
| 613 | uint32_t dummy; |
| 614 | struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size]; |
| 615 | |
| 616 | retried = 1; |
| 617 | |
| 618 | D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n")); |
| 619 | |
| 620 | ACCT_SANITY_CHECK(c,jeb); |
| 621 | D1(ACCT_PARANOIA_CHECK(jeb)); |
| 622 | |
| 623 | ret = jffs2_reserve_space_gc(c, rawlen, &phys_ofs, &dummy); |
| 624 | |
| 625 | if (!ret) { |
| 626 | D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs)); |
| 627 | |
| 628 | ACCT_SANITY_CHECK(c,jeb); |
| 629 | D1(ACCT_PARANOIA_CHECK(jeb)); |
| 630 | |
| 631 | goto retry; |
| 632 | } |
| 633 | D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret)); |
| 634 | jffs2_free_raw_node_ref(nraw); |
| 635 | } |
| 636 | |
| 637 | jffs2_free_raw_node_ref(nraw); |
| 638 | if (!ret) |
| 639 | ret = -EIO; |
| 640 | goto out_node; |
| 641 | } |
| 642 | nraw->flash_offset |= REF_PRISTINE; |
| 643 | jffs2_add_physical_node_ref(c, nraw); |
| 644 | |
| 645 | /* Link into per-inode list. This is safe because of the ic |
| 646 | state being INO_STATE_GC. Note that if we're doing this |
| 647 | for an inode which is in-core, the 'nraw' pointer is then |
| 648 | going to be fetched from ic->nodes by our caller. */ |
| 649 | spin_lock(&c->erase_completion_lock); |
| 650 | nraw->next_in_ino = ic->nodes; |
| 651 | ic->nodes = nraw; |
| 652 | spin_unlock(&c->erase_completion_lock); |
| 653 | |
| 654 | jffs2_mark_node_obsolete(c, raw); |
| 655 | D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw))); |
| 656 | |
| 657 | out_node: |
| 658 | kfree(node); |
| 659 | return ret; |
| 660 | bail: |
| 661 | ret = -EBADFD; |
| 662 | goto out_node; |
| 663 | } |
| 664 | |
| 665 | static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| 666 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn) |
| 667 | { |
| 668 | struct jffs2_full_dnode *new_fn; |
| 669 | struct jffs2_raw_inode ri; |
| 670 | jint16_t dev; |
| 671 | char *mdata = NULL, mdatalen = 0; |
| 672 | uint32_t alloclen, phys_ofs; |
| 673 | int ret; |
| 674 | |
| 675 | if (S_ISBLK(JFFS2_F_I_MODE(f)) || |
| 676 | S_ISCHR(JFFS2_F_I_MODE(f)) ) { |
| 677 | /* For these, we don't actually need to read the old node */ |
| 678 | /* FIXME: for minor or major > 255. */ |
| 679 | dev = cpu_to_je16(((JFFS2_F_I_RDEV_MAJ(f) << 8) | |
| 680 | JFFS2_F_I_RDEV_MIN(f))); |
| 681 | mdata = (char *)&dev; |
| 682 | mdatalen = sizeof(dev); |
| 683 | D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen)); |
| 684 | } else if (S_ISLNK(JFFS2_F_I_MODE(f))) { |
| 685 | mdatalen = fn->size; |
| 686 | mdata = kmalloc(fn->size, GFP_KERNEL); |
| 687 | if (!mdata) { |
| 688 | printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n"); |
| 689 | return -ENOMEM; |
| 690 | } |
| 691 | ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen); |
| 692 | if (ret) { |
| 693 | printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret); |
| 694 | kfree(mdata); |
| 695 | return ret; |
| 696 | } |
| 697 | D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen)); |
| 698 | |
| 699 | } |
| 700 | |
| 701 | ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &phys_ofs, &alloclen); |
| 702 | if (ret) { |
| 703 | printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n", |
| 704 | sizeof(ri)+ mdatalen, ret); |
| 705 | goto out; |
| 706 | } |
| 707 | |
| 708 | memset(&ri, 0, sizeof(ri)); |
| 709 | ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); |
| 710 | ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE); |
| 711 | ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen); |
| 712 | ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4)); |
| 713 | |
| 714 | ri.ino = cpu_to_je32(f->inocache->ino); |
| 715 | ri.version = cpu_to_je32(++f->highest_version); |
| 716 | ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f)); |
| 717 | ri.uid = cpu_to_je16(JFFS2_F_I_UID(f)); |
| 718 | ri.gid = cpu_to_je16(JFFS2_F_I_GID(f)); |
| 719 | ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f)); |
| 720 | ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f)); |
| 721 | ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f)); |
| 722 | ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f)); |
| 723 | ri.offset = cpu_to_je32(0); |
| 724 | ri.csize = cpu_to_je32(mdatalen); |
| 725 | ri.dsize = cpu_to_je32(mdatalen); |
| 726 | ri.compr = JFFS2_COMPR_NONE; |
| 727 | ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8)); |
| 728 | ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen)); |
| 729 | |
| 730 | new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, phys_ofs, ALLOC_GC); |
| 731 | |
| 732 | if (IS_ERR(new_fn)) { |
| 733 | printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn)); |
| 734 | ret = PTR_ERR(new_fn); |
| 735 | goto out; |
| 736 | } |
| 737 | jffs2_mark_node_obsolete(c, fn->raw); |
| 738 | jffs2_free_full_dnode(fn); |
| 739 | f->metadata = new_fn; |
| 740 | out: |
| 741 | if (S_ISLNK(JFFS2_F_I_MODE(f))) |
| 742 | kfree(mdata); |
| 743 | return ret; |
| 744 | } |
| 745 | |
| 746 | static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| 747 | struct jffs2_inode_info *f, struct jffs2_full_dirent *fd) |
| 748 | { |
| 749 | struct jffs2_full_dirent *new_fd; |
| 750 | struct jffs2_raw_dirent rd; |
| 751 | uint32_t alloclen, phys_ofs; |
| 752 | int ret; |
| 753 | |
| 754 | rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); |
| 755 | rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT); |
| 756 | rd.nsize = strlen(fd->name); |
| 757 | rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize); |
| 758 | rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4)); |
| 759 | |
| 760 | rd.pino = cpu_to_je32(f->inocache->ino); |
| 761 | rd.version = cpu_to_je32(++f->highest_version); |
| 762 | rd.ino = cpu_to_je32(fd->ino); |
| 763 | rd.mctime = cpu_to_je32(max(JFFS2_F_I_MTIME(f), JFFS2_F_I_CTIME(f))); |
| 764 | rd.type = fd->type; |
| 765 | rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8)); |
| 766 | rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize)); |
| 767 | |
| 768 | ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &phys_ofs, &alloclen); |
| 769 | if (ret) { |
| 770 | printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n", |
| 771 | sizeof(rd)+rd.nsize, ret); |
| 772 | return ret; |
| 773 | } |
| 774 | new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, phys_ofs, ALLOC_GC); |
| 775 | |
| 776 | if (IS_ERR(new_fd)) { |
| 777 | printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd)); |
| 778 | return PTR_ERR(new_fd); |
| 779 | } |
| 780 | jffs2_add_fd_to_list(c, new_fd, &f->dents); |
| 781 | return 0; |
| 782 | } |
| 783 | |
| 784 | static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| 785 | struct jffs2_inode_info *f, struct jffs2_full_dirent *fd) |
| 786 | { |
| 787 | struct jffs2_full_dirent **fdp = &f->dents; |
| 788 | int found = 0; |
| 789 | |
| 790 | /* On a medium where we can't actually mark nodes obsolete |
| 791 | pernamently, such as NAND flash, we need to work out |
| 792 | whether this deletion dirent is still needed to actively |
| 793 | delete a 'real' dirent with the same name that's still |
| 794 | somewhere else on the flash. */ |
| 795 | if (!jffs2_can_mark_obsolete(c)) { |
| 796 | struct jffs2_raw_dirent *rd; |
| 797 | struct jffs2_raw_node_ref *raw; |
| 798 | int ret; |
| 799 | size_t retlen; |
| 800 | int name_len = strlen(fd->name); |
| 801 | uint32_t name_crc = crc32(0, fd->name, name_len); |
| 802 | uint32_t rawlen = ref_totlen(c, jeb, fd->raw); |
| 803 | |
| 804 | rd = kmalloc(rawlen, GFP_KERNEL); |
| 805 | if (!rd) |
| 806 | return -ENOMEM; |
| 807 | |
| 808 | /* Prevent the erase code from nicking the obsolete node refs while |
| 809 | we're looking at them. I really don't like this extra lock but |
| 810 | can't see any alternative. Suggestions on a postcard to... */ |
| 811 | down(&c->erase_free_sem); |
| 812 | |
| 813 | for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) { |
| 814 | |
| 815 | /* We only care about obsolete ones */ |
| 816 | if (!(ref_obsolete(raw))) |
| 817 | continue; |
| 818 | |
| 819 | /* Any dirent with the same name is going to have the same length... */ |
| 820 | if (ref_totlen(c, NULL, raw) != rawlen) |
| 821 | continue; |
| 822 | |
| 823 | /* Doesn't matter if there's one in the same erase block. We're going to |
| 824 | delete it too at the same time. */ |
Andrew Victor | 3be3667 | 2005-02-09 09:09:05 +0000 | [diff] [blame] | 825 | if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset)) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 826 | continue; |
| 827 | |
| 828 | D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw))); |
| 829 | |
| 830 | /* This is an obsolete node belonging to the same directory, and it's of the right |
| 831 | length. We need to take a closer look...*/ |
| 832 | ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd); |
| 833 | if (ret) { |
| 834 | printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw)); |
| 835 | /* If we can't read it, we don't need to continue to obsolete it. Continue */ |
| 836 | continue; |
| 837 | } |
| 838 | if (retlen != rawlen) { |
| 839 | printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n", |
| 840 | retlen, rawlen, ref_offset(raw)); |
| 841 | continue; |
| 842 | } |
| 843 | |
| 844 | if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT) |
| 845 | continue; |
| 846 | |
| 847 | /* If the name CRC doesn't match, skip */ |
| 848 | if (je32_to_cpu(rd->name_crc) != name_crc) |
| 849 | continue; |
| 850 | |
| 851 | /* If the name length doesn't match, or it's another deletion dirent, skip */ |
| 852 | if (rd->nsize != name_len || !je32_to_cpu(rd->ino)) |
| 853 | continue; |
| 854 | |
| 855 | /* OK, check the actual name now */ |
| 856 | if (memcmp(rd->name, fd->name, name_len)) |
| 857 | continue; |
| 858 | |
| 859 | /* OK. The name really does match. There really is still an older node on |
| 860 | the flash which our deletion dirent obsoletes. So we have to write out |
| 861 | a new deletion dirent to replace it */ |
| 862 | up(&c->erase_free_sem); |
| 863 | |
| 864 | D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n", |
| 865 | ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino))); |
| 866 | kfree(rd); |
| 867 | |
| 868 | return jffs2_garbage_collect_dirent(c, jeb, f, fd); |
| 869 | } |
| 870 | |
| 871 | up(&c->erase_free_sem); |
| 872 | kfree(rd); |
| 873 | } |
| 874 | |
| 875 | /* No need for it any more. Just mark it obsolete and remove it from the list */ |
| 876 | while (*fdp) { |
| 877 | if ((*fdp) == fd) { |
| 878 | found = 1; |
| 879 | *fdp = fd->next; |
| 880 | break; |
| 881 | } |
| 882 | fdp = &(*fdp)->next; |
| 883 | } |
| 884 | if (!found) { |
| 885 | printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino); |
| 886 | } |
| 887 | jffs2_mark_node_obsolete(c, fd->raw); |
| 888 | jffs2_free_full_dirent(fd); |
| 889 | return 0; |
| 890 | } |
| 891 | |
| 892 | static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| 893 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, |
| 894 | uint32_t start, uint32_t end) |
| 895 | { |
| 896 | struct jffs2_raw_inode ri; |
| 897 | struct jffs2_node_frag *frag; |
| 898 | struct jffs2_full_dnode *new_fn; |
| 899 | uint32_t alloclen, phys_ofs; |
| 900 | int ret; |
| 901 | |
| 902 | D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n", |
| 903 | f->inocache->ino, start, end)); |
| 904 | |
| 905 | memset(&ri, 0, sizeof(ri)); |
| 906 | |
| 907 | if(fn->frags > 1) { |
| 908 | size_t readlen; |
| 909 | uint32_t crc; |
| 910 | /* It's partially obsoleted by a later write. So we have to |
| 911 | write it out again with the _same_ version as before */ |
| 912 | ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri); |
| 913 | if (readlen != sizeof(ri) || ret) { |
| 914 | printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen); |
| 915 | goto fill; |
| 916 | } |
| 917 | if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) { |
| 918 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n", |
| 919 | ref_offset(fn->raw), |
| 920 | je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE); |
| 921 | return -EIO; |
| 922 | } |
| 923 | if (je32_to_cpu(ri.totlen) != sizeof(ri)) { |
| 924 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n", |
| 925 | ref_offset(fn->raw), |
| 926 | je32_to_cpu(ri.totlen), sizeof(ri)); |
| 927 | return -EIO; |
| 928 | } |
| 929 | crc = crc32(0, &ri, sizeof(ri)-8); |
| 930 | if (crc != je32_to_cpu(ri.node_crc)) { |
| 931 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n", |
| 932 | ref_offset(fn->raw), |
| 933 | je32_to_cpu(ri.node_crc), crc); |
| 934 | /* FIXME: We could possibly deal with this by writing new holes for each frag */ |
| 935 | printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n", |
| 936 | start, end, f->inocache->ino); |
| 937 | goto fill; |
| 938 | } |
| 939 | if (ri.compr != JFFS2_COMPR_ZERO) { |
| 940 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw)); |
| 941 | printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n", |
| 942 | start, end, f->inocache->ino); |
| 943 | goto fill; |
| 944 | } |
| 945 | } else { |
| 946 | fill: |
| 947 | ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); |
| 948 | ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE); |
| 949 | ri.totlen = cpu_to_je32(sizeof(ri)); |
| 950 | ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4)); |
| 951 | |
| 952 | ri.ino = cpu_to_je32(f->inocache->ino); |
| 953 | ri.version = cpu_to_je32(++f->highest_version); |
| 954 | ri.offset = cpu_to_je32(start); |
| 955 | ri.dsize = cpu_to_je32(end - start); |
| 956 | ri.csize = cpu_to_je32(0); |
| 957 | ri.compr = JFFS2_COMPR_ZERO; |
| 958 | } |
| 959 | ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f)); |
| 960 | ri.uid = cpu_to_je16(JFFS2_F_I_UID(f)); |
| 961 | ri.gid = cpu_to_je16(JFFS2_F_I_GID(f)); |
| 962 | ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f)); |
| 963 | ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f)); |
| 964 | ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f)); |
| 965 | ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f)); |
| 966 | ri.data_crc = cpu_to_je32(0); |
| 967 | ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8)); |
| 968 | |
| 969 | ret = jffs2_reserve_space_gc(c, sizeof(ri), &phys_ofs, &alloclen); |
| 970 | if (ret) { |
| 971 | printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n", |
| 972 | sizeof(ri), ret); |
| 973 | return ret; |
| 974 | } |
| 975 | new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, phys_ofs, ALLOC_GC); |
| 976 | |
| 977 | if (IS_ERR(new_fn)) { |
| 978 | printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn)); |
| 979 | return PTR_ERR(new_fn); |
| 980 | } |
| 981 | if (je32_to_cpu(ri.version) == f->highest_version) { |
| 982 | jffs2_add_full_dnode_to_inode(c, f, new_fn); |
| 983 | if (f->metadata) { |
| 984 | jffs2_mark_node_obsolete(c, f->metadata->raw); |
| 985 | jffs2_free_full_dnode(f->metadata); |
| 986 | f->metadata = NULL; |
| 987 | } |
| 988 | return 0; |
| 989 | } |
| 990 | |
| 991 | /* |
| 992 | * We should only get here in the case where the node we are |
| 993 | * replacing had more than one frag, so we kept the same version |
| 994 | * number as before. (Except in case of error -- see 'goto fill;' |
| 995 | * above.) |
| 996 | */ |
| 997 | D1(if(unlikely(fn->frags <= 1)) { |
| 998 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n", |
| 999 | fn->frags, je32_to_cpu(ri.version), f->highest_version, |
| 1000 | je32_to_cpu(ri.ino)); |
| 1001 | }); |
| 1002 | |
| 1003 | /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */ |
| 1004 | mark_ref_normal(new_fn->raw); |
| 1005 | |
| 1006 | for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs); |
| 1007 | frag; frag = frag_next(frag)) { |
| 1008 | if (frag->ofs > fn->size + fn->ofs) |
| 1009 | break; |
| 1010 | if (frag->node == fn) { |
| 1011 | frag->node = new_fn; |
| 1012 | new_fn->frags++; |
| 1013 | fn->frags--; |
| 1014 | } |
| 1015 | } |
| 1016 | if (fn->frags) { |
| 1017 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n"); |
| 1018 | BUG(); |
| 1019 | } |
| 1020 | if (!new_fn->frags) { |
| 1021 | printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n"); |
| 1022 | BUG(); |
| 1023 | } |
| 1024 | |
| 1025 | jffs2_mark_node_obsolete(c, fn->raw); |
| 1026 | jffs2_free_full_dnode(fn); |
| 1027 | |
| 1028 | return 0; |
| 1029 | } |
| 1030 | |
| 1031 | static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| 1032 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, |
| 1033 | uint32_t start, uint32_t end) |
| 1034 | { |
| 1035 | struct jffs2_full_dnode *new_fn; |
| 1036 | struct jffs2_raw_inode ri; |
| 1037 | uint32_t alloclen, phys_ofs, offset, orig_end, orig_start; |
| 1038 | int ret = 0; |
| 1039 | unsigned char *comprbuf = NULL, *writebuf; |
| 1040 | unsigned long pg; |
| 1041 | unsigned char *pg_ptr; |
| 1042 | |
| 1043 | memset(&ri, 0, sizeof(ri)); |
| 1044 | |
| 1045 | D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n", |
| 1046 | f->inocache->ino, start, end)); |
| 1047 | |
| 1048 | orig_end = end; |
| 1049 | orig_start = start; |
| 1050 | |
| 1051 | if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) { |
| 1052 | /* Attempt to do some merging. But only expand to cover logically |
| 1053 | adjacent frags if the block containing them is already considered |
| 1054 | to be dirty. Otherwise we end up with GC just going round in |
| 1055 | circles dirtying the nodes it already wrote out, especially |
| 1056 | on NAND where we have small eraseblocks and hence a much higher |
| 1057 | chance of nodes having to be split to cross boundaries. */ |
| 1058 | |
| 1059 | struct jffs2_node_frag *frag; |
| 1060 | uint32_t min, max; |
| 1061 | |
| 1062 | min = start & ~(PAGE_CACHE_SIZE-1); |
| 1063 | max = min + PAGE_CACHE_SIZE; |
| 1064 | |
| 1065 | frag = jffs2_lookup_node_frag(&f->fragtree, start); |
| 1066 | |
| 1067 | /* BUG_ON(!frag) but that'll happen anyway... */ |
| 1068 | |
| 1069 | BUG_ON(frag->ofs != start); |
| 1070 | |
| 1071 | /* First grow down... */ |
| 1072 | while((frag = frag_prev(frag)) && frag->ofs >= min) { |
| 1073 | |
| 1074 | /* If the previous frag doesn't even reach the beginning, there's |
| 1075 | excessive fragmentation. Just merge. */ |
| 1076 | if (frag->ofs > min) { |
| 1077 | D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n", |
| 1078 | frag->ofs, frag->ofs+frag->size)); |
| 1079 | start = frag->ofs; |
| 1080 | continue; |
| 1081 | } |
| 1082 | /* OK. This frag holds the first byte of the page. */ |
| 1083 | if (!frag->node || !frag->node->raw) { |
| 1084 | D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n", |
| 1085 | frag->ofs, frag->ofs+frag->size)); |
| 1086 | break; |
| 1087 | } else { |
| 1088 | |
| 1089 | /* OK, it's a frag which extends to the beginning of the page. Does it live |
| 1090 | in a block which is still considered clean? If so, don't obsolete it. |
| 1091 | If not, cover it anyway. */ |
| 1092 | |
| 1093 | struct jffs2_raw_node_ref *raw = frag->node->raw; |
| 1094 | struct jffs2_eraseblock *jeb; |
| 1095 | |
| 1096 | jeb = &c->blocks[raw->flash_offset / c->sector_size]; |
| 1097 | |
| 1098 | if (jeb == c->gcblock) { |
| 1099 | D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n", |
| 1100 | frag->ofs, frag->ofs+frag->size, ref_offset(raw))); |
| 1101 | start = frag->ofs; |
| 1102 | break; |
| 1103 | } |
| 1104 | if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) { |
| 1105 | D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n", |
| 1106 | frag->ofs, frag->ofs+frag->size, jeb->offset)); |
| 1107 | break; |
| 1108 | } |
| 1109 | |
| 1110 | D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n", |
| 1111 | frag->ofs, frag->ofs+frag->size, jeb->offset)); |
| 1112 | start = frag->ofs; |
| 1113 | break; |
| 1114 | } |
| 1115 | } |
| 1116 | |
| 1117 | /* ... then up */ |
| 1118 | |
| 1119 | /* Find last frag which is actually part of the node we're to GC. */ |
| 1120 | frag = jffs2_lookup_node_frag(&f->fragtree, end-1); |
| 1121 | |
| 1122 | while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) { |
| 1123 | |
| 1124 | /* If the previous frag doesn't even reach the beginning, there's lots |
| 1125 | of fragmentation. Just merge. */ |
| 1126 | if (frag->ofs+frag->size < max) { |
| 1127 | D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n", |
| 1128 | frag->ofs, frag->ofs+frag->size)); |
| 1129 | end = frag->ofs + frag->size; |
| 1130 | continue; |
| 1131 | } |
| 1132 | |
| 1133 | if (!frag->node || !frag->node->raw) { |
| 1134 | D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n", |
| 1135 | frag->ofs, frag->ofs+frag->size)); |
| 1136 | break; |
| 1137 | } else { |
| 1138 | |
| 1139 | /* OK, it's a frag which extends to the beginning of the page. Does it live |
| 1140 | in a block which is still considered clean? If so, don't obsolete it. |
| 1141 | If not, cover it anyway. */ |
| 1142 | |
| 1143 | struct jffs2_raw_node_ref *raw = frag->node->raw; |
| 1144 | struct jffs2_eraseblock *jeb; |
| 1145 | |
| 1146 | jeb = &c->blocks[raw->flash_offset / c->sector_size]; |
| 1147 | |
| 1148 | if (jeb == c->gcblock) { |
| 1149 | D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n", |
| 1150 | frag->ofs, frag->ofs+frag->size, ref_offset(raw))); |
| 1151 | end = frag->ofs + frag->size; |
| 1152 | break; |
| 1153 | } |
| 1154 | if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) { |
| 1155 | D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n", |
| 1156 | frag->ofs, frag->ofs+frag->size, jeb->offset)); |
| 1157 | break; |
| 1158 | } |
| 1159 | |
| 1160 | D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n", |
| 1161 | frag->ofs, frag->ofs+frag->size, jeb->offset)); |
| 1162 | end = frag->ofs + frag->size; |
| 1163 | break; |
| 1164 | } |
| 1165 | } |
| 1166 | D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n", |
| 1167 | orig_start, orig_end, start, end)); |
| 1168 | |
| 1169 | BUG_ON(end > JFFS2_F_I_SIZE(f)); |
| 1170 | BUG_ON(end < orig_end); |
| 1171 | BUG_ON(start > orig_start); |
| 1172 | } |
| 1173 | |
| 1174 | /* First, use readpage() to read the appropriate page into the page cache */ |
| 1175 | /* Q: What happens if we actually try to GC the _same_ page for which commit_write() |
| 1176 | * triggered garbage collection in the first place? |
| 1177 | * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the |
| 1178 | * page OK. We'll actually write it out again in commit_write, which is a little |
| 1179 | * suboptimal, but at least we're correct. |
| 1180 | */ |
| 1181 | pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg); |
| 1182 | |
| 1183 | if (IS_ERR(pg_ptr)) { |
| 1184 | printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr)); |
| 1185 | return PTR_ERR(pg_ptr); |
| 1186 | } |
| 1187 | |
| 1188 | offset = start; |
| 1189 | while(offset < orig_end) { |
| 1190 | uint32_t datalen; |
| 1191 | uint32_t cdatalen; |
| 1192 | uint16_t comprtype = JFFS2_COMPR_NONE; |
| 1193 | |
| 1194 | ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN, &phys_ofs, &alloclen); |
| 1195 | |
| 1196 | if (ret) { |
| 1197 | printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n", |
| 1198 | sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret); |
| 1199 | break; |
| 1200 | } |
| 1201 | cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset); |
| 1202 | datalen = end - offset; |
| 1203 | |
| 1204 | writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1)); |
| 1205 | |
| 1206 | comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen); |
| 1207 | |
| 1208 | ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); |
| 1209 | ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE); |
| 1210 | ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen); |
| 1211 | ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4)); |
| 1212 | |
| 1213 | ri.ino = cpu_to_je32(f->inocache->ino); |
| 1214 | ri.version = cpu_to_je32(++f->highest_version); |
| 1215 | ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f)); |
| 1216 | ri.uid = cpu_to_je16(JFFS2_F_I_UID(f)); |
| 1217 | ri.gid = cpu_to_je16(JFFS2_F_I_GID(f)); |
| 1218 | ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f)); |
| 1219 | ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f)); |
| 1220 | ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f)); |
| 1221 | ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f)); |
| 1222 | ri.offset = cpu_to_je32(offset); |
| 1223 | ri.csize = cpu_to_je32(cdatalen); |
| 1224 | ri.dsize = cpu_to_je32(datalen); |
| 1225 | ri.compr = comprtype & 0xff; |
| 1226 | ri.usercompr = (comprtype >> 8) & 0xff; |
| 1227 | ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8)); |
| 1228 | ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen)); |
| 1229 | |
| 1230 | new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, phys_ofs, ALLOC_GC); |
| 1231 | |
| 1232 | jffs2_free_comprbuf(comprbuf, writebuf); |
| 1233 | |
| 1234 | if (IS_ERR(new_fn)) { |
| 1235 | printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn)); |
| 1236 | ret = PTR_ERR(new_fn); |
| 1237 | break; |
| 1238 | } |
| 1239 | ret = jffs2_add_full_dnode_to_inode(c, f, new_fn); |
| 1240 | offset += datalen; |
| 1241 | if (f->metadata) { |
| 1242 | jffs2_mark_node_obsolete(c, f->metadata->raw); |
| 1243 | jffs2_free_full_dnode(f->metadata); |
| 1244 | f->metadata = NULL; |
| 1245 | } |
| 1246 | } |
| 1247 | |
| 1248 | jffs2_gc_release_page(c, pg_ptr, &pg); |
| 1249 | return ret; |
| 1250 | } |
| 1251 | |