Xiaoyao Li | 8888cdd | 2020-09-23 11:31:11 -0700 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | #include <linux/kvm_host.h> |
| 3 | |
| 4 | #include <asm/irq_remapping.h> |
| 5 | #include <asm/cpu.h> |
| 6 | |
| 7 | #include "lapic.h" |
| 8 | #include "posted_intr.h" |
| 9 | #include "trace.h" |
| 10 | #include "vmx.h" |
| 11 | |
| 12 | /* |
| 13 | * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we |
| 14 | * can find which vCPU should be waken up. |
| 15 | */ |
| 16 | static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu); |
| 17 | static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock); |
| 18 | |
| 19 | static inline struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu) |
| 20 | { |
| 21 | return &(to_vmx(vcpu)->pi_desc); |
| 22 | } |
| 23 | |
| 24 | void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu) |
| 25 | { |
| 26 | struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); |
| 27 | struct pi_desc old, new; |
| 28 | unsigned int dest; |
| 29 | |
| 30 | /* |
| 31 | * In case of hot-plug or hot-unplug, we may have to undo |
| 32 | * vmx_vcpu_pi_put even if there is no assigned device. And we |
| 33 | * always keep PI.NDST up to date for simplicity: it makes the |
| 34 | * code easier, and CPU migration is not a fast path. |
| 35 | */ |
| 36 | if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu) |
| 37 | return; |
| 38 | |
| 39 | /* |
| 40 | * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change |
| 41 | * PI.NDST: pi_post_block is the one expected to change PID.NDST and the |
| 42 | * wakeup handler expects the vCPU to be on the blocked_vcpu_list that |
| 43 | * matches PI.NDST. Otherwise, a vcpu may not be able to be woken up |
| 44 | * correctly. |
| 45 | */ |
| 46 | if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) { |
| 47 | pi_clear_sn(pi_desc); |
| 48 | goto after_clear_sn; |
| 49 | } |
| 50 | |
| 51 | /* The full case. */ |
| 52 | do { |
| 53 | old.control = new.control = pi_desc->control; |
| 54 | |
| 55 | dest = cpu_physical_id(cpu); |
| 56 | |
| 57 | if (x2apic_enabled()) |
| 58 | new.ndst = dest; |
| 59 | else |
| 60 | new.ndst = (dest << 8) & 0xFF00; |
| 61 | |
| 62 | new.sn = 0; |
| 63 | } while (cmpxchg64(&pi_desc->control, old.control, |
| 64 | new.control) != old.control); |
| 65 | |
| 66 | after_clear_sn: |
| 67 | |
| 68 | /* |
| 69 | * Clear SN before reading the bitmap. The VT-d firmware |
| 70 | * writes the bitmap and reads SN atomically (5.2.3 in the |
| 71 | * spec), so it doesn't really have a memory barrier that |
| 72 | * pairs with this, but we cannot do that and we need one. |
| 73 | */ |
| 74 | smp_mb__after_atomic(); |
| 75 | |
| 76 | if (!pi_is_pir_empty(pi_desc)) |
| 77 | pi_set_on(pi_desc); |
| 78 | } |
| 79 | |
| 80 | void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu) |
| 81 | { |
| 82 | struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); |
| 83 | |
| 84 | if (!kvm_arch_has_assigned_device(vcpu->kvm) || |
| 85 | !irq_remapping_cap(IRQ_POSTING_CAP) || |
| 86 | !kvm_vcpu_apicv_active(vcpu)) |
| 87 | return; |
| 88 | |
| 89 | /* Set SN when the vCPU is preempted */ |
| 90 | if (vcpu->preempted) |
| 91 | pi_set_sn(pi_desc); |
| 92 | } |
| 93 | |
| 94 | static void __pi_post_block(struct kvm_vcpu *vcpu) |
| 95 | { |
| 96 | struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); |
| 97 | struct pi_desc old, new; |
| 98 | unsigned int dest; |
| 99 | |
| 100 | do { |
| 101 | old.control = new.control = pi_desc->control; |
| 102 | WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR, |
| 103 | "Wakeup handler not enabled while the VCPU is blocked\n"); |
| 104 | |
| 105 | dest = cpu_physical_id(vcpu->cpu); |
| 106 | |
| 107 | if (x2apic_enabled()) |
| 108 | new.ndst = dest; |
| 109 | else |
| 110 | new.ndst = (dest << 8) & 0xFF00; |
| 111 | |
| 112 | /* set 'NV' to 'notification vector' */ |
| 113 | new.nv = POSTED_INTR_VECTOR; |
| 114 | } while (cmpxchg64(&pi_desc->control, old.control, |
| 115 | new.control) != old.control); |
| 116 | |
| 117 | if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) { |
| 118 | spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); |
| 119 | list_del(&vcpu->blocked_vcpu_list); |
| 120 | spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); |
| 121 | vcpu->pre_pcpu = -1; |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | /* |
| 126 | * This routine does the following things for vCPU which is going |
| 127 | * to be blocked if VT-d PI is enabled. |
| 128 | * - Store the vCPU to the wakeup list, so when interrupts happen |
| 129 | * we can find the right vCPU to wake up. |
| 130 | * - Change the Posted-interrupt descriptor as below: |
| 131 | * 'NDST' <-- vcpu->pre_pcpu |
| 132 | * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR |
| 133 | * - If 'ON' is set during this process, which means at least one |
| 134 | * interrupt is posted for this vCPU, we cannot block it, in |
| 135 | * this case, return 1, otherwise, return 0. |
| 136 | * |
| 137 | */ |
| 138 | int pi_pre_block(struct kvm_vcpu *vcpu) |
| 139 | { |
| 140 | unsigned int dest; |
| 141 | struct pi_desc old, new; |
| 142 | struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); |
| 143 | |
| 144 | if (!kvm_arch_has_assigned_device(vcpu->kvm) || |
| 145 | !irq_remapping_cap(IRQ_POSTING_CAP) || |
| 146 | !kvm_vcpu_apicv_active(vcpu)) |
| 147 | return 0; |
| 148 | |
| 149 | WARN_ON(irqs_disabled()); |
| 150 | local_irq_disable(); |
| 151 | if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) { |
| 152 | vcpu->pre_pcpu = vcpu->cpu; |
| 153 | spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); |
| 154 | list_add_tail(&vcpu->blocked_vcpu_list, |
| 155 | &per_cpu(blocked_vcpu_on_cpu, |
| 156 | vcpu->pre_pcpu)); |
| 157 | spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); |
| 158 | } |
| 159 | |
| 160 | do { |
| 161 | old.control = new.control = pi_desc->control; |
| 162 | |
| 163 | WARN((pi_desc->sn == 1), |
| 164 | "Warning: SN field of posted-interrupts " |
| 165 | "is set before blocking\n"); |
| 166 | |
| 167 | /* |
| 168 | * Since vCPU can be preempted during this process, |
| 169 | * vcpu->cpu could be different with pre_pcpu, we |
| 170 | * need to set pre_pcpu as the destination of wakeup |
| 171 | * notification event, then we can find the right vCPU |
| 172 | * to wakeup in wakeup handler if interrupts happen |
| 173 | * when the vCPU is in blocked state. |
| 174 | */ |
| 175 | dest = cpu_physical_id(vcpu->pre_pcpu); |
| 176 | |
| 177 | if (x2apic_enabled()) |
| 178 | new.ndst = dest; |
| 179 | else |
| 180 | new.ndst = (dest << 8) & 0xFF00; |
| 181 | |
| 182 | /* set 'NV' to 'wakeup vector' */ |
| 183 | new.nv = POSTED_INTR_WAKEUP_VECTOR; |
| 184 | } while (cmpxchg64(&pi_desc->control, old.control, |
| 185 | new.control) != old.control); |
| 186 | |
| 187 | /* We should not block the vCPU if an interrupt is posted for it. */ |
| 188 | if (pi_test_on(pi_desc) == 1) |
| 189 | __pi_post_block(vcpu); |
| 190 | |
| 191 | local_irq_enable(); |
| 192 | return (vcpu->pre_pcpu == -1); |
| 193 | } |
| 194 | |
| 195 | void pi_post_block(struct kvm_vcpu *vcpu) |
| 196 | { |
| 197 | if (vcpu->pre_pcpu == -1) |
| 198 | return; |
| 199 | |
| 200 | WARN_ON(irqs_disabled()); |
| 201 | local_irq_disable(); |
| 202 | __pi_post_block(vcpu); |
| 203 | local_irq_enable(); |
| 204 | } |
| 205 | |
| 206 | /* |
| 207 | * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR. |
| 208 | */ |
| 209 | void pi_wakeup_handler(void) |
| 210 | { |
| 211 | struct kvm_vcpu *vcpu; |
| 212 | int cpu = smp_processor_id(); |
| 213 | |
| 214 | spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); |
| 215 | list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu), |
| 216 | blocked_vcpu_list) { |
| 217 | struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); |
| 218 | |
| 219 | if (pi_test_on(pi_desc) == 1) |
| 220 | kvm_vcpu_kick(vcpu); |
| 221 | } |
| 222 | spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); |
| 223 | } |
| 224 | |
Paolo Bonzini | a3ff25f | 2020-10-24 04:08:37 -0400 | [diff] [blame^] | 225 | void __init pi_init_cpu(int cpu) |
Xiaoyao Li | 8888cdd | 2020-09-23 11:31:11 -0700 | [diff] [blame] | 226 | { |
| 227 | INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu)); |
| 228 | spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); |
| 229 | } |
| 230 | |
| 231 | bool pi_has_pending_interrupt(struct kvm_vcpu *vcpu) |
| 232 | { |
| 233 | struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); |
| 234 | |
| 235 | return pi_test_on(pi_desc) || |
| 236 | (pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc)); |
| 237 | } |
| 238 | |
| 239 | |
| 240 | /* |
| 241 | * pi_update_irte - set IRTE for Posted-Interrupts |
| 242 | * |
| 243 | * @kvm: kvm |
| 244 | * @host_irq: host irq of the interrupt |
| 245 | * @guest_irq: gsi of the interrupt |
| 246 | * @set: set or unset PI |
| 247 | * returns 0 on success, < 0 on failure |
| 248 | */ |
| 249 | int pi_update_irte(struct kvm *kvm, unsigned int host_irq, uint32_t guest_irq, |
| 250 | bool set) |
| 251 | { |
| 252 | struct kvm_kernel_irq_routing_entry *e; |
| 253 | struct kvm_irq_routing_table *irq_rt; |
| 254 | struct kvm_lapic_irq irq; |
| 255 | struct kvm_vcpu *vcpu; |
| 256 | struct vcpu_data vcpu_info; |
| 257 | int idx, ret = 0; |
| 258 | |
| 259 | if (!kvm_arch_has_assigned_device(kvm) || |
| 260 | !irq_remapping_cap(IRQ_POSTING_CAP) || |
| 261 | !kvm_vcpu_apicv_active(kvm->vcpus[0])) |
| 262 | return 0; |
| 263 | |
| 264 | idx = srcu_read_lock(&kvm->irq_srcu); |
| 265 | irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); |
| 266 | if (guest_irq >= irq_rt->nr_rt_entries || |
| 267 | hlist_empty(&irq_rt->map[guest_irq])) { |
| 268 | pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n", |
| 269 | guest_irq, irq_rt->nr_rt_entries); |
| 270 | goto out; |
| 271 | } |
| 272 | |
| 273 | hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { |
| 274 | if (e->type != KVM_IRQ_ROUTING_MSI) |
| 275 | continue; |
| 276 | /* |
| 277 | * VT-d PI cannot support posting multicast/broadcast |
| 278 | * interrupts to a vCPU, we still use interrupt remapping |
| 279 | * for these kind of interrupts. |
| 280 | * |
| 281 | * For lowest-priority interrupts, we only support |
| 282 | * those with single CPU as the destination, e.g. user |
| 283 | * configures the interrupts via /proc/irq or uses |
| 284 | * irqbalance to make the interrupts single-CPU. |
| 285 | * |
| 286 | * We will support full lowest-priority interrupt later. |
| 287 | * |
| 288 | * In addition, we can only inject generic interrupts using |
| 289 | * the PI mechanism, refuse to route others through it. |
| 290 | */ |
| 291 | |
| 292 | kvm_set_msi_irq(kvm, e, &irq); |
| 293 | if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) || |
| 294 | !kvm_irq_is_postable(&irq)) { |
| 295 | /* |
| 296 | * Make sure the IRTE is in remapped mode if |
| 297 | * we don't handle it in posted mode. |
| 298 | */ |
| 299 | ret = irq_set_vcpu_affinity(host_irq, NULL); |
| 300 | if (ret < 0) { |
| 301 | printk(KERN_INFO |
| 302 | "failed to back to remapped mode, irq: %u\n", |
| 303 | host_irq); |
| 304 | goto out; |
| 305 | } |
| 306 | |
| 307 | continue; |
| 308 | } |
| 309 | |
| 310 | vcpu_info.pi_desc_addr = __pa(&to_vmx(vcpu)->pi_desc); |
| 311 | vcpu_info.vector = irq.vector; |
| 312 | |
| 313 | trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi, |
| 314 | vcpu_info.vector, vcpu_info.pi_desc_addr, set); |
| 315 | |
| 316 | if (set) |
| 317 | ret = irq_set_vcpu_affinity(host_irq, &vcpu_info); |
| 318 | else |
| 319 | ret = irq_set_vcpu_affinity(host_irq, NULL); |
| 320 | |
| 321 | if (ret < 0) { |
| 322 | printk(KERN_INFO "%s: failed to update PI IRTE\n", |
| 323 | __func__); |
| 324 | goto out; |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | ret = 0; |
| 329 | out: |
| 330 | srcu_read_unlock(&kvm->irq_srcu, idx); |
| 331 | return ret; |
| 332 | } |