blob: 44fa7379098f3ded8958f2c158d67672cead4104 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
4 * Copyright (C) 2001-2003 Red Hat, Inc.
5 *
6 * Created by David Woodhouse <dwmw2@infradead.org>
7 *
8 * For licensing information, see the file 'LICENCE' in this directory.
9 *
Artem B. Bityuckiya42163d2005-03-20 17:45:29 +000010 * $Id: gc.c,v 1.146 2005/03/20 17:45:25 dedekind Exp $
Linus Torvalds1da177e2005-04-16 15:20:36 -070011 *
12 */
13
14#include <linux/kernel.h>
15#include <linux/mtd/mtd.h>
16#include <linux/slab.h>
17#include <linux/pagemap.h>
18#include <linux/crc32.h>
19#include <linux/compiler.h>
20#include <linux/stat.h>
21#include "nodelist.h"
22#include "compr.h"
23
24static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
25 struct jffs2_inode_cache *ic,
26 struct jffs2_raw_node_ref *raw);
27static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
28 struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
29static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
30 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
31static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
32 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
33static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
34 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
35 uint32_t start, uint32_t end);
36static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
37 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
38 uint32_t start, uint32_t end);
39static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
40 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
41
42/* Called with erase_completion_lock held */
43static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
44{
45 struct jffs2_eraseblock *ret;
46 struct list_head *nextlist = NULL;
47 int n = jiffies % 128;
48
49 /* Pick an eraseblock to garbage collect next. This is where we'll
50 put the clever wear-levelling algorithms. Eventually. */
51 /* We possibly want to favour the dirtier blocks more when the
52 number of free blocks is low. */
Artem B. Bityuckiya42163d2005-03-20 17:45:29 +000053again:
Linus Torvalds1da177e2005-04-16 15:20:36 -070054 if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
55 D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));
56 nextlist = &c->bad_used_list;
57 } else if (n < 50 && !list_empty(&c->erasable_list)) {
58 /* Note that most of them will have gone directly to be erased.
59 So don't favour the erasable_list _too_ much. */
60 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n"));
61 nextlist = &c->erasable_list;
62 } else if (n < 110 && !list_empty(&c->very_dirty_list)) {
63 /* Most of the time, pick one off the very_dirty list */
64 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n"));
65 nextlist = &c->very_dirty_list;
66 } else if (n < 126 && !list_empty(&c->dirty_list)) {
67 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n"));
68 nextlist = &c->dirty_list;
69 } else if (!list_empty(&c->clean_list)) {
70 D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n"));
71 nextlist = &c->clean_list;
72 } else if (!list_empty(&c->dirty_list)) {
73 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n"));
74
75 nextlist = &c->dirty_list;
76 } else if (!list_empty(&c->very_dirty_list)) {
77 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n"));
78 nextlist = &c->very_dirty_list;
79 } else if (!list_empty(&c->erasable_list)) {
80 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n"));
81
82 nextlist = &c->erasable_list;
Artem B. Bityuckiya42163d2005-03-20 17:45:29 +000083 } else if (!list_empty(&c->erasable_pending_wbuf_list)) {
84 /* There are blocks are wating for the wbuf sync */
85 D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n"));
86 jffs2_flush_wbuf_pad(c);
87 goto again;
Linus Torvalds1da177e2005-04-16 15:20:36 -070088 } else {
89 /* Eep. All were empty */
90 D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n"));
91 return NULL;
92 }
93
94 ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
95 list_del(&ret->list);
96 c->gcblock = ret;
97 ret->gc_node = ret->first_node;
98 if (!ret->gc_node) {
99 printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
100 BUG();
101 }
102
103 /* Have we accidentally picked a clean block with wasted space ? */
104 if (ret->wasted_size) {
105 D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size));
106 ret->dirty_size += ret->wasted_size;
107 c->wasted_size -= ret->wasted_size;
108 c->dirty_size += ret->wasted_size;
109 ret->wasted_size = 0;
110 }
111
112 D2(jffs2_dump_block_lists(c));
113 return ret;
114}
115
116/* jffs2_garbage_collect_pass
117 * Make a single attempt to progress GC. Move one node, and possibly
118 * start erasing one eraseblock.
119 */
120int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
121{
122 struct jffs2_inode_info *f;
123 struct jffs2_inode_cache *ic;
124 struct jffs2_eraseblock *jeb;
125 struct jffs2_raw_node_ref *raw;
126 int ret = 0, inum, nlink;
127
128 if (down_interruptible(&c->alloc_sem))
129 return -EINTR;
130
131 for (;;) {
132 spin_lock(&c->erase_completion_lock);
133 if (!c->unchecked_size)
134 break;
135
136 /* We can't start doing GC yet. We haven't finished checking
137 the node CRCs etc. Do it now. */
138
139 /* checked_ino is protected by the alloc_sem */
140 if (c->checked_ino > c->highest_ino) {
141 printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n",
142 c->unchecked_size);
143 D2(jffs2_dump_block_lists(c));
144 spin_unlock(&c->erase_completion_lock);
145 BUG();
146 }
147
148 spin_unlock(&c->erase_completion_lock);
149
150 spin_lock(&c->inocache_lock);
151
152 ic = jffs2_get_ino_cache(c, c->checked_ino++);
153
154 if (!ic) {
155 spin_unlock(&c->inocache_lock);
156 continue;
157 }
158
159 if (!ic->nlink) {
160 D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink zero\n",
161 ic->ino));
162 spin_unlock(&c->inocache_lock);
163 continue;
164 }
165 switch(ic->state) {
166 case INO_STATE_CHECKEDABSENT:
167 case INO_STATE_PRESENT:
168 D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino));
169 spin_unlock(&c->inocache_lock);
170 continue;
171
172 case INO_STATE_GC:
173 case INO_STATE_CHECKING:
174 printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state);
175 spin_unlock(&c->inocache_lock);
176 BUG();
177
178 case INO_STATE_READING:
179 /* We need to wait for it to finish, lest we move on
180 and trigger the BUG() above while we haven't yet
181 finished checking all its nodes */
182 D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino));
183 up(&c->alloc_sem);
184 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
185 return 0;
186
187 default:
188 BUG();
189
190 case INO_STATE_UNCHECKED:
191 ;
192 }
193 ic->state = INO_STATE_CHECKING;
194 spin_unlock(&c->inocache_lock);
195
196 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino));
197
198 ret = jffs2_do_crccheck_inode(c, ic);
199 if (ret)
200 printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino);
201
202 jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
203 up(&c->alloc_sem);
204 return ret;
205 }
206
207 /* First, work out which block we're garbage-collecting */
208 jeb = c->gcblock;
209
210 if (!jeb)
211 jeb = jffs2_find_gc_block(c);
212
213 if (!jeb) {
214 D1 (printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n"));
215 spin_unlock(&c->erase_completion_lock);
216 up(&c->alloc_sem);
217 return -EIO;
218 }
219
220 D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size));
221 D1(if (c->nextblock)
222 printk(KERN_DEBUG "Nextblock at %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
223
224 if (!jeb->used_size) {
225 up(&c->alloc_sem);
226 goto eraseit;
227 }
228
229 raw = jeb->gc_node;
230
231 while(ref_obsolete(raw)) {
232 D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw)));
233 raw = raw->next_phys;
234 if (unlikely(!raw)) {
235 printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");
236 printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
237 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);
238 jeb->gc_node = raw;
239 spin_unlock(&c->erase_completion_lock);
240 up(&c->alloc_sem);
241 BUG();
242 }
243 }
244 jeb->gc_node = raw;
245
246 D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw)));
247
248 if (!raw->next_in_ino) {
249 /* Inode-less node. Clean marker, snapshot or something like that */
250 /* FIXME: If it's something that needs to be copied, including something
251 we don't grok that has JFFS2_NODETYPE_RWCOMPAT_COPY, we should do so */
252 spin_unlock(&c->erase_completion_lock);
253 jffs2_mark_node_obsolete(c, raw);
254 up(&c->alloc_sem);
255 goto eraseit_lock;
256 }
257
258 ic = jffs2_raw_ref_to_ic(raw);
259
260 /* We need to hold the inocache. Either the erase_completion_lock or
261 the inocache_lock are sufficient; we trade down since the inocache_lock
262 causes less contention. */
263 spin_lock(&c->inocache_lock);
264
265 spin_unlock(&c->erase_completion_lock);
266
267 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino));
268
269 /* Three possibilities:
270 1. Inode is already in-core. We must iget it and do proper
271 updating to its fragtree, etc.
272 2. Inode is not in-core, node is REF_PRISTINE. We lock the
273 inocache to prevent a read_inode(), copy the node intact.
274 3. Inode is not in-core, node is not pristine. We must iget()
275 and take the slow path.
276 */
277
278 switch(ic->state) {
279 case INO_STATE_CHECKEDABSENT:
280 /* It's been checked, but it's not currently in-core.
281 We can just copy any pristine nodes, but have
282 to prevent anyone else from doing read_inode() while
283 we're at it, so we set the state accordingly */
284 if (ref_flags(raw) == REF_PRISTINE)
285 ic->state = INO_STATE_GC;
286 else {
287 D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
288 ic->ino));
289 }
290 break;
291
292 case INO_STATE_PRESENT:
293 /* It's in-core. GC must iget() it. */
294 break;
295
296 case INO_STATE_UNCHECKED:
297 case INO_STATE_CHECKING:
298 case INO_STATE_GC:
299 /* Should never happen. We should have finished checking
300 by the time we actually start doing any GC, and since
301 we're holding the alloc_sem, no other garbage collection
302 can happen.
303 */
304 printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
305 ic->ino, ic->state);
306 up(&c->alloc_sem);
307 spin_unlock(&c->inocache_lock);
308 BUG();
309
310 case INO_STATE_READING:
311 /* Someone's currently trying to read it. We must wait for
312 them to finish and then go through the full iget() route
313 to do the GC. However, sometimes read_inode() needs to get
314 the alloc_sem() (for marking nodes invalid) so we must
315 drop the alloc_sem before sleeping. */
316
317 up(&c->alloc_sem);
318 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n",
319 ic->ino, ic->state));
320 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
321 /* And because we dropped the alloc_sem we must start again from the
322 beginning. Ponder chance of livelock here -- we're returning success
323 without actually making any progress.
324
325 Q: What are the chances that the inode is back in INO_STATE_READING
326 again by the time we next enter this function? And that this happens
327 enough times to cause a real delay?
328
329 A: Small enough that I don't care :)
330 */
331 return 0;
332 }
333
334 /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
335 node intact, and we don't have to muck about with the fragtree etc.
336 because we know it's not in-core. If it _was_ in-core, we go through
337 all the iget() crap anyway */
338
339 if (ic->state == INO_STATE_GC) {
340 spin_unlock(&c->inocache_lock);
341
342 ret = jffs2_garbage_collect_pristine(c, ic, raw);
343
344 spin_lock(&c->inocache_lock);
345 ic->state = INO_STATE_CHECKEDABSENT;
346 wake_up(&c->inocache_wq);
347
348 if (ret != -EBADFD) {
349 spin_unlock(&c->inocache_lock);
350 goto release_sem;
351 }
352
353 /* Fall through if it wanted us to, with inocache_lock held */
354 }
355
356 /* Prevent the fairly unlikely race where the gcblock is
357 entirely obsoleted by the final close of a file which had
358 the only valid nodes in the block, followed by erasure,
359 followed by freeing of the ic because the erased block(s)
360 held _all_ the nodes of that inode.... never been seen but
361 it's vaguely possible. */
362
363 inum = ic->ino;
364 nlink = ic->nlink;
365 spin_unlock(&c->inocache_lock);
366
367 f = jffs2_gc_fetch_inode(c, inum, nlink);
368 if (IS_ERR(f)) {
369 ret = PTR_ERR(f);
370 goto release_sem;
371 }
372 if (!f) {
373 ret = 0;
374 goto release_sem;
375 }
376
377 ret = jffs2_garbage_collect_live(c, jeb, raw, f);
378
379 jffs2_gc_release_inode(c, f);
380
381 release_sem:
382 up(&c->alloc_sem);
383
384 eraseit_lock:
385 /* If we've finished this block, start it erasing */
386 spin_lock(&c->erase_completion_lock);
387
388 eraseit:
389 if (c->gcblock && !c->gcblock->used_size) {
390 D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));
391 /* We're GC'ing an empty block? */
392 list_add_tail(&c->gcblock->list, &c->erase_pending_list);
393 c->gcblock = NULL;
394 c->nr_erasing_blocks++;
395 jffs2_erase_pending_trigger(c);
396 }
397 spin_unlock(&c->erase_completion_lock);
398
399 return ret;
400}
401
402static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
403 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
404{
405 struct jffs2_node_frag *frag;
406 struct jffs2_full_dnode *fn = NULL;
407 struct jffs2_full_dirent *fd;
408 uint32_t start = 0, end = 0, nrfrags = 0;
409 int ret = 0;
410
411 down(&f->sem);
412
413 /* Now we have the lock for this inode. Check that it's still the one at the head
414 of the list. */
415
416 spin_lock(&c->erase_completion_lock);
417
418 if (c->gcblock != jeb) {
419 spin_unlock(&c->erase_completion_lock);
420 D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n"));
421 goto upnout;
422 }
423 if (ref_obsolete(raw)) {
424 spin_unlock(&c->erase_completion_lock);
425 D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n"));
426 /* They'll call again */
427 goto upnout;
428 }
429 spin_unlock(&c->erase_completion_lock);
430
431 /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
432 if (f->metadata && f->metadata->raw == raw) {
433 fn = f->metadata;
434 ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
435 goto upnout;
436 }
437
438 /* FIXME. Read node and do lookup? */
439 for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
440 if (frag->node && frag->node->raw == raw) {
441 fn = frag->node;
442 end = frag->ofs + frag->size;
443 if (!nrfrags++)
444 start = frag->ofs;
445 if (nrfrags == frag->node->frags)
446 break; /* We've found them all */
447 }
448 }
449 if (fn) {
450 if (ref_flags(raw) == REF_PRISTINE) {
451 ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
452 if (!ret) {
453 /* Urgh. Return it sensibly. */
454 frag->node->raw = f->inocache->nodes;
455 }
456 if (ret != -EBADFD)
457 goto upnout;
458 }
459 /* We found a datanode. Do the GC */
460 if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
461 /* It crosses a page boundary. Therefore, it must be a hole. */
462 ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
463 } else {
464 /* It could still be a hole. But we GC the page this way anyway */
465 ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
466 }
467 goto upnout;
468 }
469
470 /* Wasn't a dnode. Try dirent */
471 for (fd = f->dents; fd; fd=fd->next) {
472 if (fd->raw == raw)
473 break;
474 }
475
476 if (fd && fd->ino) {
477 ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
478 } else if (fd) {
479 ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
480 } else {
481 printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n",
482 ref_offset(raw), f->inocache->ino);
483 if (ref_obsolete(raw)) {
484 printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");
485 } else {
486 ret = -EIO;
487 }
488 }
489 upnout:
490 up(&f->sem);
491
492 return ret;
493}
494
495static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
496 struct jffs2_inode_cache *ic,
497 struct jffs2_raw_node_ref *raw)
498{
499 union jffs2_node_union *node;
500 struct jffs2_raw_node_ref *nraw;
501 size_t retlen;
502 int ret;
503 uint32_t phys_ofs, alloclen;
504 uint32_t crc, rawlen;
505 int retried = 0;
506
507 D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw)));
508
509 rawlen = ref_totlen(c, c->gcblock, raw);
510
511 /* Ask for a small amount of space (or the totlen if smaller) because we
512 don't want to force wastage of the end of a block if splitting would
513 work. */
514 ret = jffs2_reserve_space_gc(c, min_t(uint32_t, sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN,
515 rawlen), &phys_ofs, &alloclen);
516 if (ret)
517 return ret;
518
519 if (alloclen < rawlen) {
520 /* Doesn't fit untouched. We'll go the old route and split it */
521 return -EBADFD;
522 }
523
524 node = kmalloc(rawlen, GFP_KERNEL);
525 if (!node)
526 return -ENOMEM;
527
528 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
529 if (!ret && retlen != rawlen)
530 ret = -EIO;
531 if (ret)
532 goto out_node;
533
534 crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
535 if (je32_to_cpu(node->u.hdr_crc) != crc) {
536 printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
537 ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
538 goto bail;
539 }
540
541 switch(je16_to_cpu(node->u.nodetype)) {
542 case JFFS2_NODETYPE_INODE:
543 crc = crc32(0, node, sizeof(node->i)-8);
544 if (je32_to_cpu(node->i.node_crc) != crc) {
545 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
546 ref_offset(raw), je32_to_cpu(node->i.node_crc), crc);
547 goto bail;
548 }
549
550 if (je32_to_cpu(node->i.dsize)) {
551 crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
552 if (je32_to_cpu(node->i.data_crc) != crc) {
553 printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
554 ref_offset(raw), je32_to_cpu(node->i.data_crc), crc);
555 goto bail;
556 }
557 }
558 break;
559
560 case JFFS2_NODETYPE_DIRENT:
561 crc = crc32(0, node, sizeof(node->d)-8);
562 if (je32_to_cpu(node->d.node_crc) != crc) {
563 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
564 ref_offset(raw), je32_to_cpu(node->d.node_crc), crc);
565 goto bail;
566 }
567
568 if (node->d.nsize) {
569 crc = crc32(0, node->d.name, node->d.nsize);
570 if (je32_to_cpu(node->d.name_crc) != crc) {
571 printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent ode at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
572 ref_offset(raw), je32_to_cpu(node->d.name_crc), crc);
573 goto bail;
574 }
575 }
576 break;
577 default:
578 printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
579 ref_offset(raw), je16_to_cpu(node->u.nodetype));
580 goto bail;
581 }
582
583 nraw = jffs2_alloc_raw_node_ref();
584 if (!nraw) {
585 ret = -ENOMEM;
586 goto out_node;
587 }
588
589 /* OK, all the CRCs are good; this node can just be copied as-is. */
590 retry:
591 nraw->flash_offset = phys_ofs;
592 nraw->__totlen = rawlen;
593 nraw->next_phys = NULL;
594
595 ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
596
597 if (ret || (retlen != rawlen)) {
598 printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
599 rawlen, phys_ofs, ret, retlen);
600 if (retlen) {
601 /* Doesn't belong to any inode */
602 nraw->next_in_ino = NULL;
603
604 nraw->flash_offset |= REF_OBSOLETE;
605 jffs2_add_physical_node_ref(c, nraw);
606 jffs2_mark_node_obsolete(c, nraw);
607 } else {
608 printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", nraw->flash_offset);
609 jffs2_free_raw_node_ref(nraw);
610 }
611 if (!retried && (nraw = jffs2_alloc_raw_node_ref())) {
612 /* Try to reallocate space and retry */
613 uint32_t dummy;
614 struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
615
616 retried = 1;
617
618 D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n"));
619
620 ACCT_SANITY_CHECK(c,jeb);
621 D1(ACCT_PARANOIA_CHECK(jeb));
622
623 ret = jffs2_reserve_space_gc(c, rawlen, &phys_ofs, &dummy);
624
625 if (!ret) {
626 D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs));
627
628 ACCT_SANITY_CHECK(c,jeb);
629 D1(ACCT_PARANOIA_CHECK(jeb));
630
631 goto retry;
632 }
633 D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret));
634 jffs2_free_raw_node_ref(nraw);
635 }
636
637 jffs2_free_raw_node_ref(nraw);
638 if (!ret)
639 ret = -EIO;
640 goto out_node;
641 }
642 nraw->flash_offset |= REF_PRISTINE;
643 jffs2_add_physical_node_ref(c, nraw);
644
645 /* Link into per-inode list. This is safe because of the ic
646 state being INO_STATE_GC. Note that if we're doing this
647 for an inode which is in-core, the 'nraw' pointer is then
648 going to be fetched from ic->nodes by our caller. */
649 spin_lock(&c->erase_completion_lock);
650 nraw->next_in_ino = ic->nodes;
651 ic->nodes = nraw;
652 spin_unlock(&c->erase_completion_lock);
653
654 jffs2_mark_node_obsolete(c, raw);
655 D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw)));
656
657 out_node:
658 kfree(node);
659 return ret;
660 bail:
661 ret = -EBADFD;
662 goto out_node;
663}
664
665static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
666 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
667{
668 struct jffs2_full_dnode *new_fn;
669 struct jffs2_raw_inode ri;
670 jint16_t dev;
671 char *mdata = NULL, mdatalen = 0;
672 uint32_t alloclen, phys_ofs;
673 int ret;
674
675 if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
676 S_ISCHR(JFFS2_F_I_MODE(f)) ) {
677 /* For these, we don't actually need to read the old node */
678 /* FIXME: for minor or major > 255. */
679 dev = cpu_to_je16(((JFFS2_F_I_RDEV_MAJ(f) << 8) |
680 JFFS2_F_I_RDEV_MIN(f)));
681 mdata = (char *)&dev;
682 mdatalen = sizeof(dev);
683 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen));
684 } else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
685 mdatalen = fn->size;
686 mdata = kmalloc(fn->size, GFP_KERNEL);
687 if (!mdata) {
688 printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
689 return -ENOMEM;
690 }
691 ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
692 if (ret) {
693 printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);
694 kfree(mdata);
695 return ret;
696 }
697 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen));
698
699 }
700
701 ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &phys_ofs, &alloclen);
702 if (ret) {
703 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
704 sizeof(ri)+ mdatalen, ret);
705 goto out;
706 }
707
708 memset(&ri, 0, sizeof(ri));
709 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
710 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
711 ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
712 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
713
714 ri.ino = cpu_to_je32(f->inocache->ino);
715 ri.version = cpu_to_je32(++f->highest_version);
716 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
717 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
718 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
719 ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
720 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
721 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
722 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
723 ri.offset = cpu_to_je32(0);
724 ri.csize = cpu_to_je32(mdatalen);
725 ri.dsize = cpu_to_je32(mdatalen);
726 ri.compr = JFFS2_COMPR_NONE;
727 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
728 ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
729
730 new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, phys_ofs, ALLOC_GC);
731
732 if (IS_ERR(new_fn)) {
733 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
734 ret = PTR_ERR(new_fn);
735 goto out;
736 }
737 jffs2_mark_node_obsolete(c, fn->raw);
738 jffs2_free_full_dnode(fn);
739 f->metadata = new_fn;
740 out:
741 if (S_ISLNK(JFFS2_F_I_MODE(f)))
742 kfree(mdata);
743 return ret;
744}
745
746static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
747 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
748{
749 struct jffs2_full_dirent *new_fd;
750 struct jffs2_raw_dirent rd;
751 uint32_t alloclen, phys_ofs;
752 int ret;
753
754 rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
755 rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
756 rd.nsize = strlen(fd->name);
757 rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
758 rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
759
760 rd.pino = cpu_to_je32(f->inocache->ino);
761 rd.version = cpu_to_je32(++f->highest_version);
762 rd.ino = cpu_to_je32(fd->ino);
763 rd.mctime = cpu_to_je32(max(JFFS2_F_I_MTIME(f), JFFS2_F_I_CTIME(f)));
764 rd.type = fd->type;
765 rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
766 rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
767
768 ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &phys_ofs, &alloclen);
769 if (ret) {
770 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
771 sizeof(rd)+rd.nsize, ret);
772 return ret;
773 }
774 new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, phys_ofs, ALLOC_GC);
775
776 if (IS_ERR(new_fd)) {
777 printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd));
778 return PTR_ERR(new_fd);
779 }
780 jffs2_add_fd_to_list(c, new_fd, &f->dents);
781 return 0;
782}
783
784static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
785 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
786{
787 struct jffs2_full_dirent **fdp = &f->dents;
788 int found = 0;
789
790 /* On a medium where we can't actually mark nodes obsolete
791 pernamently, such as NAND flash, we need to work out
792 whether this deletion dirent is still needed to actively
793 delete a 'real' dirent with the same name that's still
794 somewhere else on the flash. */
795 if (!jffs2_can_mark_obsolete(c)) {
796 struct jffs2_raw_dirent *rd;
797 struct jffs2_raw_node_ref *raw;
798 int ret;
799 size_t retlen;
800 int name_len = strlen(fd->name);
801 uint32_t name_crc = crc32(0, fd->name, name_len);
802 uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
803
804 rd = kmalloc(rawlen, GFP_KERNEL);
805 if (!rd)
806 return -ENOMEM;
807
808 /* Prevent the erase code from nicking the obsolete node refs while
809 we're looking at them. I really don't like this extra lock but
810 can't see any alternative. Suggestions on a postcard to... */
811 down(&c->erase_free_sem);
812
813 for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
814
815 /* We only care about obsolete ones */
816 if (!(ref_obsolete(raw)))
817 continue;
818
819 /* Any dirent with the same name is going to have the same length... */
820 if (ref_totlen(c, NULL, raw) != rawlen)
821 continue;
822
823 /* Doesn't matter if there's one in the same erase block. We're going to
824 delete it too at the same time. */
Andrew Victor3be36672005-02-09 09:09:05 +0000825 if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700826 continue;
827
828 D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw)));
829
830 /* This is an obsolete node belonging to the same directory, and it's of the right
831 length. We need to take a closer look...*/
832 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
833 if (ret) {
834 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw));
835 /* If we can't read it, we don't need to continue to obsolete it. Continue */
836 continue;
837 }
838 if (retlen != rawlen) {
839 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
840 retlen, rawlen, ref_offset(raw));
841 continue;
842 }
843
844 if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
845 continue;
846
847 /* If the name CRC doesn't match, skip */
848 if (je32_to_cpu(rd->name_crc) != name_crc)
849 continue;
850
851 /* If the name length doesn't match, or it's another deletion dirent, skip */
852 if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
853 continue;
854
855 /* OK, check the actual name now */
856 if (memcmp(rd->name, fd->name, name_len))
857 continue;
858
859 /* OK. The name really does match. There really is still an older node on
860 the flash which our deletion dirent obsoletes. So we have to write out
861 a new deletion dirent to replace it */
862 up(&c->erase_free_sem);
863
864 D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
865 ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino)));
866 kfree(rd);
867
868 return jffs2_garbage_collect_dirent(c, jeb, f, fd);
869 }
870
871 up(&c->erase_free_sem);
872 kfree(rd);
873 }
874
875 /* No need for it any more. Just mark it obsolete and remove it from the list */
876 while (*fdp) {
877 if ((*fdp) == fd) {
878 found = 1;
879 *fdp = fd->next;
880 break;
881 }
882 fdp = &(*fdp)->next;
883 }
884 if (!found) {
885 printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino);
886 }
887 jffs2_mark_node_obsolete(c, fd->raw);
888 jffs2_free_full_dirent(fd);
889 return 0;
890}
891
892static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
893 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
894 uint32_t start, uint32_t end)
895{
896 struct jffs2_raw_inode ri;
897 struct jffs2_node_frag *frag;
898 struct jffs2_full_dnode *new_fn;
899 uint32_t alloclen, phys_ofs;
900 int ret;
901
902 D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
903 f->inocache->ino, start, end));
904
905 memset(&ri, 0, sizeof(ri));
906
907 if(fn->frags > 1) {
908 size_t readlen;
909 uint32_t crc;
910 /* It's partially obsoleted by a later write. So we have to
911 write it out again with the _same_ version as before */
912 ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
913 if (readlen != sizeof(ri) || ret) {
914 printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen);
915 goto fill;
916 }
917 if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
918 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
919 ref_offset(fn->raw),
920 je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
921 return -EIO;
922 }
923 if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
924 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
925 ref_offset(fn->raw),
926 je32_to_cpu(ri.totlen), sizeof(ri));
927 return -EIO;
928 }
929 crc = crc32(0, &ri, sizeof(ri)-8);
930 if (crc != je32_to_cpu(ri.node_crc)) {
931 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
932 ref_offset(fn->raw),
933 je32_to_cpu(ri.node_crc), crc);
934 /* FIXME: We could possibly deal with this by writing new holes for each frag */
935 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
936 start, end, f->inocache->ino);
937 goto fill;
938 }
939 if (ri.compr != JFFS2_COMPR_ZERO) {
940 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw));
941 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
942 start, end, f->inocache->ino);
943 goto fill;
944 }
945 } else {
946 fill:
947 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
948 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
949 ri.totlen = cpu_to_je32(sizeof(ri));
950 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
951
952 ri.ino = cpu_to_je32(f->inocache->ino);
953 ri.version = cpu_to_je32(++f->highest_version);
954 ri.offset = cpu_to_je32(start);
955 ri.dsize = cpu_to_je32(end - start);
956 ri.csize = cpu_to_je32(0);
957 ri.compr = JFFS2_COMPR_ZERO;
958 }
959 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
960 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
961 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
962 ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
963 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
964 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
965 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
966 ri.data_crc = cpu_to_je32(0);
967 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
968
969 ret = jffs2_reserve_space_gc(c, sizeof(ri), &phys_ofs, &alloclen);
970 if (ret) {
971 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
972 sizeof(ri), ret);
973 return ret;
974 }
975 new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, phys_ofs, ALLOC_GC);
976
977 if (IS_ERR(new_fn)) {
978 printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn));
979 return PTR_ERR(new_fn);
980 }
981 if (je32_to_cpu(ri.version) == f->highest_version) {
982 jffs2_add_full_dnode_to_inode(c, f, new_fn);
983 if (f->metadata) {
984 jffs2_mark_node_obsolete(c, f->metadata->raw);
985 jffs2_free_full_dnode(f->metadata);
986 f->metadata = NULL;
987 }
988 return 0;
989 }
990
991 /*
992 * We should only get here in the case where the node we are
993 * replacing had more than one frag, so we kept the same version
994 * number as before. (Except in case of error -- see 'goto fill;'
995 * above.)
996 */
997 D1(if(unlikely(fn->frags <= 1)) {
998 printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
999 fn->frags, je32_to_cpu(ri.version), f->highest_version,
1000 je32_to_cpu(ri.ino));
1001 });
1002
1003 /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
1004 mark_ref_normal(new_fn->raw);
1005
1006 for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
1007 frag; frag = frag_next(frag)) {
1008 if (frag->ofs > fn->size + fn->ofs)
1009 break;
1010 if (frag->node == fn) {
1011 frag->node = new_fn;
1012 new_fn->frags++;
1013 fn->frags--;
1014 }
1015 }
1016 if (fn->frags) {
1017 printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n");
1018 BUG();
1019 }
1020 if (!new_fn->frags) {
1021 printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n");
1022 BUG();
1023 }
1024
1025 jffs2_mark_node_obsolete(c, fn->raw);
1026 jffs2_free_full_dnode(fn);
1027
1028 return 0;
1029}
1030
1031static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1032 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1033 uint32_t start, uint32_t end)
1034{
1035 struct jffs2_full_dnode *new_fn;
1036 struct jffs2_raw_inode ri;
1037 uint32_t alloclen, phys_ofs, offset, orig_end, orig_start;
1038 int ret = 0;
1039 unsigned char *comprbuf = NULL, *writebuf;
1040 unsigned long pg;
1041 unsigned char *pg_ptr;
1042
1043 memset(&ri, 0, sizeof(ri));
1044
1045 D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1046 f->inocache->ino, start, end));
1047
1048 orig_end = end;
1049 orig_start = start;
1050
1051 if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
1052 /* Attempt to do some merging. But only expand to cover logically
1053 adjacent frags if the block containing them is already considered
1054 to be dirty. Otherwise we end up with GC just going round in
1055 circles dirtying the nodes it already wrote out, especially
1056 on NAND where we have small eraseblocks and hence a much higher
1057 chance of nodes having to be split to cross boundaries. */
1058
1059 struct jffs2_node_frag *frag;
1060 uint32_t min, max;
1061
1062 min = start & ~(PAGE_CACHE_SIZE-1);
1063 max = min + PAGE_CACHE_SIZE;
1064
1065 frag = jffs2_lookup_node_frag(&f->fragtree, start);
1066
1067 /* BUG_ON(!frag) but that'll happen anyway... */
1068
1069 BUG_ON(frag->ofs != start);
1070
1071 /* First grow down... */
1072 while((frag = frag_prev(frag)) && frag->ofs >= min) {
1073
1074 /* If the previous frag doesn't even reach the beginning, there's
1075 excessive fragmentation. Just merge. */
1076 if (frag->ofs > min) {
1077 D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n",
1078 frag->ofs, frag->ofs+frag->size));
1079 start = frag->ofs;
1080 continue;
1081 }
1082 /* OK. This frag holds the first byte of the page. */
1083 if (!frag->node || !frag->node->raw) {
1084 D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1085 frag->ofs, frag->ofs+frag->size));
1086 break;
1087 } else {
1088
1089 /* OK, it's a frag which extends to the beginning of the page. Does it live
1090 in a block which is still considered clean? If so, don't obsolete it.
1091 If not, cover it anyway. */
1092
1093 struct jffs2_raw_node_ref *raw = frag->node->raw;
1094 struct jffs2_eraseblock *jeb;
1095
1096 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1097
1098 if (jeb == c->gcblock) {
1099 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1100 frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1101 start = frag->ofs;
1102 break;
1103 }
1104 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1105 D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1106 frag->ofs, frag->ofs+frag->size, jeb->offset));
1107 break;
1108 }
1109
1110 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1111 frag->ofs, frag->ofs+frag->size, jeb->offset));
1112 start = frag->ofs;
1113 break;
1114 }
1115 }
1116
1117 /* ... then up */
1118
1119 /* Find last frag which is actually part of the node we're to GC. */
1120 frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
1121
1122 while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
1123
1124 /* If the previous frag doesn't even reach the beginning, there's lots
1125 of fragmentation. Just merge. */
1126 if (frag->ofs+frag->size < max) {
1127 D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n",
1128 frag->ofs, frag->ofs+frag->size));
1129 end = frag->ofs + frag->size;
1130 continue;
1131 }
1132
1133 if (!frag->node || !frag->node->raw) {
1134 D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1135 frag->ofs, frag->ofs+frag->size));
1136 break;
1137 } else {
1138
1139 /* OK, it's a frag which extends to the beginning of the page. Does it live
1140 in a block which is still considered clean? If so, don't obsolete it.
1141 If not, cover it anyway. */
1142
1143 struct jffs2_raw_node_ref *raw = frag->node->raw;
1144 struct jffs2_eraseblock *jeb;
1145
1146 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1147
1148 if (jeb == c->gcblock) {
1149 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1150 frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1151 end = frag->ofs + frag->size;
1152 break;
1153 }
1154 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1155 D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1156 frag->ofs, frag->ofs+frag->size, jeb->offset));
1157 break;
1158 }
1159
1160 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1161 frag->ofs, frag->ofs+frag->size, jeb->offset));
1162 end = frag->ofs + frag->size;
1163 break;
1164 }
1165 }
1166 D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
1167 orig_start, orig_end, start, end));
1168
1169 BUG_ON(end > JFFS2_F_I_SIZE(f));
1170 BUG_ON(end < orig_end);
1171 BUG_ON(start > orig_start);
1172 }
1173
1174 /* First, use readpage() to read the appropriate page into the page cache */
1175 /* Q: What happens if we actually try to GC the _same_ page for which commit_write()
1176 * triggered garbage collection in the first place?
1177 * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
1178 * page OK. We'll actually write it out again in commit_write, which is a little
1179 * suboptimal, but at least we're correct.
1180 */
1181 pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
1182
1183 if (IS_ERR(pg_ptr)) {
1184 printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr));
1185 return PTR_ERR(pg_ptr);
1186 }
1187
1188 offset = start;
1189 while(offset < orig_end) {
1190 uint32_t datalen;
1191 uint32_t cdatalen;
1192 uint16_t comprtype = JFFS2_COMPR_NONE;
1193
1194 ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN, &phys_ofs, &alloclen);
1195
1196 if (ret) {
1197 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1198 sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret);
1199 break;
1200 }
1201 cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
1202 datalen = end - offset;
1203
1204 writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
1205
1206 comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
1207
1208 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1209 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1210 ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
1211 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1212
1213 ri.ino = cpu_to_je32(f->inocache->ino);
1214 ri.version = cpu_to_je32(++f->highest_version);
1215 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1216 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1217 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1218 ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
1219 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1220 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1221 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1222 ri.offset = cpu_to_je32(offset);
1223 ri.csize = cpu_to_je32(cdatalen);
1224 ri.dsize = cpu_to_je32(datalen);
1225 ri.compr = comprtype & 0xff;
1226 ri.usercompr = (comprtype >> 8) & 0xff;
1227 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1228 ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
1229
1230 new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, phys_ofs, ALLOC_GC);
1231
1232 jffs2_free_comprbuf(comprbuf, writebuf);
1233
1234 if (IS_ERR(new_fn)) {
1235 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
1236 ret = PTR_ERR(new_fn);
1237 break;
1238 }
1239 ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
1240 offset += datalen;
1241 if (f->metadata) {
1242 jffs2_mark_node_obsolete(c, f->metadata->raw);
1243 jffs2_free_full_dnode(f->metadata);
1244 f->metadata = NULL;
1245 }
1246 }
1247
1248 jffs2_gc_release_page(c, pg_ptr, &pg);
1249 return ret;
1250}
1251