blob: aa61935ee70696b5f17c355b3a09dc5fdfd8da20 [file] [log] [blame]
Rameshwar Prasad Sahu9f2fd0d2015-03-18 19:17:34 +05301/*
2 * Applied Micro X-Gene SoC DMA engine Driver
3 *
4 * Copyright (c) 2015, Applied Micro Circuits Corporation
5 * Authors: Rameshwar Prasad Sahu <rsahu@apm.com>
6 * Loc Ho <lho@apm.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 *
21 * NOTE: PM support is currently not available.
22 */
23
24#include <linux/clk.h>
25#include <linux/delay.h>
26#include <linux/dma-mapping.h>
27#include <linux/dmaengine.h>
28#include <linux/dmapool.h>
29#include <linux/interrupt.h>
30#include <linux/io.h>
31#include <linux/module.h>
32#include <linux/of_device.h>
33
34#include "dmaengine.h"
35
36/* X-Gene DMA ring csr registers and bit definations */
37#define XGENE_DMA_RING_CONFIG 0x04
38#define XGENE_DMA_RING_ENABLE BIT(31)
39#define XGENE_DMA_RING_ID 0x08
40#define XGENE_DMA_RING_ID_SETUP(v) ((v) | BIT(31))
41#define XGENE_DMA_RING_ID_BUF 0x0C
42#define XGENE_DMA_RING_ID_BUF_SETUP(v) (((v) << 9) | BIT(21))
43#define XGENE_DMA_RING_THRESLD0_SET1 0x30
44#define XGENE_DMA_RING_THRESLD0_SET1_VAL 0X64
45#define XGENE_DMA_RING_THRESLD1_SET1 0x34
46#define XGENE_DMA_RING_THRESLD1_SET1_VAL 0xC8
47#define XGENE_DMA_RING_HYSTERESIS 0x68
48#define XGENE_DMA_RING_HYSTERESIS_VAL 0xFFFFFFFF
49#define XGENE_DMA_RING_STATE 0x6C
50#define XGENE_DMA_RING_STATE_WR_BASE 0x70
51#define XGENE_DMA_RING_NE_INT_MODE 0x017C
52#define XGENE_DMA_RING_NE_INT_MODE_SET(m, v) \
53 ((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v)))
54#define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v) \
55 ((m) &= (~BIT(31 - (v))))
56#define XGENE_DMA_RING_CLKEN 0xC208
57#define XGENE_DMA_RING_SRST 0xC200
58#define XGENE_DMA_RING_MEM_RAM_SHUTDOWN 0xD070
59#define XGENE_DMA_RING_BLK_MEM_RDY 0xD074
60#define XGENE_DMA_RING_BLK_MEM_RDY_VAL 0xFFFFFFFF
61#define XGENE_DMA_RING_DESC_CNT(v) (((v) & 0x0001FFFE) >> 1)
62#define XGENE_DMA_RING_ID_GET(owner, num) (((owner) << 6) | (num))
63#define XGENE_DMA_RING_DST_ID(v) ((1 << 10) | (v))
64#define XGENE_DMA_RING_CMD_OFFSET 0x2C
65#define XGENE_DMA_RING_CMD_BASE_OFFSET(v) ((v) << 6)
66#define XGENE_DMA_RING_COHERENT_SET(m) \
67 (((u32 *)(m))[2] |= BIT(4))
68#define XGENE_DMA_RING_ADDRL_SET(m, v) \
69 (((u32 *)(m))[2] |= (((v) >> 8) << 5))
70#define XGENE_DMA_RING_ADDRH_SET(m, v) \
71 (((u32 *)(m))[3] |= ((v) >> 35))
72#define XGENE_DMA_RING_ACCEPTLERR_SET(m) \
73 (((u32 *)(m))[3] |= BIT(19))
74#define XGENE_DMA_RING_SIZE_SET(m, v) \
75 (((u32 *)(m))[3] |= ((v) << 23))
76#define XGENE_DMA_RING_RECOMBBUF_SET(m) \
77 (((u32 *)(m))[3] |= BIT(27))
78#define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m) \
79 (((u32 *)(m))[3] |= (0x7 << 28))
80#define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m) \
81 (((u32 *)(m))[4] |= 0x3)
82#define XGENE_DMA_RING_SELTHRSH_SET(m) \
83 (((u32 *)(m))[4] |= BIT(3))
84#define XGENE_DMA_RING_TYPE_SET(m, v) \
85 (((u32 *)(m))[4] |= ((v) << 19))
86
87/* X-Gene DMA device csr registers and bit definitions */
88#define XGENE_DMA_IPBRR 0x0
89#define XGENE_DMA_DEV_ID_RD(v) ((v) & 0x00000FFF)
90#define XGENE_DMA_BUS_ID_RD(v) (((v) >> 12) & 3)
91#define XGENE_DMA_REV_NO_RD(v) (((v) >> 14) & 3)
92#define XGENE_DMA_GCR 0x10
93#define XGENE_DMA_CH_SETUP(v) \
94 ((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF)
95#define XGENE_DMA_ENABLE(v) ((v) |= BIT(31))
96#define XGENE_DMA_DISABLE(v) ((v) &= ~BIT(31))
97#define XGENE_DMA_RAID6_CONT 0x14
98#define XGENE_DMA_RAID6_MULTI_CTRL(v) ((v) << 24)
99#define XGENE_DMA_INT 0x70
100#define XGENE_DMA_INT_MASK 0x74
101#define XGENE_DMA_INT_ALL_MASK 0xFFFFFFFF
102#define XGENE_DMA_INT_ALL_UNMASK 0x0
103#define XGENE_DMA_INT_MASK_SHIFT 0x14
104#define XGENE_DMA_RING_INT0_MASK 0x90A0
105#define XGENE_DMA_RING_INT1_MASK 0x90A8
106#define XGENE_DMA_RING_INT2_MASK 0x90B0
107#define XGENE_DMA_RING_INT3_MASK 0x90B8
108#define XGENE_DMA_RING_INT4_MASK 0x90C0
109#define XGENE_DMA_CFG_RING_WQ_ASSOC 0x90E0
110#define XGENE_DMA_ASSOC_RING_MNGR1 0xFFFFFFFF
111#define XGENE_DMA_MEM_RAM_SHUTDOWN 0xD070
112#define XGENE_DMA_BLK_MEM_RDY 0xD074
113#define XGENE_DMA_BLK_MEM_RDY_VAL 0xFFFFFFFF
114
115/* X-Gene SoC EFUSE csr register and bit defination */
116#define XGENE_SOC_JTAG1_SHADOW 0x18
117#define XGENE_DMA_PQ_DISABLE_MASK BIT(13)
118
119/* X-Gene DMA Descriptor format */
120#define XGENE_DMA_DESC_NV_BIT BIT_ULL(50)
121#define XGENE_DMA_DESC_IN_BIT BIT_ULL(55)
122#define XGENE_DMA_DESC_C_BIT BIT_ULL(63)
123#define XGENE_DMA_DESC_DR_BIT BIT_ULL(61)
124#define XGENE_DMA_DESC_ELERR_POS 46
125#define XGENE_DMA_DESC_RTYPE_POS 56
126#define XGENE_DMA_DESC_LERR_POS 60
127#define XGENE_DMA_DESC_FLYBY_POS 4
128#define XGENE_DMA_DESC_BUFLEN_POS 48
129#define XGENE_DMA_DESC_HOENQ_NUM_POS 48
130
131#define XGENE_DMA_DESC_NV_SET(m) \
132 (((u64 *)(m))[0] |= XGENE_DMA_DESC_NV_BIT)
133#define XGENE_DMA_DESC_IN_SET(m) \
134 (((u64 *)(m))[0] |= XGENE_DMA_DESC_IN_BIT)
135#define XGENE_DMA_DESC_RTYPE_SET(m, v) \
136 (((u64 *)(m))[0] |= ((u64)(v) << XGENE_DMA_DESC_RTYPE_POS))
137#define XGENE_DMA_DESC_BUFADDR_SET(m, v) \
138 (((u64 *)(m))[0] |= (v))
139#define XGENE_DMA_DESC_BUFLEN_SET(m, v) \
140 (((u64 *)(m))[0] |= ((u64)(v) << XGENE_DMA_DESC_BUFLEN_POS))
141#define XGENE_DMA_DESC_C_SET(m) \
142 (((u64 *)(m))[1] |= XGENE_DMA_DESC_C_BIT)
143#define XGENE_DMA_DESC_FLYBY_SET(m, v) \
144 (((u64 *)(m))[2] |= ((v) << XGENE_DMA_DESC_FLYBY_POS))
145#define XGENE_DMA_DESC_MULTI_SET(m, v, i) \
146 (((u64 *)(m))[2] |= ((u64)(v) << (((i) + 1) * 8)))
147#define XGENE_DMA_DESC_DR_SET(m) \
148 (((u64 *)(m))[2] |= XGENE_DMA_DESC_DR_BIT)
149#define XGENE_DMA_DESC_DST_ADDR_SET(m, v) \
150 (((u64 *)(m))[3] |= (v))
151#define XGENE_DMA_DESC_H0ENQ_NUM_SET(m, v) \
152 (((u64 *)(m))[3] |= ((u64)(v) << XGENE_DMA_DESC_HOENQ_NUM_POS))
153#define XGENE_DMA_DESC_ELERR_RD(m) \
154 (((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3)
155#define XGENE_DMA_DESC_LERR_RD(m) \
156 (((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7)
157#define XGENE_DMA_DESC_STATUS(elerr, lerr) \
158 (((elerr) << 4) | (lerr))
159
160/* X-Gene DMA descriptor empty s/w signature */
161#define XGENE_DMA_DESC_EMPTY_INDEX 0
162#define XGENE_DMA_DESC_EMPTY_SIGNATURE ~0ULL
163#define XGENE_DMA_DESC_SET_EMPTY(m) \
164 (((u64 *)(m))[XGENE_DMA_DESC_EMPTY_INDEX] = \
165 XGENE_DMA_DESC_EMPTY_SIGNATURE)
166#define XGENE_DMA_DESC_IS_EMPTY(m) \
167 (((u64 *)(m))[XGENE_DMA_DESC_EMPTY_INDEX] == \
168 XGENE_DMA_DESC_EMPTY_SIGNATURE)
169
170/* X-Gene DMA configurable parameters defines */
171#define XGENE_DMA_RING_NUM 512
172#define XGENE_DMA_BUFNUM 0x0
173#define XGENE_DMA_CPU_BUFNUM 0x18
174#define XGENE_DMA_RING_OWNER_DMA 0x03
175#define XGENE_DMA_RING_OWNER_CPU 0x0F
176#define XGENE_DMA_RING_TYPE_REGULAR 0x01
177#define XGENE_DMA_RING_WQ_DESC_SIZE 32 /* 32 Bytes */
178#define XGENE_DMA_RING_NUM_CONFIG 5
179#define XGENE_DMA_MAX_CHANNEL 4
180#define XGENE_DMA_XOR_CHANNEL 0
181#define XGENE_DMA_PQ_CHANNEL 1
182#define XGENE_DMA_MAX_BYTE_CNT 0x4000 /* 16 KB */
183#define XGENE_DMA_MAX_64B_DESC_BYTE_CNT 0x14000 /* 80 KB */
184#define XGENE_DMA_XOR_ALIGNMENT 6 /* 64 Bytes */
185#define XGENE_DMA_MAX_XOR_SRC 5
186#define XGENE_DMA_16K_BUFFER_LEN_CODE 0x0
187#define XGENE_DMA_INVALID_LEN_CODE 0x7800
188
189/* X-Gene DMA descriptor error codes */
190#define ERR_DESC_AXI 0x01
191#define ERR_BAD_DESC 0x02
192#define ERR_READ_DATA_AXI 0x03
193#define ERR_WRITE_DATA_AXI 0x04
194#define ERR_FBP_TIMEOUT 0x05
195#define ERR_ECC 0x06
196#define ERR_DIFF_SIZE 0x08
197#define ERR_SCT_GAT_LEN 0x09
198#define ERR_CRC_ERR 0x11
199#define ERR_CHKSUM 0x12
200#define ERR_DIF 0x13
201
202/* X-Gene DMA error interrupt codes */
203#define ERR_DIF_SIZE_INT 0x0
204#define ERR_GS_ERR_INT 0x1
205#define ERR_FPB_TIMEO_INT 0x2
206#define ERR_WFIFO_OVF_INT 0x3
207#define ERR_RFIFO_OVF_INT 0x4
208#define ERR_WR_TIMEO_INT 0x5
209#define ERR_RD_TIMEO_INT 0x6
210#define ERR_WR_ERR_INT 0x7
211#define ERR_RD_ERR_INT 0x8
212#define ERR_BAD_DESC_INT 0x9
213#define ERR_DESC_DST_INT 0xA
214#define ERR_DESC_SRC_INT 0xB
215
216/* X-Gene DMA flyby operation code */
217#define FLYBY_2SRC_XOR 0x8
218#define FLYBY_3SRC_XOR 0x9
219#define FLYBY_4SRC_XOR 0xA
220#define FLYBY_5SRC_XOR 0xB
221
222/* X-Gene DMA SW descriptor flags */
223#define XGENE_DMA_FLAG_64B_DESC BIT(0)
224
225/* Define to dump X-Gene DMA descriptor */
226#define XGENE_DMA_DESC_DUMP(desc, m) \
227 print_hex_dump(KERN_ERR, (m), \
228 DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0)
229
230#define to_dma_desc_sw(tx) \
231 container_of(tx, struct xgene_dma_desc_sw, tx)
232#define to_dma_chan(dchan) \
233 container_of(dchan, struct xgene_dma_chan, dma_chan)
234
235#define chan_dbg(chan, fmt, arg...) \
236 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
237#define chan_err(chan, fmt, arg...) \
238 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
239
240struct xgene_dma_desc_hw {
241 u64 m0;
242 u64 m1;
243 u64 m2;
244 u64 m3;
245};
246
247enum xgene_dma_ring_cfgsize {
248 XGENE_DMA_RING_CFG_SIZE_512B,
249 XGENE_DMA_RING_CFG_SIZE_2KB,
250 XGENE_DMA_RING_CFG_SIZE_16KB,
251 XGENE_DMA_RING_CFG_SIZE_64KB,
252 XGENE_DMA_RING_CFG_SIZE_512KB,
253 XGENE_DMA_RING_CFG_SIZE_INVALID
254};
255
256struct xgene_dma_ring {
257 struct xgene_dma *pdma;
258 u8 buf_num;
259 u16 id;
260 u16 num;
261 u16 head;
262 u16 owner;
263 u16 slots;
264 u16 dst_ring_num;
265 u32 size;
266 void __iomem *cmd;
267 void __iomem *cmd_base;
268 dma_addr_t desc_paddr;
269 u32 state[XGENE_DMA_RING_NUM_CONFIG];
270 enum xgene_dma_ring_cfgsize cfgsize;
271 union {
272 void *desc_vaddr;
273 struct xgene_dma_desc_hw *desc_hw;
274 };
275};
276
277struct xgene_dma_desc_sw {
278 struct xgene_dma_desc_hw desc1;
279 struct xgene_dma_desc_hw desc2;
280 u32 flags;
281 struct list_head node;
282 struct list_head tx_list;
283 struct dma_async_tx_descriptor tx;
284};
285
286/**
287 * struct xgene_dma_chan - internal representation of an X-Gene DMA channel
288 * @dma_chan: dmaengine channel object member
289 * @pdma: X-Gene DMA device structure reference
290 * @dev: struct device reference for dma mapping api
291 * @id: raw id of this channel
292 * @rx_irq: channel IRQ
293 * @name: name of X-Gene DMA channel
294 * @lock: serializes enqueue/dequeue operations to the descriptor pool
295 * @pending: number of transaction request pushed to DMA controller for
296 * execution, but still waiting for completion,
297 * @max_outstanding: max number of outstanding request we can push to channel
298 * @ld_pending: descriptors which are queued to run, but have not yet been
299 * submitted to the hardware for execution
300 * @ld_running: descriptors which are currently being executing by the hardware
301 * @ld_completed: descriptors which have finished execution by the hardware.
302 * These descriptors have already had their cleanup actions run. They
303 * are waiting for the ACK bit to be set by the async tx API.
304 * @desc_pool: descriptor pool for DMA operations
305 * @tasklet: bottom half where all completed descriptors cleans
306 * @tx_ring: transmit ring descriptor that we use to prepare actual
307 * descriptors for further executions
308 * @rx_ring: receive ring descriptor that we use to get completed DMA
309 * descriptors during cleanup time
310 */
311struct xgene_dma_chan {
312 struct dma_chan dma_chan;
313 struct xgene_dma *pdma;
314 struct device *dev;
315 int id;
316 int rx_irq;
317 char name[8];
318 spinlock_t lock;
319 int pending;
320 int max_outstanding;
321 struct list_head ld_pending;
322 struct list_head ld_running;
323 struct list_head ld_completed;
324 struct dma_pool *desc_pool;
325 struct tasklet_struct tasklet;
326 struct xgene_dma_ring tx_ring;
327 struct xgene_dma_ring rx_ring;
328};
329
330/**
331 * struct xgene_dma - internal representation of an X-Gene DMA device
332 * @err_irq: DMA error irq number
333 * @ring_num: start id number for DMA ring
334 * @csr_dma: base for DMA register access
335 * @csr_ring: base for DMA ring register access
336 * @csr_ring_cmd: base for DMA ring command register access
337 * @csr_efuse: base for efuse register access
338 * @dma_dev: embedded struct dma_device
339 * @chan: reference to X-Gene DMA channels
340 */
341struct xgene_dma {
342 struct device *dev;
343 struct clk *clk;
344 int err_irq;
345 int ring_num;
346 void __iomem *csr_dma;
347 void __iomem *csr_ring;
348 void __iomem *csr_ring_cmd;
349 void __iomem *csr_efuse;
350 struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL];
351 struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL];
352};
353
354static const char * const xgene_dma_desc_err[] = {
355 [ERR_DESC_AXI] = "AXI error when reading src/dst link list",
356 [ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc",
357 [ERR_READ_DATA_AXI] = "AXI error when reading data",
358 [ERR_WRITE_DATA_AXI] = "AXI error when writing data",
359 [ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch",
360 [ERR_ECC] = "ECC double bit error",
361 [ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result",
362 [ERR_SCT_GAT_LEN] = "Gather and scatter data length not same",
363 [ERR_CRC_ERR] = "CRC error",
364 [ERR_CHKSUM] = "Checksum error",
365 [ERR_DIF] = "DIF error",
366};
367
368static const char * const xgene_dma_err[] = {
369 [ERR_DIF_SIZE_INT] = "DIF size error",
370 [ERR_GS_ERR_INT] = "Gather scatter not same size error",
371 [ERR_FPB_TIMEO_INT] = "Free pool time out error",
372 [ERR_WFIFO_OVF_INT] = "Write FIFO over flow error",
373 [ERR_RFIFO_OVF_INT] = "Read FIFO over flow error",
374 [ERR_WR_TIMEO_INT] = "Write time out error",
375 [ERR_RD_TIMEO_INT] = "Read time out error",
376 [ERR_WR_ERR_INT] = "HBF bus write error",
377 [ERR_RD_ERR_INT] = "HBF bus read error",
378 [ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error",
379 [ERR_DESC_DST_INT] = "HFB reading dst link address error",
380 [ERR_DESC_SRC_INT] = "HFB reading src link address error",
381};
382
383static bool is_pq_enabled(struct xgene_dma *pdma)
384{
385 u32 val;
386
387 val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW);
388 return !(val & XGENE_DMA_PQ_DISABLE_MASK);
389}
390
391static void xgene_dma_cpu_to_le64(u64 *desc, int count)
392{
393 int i;
394
395 for (i = 0; i < count; i++)
396 desc[i] = cpu_to_le64(desc[i]);
397}
398
399static u16 xgene_dma_encode_len(u32 len)
400{
401 return (len < XGENE_DMA_MAX_BYTE_CNT) ?
402 len : XGENE_DMA_16K_BUFFER_LEN_CODE;
403}
404
405static u8 xgene_dma_encode_xor_flyby(u32 src_cnt)
406{
407 static u8 flyby_type[] = {
408 FLYBY_2SRC_XOR, /* Dummy */
409 FLYBY_2SRC_XOR, /* Dummy */
410 FLYBY_2SRC_XOR,
411 FLYBY_3SRC_XOR,
412 FLYBY_4SRC_XOR,
413 FLYBY_5SRC_XOR
414 };
415
416 return flyby_type[src_cnt];
417}
418
419static u32 xgene_dma_ring_desc_cnt(struct xgene_dma_ring *ring)
420{
421 u32 __iomem *cmd_base = ring->cmd_base;
422 u32 ring_state = ioread32(&cmd_base[1]);
423
424 return XGENE_DMA_RING_DESC_CNT(ring_state);
425}
426
427static void xgene_dma_set_src_buffer(void *ext8, size_t *len,
428 dma_addr_t *paddr)
429{
430 size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ?
431 *len : XGENE_DMA_MAX_BYTE_CNT;
432
433 XGENE_DMA_DESC_BUFADDR_SET(ext8, *paddr);
434 XGENE_DMA_DESC_BUFLEN_SET(ext8, xgene_dma_encode_len(nbytes));
435 *len -= nbytes;
436 *paddr += nbytes;
437}
438
439static void xgene_dma_invalidate_buffer(void *ext8)
440{
441 XGENE_DMA_DESC_BUFLEN_SET(ext8, XGENE_DMA_INVALID_LEN_CODE);
442}
443
444static void *xgene_dma_lookup_ext8(u64 *desc, int idx)
445{
446 return (idx % 2) ? (desc + idx - 1) : (desc + idx + 1);
447}
448
449static void xgene_dma_init_desc(void *desc, u16 dst_ring_num)
450{
451 XGENE_DMA_DESC_C_SET(desc); /* Coherent IO */
452 XGENE_DMA_DESC_IN_SET(desc);
453 XGENE_DMA_DESC_H0ENQ_NUM_SET(desc, dst_ring_num);
454 XGENE_DMA_DESC_RTYPE_SET(desc, XGENE_DMA_RING_OWNER_DMA);
455}
456
457static void xgene_dma_prep_cpy_desc(struct xgene_dma_chan *chan,
458 struct xgene_dma_desc_sw *desc_sw,
459 dma_addr_t dst, dma_addr_t src,
460 size_t len)
461{
462 void *desc1, *desc2;
463 int i;
464
465 /* Get 1st descriptor */
466 desc1 = &desc_sw->desc1;
467 xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
468
469 /* Set destination address */
470 XGENE_DMA_DESC_DR_SET(desc1);
471 XGENE_DMA_DESC_DST_ADDR_SET(desc1, dst);
472
473 /* Set 1st source address */
474 xgene_dma_set_src_buffer(desc1 + 8, &len, &src);
475
476 if (len <= 0) {
477 desc2 = NULL;
478 goto skip_additional_src;
479 }
480
481 /*
482 * We need to split this source buffer,
483 * and need to use 2nd descriptor
484 */
485 desc2 = &desc_sw->desc2;
486 XGENE_DMA_DESC_NV_SET(desc1);
487
488 /* Set 2nd to 5th source address */
489 for (i = 0; i < 4 && len; i++)
490 xgene_dma_set_src_buffer(xgene_dma_lookup_ext8(desc2, i),
491 &len, &src);
492
493 /* Invalidate unused source address field */
494 for (; i < 4; i++)
495 xgene_dma_invalidate_buffer(xgene_dma_lookup_ext8(desc2, i));
496
497 /* Updated flag that we have prepared 64B descriptor */
498 desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
499
500skip_additional_src:
501 /* Hardware stores descriptor in little endian format */
502 xgene_dma_cpu_to_le64(desc1, 4);
503 if (desc2)
504 xgene_dma_cpu_to_le64(desc2, 4);
505}
506
507static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan,
508 struct xgene_dma_desc_sw *desc_sw,
509 dma_addr_t *dst, dma_addr_t *src,
510 u32 src_cnt, size_t *nbytes,
511 const u8 *scf)
512{
513 void *desc1, *desc2;
514 size_t len = *nbytes;
515 int i;
516
517 desc1 = &desc_sw->desc1;
518 desc2 = &desc_sw->desc2;
519
520 /* Initialize DMA descriptor */
521 xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
522
523 /* Set destination address */
524 XGENE_DMA_DESC_DR_SET(desc1);
525 XGENE_DMA_DESC_DST_ADDR_SET(desc1, *dst);
526
527 /* We have multiple source addresses, so need to set NV bit*/
528 XGENE_DMA_DESC_NV_SET(desc1);
529
530 /* Set flyby opcode */
531 XGENE_DMA_DESC_FLYBY_SET(desc1, xgene_dma_encode_xor_flyby(src_cnt));
532
533 /* Set 1st to 5th source addresses */
534 for (i = 0; i < src_cnt; i++) {
535 len = *nbytes;
536 xgene_dma_set_src_buffer((i == 0) ? (desc1 + 8) :
537 xgene_dma_lookup_ext8(desc2, i - 1),
538 &len, &src[i]);
539 XGENE_DMA_DESC_MULTI_SET(desc1, scf[i], i);
540 }
541
542 /* Hardware stores descriptor in little endian format */
543 xgene_dma_cpu_to_le64(desc1, 4);
544 xgene_dma_cpu_to_le64(desc2, 4);
545
546 /* Update meta data */
547 *nbytes = len;
548 *dst += XGENE_DMA_MAX_BYTE_CNT;
549
550 /* We need always 64B descriptor to perform xor or pq operations */
551 desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
552}
553
554static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx)
555{
556 struct xgene_dma_desc_sw *desc;
557 struct xgene_dma_chan *chan;
558 dma_cookie_t cookie;
559
560 if (unlikely(!tx))
561 return -EINVAL;
562
563 chan = to_dma_chan(tx->chan);
564 desc = to_dma_desc_sw(tx);
565
566 spin_lock_bh(&chan->lock);
567
568 cookie = dma_cookie_assign(tx);
569
570 /* Add this transaction list onto the tail of the pending queue */
571 list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
572
573 spin_unlock_bh(&chan->lock);
574
575 return cookie;
576}
577
578static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan,
579 struct xgene_dma_desc_sw *desc)
580{
581 list_del(&desc->node);
582 chan_dbg(chan, "LD %p free\n", desc);
583 dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
584}
585
586static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor(
587 struct xgene_dma_chan *chan)
588{
589 struct xgene_dma_desc_sw *desc;
590 dma_addr_t phys;
591
592 desc = dma_pool_alloc(chan->desc_pool, GFP_NOWAIT, &phys);
593 if (!desc) {
594 chan_err(chan, "Failed to allocate LDs\n");
595 return NULL;
596 }
597
598 memset(desc, 0, sizeof(*desc));
599
600 INIT_LIST_HEAD(&desc->tx_list);
601 desc->tx.phys = phys;
602 desc->tx.tx_submit = xgene_dma_tx_submit;
603 dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan);
604
605 chan_dbg(chan, "LD %p allocated\n", desc);
606
607 return desc;
608}
609
610/**
611 * xgene_dma_clean_completed_descriptor - free all descriptors which
612 * has been completed and acked
613 * @chan: X-Gene DMA channel
614 *
615 * This function is used on all completed and acked descriptors.
616 */
617static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan)
618{
619 struct xgene_dma_desc_sw *desc, *_desc;
620
621 /* Run the callback for each descriptor, in order */
622 list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) {
623 if (async_tx_test_ack(&desc->tx))
624 xgene_dma_clean_descriptor(chan, desc);
625 }
626}
627
628/**
629 * xgene_dma_run_tx_complete_actions - cleanup a single link descriptor
630 * @chan: X-Gene DMA channel
631 * @desc: descriptor to cleanup and free
632 *
633 * This function is used on a descriptor which has been executed by the DMA
634 * controller. It will run any callbacks, submit any dependencies.
635 */
636static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan,
637 struct xgene_dma_desc_sw *desc)
638{
639 struct dma_async_tx_descriptor *tx = &desc->tx;
640
641 /*
642 * If this is not the last transaction in the group,
643 * then no need to complete cookie and run any callback as
644 * this is not the tx_descriptor which had been sent to caller
645 * of this DMA request
646 */
647
648 if (tx->cookie == 0)
649 return;
650
651 dma_cookie_complete(tx);
652
653 /* Run the link descriptor callback function */
654 if (tx->callback)
655 tx->callback(tx->callback_param);
656
657 dma_descriptor_unmap(tx);
658
659 /* Run any dependencies */
660 dma_run_dependencies(tx);
661}
662
663/**
664 * xgene_dma_clean_running_descriptor - move the completed descriptor from
665 * ld_running to ld_completed
666 * @chan: X-Gene DMA channel
667 * @desc: the descriptor which is completed
668 *
669 * Free the descriptor directly if acked by async_tx api,
670 * else move it to queue ld_completed.
671 */
672static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan,
673 struct xgene_dma_desc_sw *desc)
674{
675 /* Remove from the list of running transactions */
676 list_del(&desc->node);
677
678 /*
679 * the client is allowed to attach dependent operations
680 * until 'ack' is set
681 */
682 if (!async_tx_test_ack(&desc->tx)) {
683 /*
684 * Move this descriptor to the list of descriptors which is
685 * completed, but still awaiting the 'ack' bit to be set.
686 */
687 list_add_tail(&desc->node, &chan->ld_completed);
688 return;
689 }
690
691 chan_dbg(chan, "LD %p free\n", desc);
692 dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
693}
694
695static int xgene_chan_xfer_request(struct xgene_dma_ring *ring,
696 struct xgene_dma_desc_sw *desc_sw)
697{
698 struct xgene_dma_desc_hw *desc_hw;
699
700 /* Check if can push more descriptor to hw for execution */
701 if (xgene_dma_ring_desc_cnt(ring) > (ring->slots - 2))
702 return -EBUSY;
703
704 /* Get hw descriptor from DMA tx ring */
705 desc_hw = &ring->desc_hw[ring->head];
706
707 /*
708 * Increment the head count to point next
709 * descriptor for next time
710 */
711 if (++ring->head == ring->slots)
712 ring->head = 0;
713
714 /* Copy prepared sw descriptor data to hw descriptor */
715 memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw));
716
717 /*
718 * Check if we have prepared 64B descriptor,
719 * in this case we need one more hw descriptor
720 */
721 if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) {
722 desc_hw = &ring->desc_hw[ring->head];
723
724 if (++ring->head == ring->slots)
725 ring->head = 0;
726
727 memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw));
728 }
729
730 /* Notify the hw that we have descriptor ready for execution */
731 iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ?
732 2 : 1, ring->cmd);
733
734 return 0;
735}
736
737/**
738 * xgene_chan_xfer_ld_pending - push any pending transactions to hw
739 * @chan : X-Gene DMA channel
740 *
741 * LOCKING: must hold chan->desc_lock
742 */
743static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan)
744{
745 struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
746 int ret;
747
748 /*
749 * If the list of pending descriptors is empty, then we
750 * don't need to do any work at all
751 */
752 if (list_empty(&chan->ld_pending)) {
753 chan_dbg(chan, "No pending LDs\n");
754 return;
755 }
756
757 /*
758 * Move elements from the queue of pending transactions onto the list
759 * of running transactions and push it to hw for further executions
760 */
761 list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) {
762 /*
763 * Check if have pushed max number of transactions to hw
764 * as capable, so let's stop here and will push remaining
765 * elements from pening ld queue after completing some
766 * descriptors that we have already pushed
767 */
768 if (chan->pending >= chan->max_outstanding)
769 return;
770
771 ret = xgene_chan_xfer_request(&chan->tx_ring, desc_sw);
772 if (ret)
773 return;
774
775 /*
776 * Delete this element from ld pending queue and append it to
777 * ld running queue
778 */
779 list_move_tail(&desc_sw->node, &chan->ld_running);
780
781 /* Increment the pending transaction count */
782 chan->pending++;
783 }
784}
785
786/**
787 * xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed
788 * and move them to ld_completed to free until flag 'ack' is set
789 * @chan: X-Gene DMA channel
790 *
791 * This function is used on descriptors which have been executed by the DMA
792 * controller. It will run any callbacks, submit any dependencies, then
793 * free these descriptors if flag 'ack' is set.
794 */
795static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan)
796{
797 struct xgene_dma_ring *ring = &chan->rx_ring;
798 struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
799 struct xgene_dma_desc_hw *desc_hw;
800 u8 status;
801
802 /* Clean already completed and acked descriptors */
803 xgene_dma_clean_completed_descriptor(chan);
804
805 /* Run the callback for each descriptor, in order */
806 list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) {
807 /* Get subsequent hw descriptor from DMA rx ring */
808 desc_hw = &ring->desc_hw[ring->head];
809
810 /* Check if this descriptor has been completed */
811 if (unlikely(XGENE_DMA_DESC_IS_EMPTY(desc_hw)))
812 break;
813
814 if (++ring->head == ring->slots)
815 ring->head = 0;
816
817 /* Check if we have any error with DMA transactions */
818 status = XGENE_DMA_DESC_STATUS(
819 XGENE_DMA_DESC_ELERR_RD(le64_to_cpu(
820 desc_hw->m0)),
821 XGENE_DMA_DESC_LERR_RD(le64_to_cpu(
822 desc_hw->m0)));
823 if (status) {
824 /* Print the DMA error type */
825 chan_err(chan, "%s\n", xgene_dma_desc_err[status]);
826
827 /*
828 * We have DMA transactions error here. Dump DMA Tx
829 * and Rx descriptors for this request */
830 XGENE_DMA_DESC_DUMP(&desc_sw->desc1,
831 "X-Gene DMA TX DESC1: ");
832
833 if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC)
834 XGENE_DMA_DESC_DUMP(&desc_sw->desc2,
835 "X-Gene DMA TX DESC2: ");
836
837 XGENE_DMA_DESC_DUMP(desc_hw,
838 "X-Gene DMA RX ERR DESC: ");
839 }
840
841 /* Notify the hw about this completed descriptor */
842 iowrite32(-1, ring->cmd);
843
844 /* Mark this hw descriptor as processed */
845 XGENE_DMA_DESC_SET_EMPTY(desc_hw);
846
847 xgene_dma_run_tx_complete_actions(chan, desc_sw);
848
849 xgene_dma_clean_running_descriptor(chan, desc_sw);
850
851 /*
852 * Decrement the pending transaction count
853 * as we have processed one
854 */
855 chan->pending--;
856 }
857
858 /*
859 * Start any pending transactions automatically
860 * In the ideal case, we keep the DMA controller busy while we go
861 * ahead and free the descriptors below.
862 */
863 xgene_chan_xfer_ld_pending(chan);
864}
865
866static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan)
867{
868 struct xgene_dma_chan *chan = to_dma_chan(dchan);
869
870 /* Has this channel already been allocated? */
871 if (chan->desc_pool)
872 return 1;
873
874 chan->desc_pool = dma_pool_create(chan->name, chan->dev,
875 sizeof(struct xgene_dma_desc_sw),
876 0, 0);
877 if (!chan->desc_pool) {
878 chan_err(chan, "Failed to allocate descriptor pool\n");
879 return -ENOMEM;
880 }
881
882 chan_dbg(chan, "Allocate descripto pool\n");
883
884 return 1;
885}
886
887/**
888 * xgene_dma_free_desc_list - Free all descriptors in a queue
889 * @chan: X-Gene DMA channel
890 * @list: the list to free
891 *
892 * LOCKING: must hold chan->desc_lock
893 */
894static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan,
895 struct list_head *list)
896{
897 struct xgene_dma_desc_sw *desc, *_desc;
898
899 list_for_each_entry_safe(desc, _desc, list, node)
900 xgene_dma_clean_descriptor(chan, desc);
901}
902
903static void xgene_dma_free_tx_desc_list(struct xgene_dma_chan *chan,
904 struct list_head *list)
905{
906 struct xgene_dma_desc_sw *desc, *_desc;
907
908 list_for_each_entry_safe(desc, _desc, list, node)
909 xgene_dma_clean_descriptor(chan, desc);
910}
911
912static void xgene_dma_free_chan_resources(struct dma_chan *dchan)
913{
914 struct xgene_dma_chan *chan = to_dma_chan(dchan);
915
916 chan_dbg(chan, "Free all resources\n");
917
918 if (!chan->desc_pool)
919 return;
920
921 spin_lock_bh(&chan->lock);
922
923 /* Process all running descriptor */
924 xgene_dma_cleanup_descriptors(chan);
925
926 /* Clean all link descriptor queues */
927 xgene_dma_free_desc_list(chan, &chan->ld_pending);
928 xgene_dma_free_desc_list(chan, &chan->ld_running);
929 xgene_dma_free_desc_list(chan, &chan->ld_completed);
930
931 spin_unlock_bh(&chan->lock);
932
933 /* Delete this channel DMA pool */
934 dma_pool_destroy(chan->desc_pool);
935 chan->desc_pool = NULL;
936}
937
938static struct dma_async_tx_descriptor *xgene_dma_prep_memcpy(
939 struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
940 size_t len, unsigned long flags)
941{
942 struct xgene_dma_desc_sw *first = NULL, *new;
943 struct xgene_dma_chan *chan;
944 size_t copy;
945
946 if (unlikely(!dchan || !len))
947 return NULL;
948
949 chan = to_dma_chan(dchan);
950
951 do {
952 /* Allocate the link descriptor from DMA pool */
953 new = xgene_dma_alloc_descriptor(chan);
954 if (!new)
955 goto fail;
956
957 /* Create the largest transaction possible */
958 copy = min_t(size_t, len, XGENE_DMA_MAX_64B_DESC_BYTE_CNT);
959
960 /* Prepare DMA descriptor */
961 xgene_dma_prep_cpy_desc(chan, new, dst, src, copy);
962
963 if (!first)
964 first = new;
965
966 new->tx.cookie = 0;
967 async_tx_ack(&new->tx);
968
969 /* Update metadata */
970 len -= copy;
971 dst += copy;
972 src += copy;
973
974 /* Insert the link descriptor to the LD ring */
975 list_add_tail(&new->node, &first->tx_list);
976 } while (len);
977
978 new->tx.flags = flags; /* client is in control of this ack */
979 new->tx.cookie = -EBUSY;
980 list_splice(&first->tx_list, &new->tx_list);
981
982 return &new->tx;
983
984fail:
985 if (!first)
986 return NULL;
987
988 xgene_dma_free_tx_desc_list(chan, &first->tx_list);
989 return NULL;
990}
991
992static struct dma_async_tx_descriptor *xgene_dma_prep_sg(
993 struct dma_chan *dchan, struct scatterlist *dst_sg,
994 u32 dst_nents, struct scatterlist *src_sg,
995 u32 src_nents, unsigned long flags)
996{
997 struct xgene_dma_desc_sw *first = NULL, *new = NULL;
998 struct xgene_dma_chan *chan;
999 size_t dst_avail, src_avail;
1000 dma_addr_t dst, src;
1001 size_t len;
1002
1003 if (unlikely(!dchan))
1004 return NULL;
1005
1006 if (unlikely(!dst_nents || !src_nents))
1007 return NULL;
1008
1009 if (unlikely(!dst_sg || !src_sg))
1010 return NULL;
1011
1012 chan = to_dma_chan(dchan);
1013
1014 /* Get prepared for the loop */
1015 dst_avail = sg_dma_len(dst_sg);
1016 src_avail = sg_dma_len(src_sg);
1017 dst_nents--;
1018 src_nents--;
1019
1020 /* Run until we are out of scatterlist entries */
1021 while (true) {
1022 /* Create the largest transaction possible */
1023 len = min_t(size_t, src_avail, dst_avail);
1024 len = min_t(size_t, len, XGENE_DMA_MAX_64B_DESC_BYTE_CNT);
1025 if (len == 0)
1026 goto fetch;
1027
1028 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
1029 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
1030
1031 /* Allocate the link descriptor from DMA pool */
1032 new = xgene_dma_alloc_descriptor(chan);
1033 if (!new)
1034 goto fail;
1035
1036 /* Prepare DMA descriptor */
1037 xgene_dma_prep_cpy_desc(chan, new, dst, src, len);
1038
1039 if (!first)
1040 first = new;
1041
1042 new->tx.cookie = 0;
1043 async_tx_ack(&new->tx);
1044
1045 /* update metadata */
1046 dst_avail -= len;
1047 src_avail -= len;
1048
1049 /* Insert the link descriptor to the LD ring */
1050 list_add_tail(&new->node, &first->tx_list);
1051
1052fetch:
1053 /* fetch the next dst scatterlist entry */
1054 if (dst_avail == 0) {
1055 /* no more entries: we're done */
1056 if (dst_nents == 0)
1057 break;
1058
1059 /* fetch the next entry: if there are no more: done */
1060 dst_sg = sg_next(dst_sg);
1061 if (!dst_sg)
1062 break;
1063
1064 dst_nents--;
1065 dst_avail = sg_dma_len(dst_sg);
1066 }
1067
1068 /* fetch the next src scatterlist entry */
1069 if (src_avail == 0) {
1070 /* no more entries: we're done */
1071 if (src_nents == 0)
1072 break;
1073
1074 /* fetch the next entry: if there are no more: done */
1075 src_sg = sg_next(src_sg);
1076 if (!src_sg)
1077 break;
1078
1079 src_nents--;
1080 src_avail = sg_dma_len(src_sg);
1081 }
1082 }
1083
1084 if (!new)
1085 return NULL;
1086
1087 new->tx.flags = flags; /* client is in control of this ack */
1088 new->tx.cookie = -EBUSY;
1089 list_splice(&first->tx_list, &new->tx_list);
1090
1091 return &new->tx;
1092fail:
1093 if (!first)
1094 return NULL;
1095
1096 xgene_dma_free_tx_desc_list(chan, &first->tx_list);
1097 return NULL;
1098}
1099
1100static struct dma_async_tx_descriptor *xgene_dma_prep_xor(
1101 struct dma_chan *dchan, dma_addr_t dst, dma_addr_t *src,
1102 u32 src_cnt, size_t len, unsigned long flags)
1103{
1104 struct xgene_dma_desc_sw *first = NULL, *new;
1105 struct xgene_dma_chan *chan;
1106 static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {
1107 0x01, 0x01, 0x01, 0x01, 0x01};
1108
1109 if (unlikely(!dchan || !len))
1110 return NULL;
1111
1112 chan = to_dma_chan(dchan);
1113
1114 do {
1115 /* Allocate the link descriptor from DMA pool */
1116 new = xgene_dma_alloc_descriptor(chan);
1117 if (!new)
1118 goto fail;
1119
1120 /* Prepare xor DMA descriptor */
1121 xgene_dma_prep_xor_desc(chan, new, &dst, src,
1122 src_cnt, &len, multi);
1123
1124 if (!first)
1125 first = new;
1126
1127 new->tx.cookie = 0;
1128 async_tx_ack(&new->tx);
1129
1130 /* Insert the link descriptor to the LD ring */
1131 list_add_tail(&new->node, &first->tx_list);
1132 } while (len);
1133
1134 new->tx.flags = flags; /* client is in control of this ack */
1135 new->tx.cookie = -EBUSY;
1136 list_splice(&first->tx_list, &new->tx_list);
1137
1138 return &new->tx;
1139
1140fail:
1141 if (!first)
1142 return NULL;
1143
1144 xgene_dma_free_tx_desc_list(chan, &first->tx_list);
1145 return NULL;
1146}
1147
1148static struct dma_async_tx_descriptor *xgene_dma_prep_pq(
1149 struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src,
1150 u32 src_cnt, const u8 *scf, size_t len, unsigned long flags)
1151{
1152 struct xgene_dma_desc_sw *first = NULL, *new;
1153 struct xgene_dma_chan *chan;
1154 size_t _len = len;
1155 dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC];
1156 static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01};
1157
1158 if (unlikely(!dchan || !len))
1159 return NULL;
1160
1161 chan = to_dma_chan(dchan);
1162
1163 /*
1164 * Save source addresses on local variable, may be we have to
1165 * prepare two descriptor to generate P and Q if both enabled
1166 * in the flags by client
1167 */
1168 memcpy(_src, src, sizeof(*src) * src_cnt);
1169
1170 if (flags & DMA_PREP_PQ_DISABLE_P)
1171 len = 0;
1172
1173 if (flags & DMA_PREP_PQ_DISABLE_Q)
1174 _len = 0;
1175
1176 do {
1177 /* Allocate the link descriptor from DMA pool */
1178 new = xgene_dma_alloc_descriptor(chan);
1179 if (!new)
1180 goto fail;
1181
1182 if (!first)
1183 first = new;
1184
1185 new->tx.cookie = 0;
1186 async_tx_ack(&new->tx);
1187
1188 /* Insert the link descriptor to the LD ring */
1189 list_add_tail(&new->node, &first->tx_list);
1190
1191 /*
1192 * Prepare DMA descriptor to generate P,
1193 * if DMA_PREP_PQ_DISABLE_P flag is not set
1194 */
1195 if (len) {
1196 xgene_dma_prep_xor_desc(chan, new, &dst[0], src,
1197 src_cnt, &len, multi);
1198 continue;
1199 }
1200
1201 /*
1202 * Prepare DMA descriptor to generate Q,
1203 * if DMA_PREP_PQ_DISABLE_Q flag is not set
1204 */
1205 if (_len) {
1206 xgene_dma_prep_xor_desc(chan, new, &dst[1], _src,
1207 src_cnt, &_len, scf);
1208 }
1209 } while (len || _len);
1210
1211 new->tx.flags = flags; /* client is in control of this ack */
1212 new->tx.cookie = -EBUSY;
1213 list_splice(&first->tx_list, &new->tx_list);
1214
1215 return &new->tx;
1216
1217fail:
1218 if (!first)
1219 return NULL;
1220
1221 xgene_dma_free_tx_desc_list(chan, &first->tx_list);
1222 return NULL;
1223}
1224
1225static void xgene_dma_issue_pending(struct dma_chan *dchan)
1226{
1227 struct xgene_dma_chan *chan = to_dma_chan(dchan);
1228
1229 spin_lock_bh(&chan->lock);
1230 xgene_chan_xfer_ld_pending(chan);
1231 spin_unlock_bh(&chan->lock);
1232}
1233
1234static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan,
1235 dma_cookie_t cookie,
1236 struct dma_tx_state *txstate)
1237{
1238 return dma_cookie_status(dchan, cookie, txstate);
1239}
1240
1241static void xgene_dma_tasklet_cb(unsigned long data)
1242{
1243 struct xgene_dma_chan *chan = (struct xgene_dma_chan *)data;
1244
1245 spin_lock_bh(&chan->lock);
1246
1247 /* Run all cleanup for descriptors which have been completed */
1248 xgene_dma_cleanup_descriptors(chan);
1249
1250 /* Re-enable DMA channel IRQ */
1251 enable_irq(chan->rx_irq);
1252
1253 spin_unlock_bh(&chan->lock);
1254}
1255
1256static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id)
1257{
1258 struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id;
1259
1260 BUG_ON(!chan);
1261
1262 /*
1263 * Disable DMA channel IRQ until we process completed
1264 * descriptors
1265 */
1266 disable_irq_nosync(chan->rx_irq);
1267
1268 /*
1269 * Schedule the tasklet to handle all cleanup of the current
1270 * transaction. It will start a new transaction if there is
1271 * one pending.
1272 */
1273 tasklet_schedule(&chan->tasklet);
1274
1275 return IRQ_HANDLED;
1276}
1277
1278static irqreturn_t xgene_dma_err_isr(int irq, void *id)
1279{
1280 struct xgene_dma *pdma = (struct xgene_dma *)id;
1281 unsigned long int_mask;
1282 u32 val, i;
1283
1284 val = ioread32(pdma->csr_dma + XGENE_DMA_INT);
1285
1286 /* Clear DMA interrupts */
1287 iowrite32(val, pdma->csr_dma + XGENE_DMA_INT);
1288
1289 /* Print DMA error info */
1290 int_mask = val >> XGENE_DMA_INT_MASK_SHIFT;
1291 for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err))
1292 dev_err(pdma->dev,
1293 "Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]);
1294
1295 return IRQ_HANDLED;
1296}
1297
1298static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring)
1299{
1300 int i;
1301
1302 iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE);
1303
1304 for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++)
1305 iowrite32(ring->state[i], ring->pdma->csr_ring +
1306 XGENE_DMA_RING_STATE_WR_BASE + (i * 4));
1307}
1308
1309static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring)
1310{
1311 memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG);
1312 xgene_dma_wr_ring_state(ring);
1313}
1314
1315static void xgene_dma_setup_ring(struct xgene_dma_ring *ring)
1316{
1317 void *ring_cfg = ring->state;
1318 u64 addr = ring->desc_paddr;
1319 void *desc;
1320 u32 i, val;
1321
1322 ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE;
1323
1324 /* Clear DMA ring state */
1325 xgene_dma_clr_ring_state(ring);
1326
1327 /* Set DMA ring type */
1328 XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR);
1329
1330 if (ring->owner == XGENE_DMA_RING_OWNER_DMA) {
1331 /* Set recombination buffer and timeout */
1332 XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg);
1333 XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg);
1334 XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg);
1335 }
1336
1337 /* Initialize DMA ring state */
1338 XGENE_DMA_RING_SELTHRSH_SET(ring_cfg);
1339 XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg);
1340 XGENE_DMA_RING_COHERENT_SET(ring_cfg);
1341 XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr);
1342 XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr);
1343 XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize);
1344
1345 /* Write DMA ring configurations */
1346 xgene_dma_wr_ring_state(ring);
1347
1348 /* Set DMA ring id */
1349 iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id),
1350 ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1351
1352 /* Set DMA ring buffer */
1353 iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num),
1354 ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1355
1356 if (ring->owner != XGENE_DMA_RING_OWNER_CPU)
1357 return;
1358
1359 /* Set empty signature to DMA Rx ring descriptors */
1360 for (i = 0; i < ring->slots; i++) {
1361 desc = &ring->desc_hw[i];
1362 XGENE_DMA_DESC_SET_EMPTY(desc);
1363 }
1364
1365 /* Enable DMA Rx ring interrupt */
1366 val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1367 XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num);
1368 iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1369}
1370
1371static void xgene_dma_clear_ring(struct xgene_dma_ring *ring)
1372{
1373 u32 ring_id, val;
1374
1375 if (ring->owner == XGENE_DMA_RING_OWNER_CPU) {
1376 /* Disable DMA Rx ring interrupt */
1377 val = ioread32(ring->pdma->csr_ring +
1378 XGENE_DMA_RING_NE_INT_MODE);
1379 XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num);
1380 iowrite32(val, ring->pdma->csr_ring +
1381 XGENE_DMA_RING_NE_INT_MODE);
1382 }
1383
1384 /* Clear DMA ring state */
1385 ring_id = XGENE_DMA_RING_ID_SETUP(ring->id);
1386 iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1387
1388 iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1389 xgene_dma_clr_ring_state(ring);
1390}
1391
1392static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring)
1393{
1394 ring->cmd_base = ring->pdma->csr_ring_cmd +
1395 XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num -
1396 XGENE_DMA_RING_NUM));
1397
1398 ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET;
1399}
1400
1401static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan,
1402 enum xgene_dma_ring_cfgsize cfgsize)
1403{
1404 int size;
1405
1406 switch (cfgsize) {
1407 case XGENE_DMA_RING_CFG_SIZE_512B:
1408 size = 0x200;
1409 break;
1410 case XGENE_DMA_RING_CFG_SIZE_2KB:
1411 size = 0x800;
1412 break;
1413 case XGENE_DMA_RING_CFG_SIZE_16KB:
1414 size = 0x4000;
1415 break;
1416 case XGENE_DMA_RING_CFG_SIZE_64KB:
1417 size = 0x10000;
1418 break;
1419 case XGENE_DMA_RING_CFG_SIZE_512KB:
1420 size = 0x80000;
1421 break;
1422 default:
1423 chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize);
1424 return -EINVAL;
1425 }
1426
1427 return size;
1428}
1429
1430static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring)
1431{
1432 /* Clear DMA ring configurations */
1433 xgene_dma_clear_ring(ring);
1434
1435 /* De-allocate DMA ring descriptor */
1436 if (ring->desc_vaddr) {
1437 dma_free_coherent(ring->pdma->dev, ring->size,
1438 ring->desc_vaddr, ring->desc_paddr);
1439 ring->desc_vaddr = NULL;
1440 }
1441}
1442
1443static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan)
1444{
1445 xgene_dma_delete_ring_one(&chan->rx_ring);
1446 xgene_dma_delete_ring_one(&chan->tx_ring);
1447}
1448
1449static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan,
1450 struct xgene_dma_ring *ring,
1451 enum xgene_dma_ring_cfgsize cfgsize)
1452{
1453 /* Setup DMA ring descriptor variables */
1454 ring->pdma = chan->pdma;
1455 ring->cfgsize = cfgsize;
1456 ring->num = chan->pdma->ring_num++;
1457 ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num);
1458
1459 ring->size = xgene_dma_get_ring_size(chan, cfgsize);
1460 if (ring->size <= 0)
1461 return ring->size;
1462
1463 /* Allocate memory for DMA ring descriptor */
1464 ring->desc_vaddr = dma_zalloc_coherent(chan->dev, ring->size,
1465 &ring->desc_paddr, GFP_KERNEL);
1466 if (!ring->desc_vaddr) {
1467 chan_err(chan, "Failed to allocate ring desc\n");
1468 return -ENOMEM;
1469 }
1470
1471 /* Configure and enable DMA ring */
1472 xgene_dma_set_ring_cmd(ring);
1473 xgene_dma_setup_ring(ring);
1474
1475 return 0;
1476}
1477
1478static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan)
1479{
1480 struct xgene_dma_ring *rx_ring = &chan->rx_ring;
1481 struct xgene_dma_ring *tx_ring = &chan->tx_ring;
1482 int ret;
1483
1484 /* Create DMA Rx ring descriptor */
1485 rx_ring->owner = XGENE_DMA_RING_OWNER_CPU;
1486 rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id;
1487
1488 ret = xgene_dma_create_ring_one(chan, rx_ring,
1489 XGENE_DMA_RING_CFG_SIZE_64KB);
1490 if (ret)
1491 return ret;
1492
1493 chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n",
1494 rx_ring->id, rx_ring->num, rx_ring->desc_vaddr);
1495
1496 /* Create DMA Tx ring descriptor */
1497 tx_ring->owner = XGENE_DMA_RING_OWNER_DMA;
1498 tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id;
1499
1500 ret = xgene_dma_create_ring_one(chan, tx_ring,
1501 XGENE_DMA_RING_CFG_SIZE_64KB);
1502 if (ret) {
1503 xgene_dma_delete_ring_one(rx_ring);
1504 return ret;
1505 }
1506
1507 tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num);
1508
1509 chan_dbg(chan,
1510 "Tx ring id 0x%X num %d desc 0x%p\n",
1511 tx_ring->id, tx_ring->num, tx_ring->desc_vaddr);
1512
1513 /* Set the max outstanding request possible to this channel */
1514 chan->max_outstanding = rx_ring->slots;
1515
1516 return ret;
1517}
1518
1519static int xgene_dma_init_rings(struct xgene_dma *pdma)
1520{
1521 int ret, i, j;
1522
1523 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1524 ret = xgene_dma_create_chan_rings(&pdma->chan[i]);
1525 if (ret) {
1526 for (j = 0; j < i; j++)
1527 xgene_dma_delete_chan_rings(&pdma->chan[j]);
1528 return ret;
1529 }
1530 }
1531
1532 return ret;
1533}
1534
1535static void xgene_dma_enable(struct xgene_dma *pdma)
1536{
1537 u32 val;
1538
1539 /* Configure and enable DMA engine */
1540 val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1541 XGENE_DMA_CH_SETUP(val);
1542 XGENE_DMA_ENABLE(val);
1543 iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1544}
1545
1546static void xgene_dma_disable(struct xgene_dma *pdma)
1547{
1548 u32 val;
1549
1550 val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1551 XGENE_DMA_DISABLE(val);
1552 iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1553}
1554
1555static void xgene_dma_mask_interrupts(struct xgene_dma *pdma)
1556{
1557 /*
1558 * Mask DMA ring overflow, underflow and
1559 * AXI write/read error interrupts
1560 */
1561 iowrite32(XGENE_DMA_INT_ALL_MASK,
1562 pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1563 iowrite32(XGENE_DMA_INT_ALL_MASK,
1564 pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1565 iowrite32(XGENE_DMA_INT_ALL_MASK,
1566 pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1567 iowrite32(XGENE_DMA_INT_ALL_MASK,
1568 pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1569 iowrite32(XGENE_DMA_INT_ALL_MASK,
1570 pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1571
1572 /* Mask DMA error interrupts */
1573 iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK);
1574}
1575
1576static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma)
1577{
1578 /*
1579 * Unmask DMA ring overflow, underflow and
1580 * AXI write/read error interrupts
1581 */
1582 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1583 pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1584 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1585 pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1586 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1587 pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1588 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1589 pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1590 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1591 pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1592
1593 /* Unmask DMA error interrupts */
1594 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1595 pdma->csr_dma + XGENE_DMA_INT_MASK);
1596}
1597
1598static void xgene_dma_init_hw(struct xgene_dma *pdma)
1599{
1600 u32 val;
1601
1602 /* Associate DMA ring to corresponding ring HW */
1603 iowrite32(XGENE_DMA_ASSOC_RING_MNGR1,
1604 pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC);
1605
1606 /* Configure RAID6 polynomial control setting */
1607 if (is_pq_enabled(pdma))
1608 iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D),
1609 pdma->csr_dma + XGENE_DMA_RAID6_CONT);
1610 else
1611 dev_info(pdma->dev, "PQ is disabled in HW\n");
1612
1613 xgene_dma_enable(pdma);
1614 xgene_dma_unmask_interrupts(pdma);
1615
1616 /* Get DMA id and version info */
1617 val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR);
1618
1619 /* DMA device info */
1620 dev_info(pdma->dev,
1621 "X-Gene DMA v%d.%02d.%02d driver registered %d channels",
1622 XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val),
1623 XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL);
1624}
1625
kbuild test robota3f92e82015-04-02 17:50:56 +08001626static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma)
Rameshwar Prasad Sahu9f2fd0d2015-03-18 19:17:34 +05301627{
1628 if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) &&
1629 (!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST)))
1630 return 0;
1631
1632 iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN);
1633 iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST);
1634
1635 /* Bring up memory */
1636 iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1637
1638 /* Force a barrier */
1639 ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1640
1641 /* reset may take up to 1ms */
1642 usleep_range(1000, 1100);
1643
1644 if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY)
1645 != XGENE_DMA_RING_BLK_MEM_RDY_VAL) {
1646 dev_err(pdma->dev,
1647 "Failed to release ring mngr memory from shutdown\n");
1648 return -ENODEV;
1649 }
1650
1651 /* program threshold set 1 and all hysteresis */
1652 iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL,
1653 pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1);
1654 iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL,
1655 pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1);
1656 iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL,
1657 pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS);
1658
1659 /* Enable QPcore and assign error queue */
1660 iowrite32(XGENE_DMA_RING_ENABLE,
1661 pdma->csr_ring + XGENE_DMA_RING_CONFIG);
1662
1663 return 0;
1664}
1665
1666static int xgene_dma_init_mem(struct xgene_dma *pdma)
1667{
1668 int ret;
1669
1670 ret = xgene_dma_init_ring_mngr(pdma);
1671 if (ret)
1672 return ret;
1673
1674 /* Bring up memory */
1675 iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1676
1677 /* Force a barrier */
1678 ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1679
1680 /* reset may take up to 1ms */
1681 usleep_range(1000, 1100);
1682
1683 if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY)
1684 != XGENE_DMA_BLK_MEM_RDY_VAL) {
1685 dev_err(pdma->dev,
1686 "Failed to release DMA memory from shutdown\n");
1687 return -ENODEV;
1688 }
1689
1690 return 0;
1691}
1692
1693static int xgene_dma_request_irqs(struct xgene_dma *pdma)
1694{
1695 struct xgene_dma_chan *chan;
1696 int ret, i, j;
1697
1698 /* Register DMA error irq */
1699 ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr,
1700 0, "dma_error", pdma);
1701 if (ret) {
1702 dev_err(pdma->dev,
1703 "Failed to register error IRQ %d\n", pdma->err_irq);
1704 return ret;
1705 }
1706
1707 /* Register DMA channel rx irq */
1708 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1709 chan = &pdma->chan[i];
1710 ret = devm_request_irq(chan->dev, chan->rx_irq,
1711 xgene_dma_chan_ring_isr,
1712 0, chan->name, chan);
1713 if (ret) {
1714 chan_err(chan, "Failed to register Rx IRQ %d\n",
1715 chan->rx_irq);
1716 devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1717
1718 for (j = 0; j < i; j++) {
1719 chan = &pdma->chan[i];
1720 devm_free_irq(chan->dev, chan->rx_irq, chan);
1721 }
1722
1723 return ret;
1724 }
1725 }
1726
1727 return 0;
1728}
1729
1730static void xgene_dma_free_irqs(struct xgene_dma *pdma)
1731{
1732 struct xgene_dma_chan *chan;
1733 int i;
1734
1735 /* Free DMA device error irq */
1736 devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1737
1738 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1739 chan = &pdma->chan[i];
1740 devm_free_irq(chan->dev, chan->rx_irq, chan);
1741 }
1742}
1743
1744static void xgene_dma_set_caps(struct xgene_dma_chan *chan,
1745 struct dma_device *dma_dev)
1746{
1747 /* Initialize DMA device capability mask */
1748 dma_cap_zero(dma_dev->cap_mask);
1749
1750 /* Set DMA device capability */
1751 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1752 dma_cap_set(DMA_SG, dma_dev->cap_mask);
1753
1754 /* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR
1755 * and channel 1 supports XOR, PQ both. First thing here is we have
1756 * mechanism in hw to enable/disable PQ/XOR supports on channel 1,
1757 * we can make sure this by reading SoC Efuse register.
1758 * Second thing, we have hw errata that if we run channel 0 and
1759 * channel 1 simultaneously with executing XOR and PQ request,
1760 * suddenly DMA engine hangs, So here we enable XOR on channel 0 only
1761 * if XOR and PQ supports on channel 1 is disabled.
1762 */
1763 if ((chan->id == XGENE_DMA_PQ_CHANNEL) &&
1764 is_pq_enabled(chan->pdma)) {
1765 dma_cap_set(DMA_PQ, dma_dev->cap_mask);
1766 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1767 } else if ((chan->id == XGENE_DMA_XOR_CHANNEL) &&
1768 !is_pq_enabled(chan->pdma)) {
1769 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1770 }
1771
1772 /* Set base and prep routines */
1773 dma_dev->dev = chan->dev;
1774 dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources;
1775 dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources;
1776 dma_dev->device_issue_pending = xgene_dma_issue_pending;
1777 dma_dev->device_tx_status = xgene_dma_tx_status;
1778 dma_dev->device_prep_dma_memcpy = xgene_dma_prep_memcpy;
1779 dma_dev->device_prep_dma_sg = xgene_dma_prep_sg;
1780
1781 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1782 dma_dev->device_prep_dma_xor = xgene_dma_prep_xor;
1783 dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC;
1784 dma_dev->xor_align = XGENE_DMA_XOR_ALIGNMENT;
1785 }
1786
1787 if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
1788 dma_dev->device_prep_dma_pq = xgene_dma_prep_pq;
1789 dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC;
1790 dma_dev->pq_align = XGENE_DMA_XOR_ALIGNMENT;
1791 }
1792}
1793
1794static int xgene_dma_async_register(struct xgene_dma *pdma, int id)
1795{
1796 struct xgene_dma_chan *chan = &pdma->chan[id];
1797 struct dma_device *dma_dev = &pdma->dma_dev[id];
1798 int ret;
1799
1800 chan->dma_chan.device = dma_dev;
1801
1802 spin_lock_init(&chan->lock);
1803 INIT_LIST_HEAD(&chan->ld_pending);
1804 INIT_LIST_HEAD(&chan->ld_running);
1805 INIT_LIST_HEAD(&chan->ld_completed);
1806 tasklet_init(&chan->tasklet, xgene_dma_tasklet_cb,
1807 (unsigned long)chan);
1808
1809 chan->pending = 0;
1810 chan->desc_pool = NULL;
1811 dma_cookie_init(&chan->dma_chan);
1812
1813 /* Setup dma device capabilities and prep routines */
1814 xgene_dma_set_caps(chan, dma_dev);
1815
1816 /* Initialize DMA device list head */
1817 INIT_LIST_HEAD(&dma_dev->channels);
1818 list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels);
1819
1820 /* Register with Linux async DMA framework*/
1821 ret = dma_async_device_register(dma_dev);
1822 if (ret) {
1823 chan_err(chan, "Failed to register async device %d", ret);
1824 tasklet_kill(&chan->tasklet);
1825
1826 return ret;
1827 }
1828
1829 /* DMA capability info */
1830 dev_info(pdma->dev,
1831 "%s: CAPABILITY ( %s%s%s%s)\n", dma_chan_name(&chan->dma_chan),
1832 dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "MEMCPY " : "",
1833 dma_has_cap(DMA_SG, dma_dev->cap_mask) ? "SGCPY " : "",
1834 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "",
1835 dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : "");
1836
1837 return 0;
1838}
1839
1840static int xgene_dma_init_async(struct xgene_dma *pdma)
1841{
1842 int ret, i, j;
1843
1844 for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) {
1845 ret = xgene_dma_async_register(pdma, i);
1846 if (ret) {
1847 for (j = 0; j < i; j++) {
1848 dma_async_device_unregister(&pdma->dma_dev[j]);
1849 tasklet_kill(&pdma->chan[j].tasklet);
1850 }
1851
1852 return ret;
1853 }
1854 }
1855
1856 return ret;
1857}
1858
1859static void xgene_dma_async_unregister(struct xgene_dma *pdma)
1860{
1861 int i;
1862
1863 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1864 dma_async_device_unregister(&pdma->dma_dev[i]);
1865}
1866
1867static void xgene_dma_init_channels(struct xgene_dma *pdma)
1868{
1869 struct xgene_dma_chan *chan;
1870 int i;
1871
1872 pdma->ring_num = XGENE_DMA_RING_NUM;
1873
1874 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1875 chan = &pdma->chan[i];
1876 chan->dev = pdma->dev;
1877 chan->pdma = pdma;
1878 chan->id = i;
1879 sprintf(chan->name, "dmachan%d", chan->id);
1880 }
1881}
1882
1883static int xgene_dma_get_resources(struct platform_device *pdev,
1884 struct xgene_dma *pdma)
1885{
1886 struct resource *res;
1887 int irq, i;
1888
1889 /* Get DMA csr region */
1890 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1891 if (!res) {
1892 dev_err(&pdev->dev, "Failed to get csr region\n");
1893 return -ENXIO;
1894 }
1895
1896 pdma->csr_dma = devm_ioremap(&pdev->dev, res->start,
1897 resource_size(res));
1898 if (IS_ERR(pdma->csr_dma)) {
1899 dev_err(&pdev->dev, "Failed to ioremap csr region");
1900 return PTR_ERR(pdma->csr_dma);
1901 }
1902
1903 /* Get DMA ring csr region */
1904 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1905 if (!res) {
1906 dev_err(&pdev->dev, "Failed to get ring csr region\n");
1907 return -ENXIO;
1908 }
1909
1910 pdma->csr_ring = devm_ioremap(&pdev->dev, res->start,
1911 resource_size(res));
1912 if (IS_ERR(pdma->csr_ring)) {
1913 dev_err(&pdev->dev, "Failed to ioremap ring csr region");
1914 return PTR_ERR(pdma->csr_ring);
1915 }
1916
1917 /* Get DMA ring cmd csr region */
1918 res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1919 if (!res) {
1920 dev_err(&pdev->dev, "Failed to get ring cmd csr region\n");
1921 return -ENXIO;
1922 }
1923
1924 pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start,
1925 resource_size(res));
1926 if (IS_ERR(pdma->csr_ring_cmd)) {
1927 dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region");
1928 return PTR_ERR(pdma->csr_ring_cmd);
1929 }
1930
1931 /* Get efuse csr region */
1932 res = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1933 if (!res) {
1934 dev_err(&pdev->dev, "Failed to get efuse csr region\n");
1935 return -ENXIO;
1936 }
1937
1938 pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start,
1939 resource_size(res));
1940 if (IS_ERR(pdma->csr_efuse)) {
1941 dev_err(&pdev->dev, "Failed to ioremap efuse csr region");
1942 return PTR_ERR(pdma->csr_efuse);
1943 }
1944
1945 /* Get DMA error interrupt */
1946 irq = platform_get_irq(pdev, 0);
1947 if (irq <= 0) {
1948 dev_err(&pdev->dev, "Failed to get Error IRQ\n");
1949 return -ENXIO;
1950 }
1951
1952 pdma->err_irq = irq;
1953
1954 /* Get DMA Rx ring descriptor interrupts for all DMA channels */
1955 for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) {
1956 irq = platform_get_irq(pdev, i);
1957 if (irq <= 0) {
1958 dev_err(&pdev->dev, "Failed to get Rx IRQ\n");
1959 return -ENXIO;
1960 }
1961
1962 pdma->chan[i - 1].rx_irq = irq;
1963 }
1964
1965 return 0;
1966}
1967
1968static int xgene_dma_probe(struct platform_device *pdev)
1969{
1970 struct xgene_dma *pdma;
1971 int ret, i;
1972
1973 pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL);
1974 if (!pdma)
1975 return -ENOMEM;
1976
1977 pdma->dev = &pdev->dev;
1978 platform_set_drvdata(pdev, pdma);
1979
1980 ret = xgene_dma_get_resources(pdev, pdma);
1981 if (ret)
1982 return ret;
1983
1984 pdma->clk = devm_clk_get(&pdev->dev, NULL);
1985 if (IS_ERR(pdma->clk)) {
1986 dev_err(&pdev->dev, "Failed to get clk\n");
1987 return PTR_ERR(pdma->clk);
1988 }
1989
1990 /* Enable clk before accessing registers */
1991 ret = clk_prepare_enable(pdma->clk);
1992 if (ret) {
1993 dev_err(&pdev->dev, "Failed to enable clk %d\n", ret);
1994 return ret;
1995 }
1996
1997 /* Remove DMA RAM out of shutdown */
1998 ret = xgene_dma_init_mem(pdma);
1999 if (ret)
2000 goto err_clk_enable;
2001
2002 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42));
2003 if (ret) {
2004 dev_err(&pdev->dev, "No usable DMA configuration\n");
2005 goto err_dma_mask;
2006 }
2007
2008 /* Initialize DMA channels software state */
2009 xgene_dma_init_channels(pdma);
2010
2011 /* Configue DMA rings */
2012 ret = xgene_dma_init_rings(pdma);
2013 if (ret)
2014 goto err_clk_enable;
2015
2016 ret = xgene_dma_request_irqs(pdma);
2017 if (ret)
2018 goto err_request_irq;
2019
2020 /* Configure and enable DMA engine */
2021 xgene_dma_init_hw(pdma);
2022
2023 /* Register DMA device with linux async framework */
2024 ret = xgene_dma_init_async(pdma);
2025 if (ret)
2026 goto err_async_init;
2027
2028 return 0;
2029
2030err_async_init:
2031 xgene_dma_free_irqs(pdma);
2032
2033err_request_irq:
2034 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
2035 xgene_dma_delete_chan_rings(&pdma->chan[i]);
2036
2037err_dma_mask:
2038err_clk_enable:
2039 clk_disable_unprepare(pdma->clk);
2040
2041 return ret;
2042}
2043
2044static int xgene_dma_remove(struct platform_device *pdev)
2045{
2046 struct xgene_dma *pdma = platform_get_drvdata(pdev);
2047 struct xgene_dma_chan *chan;
2048 int i;
2049
2050 xgene_dma_async_unregister(pdma);
2051
2052 /* Mask interrupts and disable DMA engine */
2053 xgene_dma_mask_interrupts(pdma);
2054 xgene_dma_disable(pdma);
2055 xgene_dma_free_irqs(pdma);
2056
2057 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
2058 chan = &pdma->chan[i];
2059 tasklet_kill(&chan->tasklet);
2060 xgene_dma_delete_chan_rings(chan);
2061 }
2062
2063 clk_disable_unprepare(pdma->clk);
2064
2065 return 0;
2066}
2067
2068static const struct of_device_id xgene_dma_of_match_ptr[] = {
2069 {.compatible = "apm,xgene-storm-dma",},
2070 {},
2071};
2072MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr);
2073
2074static struct platform_driver xgene_dma_driver = {
2075 .probe = xgene_dma_probe,
2076 .remove = xgene_dma_remove,
2077 .driver = {
2078 .name = "X-Gene-DMA",
2079 .owner = THIS_MODULE,
2080 .of_match_table = xgene_dma_of_match_ptr,
2081 },
2082};
2083
2084module_platform_driver(xgene_dma_driver);
2085
2086MODULE_DESCRIPTION("APM X-Gene SoC DMA driver");
2087MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>");
2088MODULE_AUTHOR("Loc Ho <lho@apm.com>");
2089MODULE_LICENSE("GPL");
2090MODULE_VERSION("1.0");