blob: 1dc0ce1d0d5ddc81c10c95c10e283dc909a6a3b4 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
Andrew Mortona737b3e2006-03-22 00:08:11 -080053 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds1da177e2005-04-16 15:20:36 -070054 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
Pekka Enberg343e0d72006-02-01 03:05:50 -080058 * Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds1da177e2005-04-16 15:20:36 -070059 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
Ingo Molnarfc0abb12006-01-18 17:42:33 -080071 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
Linus Torvalds1da177e2005-04-16 15:20:36 -070072 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
Christoph Lametere498be72005-09-09 13:03:32 -070078 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
Linus Torvalds1da177e2005-04-16 15:20:36 -070087 */
88
Linus Torvalds1da177e2005-04-16 15:20:36 -070089#include <linux/slab.h>
90#include <linux/mm.h>
Randy Dunlapc9cf5522006-06-27 02:53:52 -070091#include <linux/poison.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070092#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
Paul Jackson101a5002006-03-24 03:16:07 -080097#include <linux/cpuset.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070098#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
Paulo Marques543537b2005-06-23 00:09:02 -0700105#include <linux/string.h>
Andrew Morton138ae662006-12-06 20:36:41 -0800106#include <linux/uaccess.h>
Christoph Lametere498be72005-09-09 13:03:32 -0700107#include <linux/nodemask.h>
Christoph Lameterdc85da12006-01-18 17:42:36 -0800108#include <linux/mempolicy.h>
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800109#include <linux/mutex.h>
Akinobu Mita8a8b6502006-12-08 02:39:44 -0800110#include <linux/fault-inject.h>
Ingo Molnare7eebaf2006-06-27 02:54:55 -0700111#include <linux/rtmutex.h>
Eric Dumazet6a2d7a92006-12-13 00:34:27 -0800112#include <linux/reciprocal_div.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700113
Linus Torvalds1da177e2005-04-16 15:20:36 -0700114#include <asm/cacheflush.h>
115#include <asm/tlbflush.h>
116#include <asm/page.h>
117
118/*
Christoph Lameter50953fe2007-05-06 14:50:16 -0700119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define DEBUG 1
130#define STATS 1
131#define FORCED_DEBUG 1
132#else
133#define DEBUG 0
134#define STATS 0
135#define FORCED_DEBUG 0
136#endif
137
Linus Torvalds1da177e2005-04-16 15:20:36 -0700138/* Shouldn't this be in a header file somewhere? */
139#define BYTES_PER_WORD sizeof(void *)
140
141#ifndef cache_line_size
142#define cache_line_size() L1_CACHE_BYTES
143#endif
144
145#ifndef ARCH_KMALLOC_MINALIGN
146/*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
David Woodhouseb46b8f12007-05-08 00:22:59 -0700151 * alignment larger than the alignment of a 64-bit integer.
152 * ARCH_KMALLOC_MINALIGN allows that.
153 * Note that increasing this value may disable some debug features.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700154 */
David Woodhouseb46b8f12007-05-08 00:22:59 -0700155#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700156#endif
157
158#ifndef ARCH_SLAB_MINALIGN
159/*
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
165 */
166#define ARCH_SLAB_MINALIGN 0
167#endif
168
169#ifndef ARCH_KMALLOC_FLAGS
170#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171#endif
172
173/* Legal flag mask for kmem_cache_create(). */
174#if DEBUG
Christoph Lameter50953fe2007-05-06 14:50:16 -0700175# define CREATE_MASK (SLAB_RED_ZONE | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
Christoph Lameterac2b8982006-03-22 00:08:15 -0800177 SLAB_CACHE_DMA | \
Christoph Lameter5af60832007-05-06 14:49:56 -0700178 SLAB_STORE_USER | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
Paul Jackson101a5002006-03-24 03:16:07 -0800180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700181#else
Christoph Lameterac2b8982006-03-22 00:08:15 -0800182# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
Christoph Lameter5af60832007-05-06 14:49:56 -0700183 SLAB_CACHE_DMA | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
Paul Jackson101a5002006-03-24 03:16:07 -0800185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700186#endif
187
188/*
189 * kmem_bufctl_t:
190 *
191 * Bufctl's are used for linking objs within a slab
192 * linked offsets.
193 *
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
205 */
206
Kyle Moffettfa5b08d2005-09-03 15:55:03 -0700207typedef unsigned int kmem_bufctl_t;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700208#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
Al Viro871751e2006-03-25 03:06:39 -0800210#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700212
Linus Torvalds1da177e2005-04-16 15:20:36 -0700213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700227};
228
229/*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245struct slab_rcu {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800246 struct rcu_head head;
Pekka Enberg343e0d72006-02-01 03:05:50 -0800247 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800248 void *addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700249};
250
251/*
252 * struct array_cache
253 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
Christoph Lametere498be72005-09-09 13:03:32 -0700268 spinlock_t lock;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700275};
276
Andrew Mortona737b3e2006-03-22 00:08:11 -0800277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
Linus Torvalds1da177e2005-04-16 15:20:36 -0700280 */
281#define BOOT_CPUCACHE_ENTRIES 1
282struct arraycache_init {
283 struct array_cache cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800284 void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700285};
286
287/*
Christoph Lametere498be72005-09-09 13:03:32 -0700288 * The slab lists for all objects.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700289 */
290struct kmem_list3 {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800295 unsigned int free_limit;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800296 unsigned int colour_next; /* Per-node cache coloring */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
Christoph Lameter35386e32006-03-22 00:09:05 -0800300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700302};
303
Christoph Lametere498be72005-09-09 13:03:32 -0700304/*
305 * Need this for bootstrapping a per node allocator.
306 */
307#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309#define CACHE_CACHE 0
310#define SIZE_AC 1
311#define SIZE_L3 (1 + MAX_NUMNODES)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700312
Christoph Lametered11d9e2006-06-30 01:55:45 -0700313static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -0700317static int enable_cpucache(struct kmem_cache *cachep);
David Howells65f27f32006-11-22 14:55:48 +0000318static void cache_reap(struct work_struct *unused);
Christoph Lametered11d9e2006-06-30 01:55:45 -0700319
Christoph Lametere498be72005-09-09 13:03:32 -0700320/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
Christoph Lametere498be72005-09-09 13:03:32 -0700323 */
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700324static __always_inline int index_of(const size_t size)
Christoph Lametere498be72005-09-09 13:03:32 -0700325{
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800326 extern void __bad_size(void);
327
Christoph Lametere498be72005-09-09 13:03:32 -0700328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331#define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336#include "linux/kmalloc_sizes.h"
337#undef CACHE
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800338 __bad_size();
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700339 } else
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800340 __bad_size();
Christoph Lametere498be72005-09-09 13:03:32 -0700341 return 0;
342}
343
Ingo Molnare0a42722006-06-23 02:03:46 -0700344static int slab_early_init = 1;
345
Christoph Lametere498be72005-09-09 13:03:32 -0700346#define INDEX_AC index_of(sizeof(struct arraycache_init))
347#define INDEX_L3 index_of(sizeof(struct kmem_list3))
348
Pekka Enberg5295a742006-02-01 03:05:48 -0800349static void kmem_list3_init(struct kmem_list3 *parent)
Christoph Lametere498be72005-09-09 13:03:32 -0700350{
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800356 parent->colour_next = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360}
361
Andrew Mortona737b3e2006-03-22 00:08:11 -0800362#define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
Christoph Lametere498be72005-09-09 13:03:32 -0700366 } while (0)
367
Andrew Mortona737b3e2006-03-22 00:08:11 -0800368#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
Christoph Lametere498be72005-09-09 13:03:32 -0700370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700374
375/*
Pekka Enberg343e0d72006-02-01 03:05:50 -0800376 * struct kmem_cache
Linus Torvalds1da177e2005-04-16 15:20:36 -0700377 *
378 * manages a cache.
379 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800380
Pekka J Enberg2109a2d2005-11-07 00:58:01 -0800381struct kmem_cache {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700382/* 1) per-cpu data, touched during every alloc/free */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800383 struct array_cache *array[NR_CPUS];
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800384/* 2) Cache tunables. Protected by cache_chain_mutex */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800388
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800389 unsigned int buffer_size;
Eric Dumazet6a2d7a92006-12-13 00:34:27 -0800390 u32 reciprocal_buffer_size;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800391/* 3) touched by every alloc & free from the backend */
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800392
Andrew Mortona737b3e2006-03-22 00:08:11 -0800393 unsigned int flags; /* constant flags */
394 unsigned int num; /* # of objs per slab */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700395
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800396/* 4) cache_grow/shrink */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700397 /* order of pgs per slab (2^n) */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800398 unsigned int gfporder;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700399
400 /* force GFP flags, e.g. GFP_DMA */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800401 gfp_t gfpflags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700402
Andrew Mortona737b3e2006-03-22 00:08:11 -0800403 size_t colour; /* cache colouring range */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800404 unsigned int colour_off; /* colour offset */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800405 struct kmem_cache *slabp_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800406 unsigned int slab_size;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800407 unsigned int dflags; /* dynamic flags */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700408
409 /* constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800410 void (*ctor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700411
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800412/* 5) cache creation/removal */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800413 const char *name;
414 struct list_head next;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700415
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800416/* 6) statistics */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700417#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800418 unsigned long num_active;
419 unsigned long num_allocations;
420 unsigned long high_mark;
421 unsigned long grown;
422 unsigned long reaped;
423 unsigned long errors;
424 unsigned long max_freeable;
425 unsigned long node_allocs;
426 unsigned long node_frees;
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700427 unsigned long node_overflow;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800428 atomic_t allochit;
429 atomic_t allocmiss;
430 atomic_t freehit;
431 atomic_t freemiss;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700432#endif
433#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800434 /*
435 * If debugging is enabled, then the allocator can add additional
436 * fields and/or padding to every object. buffer_size contains the total
437 * object size including these internal fields, the following two
438 * variables contain the offset to the user object and its size.
439 */
440 int obj_offset;
441 int obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700442#endif
Eric Dumazet8da34302007-05-06 14:49:29 -0700443 /*
444 * We put nodelists[] at the end of kmem_cache, because we want to size
445 * this array to nr_node_ids slots instead of MAX_NUMNODES
446 * (see kmem_cache_init())
447 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
448 * is statically defined, so we reserve the max number of nodes.
449 */
450 struct kmem_list3 *nodelists[MAX_NUMNODES];
451 /*
452 * Do not add fields after nodelists[]
453 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700454};
455
456#define CFLGS_OFF_SLAB (0x80000000UL)
457#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
458
459#define BATCHREFILL_LIMIT 16
Andrew Mortona737b3e2006-03-22 00:08:11 -0800460/*
461 * Optimization question: fewer reaps means less probability for unnessary
462 * cpucache drain/refill cycles.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700463 *
Adrian Bunkdc6f3f22005-11-08 16:44:08 +0100464 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700465 * which could lock up otherwise freeable slabs.
466 */
467#define REAPTIMEOUT_CPUC (2*HZ)
468#define REAPTIMEOUT_LIST3 (4*HZ)
469
470#if STATS
471#define STATS_INC_ACTIVE(x) ((x)->num_active++)
472#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
473#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
474#define STATS_INC_GROWN(x) ((x)->grown++)
Christoph Lametered11d9e2006-06-30 01:55:45 -0700475#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
Andrew Mortona737b3e2006-03-22 00:08:11 -0800476#define STATS_SET_HIGH(x) \
477 do { \
478 if ((x)->num_active > (x)->high_mark) \
479 (x)->high_mark = (x)->num_active; \
480 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700481#define STATS_INC_ERR(x) ((x)->errors++)
482#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
Christoph Lametere498be72005-09-09 13:03:32 -0700483#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700484#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800485#define STATS_SET_FREEABLE(x, i) \
486 do { \
487 if ((x)->max_freeable < i) \
488 (x)->max_freeable = i; \
489 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700490#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
491#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
492#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
493#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
494#else
495#define STATS_INC_ACTIVE(x) do { } while (0)
496#define STATS_DEC_ACTIVE(x) do { } while (0)
497#define STATS_INC_ALLOCED(x) do { } while (0)
498#define STATS_INC_GROWN(x) do { } while (0)
Christoph Lametered11d9e2006-06-30 01:55:45 -0700499#define STATS_ADD_REAPED(x,y) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700500#define STATS_SET_HIGH(x) do { } while (0)
501#define STATS_INC_ERR(x) do { } while (0)
502#define STATS_INC_NODEALLOCS(x) do { } while (0)
Christoph Lametere498be72005-09-09 13:03:32 -0700503#define STATS_INC_NODEFREES(x) do { } while (0)
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700504#define STATS_INC_ACOVERFLOW(x) do { } while (0)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800505#define STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700506#define STATS_INC_ALLOCHIT(x) do { } while (0)
507#define STATS_INC_ALLOCMISS(x) do { } while (0)
508#define STATS_INC_FREEHIT(x) do { } while (0)
509#define STATS_INC_FREEMISS(x) do { } while (0)
510#endif
511
512#if DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -0700513
Andrew Mortona737b3e2006-03-22 00:08:11 -0800514/*
515 * memory layout of objects:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700516 * 0 : objp
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800517 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds1da177e2005-04-16 15:20:36 -0700518 * the end of an object is aligned with the end of the real
519 * allocation. Catches writes behind the end of the allocation.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800520 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700521 * redzone word.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800522 * cachep->obj_offset: The real object.
523 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
Andrew Mortona737b3e2006-03-22 00:08:11 -0800524 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
525 * [BYTES_PER_WORD long]
Linus Torvalds1da177e2005-04-16 15:20:36 -0700526 */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800527static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700528{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800529 return cachep->obj_offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700530}
531
Pekka Enberg343e0d72006-02-01 03:05:50 -0800532static int obj_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700533{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800534 return cachep->obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700535}
536
David Woodhouseb46b8f12007-05-08 00:22:59 -0700537static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700538{
539 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
David Woodhouseb46b8f12007-05-08 00:22:59 -0700540 return (unsigned long long*) (objp + obj_offset(cachep) -
541 sizeof(unsigned long long));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700542}
543
David Woodhouseb46b8f12007-05-08 00:22:59 -0700544static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700545{
546 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
547 if (cachep->flags & SLAB_STORE_USER)
David Woodhouseb46b8f12007-05-08 00:22:59 -0700548 return (unsigned long long *)(objp + cachep->buffer_size -
549 sizeof(unsigned long long) -
550 BYTES_PER_WORD);
551 return (unsigned long long *) (objp + cachep->buffer_size -
552 sizeof(unsigned long long));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700553}
554
Pekka Enberg343e0d72006-02-01 03:05:50 -0800555static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700556{
557 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800558 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700559}
560
561#else
562
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800563#define obj_offset(x) 0
564#define obj_size(cachep) (cachep->buffer_size)
David Woodhouseb46b8f12007-05-08 00:22:59 -0700565#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
566#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
Linus Torvalds1da177e2005-04-16 15:20:36 -0700567#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
568
569#endif
570
571/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800572 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
573 * order.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700574 */
575#if defined(CONFIG_LARGE_ALLOCS)
576#define MAX_OBJ_ORDER 13 /* up to 32Mb */
577#define MAX_GFP_ORDER 13 /* up to 32Mb */
578#elif defined(CONFIG_MMU)
579#define MAX_OBJ_ORDER 5 /* 32 pages */
580#define MAX_GFP_ORDER 5 /* 32 pages */
581#else
582#define MAX_OBJ_ORDER 8 /* up to 1Mb */
583#define MAX_GFP_ORDER 8 /* up to 1Mb */
584#endif
585
586/*
587 * Do not go above this order unless 0 objects fit into the slab.
588 */
589#define BREAK_GFP_ORDER_HI 1
590#define BREAK_GFP_ORDER_LO 0
591static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
592
Andrew Mortona737b3e2006-03-22 00:08:11 -0800593/*
594 * Functions for storing/retrieving the cachep and or slab from the page
595 * allocator. These are used to find the slab an obj belongs to. With kfree(),
596 * these are used to find the cache which an obj belongs to.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700597 */
Pekka Enberg065d41c2005-11-13 16:06:46 -0800598static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
599{
600 page->lru.next = (struct list_head *)cache;
601}
602
603static inline struct kmem_cache *page_get_cache(struct page *page)
604{
Christoph Lameterd85f3382007-05-06 14:49:39 -0700605 page = compound_head(page);
Pekka Enbergddc2e812006-06-23 02:03:40 -0700606 BUG_ON(!PageSlab(page));
Pekka Enberg065d41c2005-11-13 16:06:46 -0800607 return (struct kmem_cache *)page->lru.next;
608}
609
610static inline void page_set_slab(struct page *page, struct slab *slab)
611{
612 page->lru.prev = (struct list_head *)slab;
613}
614
615static inline struct slab *page_get_slab(struct page *page)
616{
Pekka Enbergddc2e812006-06-23 02:03:40 -0700617 BUG_ON(!PageSlab(page));
Pekka Enberg065d41c2005-11-13 16:06:46 -0800618 return (struct slab *)page->lru.prev;
619}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700620
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -0800621static inline struct kmem_cache *virt_to_cache(const void *obj)
622{
Christoph Lameterb49af682007-05-06 14:49:41 -0700623 struct page *page = virt_to_head_page(obj);
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -0800624 return page_get_cache(page);
625}
626
627static inline struct slab *virt_to_slab(const void *obj)
628{
Christoph Lameterb49af682007-05-06 14:49:41 -0700629 struct page *page = virt_to_head_page(obj);
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -0800630 return page_get_slab(page);
631}
632
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800633static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
634 unsigned int idx)
635{
636 return slab->s_mem + cache->buffer_size * idx;
637}
638
Eric Dumazet6a2d7a92006-12-13 00:34:27 -0800639/*
640 * We want to avoid an expensive divide : (offset / cache->buffer_size)
641 * Using the fact that buffer_size is a constant for a particular cache,
642 * we can replace (offset / cache->buffer_size) by
643 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
644 */
645static inline unsigned int obj_to_index(const struct kmem_cache *cache,
646 const struct slab *slab, void *obj)
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800647{
Eric Dumazet6a2d7a92006-12-13 00:34:27 -0800648 u32 offset = (obj - slab->s_mem);
649 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800650}
651
Andrew Mortona737b3e2006-03-22 00:08:11 -0800652/*
653 * These are the default caches for kmalloc. Custom caches can have other sizes.
654 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700655struct cache_sizes malloc_sizes[] = {
656#define CACHE(x) { .cs_size = (x) },
657#include <linux/kmalloc_sizes.h>
658 CACHE(ULONG_MAX)
659#undef CACHE
660};
661EXPORT_SYMBOL(malloc_sizes);
662
663/* Must match cache_sizes above. Out of line to keep cache footprint low. */
664struct cache_names {
665 char *name;
666 char *name_dma;
667};
668
669static struct cache_names __initdata cache_names[] = {
670#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
671#include <linux/kmalloc_sizes.h>
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800672 {NULL,}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700673#undef CACHE
674};
675
676static struct arraycache_init initarray_cache __initdata =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800677 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700678static struct arraycache_init initarray_generic =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800679 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700680
681/* internal cache of cache description objs */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800682static struct kmem_cache cache_cache = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800683 .batchcount = 1,
684 .limit = BOOT_CPUCACHE_ENTRIES,
685 .shared = 1,
Pekka Enberg343e0d72006-02-01 03:05:50 -0800686 .buffer_size = sizeof(struct kmem_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800687 .name = "kmem_cache",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700688};
689
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700690#define BAD_ALIEN_MAGIC 0x01020304ul
691
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200692#ifdef CONFIG_LOCKDEP
693
694/*
695 * Slab sometimes uses the kmalloc slabs to store the slab headers
696 * for other slabs "off slab".
697 * The locking for this is tricky in that it nests within the locks
698 * of all other slabs in a few places; to deal with this special
699 * locking we put on-slab caches into a separate lock-class.
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700700 *
701 * We set lock class for alien array caches which are up during init.
702 * The lock annotation will be lost if all cpus of a node goes down and
703 * then comes back up during hotplug
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200704 */
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700705static struct lock_class_key on_slab_l3_key;
706static struct lock_class_key on_slab_alc_key;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200707
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700708static inline void init_lock_keys(void)
709
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200710{
711 int q;
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700712 struct cache_sizes *s = malloc_sizes;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200713
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700714 while (s->cs_size != ULONG_MAX) {
715 for_each_node(q) {
716 struct array_cache **alc;
717 int r;
718 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
719 if (!l3 || OFF_SLAB(s->cs_cachep))
720 continue;
721 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
722 alc = l3->alien;
723 /*
724 * FIXME: This check for BAD_ALIEN_MAGIC
725 * should go away when common slab code is taught to
726 * work even without alien caches.
727 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
728 * for alloc_alien_cache,
729 */
730 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
731 continue;
732 for_each_node(r) {
733 if (alc[r])
734 lockdep_set_class(&alc[r]->lock,
735 &on_slab_alc_key);
736 }
737 }
738 s++;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200739 }
740}
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200741#else
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700742static inline void init_lock_keys(void)
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200743{
744}
745#endif
746
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -0800747/*
748 * 1. Guard access to the cache-chain.
749 * 2. Protect sanity of cpu_online_map against cpu hotplug events
750 */
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800751static DEFINE_MUTEX(cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700752static struct list_head cache_chain;
753
754/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700755 * chicken and egg problem: delay the per-cpu array allocation
756 * until the general caches are up.
757 */
758static enum {
759 NONE,
Christoph Lametere498be72005-09-09 13:03:32 -0700760 PARTIAL_AC,
761 PARTIAL_L3,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700762 FULL
763} g_cpucache_up;
764
Mike Kravetz39d24e62006-05-15 09:44:13 -0700765/*
766 * used by boot code to determine if it can use slab based allocator
767 */
768int slab_is_available(void)
769{
770 return g_cpucache_up == FULL;
771}
772
David Howells52bad642006-11-22 14:54:01 +0000773static DEFINE_PER_CPU(struct delayed_work, reap_work);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700774
Pekka Enberg343e0d72006-02-01 03:05:50 -0800775static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700776{
777 return cachep->array[smp_processor_id()];
778}
779
Andrew Mortona737b3e2006-03-22 00:08:11 -0800780static inline struct kmem_cache *__find_general_cachep(size_t size,
781 gfp_t gfpflags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700782{
783 struct cache_sizes *csizep = malloc_sizes;
784
785#if DEBUG
786 /* This happens if someone tries to call
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800787 * kmem_cache_create(), or __kmalloc(), before
788 * the generic caches are initialized.
789 */
Alok Katariac7e43c72005-09-14 12:17:53 -0700790 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700791#endif
Christoph Lameter0b44f7a2007-05-16 22:10:53 -0700792 WARN_ON_ONCE(size == 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700793 while (size > csizep->cs_size)
794 csizep++;
795
796 /*
Martin Hicks0abf40c2005-09-03 15:54:54 -0700797 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds1da177e2005-04-16 15:20:36 -0700798 * has cs_{dma,}cachep==NULL. Thus no special case
799 * for large kmalloc calls required.
800 */
Christoph Lameter4b51d662007-02-10 01:43:10 -0800801#ifdef CONFIG_ZONE_DMA
Linus Torvalds1da177e2005-04-16 15:20:36 -0700802 if (unlikely(gfpflags & GFP_DMA))
803 return csizep->cs_dmacachep;
Christoph Lameter4b51d662007-02-10 01:43:10 -0800804#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700805 return csizep->cs_cachep;
806}
807
Adrian Bunkb2213852006-09-25 23:31:02 -0700808static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700809{
810 return __find_general_cachep(size, gfpflags);
811}
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700812
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800813static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700814{
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800815 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
816}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700817
Andrew Mortona737b3e2006-03-22 00:08:11 -0800818/*
819 * Calculate the number of objects and left-over bytes for a given buffer size.
820 */
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800821static void cache_estimate(unsigned long gfporder, size_t buffer_size,
822 size_t align, int flags, size_t *left_over,
823 unsigned int *num)
824{
825 int nr_objs;
826 size_t mgmt_size;
827 size_t slab_size = PAGE_SIZE << gfporder;
828
829 /*
830 * The slab management structure can be either off the slab or
831 * on it. For the latter case, the memory allocated for a
832 * slab is used for:
833 *
834 * - The struct slab
835 * - One kmem_bufctl_t for each object
836 * - Padding to respect alignment of @align
837 * - @buffer_size bytes for each object
838 *
839 * If the slab management structure is off the slab, then the
840 * alignment will already be calculated into the size. Because
841 * the slabs are all pages aligned, the objects will be at the
842 * correct alignment when allocated.
843 */
844 if (flags & CFLGS_OFF_SLAB) {
845 mgmt_size = 0;
846 nr_objs = slab_size / buffer_size;
847
848 if (nr_objs > SLAB_LIMIT)
849 nr_objs = SLAB_LIMIT;
850 } else {
851 /*
852 * Ignore padding for the initial guess. The padding
853 * is at most @align-1 bytes, and @buffer_size is at
854 * least @align. In the worst case, this result will
855 * be one greater than the number of objects that fit
856 * into the memory allocation when taking the padding
857 * into account.
858 */
859 nr_objs = (slab_size - sizeof(struct slab)) /
860 (buffer_size + sizeof(kmem_bufctl_t));
861
862 /*
863 * This calculated number will be either the right
864 * amount, or one greater than what we want.
865 */
866 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
867 > slab_size)
868 nr_objs--;
869
870 if (nr_objs > SLAB_LIMIT)
871 nr_objs = SLAB_LIMIT;
872
873 mgmt_size = slab_mgmt_size(nr_objs, align);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700874 }
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800875 *num = nr_objs;
876 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700877}
878
879#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
880
Andrew Mortona737b3e2006-03-22 00:08:11 -0800881static void __slab_error(const char *function, struct kmem_cache *cachep,
882 char *msg)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700883{
884 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800885 function, cachep->name, msg);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700886 dump_stack();
887}
888
Paul Menage3395ee02006-12-06 20:32:16 -0800889/*
890 * By default on NUMA we use alien caches to stage the freeing of
891 * objects allocated from other nodes. This causes massive memory
892 * inefficiencies when using fake NUMA setup to split memory into a
893 * large number of small nodes, so it can be disabled on the command
894 * line
895 */
896
897static int use_alien_caches __read_mostly = 1;
898static int __init noaliencache_setup(char *s)
899{
900 use_alien_caches = 0;
901 return 1;
902}
903__setup("noaliencache", noaliencache_setup);
904
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800905#ifdef CONFIG_NUMA
906/*
907 * Special reaping functions for NUMA systems called from cache_reap().
908 * These take care of doing round robin flushing of alien caches (containing
909 * objects freed on different nodes from which they were allocated) and the
910 * flushing of remote pcps by calling drain_node_pages.
911 */
912static DEFINE_PER_CPU(unsigned long, reap_node);
913
914static void init_reap_node(int cpu)
915{
916 int node;
917
918 node = next_node(cpu_to_node(cpu), node_online_map);
919 if (node == MAX_NUMNODES)
Paul Jackson442295c2006-03-22 00:09:11 -0800920 node = first_node(node_online_map);
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800921
Daniel Yeisley7f6b8872006-11-02 22:07:14 -0800922 per_cpu(reap_node, cpu) = node;
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800923}
924
925static void next_reap_node(void)
926{
927 int node = __get_cpu_var(reap_node);
928
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800929 node = next_node(node, node_online_map);
930 if (unlikely(node >= MAX_NUMNODES))
931 node = first_node(node_online_map);
932 __get_cpu_var(reap_node) = node;
933}
934
935#else
936#define init_reap_node(cpu) do { } while (0)
937#define next_reap_node(void) do { } while (0)
938#endif
939
Linus Torvalds1da177e2005-04-16 15:20:36 -0700940/*
941 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
942 * via the workqueue/eventd.
943 * Add the CPU number into the expiration time to minimize the possibility of
944 * the CPUs getting into lockstep and contending for the global cache chain
945 * lock.
946 */
947static void __devinit start_cpu_timer(int cpu)
948{
David Howells52bad642006-11-22 14:54:01 +0000949 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700950
951 /*
952 * When this gets called from do_initcalls via cpucache_init(),
953 * init_workqueues() has already run, so keventd will be setup
954 * at that time.
955 */
David Howells52bad642006-11-22 14:54:01 +0000956 if (keventd_up() && reap_work->work.func == NULL) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800957 init_reap_node(cpu);
David Howells65f27f32006-11-22 14:55:48 +0000958 INIT_DELAYED_WORK(reap_work, cache_reap);
Arjan van de Ven2b284212006-12-10 02:21:28 -0800959 schedule_delayed_work_on(cpu, reap_work,
960 __round_jiffies_relative(HZ, cpu));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700961 }
962}
963
Christoph Lametere498be72005-09-09 13:03:32 -0700964static struct array_cache *alloc_arraycache(int node, int entries,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800965 int batchcount)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700966{
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800967 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700968 struct array_cache *nc = NULL;
969
Christoph Lametere498be72005-09-09 13:03:32 -0700970 nc = kmalloc_node(memsize, GFP_KERNEL, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700971 if (nc) {
972 nc->avail = 0;
973 nc->limit = entries;
974 nc->batchcount = batchcount;
975 nc->touched = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700976 spin_lock_init(&nc->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700977 }
978 return nc;
979}
980
Christoph Lameter3ded1752006-03-25 03:06:44 -0800981/*
982 * Transfer objects in one arraycache to another.
983 * Locking must be handled by the caller.
984 *
985 * Return the number of entries transferred.
986 */
987static int transfer_objects(struct array_cache *to,
988 struct array_cache *from, unsigned int max)
989{
990 /* Figure out how many entries to transfer */
991 int nr = min(min(from->avail, max), to->limit - to->avail);
992
993 if (!nr)
994 return 0;
995
996 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
997 sizeof(void *) *nr);
998
999 from->avail -= nr;
1000 to->avail += nr;
1001 to->touched = 1;
1002 return nr;
1003}
1004
Christoph Lameter765c4502006-09-27 01:50:08 -07001005#ifndef CONFIG_NUMA
1006
1007#define drain_alien_cache(cachep, alien) do { } while (0)
1008#define reap_alien(cachep, l3) do { } while (0)
1009
1010static inline struct array_cache **alloc_alien_cache(int node, int limit)
1011{
1012 return (struct array_cache **)BAD_ALIEN_MAGIC;
1013}
1014
1015static inline void free_alien_cache(struct array_cache **ac_ptr)
1016{
1017}
1018
1019static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1020{
1021 return 0;
1022}
1023
1024static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1025 gfp_t flags)
1026{
1027 return NULL;
1028}
1029
Christoph Hellwig8b98c162006-12-06 20:32:30 -08001030static inline void *____cache_alloc_node(struct kmem_cache *cachep,
Christoph Lameter765c4502006-09-27 01:50:08 -07001031 gfp_t flags, int nodeid)
1032{
1033 return NULL;
1034}
1035
1036#else /* CONFIG_NUMA */
1037
Christoph Hellwig8b98c162006-12-06 20:32:30 -08001038static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
Paul Jacksonc61afb12006-03-24 03:16:08 -08001039static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
Christoph Lameterdc85da12006-01-18 17:42:36 -08001040
Pekka Enberg5295a742006-02-01 03:05:48 -08001041static struct array_cache **alloc_alien_cache(int node, int limit)
Christoph Lametere498be72005-09-09 13:03:32 -07001042{
1043 struct array_cache **ac_ptr;
Christoph Lameter8ef82862007-02-20 13:57:52 -08001044 int memsize = sizeof(void *) * nr_node_ids;
Christoph Lametere498be72005-09-09 13:03:32 -07001045 int i;
1046
1047 if (limit > 1)
1048 limit = 12;
1049 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1050 if (ac_ptr) {
1051 for_each_node(i) {
1052 if (i == node || !node_online(i)) {
1053 ac_ptr[i] = NULL;
1054 continue;
1055 }
1056 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1057 if (!ac_ptr[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001058 for (i--; i <= 0; i--)
Christoph Lametere498be72005-09-09 13:03:32 -07001059 kfree(ac_ptr[i]);
1060 kfree(ac_ptr);
1061 return NULL;
1062 }
1063 }
1064 }
1065 return ac_ptr;
1066}
1067
Pekka Enberg5295a742006-02-01 03:05:48 -08001068static void free_alien_cache(struct array_cache **ac_ptr)
Christoph Lametere498be72005-09-09 13:03:32 -07001069{
1070 int i;
1071
1072 if (!ac_ptr)
1073 return;
Christoph Lametere498be72005-09-09 13:03:32 -07001074 for_each_node(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001075 kfree(ac_ptr[i]);
Christoph Lametere498be72005-09-09 13:03:32 -07001076 kfree(ac_ptr);
1077}
1078
Pekka Enberg343e0d72006-02-01 03:05:50 -08001079static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg5295a742006-02-01 03:05:48 -08001080 struct array_cache *ac, int node)
Christoph Lametere498be72005-09-09 13:03:32 -07001081{
1082 struct kmem_list3 *rl3 = cachep->nodelists[node];
1083
1084 if (ac->avail) {
1085 spin_lock(&rl3->list_lock);
Christoph Lametere00946f2006-03-25 03:06:45 -08001086 /*
1087 * Stuff objects into the remote nodes shared array first.
1088 * That way we could avoid the overhead of putting the objects
1089 * into the free lists and getting them back later.
1090 */
shin, jacob693f7d32006-04-28 10:54:37 -05001091 if (rl3->shared)
1092 transfer_objects(rl3->shared, ac, ac->limit);
Christoph Lametere00946f2006-03-25 03:06:45 -08001093
Christoph Lameterff694162005-09-22 21:44:02 -07001094 free_block(cachep, ac->entry, ac->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001095 ac->avail = 0;
1096 spin_unlock(&rl3->list_lock);
1097 }
1098}
1099
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001100/*
1101 * Called from cache_reap() to regularly drain alien caches round robin.
1102 */
1103static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1104{
1105 int node = __get_cpu_var(reap_node);
1106
1107 if (l3->alien) {
1108 struct array_cache *ac = l3->alien[node];
Christoph Lametere00946f2006-03-25 03:06:45 -08001109
1110 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001111 __drain_alien_cache(cachep, ac, node);
1112 spin_unlock_irq(&ac->lock);
1113 }
1114 }
1115}
1116
Andrew Mortona737b3e2006-03-22 00:08:11 -08001117static void drain_alien_cache(struct kmem_cache *cachep,
1118 struct array_cache **alien)
Christoph Lametere498be72005-09-09 13:03:32 -07001119{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001120 int i = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07001121 struct array_cache *ac;
1122 unsigned long flags;
1123
1124 for_each_online_node(i) {
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001125 ac = alien[i];
Christoph Lametere498be72005-09-09 13:03:32 -07001126 if (ac) {
1127 spin_lock_irqsave(&ac->lock, flags);
1128 __drain_alien_cache(cachep, ac, i);
1129 spin_unlock_irqrestore(&ac->lock, flags);
1130 }
1131 }
1132}
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001133
Ingo Molnar873623d2006-07-13 14:44:38 +02001134static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001135{
1136 struct slab *slabp = virt_to_slab(objp);
1137 int nodeid = slabp->nodeid;
1138 struct kmem_list3 *l3;
1139 struct array_cache *alien = NULL;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001140 int node;
1141
1142 node = numa_node_id();
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001143
1144 /*
1145 * Make sure we are not freeing a object from another node to the array
1146 * cache on this cpu.
1147 */
Siddha, Suresh B62918a02007-05-02 19:27:18 +02001148 if (likely(slabp->nodeid == node))
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001149 return 0;
1150
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001151 l3 = cachep->nodelists[node];
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001152 STATS_INC_NODEFREES(cachep);
1153 if (l3->alien && l3->alien[nodeid]) {
1154 alien = l3->alien[nodeid];
Ingo Molnar873623d2006-07-13 14:44:38 +02001155 spin_lock(&alien->lock);
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001156 if (unlikely(alien->avail == alien->limit)) {
1157 STATS_INC_ACOVERFLOW(cachep);
1158 __drain_alien_cache(cachep, alien, nodeid);
1159 }
1160 alien->entry[alien->avail++] = objp;
1161 spin_unlock(&alien->lock);
1162 } else {
1163 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1164 free_block(cachep, &objp, 1, nodeid);
1165 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1166 }
1167 return 1;
1168}
Christoph Lametere498be72005-09-09 13:03:32 -07001169#endif
1170
Chandra Seetharaman8c78f302006-07-30 03:03:35 -07001171static int __cpuinit cpuup_callback(struct notifier_block *nfb,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001172 unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001173{
1174 long cpu = (long)hcpu;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001175 struct kmem_cache *cachep;
Christoph Lametere498be72005-09-09 13:03:32 -07001176 struct kmem_list3 *l3 = NULL;
1177 int node = cpu_to_node(cpu);
1178 int memsize = sizeof(struct kmem_list3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001179
1180 switch (action) {
Heiko Carstens38c3bd92007-05-09 02:34:05 -07001181 case CPU_LOCK_ACQUIRE:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001182 mutex_lock(&cache_chain_mutex);
Heiko Carstens38c3bd92007-05-09 02:34:05 -07001183 break;
1184 case CPU_UP_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07001185 case CPU_UP_PREPARE_FROZEN:
Andrew Mortona737b3e2006-03-22 00:08:11 -08001186 /*
1187 * We need to do this right in the beginning since
Christoph Lametere498be72005-09-09 13:03:32 -07001188 * alloc_arraycache's are going to use this list.
1189 * kmalloc_node allows us to add the slab to the right
1190 * kmem_list3 and not this cpu's kmem_list3
1191 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001192
Christoph Lametere498be72005-09-09 13:03:32 -07001193 list_for_each_entry(cachep, &cache_chain, next) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001194 /*
1195 * Set up the size64 kmemlist for cpu before we can
Christoph Lametere498be72005-09-09 13:03:32 -07001196 * begin anything. Make sure some other cpu on this
1197 * node has not already allocated this
1198 */
1199 if (!cachep->nodelists[node]) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001200 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1201 if (!l3)
Christoph Lametere498be72005-09-09 13:03:32 -07001202 goto bad;
1203 kmem_list3_init(l3);
1204 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001205 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001206
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001207 /*
1208 * The l3s don't come and go as CPUs come and
1209 * go. cache_chain_mutex is sufficient
1210 * protection here.
1211 */
Christoph Lametere498be72005-09-09 13:03:32 -07001212 cachep->nodelists[node] = l3;
1213 }
1214
1215 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1216 cachep->nodelists[node]->free_limit =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001217 (1 + nr_cpus_node(node)) *
1218 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07001219 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1220 }
1221
Andrew Mortona737b3e2006-03-22 00:08:11 -08001222 /*
1223 * Now we can go ahead with allocating the shared arrays and
1224 * array caches
1225 */
Christoph Lametere498be72005-09-09 13:03:32 -07001226 list_for_each_entry(cachep, &cache_chain, next) {
Tobias Klausercd105df2006-01-08 01:00:59 -08001227 struct array_cache *nc;
Eric Dumazet63109842007-05-06 14:49:28 -07001228 struct array_cache *shared = NULL;
Paul Menage3395ee02006-12-06 20:32:16 -08001229 struct array_cache **alien = NULL;
Tobias Klausercd105df2006-01-08 01:00:59 -08001230
Christoph Lametere498be72005-09-09 13:03:32 -07001231 nc = alloc_arraycache(node, cachep->limit,
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001232 cachep->batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001233 if (!nc)
1234 goto bad;
Eric Dumazet63109842007-05-06 14:49:28 -07001235 if (cachep->shared) {
1236 shared = alloc_arraycache(node,
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001237 cachep->shared * cachep->batchcount,
1238 0xbaadf00d);
Eric Dumazet63109842007-05-06 14:49:28 -07001239 if (!shared)
1240 goto bad;
1241 }
Paul Menage3395ee02006-12-06 20:32:16 -08001242 if (use_alien_caches) {
1243 alien = alloc_alien_cache(node, cachep->limit);
1244 if (!alien)
1245 goto bad;
1246 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001247 cachep->array[cpu] = nc;
Christoph Lametere498be72005-09-09 13:03:32 -07001248 l3 = cachep->nodelists[node];
1249 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07001250
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001251 spin_lock_irq(&l3->list_lock);
1252 if (!l3->shared) {
1253 /*
1254 * We are serialised from CPU_DEAD or
1255 * CPU_UP_CANCELLED by the cpucontrol lock
1256 */
1257 l3->shared = shared;
1258 shared = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001259 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001260#ifdef CONFIG_NUMA
1261 if (!l3->alien) {
1262 l3->alien = alien;
1263 alien = NULL;
1264 }
1265#endif
1266 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001267 kfree(shared);
1268 free_alien_cache(alien);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001269 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001270 break;
1271 case CPU_ONLINE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07001272 case CPU_ONLINE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001273 start_cpu_timer(cpu);
1274 break;
1275#ifdef CONFIG_HOTPLUG_CPU
Christoph Lameter5830c592007-05-09 02:34:22 -07001276 case CPU_DOWN_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07001277 case CPU_DOWN_PREPARE_FROZEN:
Christoph Lameter5830c592007-05-09 02:34:22 -07001278 /*
1279 * Shutdown cache reaper. Note that the cache_chain_mutex is
1280 * held so that if cache_reap() is invoked it cannot do
1281 * anything expensive but will only modify reap_work
1282 * and reschedule the timer.
1283 */
1284 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1285 /* Now the cache_reaper is guaranteed to be not running. */
1286 per_cpu(reap_work, cpu).work.func = NULL;
1287 break;
1288 case CPU_DOWN_FAILED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07001289 case CPU_DOWN_FAILED_FROZEN:
Christoph Lameter5830c592007-05-09 02:34:22 -07001290 start_cpu_timer(cpu);
1291 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001292 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07001293 case CPU_DEAD_FROZEN:
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001294 /*
1295 * Even if all the cpus of a node are down, we don't free the
1296 * kmem_list3 of any cache. This to avoid a race between
1297 * cpu_down, and a kmalloc allocation from another cpu for
1298 * memory from the node of the cpu going down. The list3
1299 * structure is usually allocated from kmem_cache_create() and
1300 * gets destroyed at kmem_cache_destroy().
1301 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001302 /* fall thru */
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08001303#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001304 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07001305 case CPU_UP_CANCELED_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001306 list_for_each_entry(cachep, &cache_chain, next) {
1307 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001308 struct array_cache *shared;
1309 struct array_cache **alien;
Christoph Lametere498be72005-09-09 13:03:32 -07001310 cpumask_t mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001311
Christoph Lametere498be72005-09-09 13:03:32 -07001312 mask = node_to_cpumask(node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001313 /* cpu is dead; no one can alloc from it. */
1314 nc = cachep->array[cpu];
1315 cachep->array[cpu] = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001316 l3 = cachep->nodelists[node];
1317
1318 if (!l3)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001319 goto free_array_cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001320
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001321 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07001322
1323 /* Free limit for this kmem_list3 */
1324 l3->free_limit -= cachep->batchcount;
1325 if (nc)
Christoph Lameterff694162005-09-22 21:44:02 -07001326 free_block(cachep, nc->entry, nc->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001327
1328 if (!cpus_empty(mask)) {
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001329 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001330 goto free_array_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001331 }
Christoph Lametere498be72005-09-09 13:03:32 -07001332
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001333 shared = l3->shared;
1334 if (shared) {
Eric Dumazet63109842007-05-06 14:49:28 -07001335 free_block(cachep, shared->entry,
1336 shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001337 l3->shared = NULL;
1338 }
Christoph Lametere498be72005-09-09 13:03:32 -07001339
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001340 alien = l3->alien;
1341 l3->alien = NULL;
1342
1343 spin_unlock_irq(&l3->list_lock);
1344
1345 kfree(shared);
1346 if (alien) {
1347 drain_alien_cache(cachep, alien);
1348 free_alien_cache(alien);
Christoph Lametere498be72005-09-09 13:03:32 -07001349 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001350free_array_cache:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001351 kfree(nc);
1352 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001353 /*
1354 * In the previous loop, all the objects were freed to
1355 * the respective cache's slabs, now we can go ahead and
1356 * shrink each nodelist to its limit.
1357 */
1358 list_for_each_entry(cachep, &cache_chain, next) {
1359 l3 = cachep->nodelists[node];
1360 if (!l3)
1361 continue;
Christoph Lametered11d9e2006-06-30 01:55:45 -07001362 drain_freelist(cachep, l3, l3->free_objects);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001363 }
Heiko Carstens38c3bd92007-05-09 02:34:05 -07001364 break;
1365 case CPU_LOCK_RELEASE:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001366 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001367 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001368 }
1369 return NOTIFY_OK;
Andrew Mortona737b3e2006-03-22 00:08:11 -08001370bad:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001371 return NOTIFY_BAD;
1372}
1373
Chandra Seetharaman74b85f32006-06-27 02:54:09 -07001374static struct notifier_block __cpuinitdata cpucache_notifier = {
1375 &cpuup_callback, NULL, 0
1376};
Linus Torvalds1da177e2005-04-16 15:20:36 -07001377
Christoph Lametere498be72005-09-09 13:03:32 -07001378/*
1379 * swap the static kmem_list3 with kmalloced memory
1380 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001381static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1382 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07001383{
1384 struct kmem_list3 *ptr;
1385
Christoph Lametere498be72005-09-09 13:03:32 -07001386 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1387 BUG_ON(!ptr);
1388
1389 local_irq_disable();
1390 memcpy(ptr, list, sizeof(struct kmem_list3));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001391 /*
1392 * Do not assume that spinlocks can be initialized via memcpy:
1393 */
1394 spin_lock_init(&ptr->list_lock);
1395
Christoph Lametere498be72005-09-09 13:03:32 -07001396 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1397 cachep->nodelists[nodeid] = ptr;
1398 local_irq_enable();
1399}
1400
Andrew Mortona737b3e2006-03-22 00:08:11 -08001401/*
1402 * Initialisation. Called after the page allocator have been initialised and
1403 * before smp_init().
Linus Torvalds1da177e2005-04-16 15:20:36 -07001404 */
1405void __init kmem_cache_init(void)
1406{
1407 size_t left_over;
1408 struct cache_sizes *sizes;
1409 struct cache_names *names;
Christoph Lametere498be72005-09-09 13:03:32 -07001410 int i;
Jack Steiner07ed76b2006-03-07 21:55:46 -08001411 int order;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001412 int node;
Christoph Lametere498be72005-09-09 13:03:32 -07001413
Siddha, Suresh B62918a02007-05-02 19:27:18 +02001414 if (num_possible_nodes() == 1)
1415 use_alien_caches = 0;
1416
Christoph Lametere498be72005-09-09 13:03:32 -07001417 for (i = 0; i < NUM_INIT_LISTS; i++) {
1418 kmem_list3_init(&initkmem_list3[i]);
1419 if (i < MAX_NUMNODES)
1420 cache_cache.nodelists[i] = NULL;
1421 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001422
1423 /*
1424 * Fragmentation resistance on low memory - only use bigger
1425 * page orders on machines with more than 32MB of memory.
1426 */
1427 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1428 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1429
Linus Torvalds1da177e2005-04-16 15:20:36 -07001430 /* Bootstrap is tricky, because several objects are allocated
1431 * from caches that do not exist yet:
Andrew Mortona737b3e2006-03-22 00:08:11 -08001432 * 1) initialize the cache_cache cache: it contains the struct
1433 * kmem_cache structures of all caches, except cache_cache itself:
1434 * cache_cache is statically allocated.
Christoph Lametere498be72005-09-09 13:03:32 -07001435 * Initially an __init data area is used for the head array and the
1436 * kmem_list3 structures, it's replaced with a kmalloc allocated
1437 * array at the end of the bootstrap.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001438 * 2) Create the first kmalloc cache.
Pekka Enberg343e0d72006-02-01 03:05:50 -08001439 * The struct kmem_cache for the new cache is allocated normally.
Christoph Lametere498be72005-09-09 13:03:32 -07001440 * An __init data area is used for the head array.
1441 * 3) Create the remaining kmalloc caches, with minimally sized
1442 * head arrays.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001443 * 4) Replace the __init data head arrays for cache_cache and the first
1444 * kmalloc cache with kmalloc allocated arrays.
Christoph Lametere498be72005-09-09 13:03:32 -07001445 * 5) Replace the __init data for kmem_list3 for cache_cache and
1446 * the other cache's with kmalloc allocated memory.
1447 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001448 */
1449
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001450 node = numa_node_id();
1451
Linus Torvalds1da177e2005-04-16 15:20:36 -07001452 /* 1) create the cache_cache */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001453 INIT_LIST_HEAD(&cache_chain);
1454 list_add(&cache_cache.next, &cache_chain);
1455 cache_cache.colour_off = cache_line_size();
1456 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001457 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001458
Eric Dumazet8da34302007-05-06 14:49:29 -07001459 /*
1460 * struct kmem_cache size depends on nr_node_ids, which
1461 * can be less than MAX_NUMNODES.
1462 */
1463 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1464 nr_node_ids * sizeof(struct kmem_list3 *);
1465#if DEBUG
1466 cache_cache.obj_size = cache_cache.buffer_size;
1467#endif
Andrew Mortona737b3e2006-03-22 00:08:11 -08001468 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1469 cache_line_size());
Eric Dumazet6a2d7a92006-12-13 00:34:27 -08001470 cache_cache.reciprocal_buffer_size =
1471 reciprocal_value(cache_cache.buffer_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001472
Jack Steiner07ed76b2006-03-07 21:55:46 -08001473 for (order = 0; order < MAX_ORDER; order++) {
1474 cache_estimate(order, cache_cache.buffer_size,
1475 cache_line_size(), 0, &left_over, &cache_cache.num);
1476 if (cache_cache.num)
1477 break;
1478 }
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02001479 BUG_ON(!cache_cache.num);
Jack Steiner07ed76b2006-03-07 21:55:46 -08001480 cache_cache.gfporder = order;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001481 cache_cache.colour = left_over / cache_cache.colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001482 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1483 sizeof(struct slab), cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001484
1485 /* 2+3) create the kmalloc caches */
1486 sizes = malloc_sizes;
1487 names = cache_names;
1488
Andrew Mortona737b3e2006-03-22 00:08:11 -08001489 /*
1490 * Initialize the caches that provide memory for the array cache and the
1491 * kmem_list3 structures first. Without this, further allocations will
1492 * bug.
Christoph Lametere498be72005-09-09 13:03:32 -07001493 */
1494
1495 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001496 sizes[INDEX_AC].cs_size,
1497 ARCH_KMALLOC_MINALIGN,
1498 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1499 NULL, NULL);
Christoph Lametere498be72005-09-09 13:03:32 -07001500
Andrew Mortona737b3e2006-03-22 00:08:11 -08001501 if (INDEX_AC != INDEX_L3) {
Christoph Lametere498be72005-09-09 13:03:32 -07001502 sizes[INDEX_L3].cs_cachep =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001503 kmem_cache_create(names[INDEX_L3].name,
1504 sizes[INDEX_L3].cs_size,
1505 ARCH_KMALLOC_MINALIGN,
1506 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1507 NULL, NULL);
1508 }
Christoph Lametere498be72005-09-09 13:03:32 -07001509
Ingo Molnare0a42722006-06-23 02:03:46 -07001510 slab_early_init = 0;
1511
Linus Torvalds1da177e2005-04-16 15:20:36 -07001512 while (sizes->cs_size != ULONG_MAX) {
Christoph Lametere498be72005-09-09 13:03:32 -07001513 /*
1514 * For performance, all the general caches are L1 aligned.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001515 * This should be particularly beneficial on SMP boxes, as it
1516 * eliminates "false sharing".
1517 * Note for systems short on memory removing the alignment will
Christoph Lametere498be72005-09-09 13:03:32 -07001518 * allow tighter packing of the smaller caches.
1519 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001520 if (!sizes->cs_cachep) {
Christoph Lametere498be72005-09-09 13:03:32 -07001521 sizes->cs_cachep = kmem_cache_create(names->name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001522 sizes->cs_size,
1523 ARCH_KMALLOC_MINALIGN,
1524 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1525 NULL, NULL);
1526 }
Christoph Lameter4b51d662007-02-10 01:43:10 -08001527#ifdef CONFIG_ZONE_DMA
1528 sizes->cs_dmacachep = kmem_cache_create(
1529 names->name_dma,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001530 sizes->cs_size,
1531 ARCH_KMALLOC_MINALIGN,
1532 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1533 SLAB_PANIC,
1534 NULL, NULL);
Christoph Lameter4b51d662007-02-10 01:43:10 -08001535#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001536 sizes++;
1537 names++;
1538 }
1539 /* 4) Replace the bootstrap head arrays */
1540 {
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001541 struct array_cache *ptr;
Christoph Lametere498be72005-09-09 13:03:32 -07001542
Linus Torvalds1da177e2005-04-16 15:20:36 -07001543 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001544
Linus Torvalds1da177e2005-04-16 15:20:36 -07001545 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001546 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1547 memcpy(ptr, cpu_cache_get(&cache_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001548 sizeof(struct arraycache_init));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001549 /*
1550 * Do not assume that spinlocks can be initialized via memcpy:
1551 */
1552 spin_lock_init(&ptr->lock);
1553
Linus Torvalds1da177e2005-04-16 15:20:36 -07001554 cache_cache.array[smp_processor_id()] = ptr;
1555 local_irq_enable();
Christoph Lametere498be72005-09-09 13:03:32 -07001556
Linus Torvalds1da177e2005-04-16 15:20:36 -07001557 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001558
Linus Torvalds1da177e2005-04-16 15:20:36 -07001559 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001560 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001561 != &initarray_generic.cache);
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001562 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001563 sizeof(struct arraycache_init));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001564 /*
1565 * Do not assume that spinlocks can be initialized via memcpy:
1566 */
1567 spin_lock_init(&ptr->lock);
1568
Christoph Lametere498be72005-09-09 13:03:32 -07001569 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001570 ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001571 local_irq_enable();
1572 }
Christoph Lametere498be72005-09-09 13:03:32 -07001573 /* 5) Replace the bootstrap kmem_list3's */
1574 {
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001575 int nid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001576
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001577 /* Replace the static kmem_list3 structures for the boot cpu */
1578 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1579
1580 for_each_online_node(nid) {
Christoph Lametere498be72005-09-09 13:03:32 -07001581 init_list(malloc_sizes[INDEX_AC].cs_cachep,
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001582 &initkmem_list3[SIZE_AC + nid], nid);
Christoph Lametere498be72005-09-09 13:03:32 -07001583
1584 if (INDEX_AC != INDEX_L3) {
1585 init_list(malloc_sizes[INDEX_L3].cs_cachep,
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001586 &initkmem_list3[SIZE_L3 + nid], nid);
Christoph Lametere498be72005-09-09 13:03:32 -07001587 }
1588 }
1589 }
1590
1591 /* 6) resize the head arrays to their final sizes */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001592 {
Pekka Enberg343e0d72006-02-01 03:05:50 -08001593 struct kmem_cache *cachep;
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001594 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001595 list_for_each_entry(cachep, &cache_chain, next)
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07001596 if (enable_cpucache(cachep))
1597 BUG();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001598 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001599 }
1600
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -07001601 /* Annotate slab for lockdep -- annotate the malloc caches */
1602 init_lock_keys();
1603
1604
Linus Torvalds1da177e2005-04-16 15:20:36 -07001605 /* Done! */
1606 g_cpucache_up = FULL;
1607
Andrew Mortona737b3e2006-03-22 00:08:11 -08001608 /*
1609 * Register a cpu startup notifier callback that initializes
1610 * cpu_cache_get for all new cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07001611 */
1612 register_cpu_notifier(&cpucache_notifier);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001613
Andrew Mortona737b3e2006-03-22 00:08:11 -08001614 /*
1615 * The reap timers are started later, with a module init call: That part
1616 * of the kernel is not yet operational.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001617 */
1618}
1619
1620static int __init cpucache_init(void)
1621{
1622 int cpu;
1623
Andrew Mortona737b3e2006-03-22 00:08:11 -08001624 /*
1625 * Register the timers that return unneeded pages to the page allocator
Linus Torvalds1da177e2005-04-16 15:20:36 -07001626 */
Christoph Lametere498be72005-09-09 13:03:32 -07001627 for_each_online_cpu(cpu)
Andrew Mortona737b3e2006-03-22 00:08:11 -08001628 start_cpu_timer(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001629 return 0;
1630}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001631__initcall(cpucache_init);
1632
1633/*
1634 * Interface to system's page allocator. No need to hold the cache-lock.
1635 *
1636 * If we requested dmaable memory, we will get it. Even if we
1637 * did not request dmaable memory, we might get it, but that
1638 * would be relatively rare and ignorable.
1639 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001640static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001641{
1642 struct page *page;
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001643 int nr_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001644 int i;
1645
Luke Yangd6fef9d2006-04-10 22:52:56 -07001646#ifndef CONFIG_MMU
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001647 /*
1648 * Nommu uses slab's for process anonymous memory allocations, and thus
1649 * requires __GFP_COMP to properly refcount higher order allocations
Luke Yangd6fef9d2006-04-10 22:52:56 -07001650 */
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001651 flags |= __GFP_COMP;
Luke Yangd6fef9d2006-04-10 22:52:56 -07001652#endif
Christoph Lameter765c4502006-09-27 01:50:08 -07001653
Christoph Lameter3c517a62006-12-06 20:33:29 -08001654 flags |= cachep->gfpflags;
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001655
1656 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001657 if (!page)
1658 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001659
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001660 nr_pages = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001661 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
Christoph Lameter972d1a72006-09-25 23:31:51 -07001662 add_zone_page_state(page_zone(page),
1663 NR_SLAB_RECLAIMABLE, nr_pages);
1664 else
1665 add_zone_page_state(page_zone(page),
1666 NR_SLAB_UNRECLAIMABLE, nr_pages);
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001667 for (i = 0; i < nr_pages; i++)
1668 __SetPageSlab(page + i);
1669 return page_address(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001670}
1671
1672/*
1673 * Interface to system's page release.
1674 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001675static void kmem_freepages(struct kmem_cache *cachep, void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001676{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001677 unsigned long i = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001678 struct page *page = virt_to_page(addr);
1679 const unsigned long nr_freed = i;
1680
Christoph Lameter972d1a72006-09-25 23:31:51 -07001681 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1682 sub_zone_page_state(page_zone(page),
1683 NR_SLAB_RECLAIMABLE, nr_freed);
1684 else
1685 sub_zone_page_state(page_zone(page),
1686 NR_SLAB_UNRECLAIMABLE, nr_freed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001687 while (i--) {
Nick Pigginf205b2f2006-03-22 00:08:02 -08001688 BUG_ON(!PageSlab(page));
1689 __ClearPageSlab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001690 page++;
1691 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001692 if (current->reclaim_state)
1693 current->reclaim_state->reclaimed_slab += nr_freed;
1694 free_pages((unsigned long)addr, cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001695}
1696
1697static void kmem_rcu_free(struct rcu_head *head)
1698{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001699 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001700 struct kmem_cache *cachep = slab_rcu->cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001701
1702 kmem_freepages(cachep, slab_rcu->addr);
1703 if (OFF_SLAB(cachep))
1704 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1705}
1706
1707#if DEBUG
1708
1709#ifdef CONFIG_DEBUG_PAGEALLOC
Pekka Enberg343e0d72006-02-01 03:05:50 -08001710static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001711 unsigned long caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001712{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001713 int size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001714
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001715 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001716
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001717 if (size < 5 * sizeof(unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001718 return;
1719
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001720 *addr++ = 0x12345678;
1721 *addr++ = caller;
1722 *addr++ = smp_processor_id();
1723 size -= 3 * sizeof(unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001724 {
1725 unsigned long *sptr = &caller;
1726 unsigned long svalue;
1727
1728 while (!kstack_end(sptr)) {
1729 svalue = *sptr++;
1730 if (kernel_text_address(svalue)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001731 *addr++ = svalue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001732 size -= sizeof(unsigned long);
1733 if (size <= sizeof(unsigned long))
1734 break;
1735 }
1736 }
1737
1738 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001739 *addr++ = 0x87654321;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001740}
1741#endif
1742
Pekka Enberg343e0d72006-02-01 03:05:50 -08001743static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001744{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001745 int size = obj_size(cachep);
1746 addr = &((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001747
1748 memset(addr, val, size);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001749 *(unsigned char *)(addr + size - 1) = POISON_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001750}
1751
1752static void dump_line(char *data, int offset, int limit)
1753{
1754 int i;
Dave Jonesaa83aa42006-09-29 01:59:51 -07001755 unsigned char error = 0;
1756 int bad_count = 0;
1757
Linus Torvalds1da177e2005-04-16 15:20:36 -07001758 printk(KERN_ERR "%03x:", offset);
Dave Jonesaa83aa42006-09-29 01:59:51 -07001759 for (i = 0; i < limit; i++) {
1760 if (data[offset + i] != POISON_FREE) {
1761 error = data[offset + i];
1762 bad_count++;
1763 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001764 printk(" %02x", (unsigned char)data[offset + i]);
Dave Jonesaa83aa42006-09-29 01:59:51 -07001765 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001766 printk("\n");
Dave Jonesaa83aa42006-09-29 01:59:51 -07001767
1768 if (bad_count == 1) {
1769 error ^= POISON_FREE;
1770 if (!(error & (error - 1))) {
1771 printk(KERN_ERR "Single bit error detected. Probably "
1772 "bad RAM.\n");
1773#ifdef CONFIG_X86
1774 printk(KERN_ERR "Run memtest86+ or a similar memory "
1775 "test tool.\n");
1776#else
1777 printk(KERN_ERR "Run a memory test tool.\n");
1778#endif
1779 }
1780 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001781}
1782#endif
1783
1784#if DEBUG
1785
Pekka Enberg343e0d72006-02-01 03:05:50 -08001786static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001787{
1788 int i, size;
1789 char *realobj;
1790
1791 if (cachep->flags & SLAB_RED_ZONE) {
David Woodhouseb46b8f12007-05-08 00:22:59 -07001792 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001793 *dbg_redzone1(cachep, objp),
1794 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001795 }
1796
1797 if (cachep->flags & SLAB_STORE_USER) {
1798 printk(KERN_ERR "Last user: [<%p>]",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001799 *dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001800 print_symbol("(%s)",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001801 (unsigned long)*dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001802 printk("\n");
1803 }
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001804 realobj = (char *)objp + obj_offset(cachep);
1805 size = obj_size(cachep);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001806 for (i = 0; i < size && lines; i += 16, lines--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001807 int limit;
1808 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001809 if (i + limit > size)
1810 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001811 dump_line(realobj, i, limit);
1812 }
1813}
1814
Pekka Enberg343e0d72006-02-01 03:05:50 -08001815static void check_poison_obj(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001816{
1817 char *realobj;
1818 int size, i;
1819 int lines = 0;
1820
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001821 realobj = (char *)objp + obj_offset(cachep);
1822 size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001823
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001824 for (i = 0; i < size; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001825 char exp = POISON_FREE;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001826 if (i == size - 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001827 exp = POISON_END;
1828 if (realobj[i] != exp) {
1829 int limit;
1830 /* Mismatch ! */
1831 /* Print header */
1832 if (lines == 0) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001833 printk(KERN_ERR
David Howellse94a40c2007-04-02 23:46:28 +01001834 "Slab corruption: %s start=%p, len=%d\n",
1835 cachep->name, realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001836 print_objinfo(cachep, objp, 0);
1837 }
1838 /* Hexdump the affected line */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001839 i = (i / 16) * 16;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001840 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001841 if (i + limit > size)
1842 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001843 dump_line(realobj, i, limit);
1844 i += 16;
1845 lines++;
1846 /* Limit to 5 lines */
1847 if (lines > 5)
1848 break;
1849 }
1850 }
1851 if (lines != 0) {
1852 /* Print some data about the neighboring objects, if they
1853 * exist:
1854 */
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08001855 struct slab *slabp = virt_to_slab(objp);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001856 unsigned int objnr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001857
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001858 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001859 if (objnr) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001860 objp = index_to_obj(cachep, slabp, objnr - 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001861 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001862 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001863 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001864 print_objinfo(cachep, objp, 2);
1865 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001866 if (objnr + 1 < cachep->num) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001867 objp = index_to_obj(cachep, slabp, objnr + 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001868 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001869 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001870 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001871 print_objinfo(cachep, objp, 2);
1872 }
1873 }
1874}
1875#endif
1876
Linus Torvalds1da177e2005-04-16 15:20:36 -07001877#if DEBUG
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001878/**
Randy Dunlap911851e2006-03-22 00:08:14 -08001879 * slab_destroy_objs - destroy a slab and its objects
1880 * @cachep: cache pointer being destroyed
1881 * @slabp: slab pointer being destroyed
1882 *
1883 * Call the registered destructor for each object in a slab that is being
1884 * destroyed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001885 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001886static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001887{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001888 int i;
1889 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001890 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001891
1892 if (cachep->flags & SLAB_POISON) {
1893#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08001894 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1895 OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001896 kernel_map_pages(virt_to_page(objp),
Andrew Mortona737b3e2006-03-22 00:08:11 -08001897 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001898 else
1899 check_poison_obj(cachep, objp);
1900#else
1901 check_poison_obj(cachep, objp);
1902#endif
1903 }
1904 if (cachep->flags & SLAB_RED_ZONE) {
1905 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1906 slab_error(cachep, "start of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001907 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001908 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1909 slab_error(cachep, "end of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001910 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001911 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001912 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001913}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001914#else
Pekka Enberg343e0d72006-02-01 03:05:50 -08001915static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001916{
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001917}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001918#endif
1919
Randy Dunlap911851e2006-03-22 00:08:14 -08001920/**
1921 * slab_destroy - destroy and release all objects in a slab
1922 * @cachep: cache pointer being destroyed
1923 * @slabp: slab pointer being destroyed
1924 *
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001925 * Destroy all the objs in a slab, and release the mem back to the system.
Andrew Mortona737b3e2006-03-22 00:08:11 -08001926 * Before calling the slab must have been unlinked from the cache. The
1927 * cache-lock is not held/needed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001928 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001929static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001930{
1931 void *addr = slabp->s_mem - slabp->colouroff;
1932
1933 slab_destroy_objs(cachep, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001934 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1935 struct slab_rcu *slab_rcu;
1936
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001937 slab_rcu = (struct slab_rcu *)slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001938 slab_rcu->cachep = cachep;
1939 slab_rcu->addr = addr;
1940 call_rcu(&slab_rcu->head, kmem_rcu_free);
1941 } else {
1942 kmem_freepages(cachep, addr);
Ingo Molnar873623d2006-07-13 14:44:38 +02001943 if (OFF_SLAB(cachep))
1944 kmem_cache_free(cachep->slabp_cache, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001945 }
1946}
1947
Andrew Mortona737b3e2006-03-22 00:08:11 -08001948/*
1949 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1950 * size of kmem_list3.
1951 */
Andrew Mortona3a02be2007-05-06 14:49:31 -07001952static void __init set_up_list3s(struct kmem_cache *cachep, int index)
Christoph Lametere498be72005-09-09 13:03:32 -07001953{
1954 int node;
1955
1956 for_each_online_node(node) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001957 cachep->nodelists[node] = &initkmem_list3[index + node];
Christoph Lametere498be72005-09-09 13:03:32 -07001958 cachep->nodelists[node]->next_reap = jiffies +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001959 REAPTIMEOUT_LIST3 +
1960 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001961 }
1962}
1963
Christoph Lameter117f6eb2006-09-25 23:31:37 -07001964static void __kmem_cache_destroy(struct kmem_cache *cachep)
1965{
1966 int i;
1967 struct kmem_list3 *l3;
1968
1969 for_each_online_cpu(i)
1970 kfree(cachep->array[i]);
1971
1972 /* NUMA: free the list3 structures */
1973 for_each_online_node(i) {
1974 l3 = cachep->nodelists[i];
1975 if (l3) {
1976 kfree(l3->shared);
1977 free_alien_cache(l3->alien);
1978 kfree(l3);
1979 }
1980 }
1981 kmem_cache_free(&cache_cache, cachep);
1982}
1983
1984
Linus Torvalds1da177e2005-04-16 15:20:36 -07001985/**
Randy.Dunlapa70773d2006-02-01 03:05:52 -08001986 * calculate_slab_order - calculate size (page order) of slabs
1987 * @cachep: pointer to the cache that is being created
1988 * @size: size of objects to be created in this cache.
1989 * @align: required alignment for the objects.
1990 * @flags: slab allocation flags
1991 *
1992 * Also calculates the number of objects per slab.
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001993 *
1994 * This could be made much more intelligent. For now, try to avoid using
1995 * high order pages for slabs. When the gfp() functions are more friendly
1996 * towards high-order requests, this should be changed.
1997 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001998static size_t calculate_slab_order(struct kmem_cache *cachep,
Randy Dunlapee13d782006-02-01 03:05:53 -08001999 size_t size, size_t align, unsigned long flags)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002000{
Ingo Molnarb1ab41c2006-06-02 15:44:58 +02002001 unsigned long offslab_limit;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002002 size_t left_over = 0;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002003 int gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002004
Andrew Mortona737b3e2006-03-22 00:08:11 -08002005 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002006 unsigned int num;
2007 size_t remainder;
2008
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002009 cache_estimate(gfporder, size, align, flags, &remainder, &num);
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002010 if (!num)
2011 continue;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002012
Ingo Molnarb1ab41c2006-06-02 15:44:58 +02002013 if (flags & CFLGS_OFF_SLAB) {
2014 /*
2015 * Max number of objs-per-slab for caches which
2016 * use off-slab slabs. Needed to avoid a possible
2017 * looping condition in cache_grow().
2018 */
2019 offslab_limit = size - sizeof(struct slab);
2020 offslab_limit /= sizeof(kmem_bufctl_t);
2021
2022 if (num > offslab_limit)
2023 break;
2024 }
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002025
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002026 /* Found something acceptable - save it away */
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002027 cachep->num = num;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002028 cachep->gfporder = gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002029 left_over = remainder;
2030
2031 /*
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08002032 * A VFS-reclaimable slab tends to have most allocations
2033 * as GFP_NOFS and we really don't want to have to be allocating
2034 * higher-order pages when we are unable to shrink dcache.
2035 */
2036 if (flags & SLAB_RECLAIM_ACCOUNT)
2037 break;
2038
2039 /*
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002040 * Large number of objects is good, but very large slabs are
2041 * currently bad for the gfp()s.
2042 */
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002043 if (gfporder >= slab_break_gfp_order)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002044 break;
2045
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002046 /*
2047 * Acceptable internal fragmentation?
2048 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002049 if (left_over * 8 <= (PAGE_SIZE << gfporder))
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002050 break;
2051 }
2052 return left_over;
2053}
2054
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002055static int setup_cpu_cache(struct kmem_cache *cachep)
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002056{
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002057 if (g_cpucache_up == FULL)
2058 return enable_cpucache(cachep);
2059
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002060 if (g_cpucache_up == NONE) {
2061 /*
2062 * Note: the first kmem_cache_create must create the cache
2063 * that's used by kmalloc(24), otherwise the creation of
2064 * further caches will BUG().
2065 */
2066 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2067
2068 /*
2069 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2070 * the first cache, then we need to set up all its list3s,
2071 * otherwise the creation of further caches will BUG().
2072 */
2073 set_up_list3s(cachep, SIZE_AC);
2074 if (INDEX_AC == INDEX_L3)
2075 g_cpucache_up = PARTIAL_L3;
2076 else
2077 g_cpucache_up = PARTIAL_AC;
2078 } else {
2079 cachep->array[smp_processor_id()] =
2080 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2081
2082 if (g_cpucache_up == PARTIAL_AC) {
2083 set_up_list3s(cachep, SIZE_L3);
2084 g_cpucache_up = PARTIAL_L3;
2085 } else {
2086 int node;
2087 for_each_online_node(node) {
2088 cachep->nodelists[node] =
2089 kmalloc_node(sizeof(struct kmem_list3),
2090 GFP_KERNEL, node);
2091 BUG_ON(!cachep->nodelists[node]);
2092 kmem_list3_init(cachep->nodelists[node]);
2093 }
2094 }
2095 }
2096 cachep->nodelists[numa_node_id()]->next_reap =
2097 jiffies + REAPTIMEOUT_LIST3 +
2098 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2099
2100 cpu_cache_get(cachep)->avail = 0;
2101 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2102 cpu_cache_get(cachep)->batchcount = 1;
2103 cpu_cache_get(cachep)->touched = 0;
2104 cachep->batchcount = 1;
2105 cachep->limit = BOOT_CPUCACHE_ENTRIES;
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002106 return 0;
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002107}
2108
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002109/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07002110 * kmem_cache_create - Create a cache.
2111 * @name: A string which is used in /proc/slabinfo to identify this cache.
2112 * @size: The size of objects to be created in this cache.
2113 * @align: The required alignment for the objects.
2114 * @flags: SLAB flags
2115 * @ctor: A constructor for the objects.
Christoph Lameterc59def92007-05-16 22:10:50 -07002116 * @dtor: A destructor for the objects (not implemented anymore).
Linus Torvalds1da177e2005-04-16 15:20:36 -07002117 *
2118 * Returns a ptr to the cache on success, NULL on failure.
2119 * Cannot be called within a int, but can be interrupted.
2120 * The @ctor is run when new pages are allocated by the cache
2121 * and the @dtor is run before the pages are handed back.
2122 *
2123 * @name must be valid until the cache is destroyed. This implies that
Andrew Mortona737b3e2006-03-22 00:08:11 -08002124 * the module calling this has to destroy the cache before getting unloaded.
2125 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002126 * The flags are
2127 *
2128 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2129 * to catch references to uninitialised memory.
2130 *
2131 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2132 * for buffer overruns.
2133 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002134 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2135 * cacheline. This can be beneficial if you're counting cycles as closely
2136 * as davem.
2137 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002138struct kmem_cache *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002139kmem_cache_create (const char *name, size_t size, size_t align,
Andrew Mortona737b3e2006-03-22 00:08:11 -08002140 unsigned long flags,
2141 void (*ctor)(void*, struct kmem_cache *, unsigned long),
Pekka Enberg343e0d72006-02-01 03:05:50 -08002142 void (*dtor)(void*, struct kmem_cache *, unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002143{
2144 size_t left_over, slab_size, ralign;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07002145 struct kmem_cache *cachep = NULL, *pc;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002146
2147 /*
2148 * Sanity checks... these are all serious usage bugs.
2149 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002150 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
Christoph Lameterc59def92007-05-16 22:10:50 -07002151 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || dtor) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002152 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2153 name);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002154 BUG();
2155 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002156
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08002157 /*
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002158 * We use cache_chain_mutex to ensure a consistent view of
2159 * cpu_online_map as well. Please see cpuup_callback
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08002160 */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002161 mutex_lock(&cache_chain_mutex);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002162
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07002163 list_for_each_entry(pc, &cache_chain, next) {
Andrew Morton4f12bb42005-11-07 00:58:00 -08002164 char tmp;
2165 int res;
2166
2167 /*
2168 * This happens when the module gets unloaded and doesn't
2169 * destroy its slab cache and no-one else reuses the vmalloc
2170 * area of the module. Print a warning.
2171 */
Andrew Morton138ae662006-12-06 20:36:41 -08002172 res = probe_kernel_address(pc->name, tmp);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002173 if (res) {
matzeb4169522007-05-06 14:49:52 -07002174 printk(KERN_ERR
2175 "SLAB: cache with size %d has lost its name\n",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002176 pc->buffer_size);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002177 continue;
2178 }
2179
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002180 if (!strcmp(pc->name, name)) {
matzeb4169522007-05-06 14:49:52 -07002181 printk(KERN_ERR
2182 "kmem_cache_create: duplicate cache %s\n", name);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002183 dump_stack();
2184 goto oops;
2185 }
2186 }
2187
Linus Torvalds1da177e2005-04-16 15:20:36 -07002188#if DEBUG
2189 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002190#if FORCED_DEBUG
2191 /*
2192 * Enable redzoning and last user accounting, except for caches with
2193 * large objects, if the increased size would increase the object size
2194 * above the next power of two: caches with object sizes just above a
2195 * power of two have a significant amount of internal fragmentation.
2196 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002197 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002198 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002199 if (!(flags & SLAB_DESTROY_BY_RCU))
2200 flags |= SLAB_POISON;
2201#endif
2202 if (flags & SLAB_DESTROY_BY_RCU)
2203 BUG_ON(flags & SLAB_POISON);
2204#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002205 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002206 * Always checks flags, a caller might be expecting debug support which
2207 * isn't available.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002208 */
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002209 BUG_ON(flags & ~CREATE_MASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002210
Andrew Mortona737b3e2006-03-22 00:08:11 -08002211 /*
2212 * Check that size is in terms of words. This is needed to avoid
Linus Torvalds1da177e2005-04-16 15:20:36 -07002213 * unaligned accesses for some archs when redzoning is used, and makes
2214 * sure any on-slab bufctl's are also correctly aligned.
2215 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002216 if (size & (BYTES_PER_WORD - 1)) {
2217 size += (BYTES_PER_WORD - 1);
2218 size &= ~(BYTES_PER_WORD - 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002219 }
2220
Andrew Mortona737b3e2006-03-22 00:08:11 -08002221 /* calculate the final buffer alignment: */
2222
Linus Torvalds1da177e2005-04-16 15:20:36 -07002223 /* 1) arch recommendation: can be overridden for debug */
2224 if (flags & SLAB_HWCACHE_ALIGN) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002225 /*
2226 * Default alignment: as specified by the arch code. Except if
2227 * an object is really small, then squeeze multiple objects into
2228 * one cacheline.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002229 */
2230 ralign = cache_line_size();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002231 while (size <= ralign / 2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002232 ralign /= 2;
2233 } else {
2234 ralign = BYTES_PER_WORD;
2235 }
Pekka Enbergca5f9702006-09-25 23:31:25 -07002236
2237 /*
2238 * Redzoning and user store require word alignment. Note this will be
2239 * overridden by architecture or caller mandated alignment if either
2240 * is greater than BYTES_PER_WORD.
2241 */
2242 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
David Woodhouseb46b8f12007-05-08 00:22:59 -07002243 ralign = __alignof__(unsigned long long);
Pekka Enbergca5f9702006-09-25 23:31:25 -07002244
Kevin Hilmana44b56d2006-12-06 20:32:11 -08002245 /* 2) arch mandated alignment */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002246 if (ralign < ARCH_SLAB_MINALIGN) {
2247 ralign = ARCH_SLAB_MINALIGN;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002248 }
Kevin Hilmana44b56d2006-12-06 20:32:11 -08002249 /* 3) caller mandated alignment */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002250 if (ralign < align) {
2251 ralign = align;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002252 }
Kevin Hilmana44b56d2006-12-06 20:32:11 -08002253 /* disable debug if necessary */
David Woodhouseb46b8f12007-05-08 00:22:59 -07002254 if (ralign > __alignof__(unsigned long long))
Kevin Hilmana44b56d2006-12-06 20:32:11 -08002255 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002256 /*
Pekka Enbergca5f9702006-09-25 23:31:25 -07002257 * 4) Store it.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002258 */
2259 align = ralign;
2260
2261 /* Get cache's description obj. */
Christoph Lametere94b1762006-12-06 20:33:17 -08002262 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002263 if (!cachep)
Andrew Morton4f12bb42005-11-07 00:58:00 -08002264 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002265
2266#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002267 cachep->obj_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002268
Pekka Enbergca5f9702006-09-25 23:31:25 -07002269 /*
2270 * Both debugging options require word-alignment which is calculated
2271 * into align above.
2272 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002273 if (flags & SLAB_RED_ZONE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002274 /* add space for red zone words */
David Woodhouseb46b8f12007-05-08 00:22:59 -07002275 cachep->obj_offset += sizeof(unsigned long long);
2276 size += 2 * sizeof(unsigned long long);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002277 }
2278 if (flags & SLAB_STORE_USER) {
Pekka Enbergca5f9702006-09-25 23:31:25 -07002279 /* user store requires one word storage behind the end of
2280 * the real object.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002281 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002282 size += BYTES_PER_WORD;
2283 }
2284#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002285 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002286 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2287 cachep->obj_offset += PAGE_SIZE - size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002288 size = PAGE_SIZE;
2289 }
2290#endif
2291#endif
2292
Ingo Molnare0a42722006-06-23 02:03:46 -07002293 /*
2294 * Determine if the slab management is 'on' or 'off' slab.
2295 * (bootstrapping cannot cope with offslab caches so don't do
2296 * it too early on.)
2297 */
2298 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002299 /*
2300 * Size is large, assume best to place the slab management obj
2301 * off-slab (should allow better packing of objs).
2302 */
2303 flags |= CFLGS_OFF_SLAB;
2304
2305 size = ALIGN(size, align);
2306
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08002307 left_over = calculate_slab_order(cachep, size, align, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002308
2309 if (!cachep->num) {
matzeb4169522007-05-06 14:49:52 -07002310 printk(KERN_ERR
2311 "kmem_cache_create: couldn't create cache %s.\n", name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002312 kmem_cache_free(&cache_cache, cachep);
2313 cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08002314 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002315 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002316 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2317 + sizeof(struct slab), align);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002318
2319 /*
2320 * If the slab has been placed off-slab, and we have enough space then
2321 * move it on-slab. This is at the expense of any extra colouring.
2322 */
2323 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2324 flags &= ~CFLGS_OFF_SLAB;
2325 left_over -= slab_size;
2326 }
2327
2328 if (flags & CFLGS_OFF_SLAB) {
2329 /* really off slab. No need for manual alignment */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002330 slab_size =
2331 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002332 }
2333
2334 cachep->colour_off = cache_line_size();
2335 /* Offset must be a multiple of the alignment. */
2336 if (cachep->colour_off < align)
2337 cachep->colour_off = align;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002338 cachep->colour = left_over / cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002339 cachep->slab_size = slab_size;
2340 cachep->flags = flags;
2341 cachep->gfpflags = 0;
Christoph Lameter4b51d662007-02-10 01:43:10 -08002342 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002343 cachep->gfpflags |= GFP_DMA;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002344 cachep->buffer_size = size;
Eric Dumazet6a2d7a92006-12-13 00:34:27 -08002345 cachep->reciprocal_buffer_size = reciprocal_value(size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002346
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002347 if (flags & CFLGS_OFF_SLAB) {
Victor Fuscob2d55072005-09-10 00:26:36 -07002348 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002349 /*
2350 * This is a possibility for one of the malloc_sizes caches.
2351 * But since we go off slab only for object size greater than
2352 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2353 * this should not happen at all.
2354 * But leave a BUG_ON for some lucky dude.
2355 */
2356 BUG_ON(!cachep->slabp_cache);
2357 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002358 cachep->ctor = ctor;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002359 cachep->name = name;
2360
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002361 if (setup_cpu_cache(cachep)) {
2362 __kmem_cache_destroy(cachep);
2363 cachep = NULL;
2364 goto oops;
2365 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002366
Linus Torvalds1da177e2005-04-16 15:20:36 -07002367 /* cache setup completed, link it into the list */
2368 list_add(&cachep->next, &cache_chain);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002369oops:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002370 if (!cachep && (flags & SLAB_PANIC))
2371 panic("kmem_cache_create(): failed to create slab `%s'\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002372 name);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002373 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002374 return cachep;
2375}
2376EXPORT_SYMBOL(kmem_cache_create);
2377
2378#if DEBUG
2379static void check_irq_off(void)
2380{
2381 BUG_ON(!irqs_disabled());
2382}
2383
2384static void check_irq_on(void)
2385{
2386 BUG_ON(irqs_disabled());
2387}
2388
Pekka Enberg343e0d72006-02-01 03:05:50 -08002389static void check_spinlock_acquired(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002390{
2391#ifdef CONFIG_SMP
2392 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002393 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002394#endif
2395}
Christoph Lametere498be72005-09-09 13:03:32 -07002396
Pekka Enberg343e0d72006-02-01 03:05:50 -08002397static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
Christoph Lametere498be72005-09-09 13:03:32 -07002398{
2399#ifdef CONFIG_SMP
2400 check_irq_off();
2401 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2402#endif
2403}
2404
Linus Torvalds1da177e2005-04-16 15:20:36 -07002405#else
2406#define check_irq_off() do { } while(0)
2407#define check_irq_on() do { } while(0)
2408#define check_spinlock_acquired(x) do { } while(0)
Christoph Lametere498be72005-09-09 13:03:32 -07002409#define check_spinlock_acquired_node(x, y) do { } while(0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002410#endif
2411
Christoph Lameteraab22072006-03-22 00:09:06 -08002412static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2413 struct array_cache *ac,
2414 int force, int node);
2415
Linus Torvalds1da177e2005-04-16 15:20:36 -07002416static void do_drain(void *arg)
2417{
Andrew Mortona737b3e2006-03-22 00:08:11 -08002418 struct kmem_cache *cachep = arg;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002419 struct array_cache *ac;
Christoph Lameterff694162005-09-22 21:44:02 -07002420 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002421
2422 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002423 ac = cpu_cache_get(cachep);
Christoph Lameterff694162005-09-22 21:44:02 -07002424 spin_lock(&cachep->nodelists[node]->list_lock);
2425 free_block(cachep, ac->entry, ac->avail, node);
2426 spin_unlock(&cachep->nodelists[node]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002427 ac->avail = 0;
2428}
2429
Pekka Enberg343e0d72006-02-01 03:05:50 -08002430static void drain_cpu_caches(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002431{
Christoph Lametere498be72005-09-09 13:03:32 -07002432 struct kmem_list3 *l3;
2433 int node;
2434
Andrew Mortona07fa392006-03-22 00:08:17 -08002435 on_each_cpu(do_drain, cachep, 1, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002436 check_irq_on();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002437 for_each_online_node(node) {
Christoph Lametere498be72005-09-09 13:03:32 -07002438 l3 = cachep->nodelists[node];
Roland Dreiera4523a82006-05-15 11:41:00 -07002439 if (l3 && l3->alien)
2440 drain_alien_cache(cachep, l3->alien);
2441 }
2442
2443 for_each_online_node(node) {
2444 l3 = cachep->nodelists[node];
2445 if (l3)
Christoph Lameteraab22072006-03-22 00:09:06 -08002446 drain_array(cachep, l3, l3->shared, 1, node);
Christoph Lametere498be72005-09-09 13:03:32 -07002447 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002448}
2449
Christoph Lametered11d9e2006-06-30 01:55:45 -07002450/*
2451 * Remove slabs from the list of free slabs.
2452 * Specify the number of slabs to drain in tofree.
2453 *
2454 * Returns the actual number of slabs released.
2455 */
2456static int drain_freelist(struct kmem_cache *cache,
2457 struct kmem_list3 *l3, int tofree)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002458{
Christoph Lametered11d9e2006-06-30 01:55:45 -07002459 struct list_head *p;
2460 int nr_freed;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002461 struct slab *slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002462
Christoph Lametered11d9e2006-06-30 01:55:45 -07002463 nr_freed = 0;
2464 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002465
Christoph Lametered11d9e2006-06-30 01:55:45 -07002466 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07002467 p = l3->slabs_free.prev;
Christoph Lametered11d9e2006-06-30 01:55:45 -07002468 if (p == &l3->slabs_free) {
2469 spin_unlock_irq(&l3->list_lock);
2470 goto out;
2471 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002472
Christoph Lametered11d9e2006-06-30 01:55:45 -07002473 slabp = list_entry(p, struct slab, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002474#if DEBUG
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002475 BUG_ON(slabp->inuse);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002476#endif
2477 list_del(&slabp->list);
Christoph Lametered11d9e2006-06-30 01:55:45 -07002478 /*
2479 * Safe to drop the lock. The slab is no longer linked
2480 * to the cache.
2481 */
2482 l3->free_objects -= cache->num;
Christoph Lametere498be72005-09-09 13:03:32 -07002483 spin_unlock_irq(&l3->list_lock);
Christoph Lametered11d9e2006-06-30 01:55:45 -07002484 slab_destroy(cache, slabp);
2485 nr_freed++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002486 }
Christoph Lametered11d9e2006-06-30 01:55:45 -07002487out:
2488 return nr_freed;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002489}
2490
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002491/* Called with cache_chain_mutex held to protect against cpu hotplug */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002492static int __cache_shrink(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07002493{
2494 int ret = 0, i = 0;
2495 struct kmem_list3 *l3;
2496
2497 drain_cpu_caches(cachep);
2498
2499 check_irq_on();
2500 for_each_online_node(i) {
2501 l3 = cachep->nodelists[i];
Christoph Lametered11d9e2006-06-30 01:55:45 -07002502 if (!l3)
2503 continue;
2504
2505 drain_freelist(cachep, l3, l3->free_objects);
2506
2507 ret += !list_empty(&l3->slabs_full) ||
2508 !list_empty(&l3->slabs_partial);
Christoph Lametere498be72005-09-09 13:03:32 -07002509 }
2510 return (ret ? 1 : 0);
2511}
2512
Linus Torvalds1da177e2005-04-16 15:20:36 -07002513/**
2514 * kmem_cache_shrink - Shrink a cache.
2515 * @cachep: The cache to shrink.
2516 *
2517 * Releases as many slabs as possible for a cache.
2518 * To help debugging, a zero exit status indicates all slabs were released.
2519 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002520int kmem_cache_shrink(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002521{
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002522 int ret;
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002523 BUG_ON(!cachep || in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002524
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002525 mutex_lock(&cache_chain_mutex);
2526 ret = __cache_shrink(cachep);
2527 mutex_unlock(&cache_chain_mutex);
2528 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002529}
2530EXPORT_SYMBOL(kmem_cache_shrink);
2531
2532/**
2533 * kmem_cache_destroy - delete a cache
2534 * @cachep: the cache to destroy
2535 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08002536 * Remove a &struct kmem_cache object from the slab cache.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002537 *
2538 * It is expected this function will be called by a module when it is
2539 * unloaded. This will remove the cache completely, and avoid a duplicate
2540 * cache being allocated each time a module is loaded and unloaded, if the
2541 * module doesn't have persistent in-kernel storage across loads and unloads.
2542 *
2543 * The cache must be empty before calling this function.
2544 *
2545 * The caller must guarantee that noone will allocate memory from the cache
2546 * during the kmem_cache_destroy().
2547 */
Alexey Dobriyan133d2052006-09-27 01:49:41 -07002548void kmem_cache_destroy(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002549{
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002550 BUG_ON(!cachep || in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002551
Linus Torvalds1da177e2005-04-16 15:20:36 -07002552 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002553 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002554 /*
2555 * the chain is never empty, cache_cache is never destroyed
2556 */
2557 list_del(&cachep->next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002558 if (__cache_shrink(cachep)) {
2559 slab_error(cachep, "Can't free all objects");
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002560 list_add(&cachep->next, &cache_chain);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002561 mutex_unlock(&cache_chain_mutex);
Alexey Dobriyan133d2052006-09-27 01:49:41 -07002562 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002563 }
2564
2565 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
Paul E. McKenneyfbd568a3e2005-05-01 08:59:04 -07002566 synchronize_rcu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002567
Christoph Lameter117f6eb2006-09-25 23:31:37 -07002568 __kmem_cache_destroy(cachep);
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002569 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002570}
2571EXPORT_SYMBOL(kmem_cache_destroy);
2572
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002573/*
2574 * Get the memory for a slab management obj.
2575 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2576 * always come from malloc_sizes caches. The slab descriptor cannot
2577 * come from the same cache which is getting created because,
2578 * when we are searching for an appropriate cache for these
2579 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2580 * If we are creating a malloc_sizes cache here it would not be visible to
2581 * kmem_find_general_cachep till the initialization is complete.
2582 * Hence we cannot have slabp_cache same as the original cache.
2583 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002584static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002585 int colour_off, gfp_t local_flags,
2586 int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002587{
2588 struct slab *slabp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002589
Linus Torvalds1da177e2005-04-16 15:20:36 -07002590 if (OFF_SLAB(cachep)) {
2591 /* Slab management obj is off-slab. */
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002592 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
Christoph Lameter3c517a62006-12-06 20:33:29 -08002593 local_flags & ~GFP_THISNODE, nodeid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002594 if (!slabp)
2595 return NULL;
2596 } else {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002597 slabp = objp + colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002598 colour_off += cachep->slab_size;
2599 }
2600 slabp->inuse = 0;
2601 slabp->colouroff = colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002602 slabp->s_mem = objp + colour_off;
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002603 slabp->nodeid = nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002604 return slabp;
2605}
2606
2607static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2608{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002609 return (kmem_bufctl_t *) (slabp + 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002610}
2611
Pekka Enberg343e0d72006-02-01 03:05:50 -08002612static void cache_init_objs(struct kmem_cache *cachep,
Christoph Lametera35afb82007-05-16 22:10:57 -07002613 struct slab *slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002614{
2615 int i;
2616
2617 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002618 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002619#if DEBUG
2620 /* need to poison the objs? */
2621 if (cachep->flags & SLAB_POISON)
2622 poison_obj(cachep, objp, POISON_FREE);
2623 if (cachep->flags & SLAB_STORE_USER)
2624 *dbg_userword(cachep, objp) = NULL;
2625
2626 if (cachep->flags & SLAB_RED_ZONE) {
2627 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2628 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2629 }
2630 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002631 * Constructors are not allowed to allocate memory from the same
2632 * cache which they are a constructor for. Otherwise, deadlock.
2633 * They must also be threaded.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002634 */
2635 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002636 cachep->ctor(objp + obj_offset(cachep), cachep,
Christoph Lametera35afb82007-05-16 22:10:57 -07002637 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002638
2639 if (cachep->flags & SLAB_RED_ZONE) {
2640 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2641 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002642 " end of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002643 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2644 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002645 " start of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002646 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08002647 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2648 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002649 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002650 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002651#else
2652 if (cachep->ctor)
Christoph Lametera35afb82007-05-16 22:10:57 -07002653 cachep->ctor(objp, cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002654#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002655 slab_bufctl(slabp)[i] = i + 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002656 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002657 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002658 slabp->free = 0;
2659}
2660
Pekka Enberg343e0d72006-02-01 03:05:50 -08002661static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002662{
Christoph Lameter4b51d662007-02-10 01:43:10 -08002663 if (CONFIG_ZONE_DMA_FLAG) {
2664 if (flags & GFP_DMA)
2665 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2666 else
2667 BUG_ON(cachep->gfpflags & GFP_DMA);
2668 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002669}
2670
Andrew Mortona737b3e2006-03-22 00:08:11 -08002671static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2672 int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002673{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002674 void *objp = index_to_obj(cachep, slabp, slabp->free);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002675 kmem_bufctl_t next;
2676
2677 slabp->inuse++;
2678 next = slab_bufctl(slabp)[slabp->free];
2679#if DEBUG
2680 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2681 WARN_ON(slabp->nodeid != nodeid);
2682#endif
2683 slabp->free = next;
2684
2685 return objp;
2686}
2687
Andrew Mortona737b3e2006-03-22 00:08:11 -08002688static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2689 void *objp, int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002690{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002691 unsigned int objnr = obj_to_index(cachep, slabp, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002692
2693#if DEBUG
2694 /* Verify that the slab belongs to the intended node */
2695 WARN_ON(slabp->nodeid != nodeid);
2696
Al Viro871751e2006-03-25 03:06:39 -08002697 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
Matthew Dobson78d382d2006-02-01 03:05:47 -08002698 printk(KERN_ERR "slab: double free detected in cache "
Andrew Mortona737b3e2006-03-22 00:08:11 -08002699 "'%s', objp %p\n", cachep->name, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002700 BUG();
2701 }
2702#endif
2703 slab_bufctl(slabp)[objnr] = slabp->free;
2704 slabp->free = objnr;
2705 slabp->inuse--;
2706}
2707
Pekka Enberg47768742006-06-23 02:03:07 -07002708/*
2709 * Map pages beginning at addr to the given cache and slab. This is required
2710 * for the slab allocator to be able to lookup the cache and slab of a
2711 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2712 */
2713static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2714 void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002715{
Pekka Enberg47768742006-06-23 02:03:07 -07002716 int nr_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002717 struct page *page;
2718
Pekka Enberg47768742006-06-23 02:03:07 -07002719 page = virt_to_page(addr);
Nick Piggin84097512006-03-22 00:08:34 -08002720
Pekka Enberg47768742006-06-23 02:03:07 -07002721 nr_pages = 1;
Nick Piggin84097512006-03-22 00:08:34 -08002722 if (likely(!PageCompound(page)))
Pekka Enberg47768742006-06-23 02:03:07 -07002723 nr_pages <<= cache->gfporder;
2724
Linus Torvalds1da177e2005-04-16 15:20:36 -07002725 do {
Pekka Enberg47768742006-06-23 02:03:07 -07002726 page_set_cache(page, cache);
2727 page_set_slab(page, slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002728 page++;
Pekka Enberg47768742006-06-23 02:03:07 -07002729 } while (--nr_pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002730}
2731
2732/*
2733 * Grow (by 1) the number of slabs within a cache. This is called by
2734 * kmem_cache_alloc() when there are no active objs left in a cache.
2735 */
Christoph Lameter3c517a62006-12-06 20:33:29 -08002736static int cache_grow(struct kmem_cache *cachep,
2737 gfp_t flags, int nodeid, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002738{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002739 struct slab *slabp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002740 size_t offset;
2741 gfp_t local_flags;
Christoph Lametere498be72005-09-09 13:03:32 -07002742 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002743
Andrew Mortona737b3e2006-03-22 00:08:11 -08002744 /*
2745 * Be lazy and only check for valid flags here, keeping it out of the
2746 * critical path in kmem_cache_alloc().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002747 */
Christoph Lametercfce6602007-05-06 14:50:17 -07002748 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002749
Christoph Lametera06d72c2006-12-06 20:33:12 -08002750 local_flags = (flags & GFP_LEVEL_MASK);
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002751 /* Take the l3 list lock to change the colour_next on this node */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002752 check_irq_off();
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002753 l3 = cachep->nodelists[nodeid];
2754 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002755
2756 /* Get colour for the slab, and cal the next value. */
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002757 offset = l3->colour_next;
2758 l3->colour_next++;
2759 if (l3->colour_next >= cachep->colour)
2760 l3->colour_next = 0;
2761 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002762
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002763 offset *= cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002764
2765 if (local_flags & __GFP_WAIT)
2766 local_irq_enable();
2767
2768 /*
2769 * The test for missing atomic flag is performed here, rather than
2770 * the more obvious place, simply to reduce the critical path length
2771 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2772 * will eventually be caught here (where it matters).
2773 */
2774 kmem_flagcheck(cachep, flags);
2775
Andrew Mortona737b3e2006-03-22 00:08:11 -08002776 /*
2777 * Get mem for the objs. Attempt to allocate a physical page from
2778 * 'nodeid'.
Christoph Lametere498be72005-09-09 13:03:32 -07002779 */
Christoph Lameter3c517a62006-12-06 20:33:29 -08002780 if (!objp)
2781 objp = kmem_getpages(cachep, flags, nodeid);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002782 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002783 goto failed;
2784
2785 /* Get slab management. */
Christoph Lameter3c517a62006-12-06 20:33:29 -08002786 slabp = alloc_slabmgmt(cachep, objp, offset,
2787 local_flags & ~GFP_THISNODE, nodeid);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002788 if (!slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002789 goto opps1;
2790
Christoph Lametere498be72005-09-09 13:03:32 -07002791 slabp->nodeid = nodeid;
Pekka Enberg47768742006-06-23 02:03:07 -07002792 slab_map_pages(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002793
Christoph Lametera35afb82007-05-16 22:10:57 -07002794 cache_init_objs(cachep, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002795
2796 if (local_flags & __GFP_WAIT)
2797 local_irq_disable();
2798 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002799 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002800
2801 /* Make slab active. */
Christoph Lametere498be72005-09-09 13:03:32 -07002802 list_add_tail(&slabp->list, &(l3->slabs_free));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002803 STATS_INC_GROWN(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002804 l3->free_objects += cachep->num;
2805 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002806 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002807opps1:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002808 kmem_freepages(cachep, objp);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002809failed:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002810 if (local_flags & __GFP_WAIT)
2811 local_irq_disable();
2812 return 0;
2813}
2814
2815#if DEBUG
2816
2817/*
2818 * Perform extra freeing checks:
2819 * - detect bad pointers.
2820 * - POISON/RED_ZONE checking
Linus Torvalds1da177e2005-04-16 15:20:36 -07002821 */
2822static void kfree_debugcheck(const void *objp)
2823{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002824 if (!virt_addr_valid(objp)) {
2825 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002826 (unsigned long)objp);
2827 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002828 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002829}
2830
Pekka Enberg58ce1fd2006-06-23 02:03:24 -07002831static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2832{
David Woodhouseb46b8f12007-05-08 00:22:59 -07002833 unsigned long long redzone1, redzone2;
Pekka Enberg58ce1fd2006-06-23 02:03:24 -07002834
2835 redzone1 = *dbg_redzone1(cache, obj);
2836 redzone2 = *dbg_redzone2(cache, obj);
2837
2838 /*
2839 * Redzone is ok.
2840 */
2841 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2842 return;
2843
2844 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2845 slab_error(cache, "double free detected");
2846 else
2847 slab_error(cache, "memory outside object was overwritten");
2848
David Woodhouseb46b8f12007-05-08 00:22:59 -07002849 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
Pekka Enberg58ce1fd2006-06-23 02:03:24 -07002850 obj, redzone1, redzone2);
2851}
2852
Pekka Enberg343e0d72006-02-01 03:05:50 -08002853static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002854 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002855{
2856 struct page *page;
2857 unsigned int objnr;
2858 struct slab *slabp;
2859
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002860 objp -= obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002861 kfree_debugcheck(objp);
Christoph Lameterb49af682007-05-06 14:49:41 -07002862 page = virt_to_head_page(objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002863
Pekka Enberg065d41c2005-11-13 16:06:46 -08002864 slabp = page_get_slab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002865
2866 if (cachep->flags & SLAB_RED_ZONE) {
Pekka Enberg58ce1fd2006-06-23 02:03:24 -07002867 verify_redzone_free(cachep, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002868 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2869 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2870 }
2871 if (cachep->flags & SLAB_STORE_USER)
2872 *dbg_userword(cachep, objp) = caller;
2873
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002874 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002875
2876 BUG_ON(objnr >= cachep->num);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002877 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002878
Al Viro871751e2006-03-25 03:06:39 -08002879#ifdef CONFIG_DEBUG_SLAB_LEAK
2880 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2881#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002882 if (cachep->flags & SLAB_POISON) {
2883#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08002884 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002885 store_stackinfo(cachep, objp, (unsigned long)caller);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002886 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002887 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002888 } else {
2889 poison_obj(cachep, objp, POISON_FREE);
2890 }
2891#else
2892 poison_obj(cachep, objp, POISON_FREE);
2893#endif
2894 }
2895 return objp;
2896}
2897
Pekka Enberg343e0d72006-02-01 03:05:50 -08002898static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002899{
2900 kmem_bufctl_t i;
2901 int entries = 0;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002902
Linus Torvalds1da177e2005-04-16 15:20:36 -07002903 /* Check slab's freelist to see if this obj is there. */
2904 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2905 entries++;
2906 if (entries > cachep->num || i >= cachep->num)
2907 goto bad;
2908 }
2909 if (entries != cachep->num - slabp->inuse) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002910bad:
2911 printk(KERN_ERR "slab: Internal list corruption detected in "
2912 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2913 cachep->name, cachep->num, slabp, slabp->inuse);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002914 for (i = 0;
Linus Torvalds264132b2006-03-06 12:10:07 -08002915 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002916 i++) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002917 if (i % 16 == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002918 printk("\n%03x:", i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002919 printk(" %02x", ((unsigned char *)slabp)[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002920 }
2921 printk("\n");
2922 BUG();
2923 }
2924}
2925#else
2926#define kfree_debugcheck(x) do { } while(0)
2927#define cache_free_debugcheck(x,objp,z) (objp)
2928#define check_slabp(x,y) do { } while(0)
2929#endif
2930
Pekka Enberg343e0d72006-02-01 03:05:50 -08002931static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002932{
2933 int batchcount;
2934 struct kmem_list3 *l3;
2935 struct array_cache *ac;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07002936 int node;
2937
2938 node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002939
2940 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002941 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002942retry:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002943 batchcount = ac->batchcount;
2944 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002945 /*
2946 * If there was little recent activity on this cache, then
2947 * perform only a partial refill. Otherwise we could generate
2948 * refill bouncing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002949 */
2950 batchcount = BATCHREFILL_LIMIT;
2951 }
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07002952 l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002953
Christoph Lametere498be72005-09-09 13:03:32 -07002954 BUG_ON(ac->avail > 0 || !l3);
2955 spin_lock(&l3->list_lock);
2956
Christoph Lameter3ded1752006-03-25 03:06:44 -08002957 /* See if we can refill from the shared array */
2958 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2959 goto alloc_done;
2960
Linus Torvalds1da177e2005-04-16 15:20:36 -07002961 while (batchcount > 0) {
2962 struct list_head *entry;
2963 struct slab *slabp;
2964 /* Get slab alloc is to come from. */
2965 entry = l3->slabs_partial.next;
2966 if (entry == &l3->slabs_partial) {
2967 l3->free_touched = 1;
2968 entry = l3->slabs_free.next;
2969 if (entry == &l3->slabs_free)
2970 goto must_grow;
2971 }
2972
2973 slabp = list_entry(entry, struct slab, list);
2974 check_slabp(cachep, slabp);
2975 check_spinlock_acquired(cachep);
Pekka Enberg714b81712007-05-06 14:49:03 -07002976
2977 /*
2978 * The slab was either on partial or free list so
2979 * there must be at least one object available for
2980 * allocation.
2981 */
2982 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
2983
Linus Torvalds1da177e2005-04-16 15:20:36 -07002984 while (slabp->inuse < cachep->num && batchcount--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002985 STATS_INC_ALLOCED(cachep);
2986 STATS_INC_ACTIVE(cachep);
2987 STATS_SET_HIGH(cachep);
2988
Matthew Dobson78d382d2006-02-01 03:05:47 -08002989 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07002990 node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002991 }
2992 check_slabp(cachep, slabp);
2993
2994 /* move slabp to correct slabp list: */
2995 list_del(&slabp->list);
2996 if (slabp->free == BUFCTL_END)
2997 list_add(&slabp->list, &l3->slabs_full);
2998 else
2999 list_add(&slabp->list, &l3->slabs_partial);
3000 }
3001
Andrew Mortona737b3e2006-03-22 00:08:11 -08003002must_grow:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003003 l3->free_objects -= ac->avail;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003004alloc_done:
Christoph Lametere498be72005-09-09 13:03:32 -07003005 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003006
3007 if (unlikely(!ac->avail)) {
3008 int x;
Christoph Lameter3c517a62006-12-06 20:33:29 -08003009 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
Christoph Lametere498be72005-09-09 13:03:32 -07003010
Andrew Mortona737b3e2006-03-22 00:08:11 -08003011 /* cache_grow can reenable interrupts, then ac could change. */
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003012 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003013 if (!x && ac->avail == 0) /* no objects in sight? abort */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003014 return NULL;
3015
Andrew Mortona737b3e2006-03-22 00:08:11 -08003016 if (!ac->avail) /* objects refilled by interrupt? */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003017 goto retry;
3018 }
3019 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07003020 return ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003021}
3022
Andrew Mortona737b3e2006-03-22 00:08:11 -08003023static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3024 gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003025{
3026 might_sleep_if(flags & __GFP_WAIT);
3027#if DEBUG
3028 kmem_flagcheck(cachep, flags);
3029#endif
3030}
3031
3032#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08003033static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3034 gfp_t flags, void *objp, void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003035{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003036 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003037 return objp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003038 if (cachep->flags & SLAB_POISON) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003039#ifdef CONFIG_DEBUG_PAGEALLOC
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003040 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003041 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003042 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003043 else
3044 check_poison_obj(cachep, objp);
3045#else
3046 check_poison_obj(cachep, objp);
3047#endif
3048 poison_obj(cachep, objp, POISON_INUSE);
3049 }
3050 if (cachep->flags & SLAB_STORE_USER)
3051 *dbg_userword(cachep, objp) = caller;
3052
3053 if (cachep->flags & SLAB_RED_ZONE) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08003054 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3055 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3056 slab_error(cachep, "double free, or memory outside"
3057 " object was overwritten");
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003058 printk(KERN_ERR
David Woodhouseb46b8f12007-05-08 00:22:59 -07003059 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
Andrew Mortona737b3e2006-03-22 00:08:11 -08003060 objp, *dbg_redzone1(cachep, objp),
3061 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003062 }
3063 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3064 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3065 }
Al Viro871751e2006-03-25 03:06:39 -08003066#ifdef CONFIG_DEBUG_SLAB_LEAK
3067 {
3068 struct slab *slabp;
3069 unsigned objnr;
3070
Christoph Lameterb49af682007-05-06 14:49:41 -07003071 slabp = page_get_slab(virt_to_head_page(objp));
Al Viro871751e2006-03-25 03:06:39 -08003072 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3073 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3074 }
3075#endif
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003076 objp += obj_offset(cachep);
Christoph Lameter4f104932007-05-06 14:50:17 -07003077 if (cachep->ctor && cachep->flags & SLAB_POISON)
Christoph Lametera35afb82007-05-16 22:10:57 -07003078 cachep->ctor(objp, cachep, 0);
Kevin Hilmana44b56d2006-12-06 20:32:11 -08003079#if ARCH_SLAB_MINALIGN
3080 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3081 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3082 objp, ARCH_SLAB_MINALIGN);
3083 }
3084#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003085 return objp;
3086}
3087#else
3088#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3089#endif
3090
Akinobu Mita8a8b6502006-12-08 02:39:44 -08003091#ifdef CONFIG_FAILSLAB
3092
3093static struct failslab_attr {
3094
3095 struct fault_attr attr;
3096
3097 u32 ignore_gfp_wait;
3098#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3099 struct dentry *ignore_gfp_wait_file;
3100#endif
3101
3102} failslab = {
3103 .attr = FAULT_ATTR_INITIALIZER,
Don Mullis6b1b60f2006-12-08 02:39:53 -08003104 .ignore_gfp_wait = 1,
Akinobu Mita8a8b6502006-12-08 02:39:44 -08003105};
3106
3107static int __init setup_failslab(char *str)
3108{
3109 return setup_fault_attr(&failslab.attr, str);
3110}
3111__setup("failslab=", setup_failslab);
3112
3113static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3114{
3115 if (cachep == &cache_cache)
3116 return 0;
3117 if (flags & __GFP_NOFAIL)
3118 return 0;
3119 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3120 return 0;
3121
3122 return should_fail(&failslab.attr, obj_size(cachep));
3123}
3124
3125#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3126
3127static int __init failslab_debugfs(void)
3128{
3129 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3130 struct dentry *dir;
3131 int err;
3132
Akinobu Mita824ebef2007-05-06 14:49:58 -07003133 err = init_fault_attr_dentries(&failslab.attr, "failslab");
Akinobu Mita8a8b6502006-12-08 02:39:44 -08003134 if (err)
3135 return err;
3136 dir = failslab.attr.dentries.dir;
3137
3138 failslab.ignore_gfp_wait_file =
3139 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3140 &failslab.ignore_gfp_wait);
3141
3142 if (!failslab.ignore_gfp_wait_file) {
3143 err = -ENOMEM;
3144 debugfs_remove(failslab.ignore_gfp_wait_file);
3145 cleanup_fault_attr_dentries(&failslab.attr);
3146 }
3147
3148 return err;
3149}
3150
3151late_initcall(failslab_debugfs);
3152
3153#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3154
3155#else /* CONFIG_FAILSLAB */
3156
3157static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3158{
3159 return 0;
3160}
3161
3162#endif /* CONFIG_FAILSLAB */
3163
Pekka Enberg343e0d72006-02-01 03:05:50 -08003164static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003165{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003166 void *objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003167 struct array_cache *ac;
3168
Alok N Kataria5c382302005-09-27 21:45:46 -07003169 check_irq_off();
Akinobu Mita8a8b6502006-12-08 02:39:44 -08003170
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003171 ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003172 if (likely(ac->avail)) {
3173 STATS_INC_ALLOCHIT(cachep);
3174 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07003175 objp = ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003176 } else {
3177 STATS_INC_ALLOCMISS(cachep);
3178 objp = cache_alloc_refill(cachep, flags);
3179 }
Alok N Kataria5c382302005-09-27 21:45:46 -07003180 return objp;
3181}
3182
Christoph Lametere498be72005-09-09 13:03:32 -07003183#ifdef CONFIG_NUMA
3184/*
Paul Jacksonb2455392006-03-24 03:16:12 -08003185 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
Paul Jacksonc61afb12006-03-24 03:16:08 -08003186 *
3187 * If we are in_interrupt, then process context, including cpusets and
3188 * mempolicy, may not apply and should not be used for allocation policy.
3189 */
3190static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3191{
3192 int nid_alloc, nid_here;
3193
Christoph Lameter765c4502006-09-27 01:50:08 -07003194 if (in_interrupt() || (flags & __GFP_THISNODE))
Paul Jacksonc61afb12006-03-24 03:16:08 -08003195 return NULL;
3196 nid_alloc = nid_here = numa_node_id();
3197 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3198 nid_alloc = cpuset_mem_spread_node();
3199 else if (current->mempolicy)
3200 nid_alloc = slab_node(current->mempolicy);
3201 if (nid_alloc != nid_here)
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003202 return ____cache_alloc_node(cachep, flags, nid_alloc);
Paul Jacksonc61afb12006-03-24 03:16:08 -08003203 return NULL;
3204}
3205
3206/*
Christoph Lameter765c4502006-09-27 01:50:08 -07003207 * Fallback function if there was no memory available and no objects on a
Christoph Lameter3c517a62006-12-06 20:33:29 -08003208 * certain node and fall back is permitted. First we scan all the
3209 * available nodelists for available objects. If that fails then we
3210 * perform an allocation without specifying a node. This allows the page
3211 * allocator to do its reclaim / fallback magic. We then insert the
3212 * slab into the proper nodelist and then allocate from it.
Christoph Lameter765c4502006-09-27 01:50:08 -07003213 */
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003214static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
Christoph Lameter765c4502006-09-27 01:50:08 -07003215{
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003216 struct zonelist *zonelist;
3217 gfp_t local_flags;
Christoph Lameter765c4502006-09-27 01:50:08 -07003218 struct zone **z;
3219 void *obj = NULL;
Christoph Lameter3c517a62006-12-06 20:33:29 -08003220 int nid;
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003221
3222 if (flags & __GFP_THISNODE)
3223 return NULL;
3224
3225 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3226 ->node_zonelists[gfp_zone(flags)];
3227 local_flags = (flags & GFP_LEVEL_MASK);
Christoph Lameter765c4502006-09-27 01:50:08 -07003228
Christoph Lameter3c517a62006-12-06 20:33:29 -08003229retry:
3230 /*
3231 * Look through allowed nodes for objects available
3232 * from existing per node queues.
3233 */
Christoph Lameteraedb0eb2006-10-21 10:24:16 -07003234 for (z = zonelist->zones; *z && !obj; z++) {
Christoph Lameter3c517a62006-12-06 20:33:29 -08003235 nid = zone_to_nid(*z);
Christoph Lameteraedb0eb2006-10-21 10:24:16 -07003236
Paul Jackson02a0e532006-12-13 00:34:25 -08003237 if (cpuset_zone_allowed_hardwall(*z, flags) &&
Christoph Lameter3c517a62006-12-06 20:33:29 -08003238 cache->nodelists[nid] &&
3239 cache->nodelists[nid]->free_objects)
3240 obj = ____cache_alloc_node(cache,
3241 flags | GFP_THISNODE, nid);
3242 }
3243
Christoph Lametercfce6602007-05-06 14:50:17 -07003244 if (!obj) {
Christoph Lameter3c517a62006-12-06 20:33:29 -08003245 /*
3246 * This allocation will be performed within the constraints
3247 * of the current cpuset / memory policy requirements.
3248 * We may trigger various forms of reclaim on the allowed
3249 * set and go into memory reserves if necessary.
3250 */
Christoph Lameterdd47ea72006-12-13 00:34:11 -08003251 if (local_flags & __GFP_WAIT)
3252 local_irq_enable();
3253 kmem_flagcheck(cache, flags);
Christoph Lameter3c517a62006-12-06 20:33:29 -08003254 obj = kmem_getpages(cache, flags, -1);
Christoph Lameterdd47ea72006-12-13 00:34:11 -08003255 if (local_flags & __GFP_WAIT)
3256 local_irq_disable();
Christoph Lameter3c517a62006-12-06 20:33:29 -08003257 if (obj) {
3258 /*
3259 * Insert into the appropriate per node queues
3260 */
3261 nid = page_to_nid(virt_to_page(obj));
3262 if (cache_grow(cache, flags, nid, obj)) {
3263 obj = ____cache_alloc_node(cache,
3264 flags | GFP_THISNODE, nid);
3265 if (!obj)
3266 /*
3267 * Another processor may allocate the
3268 * objects in the slab since we are
3269 * not holding any locks.
3270 */
3271 goto retry;
3272 } else {
Hugh Dickinsb6a60452007-01-05 16:36:36 -08003273 /* cache_grow already freed obj */
Christoph Lameter3c517a62006-12-06 20:33:29 -08003274 obj = NULL;
3275 }
3276 }
Christoph Lameteraedb0eb2006-10-21 10:24:16 -07003277 }
Christoph Lameter765c4502006-09-27 01:50:08 -07003278 return obj;
3279}
3280
3281/*
Christoph Lametere498be72005-09-09 13:03:32 -07003282 * A interface to enable slab creation on nodeid
Linus Torvalds1da177e2005-04-16 15:20:36 -07003283 */
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003284static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003285 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07003286{
3287 struct list_head *entry;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003288 struct slab *slabp;
3289 struct kmem_list3 *l3;
3290 void *obj;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003291 int x;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003292
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003293 l3 = cachep->nodelists[nodeid];
3294 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07003295
Andrew Mortona737b3e2006-03-22 00:08:11 -08003296retry:
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003297 check_irq_off();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003298 spin_lock(&l3->list_lock);
3299 entry = l3->slabs_partial.next;
3300 if (entry == &l3->slabs_partial) {
3301 l3->free_touched = 1;
3302 entry = l3->slabs_free.next;
3303 if (entry == &l3->slabs_free)
3304 goto must_grow;
3305 }
Christoph Lametere498be72005-09-09 13:03:32 -07003306
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003307 slabp = list_entry(entry, struct slab, list);
3308 check_spinlock_acquired_node(cachep, nodeid);
3309 check_slabp(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07003310
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003311 STATS_INC_NODEALLOCS(cachep);
3312 STATS_INC_ACTIVE(cachep);
3313 STATS_SET_HIGH(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003314
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003315 BUG_ON(slabp->inuse == cachep->num);
Christoph Lametere498be72005-09-09 13:03:32 -07003316
Matthew Dobson78d382d2006-02-01 03:05:47 -08003317 obj = slab_get_obj(cachep, slabp, nodeid);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003318 check_slabp(cachep, slabp);
3319 l3->free_objects--;
3320 /* move slabp to correct slabp list: */
3321 list_del(&slabp->list);
Christoph Lametere498be72005-09-09 13:03:32 -07003322
Andrew Mortona737b3e2006-03-22 00:08:11 -08003323 if (slabp->free == BUFCTL_END)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003324 list_add(&slabp->list, &l3->slabs_full);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003325 else
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003326 list_add(&slabp->list, &l3->slabs_partial);
Christoph Lametere498be72005-09-09 13:03:32 -07003327
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003328 spin_unlock(&l3->list_lock);
3329 goto done;
Christoph Lametere498be72005-09-09 13:03:32 -07003330
Andrew Mortona737b3e2006-03-22 00:08:11 -08003331must_grow:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003332 spin_unlock(&l3->list_lock);
Christoph Lameter3c517a62006-12-06 20:33:29 -08003333 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
Christoph Lameter765c4502006-09-27 01:50:08 -07003334 if (x)
3335 goto retry;
Christoph Lametere498be72005-09-09 13:03:32 -07003336
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003337 return fallback_alloc(cachep, flags);
Christoph Lameter765c4502006-09-27 01:50:08 -07003338
Andrew Mortona737b3e2006-03-22 00:08:11 -08003339done:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003340 return obj;
Christoph Lametere498be72005-09-09 13:03:32 -07003341}
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003342
3343/**
3344 * kmem_cache_alloc_node - Allocate an object on the specified node
3345 * @cachep: The cache to allocate from.
3346 * @flags: See kmalloc().
3347 * @nodeid: node number of the target node.
3348 * @caller: return address of caller, used for debug information
3349 *
3350 * Identical to kmem_cache_alloc but it will allocate memory on the given
3351 * node, which can improve the performance for cpu bound structures.
3352 *
3353 * Fallback to other node is possible if __GFP_THISNODE is not set.
3354 */
3355static __always_inline void *
3356__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3357 void *caller)
3358{
3359 unsigned long save_flags;
3360 void *ptr;
3361
Akinobu Mita824ebef2007-05-06 14:49:58 -07003362 if (should_failslab(cachep, flags))
3363 return NULL;
3364
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003365 cache_alloc_debugcheck_before(cachep, flags);
3366 local_irq_save(save_flags);
3367
3368 if (unlikely(nodeid == -1))
3369 nodeid = numa_node_id();
3370
3371 if (unlikely(!cachep->nodelists[nodeid])) {
3372 /* Node not bootstrapped yet */
3373 ptr = fallback_alloc(cachep, flags);
3374 goto out;
3375 }
3376
3377 if (nodeid == numa_node_id()) {
3378 /*
3379 * Use the locally cached objects if possible.
3380 * However ____cache_alloc does not allow fallback
3381 * to other nodes. It may fail while we still have
3382 * objects on other nodes available.
3383 */
3384 ptr = ____cache_alloc(cachep, flags);
3385 if (ptr)
3386 goto out;
3387 }
3388 /* ___cache_alloc_node can fall back to other nodes */
3389 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3390 out:
3391 local_irq_restore(save_flags);
3392 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3393
3394 return ptr;
3395}
3396
3397static __always_inline void *
3398__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3399{
3400 void *objp;
3401
3402 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3403 objp = alternate_node_alloc(cache, flags);
3404 if (objp)
3405 goto out;
3406 }
3407 objp = ____cache_alloc(cache, flags);
3408
3409 /*
3410 * We may just have run out of memory on the local node.
3411 * ____cache_alloc_node() knows how to locate memory on other nodes
3412 */
3413 if (!objp)
3414 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3415
3416 out:
3417 return objp;
3418}
3419#else
3420
3421static __always_inline void *
3422__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3423{
3424 return ____cache_alloc(cachep, flags);
3425}
3426
3427#endif /* CONFIG_NUMA */
3428
3429static __always_inline void *
3430__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3431{
3432 unsigned long save_flags;
3433 void *objp;
3434
Akinobu Mita824ebef2007-05-06 14:49:58 -07003435 if (should_failslab(cachep, flags))
3436 return NULL;
3437
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003438 cache_alloc_debugcheck_before(cachep, flags);
3439 local_irq_save(save_flags);
3440 objp = __do_cache_alloc(cachep, flags);
3441 local_irq_restore(save_flags);
3442 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3443 prefetchw(objp);
3444
3445 return objp;
3446}
Christoph Lametere498be72005-09-09 13:03:32 -07003447
3448/*
3449 * Caller needs to acquire correct kmem_list's list_lock
3450 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003451static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003452 int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003453{
3454 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07003455 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003456
3457 for (i = 0; i < nr_objects; i++) {
3458 void *objp = objpp[i];
3459 struct slab *slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003460
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08003461 slabp = virt_to_slab(objp);
Christoph Lameterff694162005-09-22 21:44:02 -07003462 l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003463 list_del(&slabp->list);
Christoph Lameterff694162005-09-22 21:44:02 -07003464 check_spinlock_acquired_node(cachep, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003465 check_slabp(cachep, slabp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08003466 slab_put_obj(cachep, slabp, objp, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003467 STATS_DEC_ACTIVE(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003468 l3->free_objects++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003469 check_slabp(cachep, slabp);
3470
3471 /* fixup slab chains */
3472 if (slabp->inuse == 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07003473 if (l3->free_objects > l3->free_limit) {
3474 l3->free_objects -= cachep->num;
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07003475 /* No need to drop any previously held
3476 * lock here, even if we have a off-slab slab
3477 * descriptor it is guaranteed to come from
3478 * a different cache, refer to comments before
3479 * alloc_slabmgmt.
3480 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003481 slab_destroy(cachep, slabp);
3482 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07003483 list_add(&slabp->list, &l3->slabs_free);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003484 }
3485 } else {
3486 /* Unconditionally move a slab to the end of the
3487 * partial list on free - maximum time for the
3488 * other objects to be freed, too.
3489 */
Christoph Lametere498be72005-09-09 13:03:32 -07003490 list_add_tail(&slabp->list, &l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003491 }
3492 }
3493}
3494
Pekka Enberg343e0d72006-02-01 03:05:50 -08003495static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003496{
3497 int batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07003498 struct kmem_list3 *l3;
Christoph Lameterff694162005-09-22 21:44:02 -07003499 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003500
3501 batchcount = ac->batchcount;
3502#if DEBUG
3503 BUG_ON(!batchcount || batchcount > ac->avail);
3504#endif
3505 check_irq_off();
Christoph Lameterff694162005-09-22 21:44:02 -07003506 l3 = cachep->nodelists[node];
Ingo Molnar873623d2006-07-13 14:44:38 +02003507 spin_lock(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07003508 if (l3->shared) {
3509 struct array_cache *shared_array = l3->shared;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003510 int max = shared_array->limit - shared_array->avail;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003511 if (max) {
3512 if (batchcount > max)
3513 batchcount = max;
Christoph Lametere498be72005-09-09 13:03:32 -07003514 memcpy(&(shared_array->entry[shared_array->avail]),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003515 ac->entry, sizeof(void *) * batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003516 shared_array->avail += batchcount;
3517 goto free_done;
3518 }
3519 }
3520
Christoph Lameterff694162005-09-22 21:44:02 -07003521 free_block(cachep, ac->entry, batchcount, node);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003522free_done:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003523#if STATS
3524 {
3525 int i = 0;
3526 struct list_head *p;
3527
Christoph Lametere498be72005-09-09 13:03:32 -07003528 p = l3->slabs_free.next;
3529 while (p != &(l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003530 struct slab *slabp;
3531
3532 slabp = list_entry(p, struct slab, list);
3533 BUG_ON(slabp->inuse);
3534
3535 i++;
3536 p = p->next;
3537 }
3538 STATS_SET_FREEABLE(cachep, i);
3539 }
3540#endif
Christoph Lametere498be72005-09-09 13:03:32 -07003541 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003542 ac->avail -= batchcount;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003543 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003544}
3545
3546/*
Andrew Mortona737b3e2006-03-22 00:08:11 -08003547 * Release an obj back to its cache. If the obj has a constructed state, it must
3548 * be in this state _before_ it is released. Called with disabled ints.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003549 */
Ingo Molnar873623d2006-07-13 14:44:38 +02003550static inline void __cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003551{
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003552 struct array_cache *ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003553
3554 check_irq_off();
3555 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3556
Siddha, Suresh B62918a02007-05-02 19:27:18 +02003557 if (use_alien_caches && cache_free_alien(cachep, objp))
Pekka Enberg729bd0b2006-06-23 02:03:05 -07003558 return;
Christoph Lametere498be72005-09-09 13:03:32 -07003559
Linus Torvalds1da177e2005-04-16 15:20:36 -07003560 if (likely(ac->avail < ac->limit)) {
3561 STATS_INC_FREEHIT(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003562 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003563 return;
3564 } else {
3565 STATS_INC_FREEMISS(cachep);
3566 cache_flusharray(cachep, ac);
Christoph Lametere498be72005-09-09 13:03:32 -07003567 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003568 }
3569}
3570
3571/**
3572 * kmem_cache_alloc - Allocate an object
3573 * @cachep: The cache to allocate from.
3574 * @flags: See kmalloc().
3575 *
3576 * Allocate an object from this cache. The flags are only relevant
3577 * if the cache has no available objects.
3578 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003579void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003580{
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003581 return __cache_alloc(cachep, flags, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003582}
3583EXPORT_SYMBOL(kmem_cache_alloc);
3584
3585/**
Rolf Eike Beerb8008b22006-07-30 03:04:04 -07003586 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
Pekka Enberga8c0f9a2006-03-25 03:06:42 -08003587 * @cache: The cache to allocate from.
3588 * @flags: See kmalloc().
3589 *
3590 * Allocate an object from this cache and set the allocated memory to zero.
3591 * The flags are only relevant if the cache has no available objects.
3592 */
3593void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3594{
3595 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3596 if (ret)
3597 memset(ret, 0, obj_size(cache));
3598 return ret;
3599}
3600EXPORT_SYMBOL(kmem_cache_zalloc);
3601
3602/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003603 * kmem_ptr_validate - check if an untrusted pointer might
3604 * be a slab entry.
3605 * @cachep: the cache we're checking against
3606 * @ptr: pointer to validate
3607 *
3608 * This verifies that the untrusted pointer looks sane:
3609 * it is _not_ a guarantee that the pointer is actually
3610 * part of the slab cache in question, but it at least
3611 * validates that the pointer can be dereferenced and
3612 * looks half-way sane.
3613 *
3614 * Currently only used for dentry validation.
3615 */
Christoph Lameterb7f869a22006-12-22 01:06:44 -08003616int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003617{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003618 unsigned long addr = (unsigned long)ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003619 unsigned long min_addr = PAGE_OFFSET;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003620 unsigned long align_mask = BYTES_PER_WORD - 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003621 unsigned long size = cachep->buffer_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003622 struct page *page;
3623
3624 if (unlikely(addr < min_addr))
3625 goto out;
3626 if (unlikely(addr > (unsigned long)high_memory - size))
3627 goto out;
3628 if (unlikely(addr & align_mask))
3629 goto out;
3630 if (unlikely(!kern_addr_valid(addr)))
3631 goto out;
3632 if (unlikely(!kern_addr_valid(addr + size - 1)))
3633 goto out;
3634 page = virt_to_page(ptr);
3635 if (unlikely(!PageSlab(page)))
3636 goto out;
Pekka Enberg065d41c2005-11-13 16:06:46 -08003637 if (unlikely(page_get_cache(page) != cachep))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003638 goto out;
3639 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003640out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003641 return 0;
3642}
3643
3644#ifdef CONFIG_NUMA
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003645void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3646{
3647 return __cache_alloc_node(cachep, flags, nodeid,
3648 __builtin_return_address(0));
3649}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003650EXPORT_SYMBOL(kmem_cache_alloc_node);
3651
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003652static __always_inline void *
3653__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003654{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003655 struct kmem_cache *cachep;
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003656
3657 cachep = kmem_find_general_cachep(size, flags);
3658 if (unlikely(cachep == NULL))
3659 return NULL;
3660 return kmem_cache_alloc_node(cachep, flags, node);
3661}
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003662
3663#ifdef CONFIG_DEBUG_SLAB
3664void *__kmalloc_node(size_t size, gfp_t flags, int node)
3665{
3666 return __do_kmalloc_node(size, flags, node,
3667 __builtin_return_address(0));
3668}
Christoph Hellwigdbe5e692006-09-25 23:31:36 -07003669EXPORT_SYMBOL(__kmalloc_node);
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003670
3671void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3672 int node, void *caller)
3673{
3674 return __do_kmalloc_node(size, flags, node, caller);
3675}
3676EXPORT_SYMBOL(__kmalloc_node_track_caller);
3677#else
3678void *__kmalloc_node(size_t size, gfp_t flags, int node)
3679{
3680 return __do_kmalloc_node(size, flags, node, NULL);
3681}
3682EXPORT_SYMBOL(__kmalloc_node);
3683#endif /* CONFIG_DEBUG_SLAB */
3684#endif /* CONFIG_NUMA */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003685
3686/**
Paul Drynoff800590f2006-06-23 02:03:48 -07003687 * __do_kmalloc - allocate memory
Linus Torvalds1da177e2005-04-16 15:20:36 -07003688 * @size: how many bytes of memory are required.
Paul Drynoff800590f2006-06-23 02:03:48 -07003689 * @flags: the type of memory to allocate (see kmalloc).
Randy Dunlap911851e2006-03-22 00:08:14 -08003690 * @caller: function caller for debug tracking of the caller
Linus Torvalds1da177e2005-04-16 15:20:36 -07003691 */
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003692static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3693 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003694{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003695 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003696
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003697 /* If you want to save a few bytes .text space: replace
3698 * __ with kmem_.
3699 * Then kmalloc uses the uninlined functions instead of the inline
3700 * functions.
3701 */
3702 cachep = __find_general_cachep(size, flags);
Andrew Mortondbdb9042005-09-23 13:24:10 -07003703 if (unlikely(cachep == NULL))
3704 return NULL;
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003705 return __cache_alloc(cachep, flags, caller);
3706}
3707
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003708
Christoph Hellwig1d2c8ee2006-10-04 02:15:25 -07003709#ifdef CONFIG_DEBUG_SLAB
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003710void *__kmalloc(size_t size, gfp_t flags)
3711{
Al Viro871751e2006-03-25 03:06:39 -08003712 return __do_kmalloc(size, flags, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003713}
3714EXPORT_SYMBOL(__kmalloc);
3715
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003716void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3717{
3718 return __do_kmalloc(size, flags, caller);
3719}
3720EXPORT_SYMBOL(__kmalloc_track_caller);
Christoph Hellwig1d2c8ee2006-10-04 02:15:25 -07003721
3722#else
3723void *__kmalloc(size_t size, gfp_t flags)
3724{
3725 return __do_kmalloc(size, flags, NULL);
3726}
3727EXPORT_SYMBOL(__kmalloc);
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003728#endif
3729
Linus Torvalds1da177e2005-04-16 15:20:36 -07003730/**
Pekka Enbergfd76bab2007-05-06 14:48:40 -07003731 * krealloc - reallocate memory. The contents will remain unchanged.
Pekka Enbergfd76bab2007-05-06 14:48:40 -07003732 * @p: object to reallocate memory for.
3733 * @new_size: how many bytes of memory are required.
3734 * @flags: the type of memory to allocate.
3735 *
3736 * The contents of the object pointed to are preserved up to the
3737 * lesser of the new and old sizes. If @p is %NULL, krealloc()
3738 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
3739 * %NULL pointer, the object pointed to is freed.
3740 */
3741void *krealloc(const void *p, size_t new_size, gfp_t flags)
3742{
3743 struct kmem_cache *cache, *new_cache;
3744 void *ret;
3745
3746 if (unlikely(!p))
3747 return kmalloc_track_caller(new_size, flags);
3748
3749 if (unlikely(!new_size)) {
3750 kfree(p);
3751 return NULL;
3752 }
3753
3754 cache = virt_to_cache(p);
3755 new_cache = __find_general_cachep(new_size, flags);
3756
3757 /*
3758 * If new size fits in the current cache, bail out.
3759 */
3760 if (likely(cache == new_cache))
3761 return (void *)p;
3762
3763 /*
3764 * We are on the slow-path here so do not use __cache_alloc
3765 * because it bloats kernel text.
3766 */
3767 ret = kmalloc_track_caller(new_size, flags);
3768 if (ret) {
3769 memcpy(ret, p, min(new_size, ksize(p)));
3770 kfree(p);
3771 }
3772 return ret;
3773}
3774EXPORT_SYMBOL(krealloc);
3775
3776/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003777 * kmem_cache_free - Deallocate an object
3778 * @cachep: The cache the allocation was from.
3779 * @objp: The previously allocated object.
3780 *
3781 * Free an object which was previously allocated from this
3782 * cache.
3783 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003784void kmem_cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003785{
3786 unsigned long flags;
3787
Pekka Enbergddc2e812006-06-23 02:03:40 -07003788 BUG_ON(virt_to_cache(objp) != cachep);
3789
Linus Torvalds1da177e2005-04-16 15:20:36 -07003790 local_irq_save(flags);
Ingo Molnar898552c2007-02-10 01:44:57 -08003791 debug_check_no_locks_freed(objp, obj_size(cachep));
Ingo Molnar873623d2006-07-13 14:44:38 +02003792 __cache_free(cachep, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003793 local_irq_restore(flags);
3794}
3795EXPORT_SYMBOL(kmem_cache_free);
3796
3797/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003798 * kfree - free previously allocated memory
3799 * @objp: pointer returned by kmalloc.
3800 *
Pekka Enberg80e93ef2005-09-09 13:10:16 -07003801 * If @objp is NULL, no operation is performed.
3802 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003803 * Don't free memory not originally allocated by kmalloc()
3804 * or you will run into trouble.
3805 */
3806void kfree(const void *objp)
3807{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003808 struct kmem_cache *c;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003809 unsigned long flags;
3810
3811 if (unlikely(!objp))
3812 return;
3813 local_irq_save(flags);
3814 kfree_debugcheck(objp);
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08003815 c = virt_to_cache(objp);
Ingo Molnarf9b84042006-06-27 02:54:49 -07003816 debug_check_no_locks_freed(objp, obj_size(c));
Ingo Molnar873623d2006-07-13 14:44:38 +02003817 __cache_free(c, (void *)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003818 local_irq_restore(flags);
3819}
3820EXPORT_SYMBOL(kfree);
3821
Pekka Enberg343e0d72006-02-01 03:05:50 -08003822unsigned int kmem_cache_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003823{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003824 return obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003825}
3826EXPORT_SYMBOL(kmem_cache_size);
3827
Pekka Enberg343e0d72006-02-01 03:05:50 -08003828const char *kmem_cache_name(struct kmem_cache *cachep)
Arnaldo Carvalho de Melo19449722005-06-18 22:46:19 -07003829{
3830 return cachep->name;
3831}
3832EXPORT_SYMBOL_GPL(kmem_cache_name);
3833
Christoph Lametere498be72005-09-09 13:03:32 -07003834/*
Christoph Lameter0718dc22006-03-25 03:06:47 -08003835 * This initializes kmem_list3 or resizes varioius caches for all nodes.
Christoph Lametere498be72005-09-09 13:03:32 -07003836 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003837static int alloc_kmemlist(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07003838{
3839 int node;
3840 struct kmem_list3 *l3;
Christoph Lametercafeb022006-03-25 03:06:46 -08003841 struct array_cache *new_shared;
Paul Menage3395ee02006-12-06 20:32:16 -08003842 struct array_cache **new_alien = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07003843
3844 for_each_online_node(node) {
Christoph Lametercafeb022006-03-25 03:06:46 -08003845
Paul Menage3395ee02006-12-06 20:32:16 -08003846 if (use_alien_caches) {
3847 new_alien = alloc_alien_cache(node, cachep->limit);
3848 if (!new_alien)
3849 goto fail;
3850 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003851
Eric Dumazet63109842007-05-06 14:49:28 -07003852 new_shared = NULL;
3853 if (cachep->shared) {
3854 new_shared = alloc_arraycache(node,
Christoph Lameter0718dc22006-03-25 03:06:47 -08003855 cachep->shared*cachep->batchcount,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003856 0xbaadf00d);
Eric Dumazet63109842007-05-06 14:49:28 -07003857 if (!new_shared) {
3858 free_alien_cache(new_alien);
3859 goto fail;
3860 }
Christoph Lameter0718dc22006-03-25 03:06:47 -08003861 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003862
Andrew Mortona737b3e2006-03-22 00:08:11 -08003863 l3 = cachep->nodelists[node];
3864 if (l3) {
Christoph Lametercafeb022006-03-25 03:06:46 -08003865 struct array_cache *shared = l3->shared;
3866
Christoph Lametere498be72005-09-09 13:03:32 -07003867 spin_lock_irq(&l3->list_lock);
3868
Christoph Lametercafeb022006-03-25 03:06:46 -08003869 if (shared)
Christoph Lameter0718dc22006-03-25 03:06:47 -08003870 free_block(cachep, shared->entry,
3871 shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07003872
Christoph Lametercafeb022006-03-25 03:06:46 -08003873 l3->shared = new_shared;
3874 if (!l3->alien) {
Christoph Lametere498be72005-09-09 13:03:32 -07003875 l3->alien = new_alien;
3876 new_alien = NULL;
3877 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003878 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003879 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003880 spin_unlock_irq(&l3->list_lock);
Christoph Lametercafeb022006-03-25 03:06:46 -08003881 kfree(shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003882 free_alien_cache(new_alien);
3883 continue;
3884 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08003885 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
Christoph Lameter0718dc22006-03-25 03:06:47 -08003886 if (!l3) {
3887 free_alien_cache(new_alien);
3888 kfree(new_shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003889 goto fail;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003890 }
Christoph Lametere498be72005-09-09 13:03:32 -07003891
3892 kmem_list3_init(l3);
3893 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Andrew Mortona737b3e2006-03-22 00:08:11 -08003894 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametercafeb022006-03-25 03:06:46 -08003895 l3->shared = new_shared;
Christoph Lametere498be72005-09-09 13:03:32 -07003896 l3->alien = new_alien;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003897 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003898 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003899 cachep->nodelists[node] = l3;
3900 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003901 return 0;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003902
Andrew Mortona737b3e2006-03-22 00:08:11 -08003903fail:
Christoph Lameter0718dc22006-03-25 03:06:47 -08003904 if (!cachep->next.next) {
3905 /* Cache is not active yet. Roll back what we did */
3906 node--;
3907 while (node >= 0) {
3908 if (cachep->nodelists[node]) {
3909 l3 = cachep->nodelists[node];
3910
3911 kfree(l3->shared);
3912 free_alien_cache(l3->alien);
3913 kfree(l3);
3914 cachep->nodelists[node] = NULL;
3915 }
3916 node--;
3917 }
3918 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003919 return -ENOMEM;
Christoph Lametere498be72005-09-09 13:03:32 -07003920}
3921
Linus Torvalds1da177e2005-04-16 15:20:36 -07003922struct ccupdate_struct {
Pekka Enberg343e0d72006-02-01 03:05:50 -08003923 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003924 struct array_cache *new[NR_CPUS];
3925};
3926
3927static void do_ccupdate_local(void *info)
3928{
Andrew Mortona737b3e2006-03-22 00:08:11 -08003929 struct ccupdate_struct *new = info;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003930 struct array_cache *old;
3931
3932 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003933 old = cpu_cache_get(new->cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003934
Linus Torvalds1da177e2005-04-16 15:20:36 -07003935 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3936 new->new[smp_processor_id()] = old;
3937}
3938
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08003939/* Always called with the cache_chain_mutex held */
Andrew Mortona737b3e2006-03-22 00:08:11 -08003940static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3941 int batchcount, int shared)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003942{
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003943 struct ccupdate_struct *new;
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07003944 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003945
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003946 new = kzalloc(sizeof(*new), GFP_KERNEL);
3947 if (!new)
3948 return -ENOMEM;
3949
Christoph Lametere498be72005-09-09 13:03:32 -07003950 for_each_online_cpu(i) {
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003951 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003952 batchcount);
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003953 if (!new->new[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003954 for (i--; i >= 0; i--)
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003955 kfree(new->new[i]);
3956 kfree(new);
Christoph Lametere498be72005-09-09 13:03:32 -07003957 return -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003958 }
3959 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003960 new->cachep = cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003961
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003962 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
Christoph Lametere498be72005-09-09 13:03:32 -07003963
Linus Torvalds1da177e2005-04-16 15:20:36 -07003964 check_irq_on();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003965 cachep->batchcount = batchcount;
3966 cachep->limit = limit;
Christoph Lametere498be72005-09-09 13:03:32 -07003967 cachep->shared = shared;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003968
Christoph Lametere498be72005-09-09 13:03:32 -07003969 for_each_online_cpu(i) {
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003970 struct array_cache *ccold = new->new[i];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003971 if (!ccold)
3972 continue;
Christoph Lametere498be72005-09-09 13:03:32 -07003973 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07003974 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
Christoph Lametere498be72005-09-09 13:03:32 -07003975 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003976 kfree(ccold);
3977 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003978 kfree(new);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07003979 return alloc_kmemlist(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003980}
3981
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08003982/* Called with cache_chain_mutex held always */
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07003983static int enable_cpucache(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003984{
3985 int err;
3986 int limit, shared;
3987
Andrew Mortona737b3e2006-03-22 00:08:11 -08003988 /*
3989 * The head array serves three purposes:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003990 * - create a LIFO ordering, i.e. return objects that are cache-warm
3991 * - reduce the number of spinlock operations.
Andrew Mortona737b3e2006-03-22 00:08:11 -08003992 * - reduce the number of linked list operations on the slab and
Linus Torvalds1da177e2005-04-16 15:20:36 -07003993 * bufctl chains: array operations are cheaper.
3994 * The numbers are guessed, we should auto-tune as described by
3995 * Bonwick.
3996 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003997 if (cachep->buffer_size > 131072)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003998 limit = 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003999 else if (cachep->buffer_size > PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004000 limit = 8;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004001 else if (cachep->buffer_size > 1024)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004002 limit = 24;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004003 else if (cachep->buffer_size > 256)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004004 limit = 54;
4005 else
4006 limit = 120;
4007
Andrew Mortona737b3e2006-03-22 00:08:11 -08004008 /*
4009 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
Linus Torvalds1da177e2005-04-16 15:20:36 -07004010 * allocation behaviour: Most allocs on one cpu, most free operations
4011 * on another cpu. For these cases, an efficient object passing between
4012 * cpus is necessary. This is provided by a shared array. The array
4013 * replaces Bonwick's magazine layer.
4014 * On uniprocessor, it's functionally equivalent (but less efficient)
4015 * to a larger limit. Thus disabled by default.
4016 */
4017 shared = 0;
Eric Dumazet364fbb22007-05-06 14:49:27 -07004018 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004019 shared = 8;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004020
4021#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08004022 /*
4023 * With debugging enabled, large batchcount lead to excessively long
4024 * periods with disabled local interrupts. Limit the batchcount
Linus Torvalds1da177e2005-04-16 15:20:36 -07004025 */
4026 if (limit > 32)
4027 limit = 32;
4028#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004029 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004030 if (err)
4031 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004032 cachep->name, -err);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07004033 return err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004034}
4035
Christoph Lameter1b552532006-03-22 00:09:07 -08004036/*
4037 * Drain an array if it contains any elements taking the l3 lock only if
Christoph Lameterb18e7e62006-03-22 00:09:07 -08004038 * necessary. Note that the l3 listlock also protects the array_cache
4039 * if drain_array() is used on the shared array.
Christoph Lameter1b552532006-03-22 00:09:07 -08004040 */
4041void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4042 struct array_cache *ac, int force, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004043{
4044 int tofree;
4045
Christoph Lameter1b552532006-03-22 00:09:07 -08004046 if (!ac || !ac->avail)
4047 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004048 if (ac->touched && !force) {
4049 ac->touched = 0;
Christoph Lameterb18e7e62006-03-22 00:09:07 -08004050 } else {
Christoph Lameter1b552532006-03-22 00:09:07 -08004051 spin_lock_irq(&l3->list_lock);
Christoph Lameterb18e7e62006-03-22 00:09:07 -08004052 if (ac->avail) {
4053 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4054 if (tofree > ac->avail)
4055 tofree = (ac->avail + 1) / 2;
4056 free_block(cachep, ac->entry, tofree, node);
4057 ac->avail -= tofree;
4058 memmove(ac->entry, &(ac->entry[tofree]),
4059 sizeof(void *) * ac->avail);
4060 }
Christoph Lameter1b552532006-03-22 00:09:07 -08004061 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004062 }
4063}
4064
4065/**
4066 * cache_reap - Reclaim memory from caches.
Randy Dunlap05fb6bf2007-02-28 20:12:13 -08004067 * @w: work descriptor
Linus Torvalds1da177e2005-04-16 15:20:36 -07004068 *
4069 * Called from workqueue/eventd every few seconds.
4070 * Purpose:
4071 * - clear the per-cpu caches for this CPU.
4072 * - return freeable pages to the main free memory pool.
4073 *
Andrew Mortona737b3e2006-03-22 00:08:11 -08004074 * If we cannot acquire the cache chain mutex then just give up - we'll try
4075 * again on the next iteration.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004076 */
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004077static void cache_reap(struct work_struct *w)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004078{
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004079 struct kmem_cache *searchp;
Christoph Lametere498be72005-09-09 13:03:32 -07004080 struct kmem_list3 *l3;
Christoph Lameteraab22072006-03-22 00:09:06 -08004081 int node = numa_node_id();
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004082 struct delayed_work *work =
4083 container_of(w, struct delayed_work, work);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004084
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004085 if (!mutex_trylock(&cache_chain_mutex))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004086 /* Give up. Setup the next iteration. */
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004087 goto out;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004088
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004089 list_for_each_entry(searchp, &cache_chain, next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004090 check_irq_on();
4091
Christoph Lameter35386e32006-03-22 00:09:05 -08004092 /*
4093 * We only take the l3 lock if absolutely necessary and we
4094 * have established with reasonable certainty that
4095 * we can do some work if the lock was obtained.
4096 */
Christoph Lameteraab22072006-03-22 00:09:06 -08004097 l3 = searchp->nodelists[node];
Christoph Lameter35386e32006-03-22 00:09:05 -08004098
Christoph Lameter8fce4d82006-03-09 17:33:54 -08004099 reap_alien(searchp, l3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004100
Christoph Lameteraab22072006-03-22 00:09:06 -08004101 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004102
Christoph Lameter35386e32006-03-22 00:09:05 -08004103 /*
4104 * These are racy checks but it does not matter
4105 * if we skip one check or scan twice.
4106 */
Christoph Lametere498be72005-09-09 13:03:32 -07004107 if (time_after(l3->next_reap, jiffies))
Christoph Lameter35386e32006-03-22 00:09:05 -08004108 goto next;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004109
Christoph Lametere498be72005-09-09 13:03:32 -07004110 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004111
Christoph Lameteraab22072006-03-22 00:09:06 -08004112 drain_array(searchp, l3, l3->shared, 0, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004113
Christoph Lametered11d9e2006-06-30 01:55:45 -07004114 if (l3->free_touched)
Christoph Lametere498be72005-09-09 13:03:32 -07004115 l3->free_touched = 0;
Christoph Lametered11d9e2006-06-30 01:55:45 -07004116 else {
4117 int freed;
4118
4119 freed = drain_freelist(searchp, l3, (l3->free_limit +
4120 5 * searchp->num - 1) / (5 * searchp->num));
4121 STATS_ADD_REAPED(searchp, freed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004122 }
Christoph Lameter35386e32006-03-22 00:09:05 -08004123next:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004124 cond_resched();
4125 }
4126 check_irq_on();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004127 mutex_unlock(&cache_chain_mutex);
Christoph Lameter8fce4d82006-03-09 17:33:54 -08004128 next_reap_node();
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004129out:
Andrew Mortona737b3e2006-03-22 00:08:11 -08004130 /* Set up the next iteration */
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004131 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004132}
4133
4134#ifdef CONFIG_PROC_FS
4135
Pekka Enberg85289f92006-01-08 01:00:36 -08004136static void print_slabinfo_header(struct seq_file *m)
4137{
4138 /*
4139 * Output format version, so at least we can change it
4140 * without _too_ many complaints.
4141 */
4142#if STATS
4143 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4144#else
4145 seq_puts(m, "slabinfo - version: 2.1\n");
4146#endif
4147 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4148 "<objperslab> <pagesperslab>");
4149 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4150 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4151#if STATS
4152 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004153 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
Pekka Enberg85289f92006-01-08 01:00:36 -08004154 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4155#endif
4156 seq_putc(m, '\n');
4157}
4158
Linus Torvalds1da177e2005-04-16 15:20:36 -07004159static void *s_start(struct seq_file *m, loff_t *pos)
4160{
4161 loff_t n = *pos;
4162 struct list_head *p;
4163
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004164 mutex_lock(&cache_chain_mutex);
Pekka Enberg85289f92006-01-08 01:00:36 -08004165 if (!n)
4166 print_slabinfo_header(m);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004167 p = cache_chain.next;
4168 while (n--) {
4169 p = p->next;
4170 if (p == &cache_chain)
4171 return NULL;
4172 }
Pekka Enberg343e0d72006-02-01 03:05:50 -08004173 return list_entry(p, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004174}
4175
4176static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4177{
Pekka Enberg343e0d72006-02-01 03:05:50 -08004178 struct kmem_cache *cachep = p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004179 ++*pos;
Andrew Mortona737b3e2006-03-22 00:08:11 -08004180 return cachep->next.next == &cache_chain ?
4181 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004182}
4183
4184static void s_stop(struct seq_file *m, void *p)
4185{
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004186 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004187}
4188
4189static int s_show(struct seq_file *m, void *p)
4190{
Pekka Enberg343e0d72006-02-01 03:05:50 -08004191 struct kmem_cache *cachep = p;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004192 struct slab *slabp;
4193 unsigned long active_objs;
4194 unsigned long num_objs;
4195 unsigned long active_slabs = 0;
4196 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07004197 const char *name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004198 char *error = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07004199 int node;
4200 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004201
Linus Torvalds1da177e2005-04-16 15:20:36 -07004202 active_objs = 0;
4203 num_slabs = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07004204 for_each_online_node(node) {
4205 l3 = cachep->nodelists[node];
4206 if (!l3)
4207 continue;
4208
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08004209 check_irq_on();
4210 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07004211
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004212 list_for_each_entry(slabp, &l3->slabs_full, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07004213 if (slabp->inuse != cachep->num && !error)
4214 error = "slabs_full accounting error";
4215 active_objs += cachep->num;
4216 active_slabs++;
4217 }
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004218 list_for_each_entry(slabp, &l3->slabs_partial, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07004219 if (slabp->inuse == cachep->num && !error)
4220 error = "slabs_partial inuse accounting error";
4221 if (!slabp->inuse && !error)
4222 error = "slabs_partial/inuse accounting error";
4223 active_objs += slabp->inuse;
4224 active_slabs++;
4225 }
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004226 list_for_each_entry(slabp, &l3->slabs_free, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07004227 if (slabp->inuse && !error)
4228 error = "slabs_free/inuse accounting error";
4229 num_slabs++;
4230 }
4231 free_objects += l3->free_objects;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08004232 if (l3->shared)
4233 shared_avail += l3->shared->avail;
Christoph Lametere498be72005-09-09 13:03:32 -07004234
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08004235 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004236 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004237 num_slabs += active_slabs;
4238 num_objs = num_slabs * cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07004239 if (num_objs - active_objs != free_objects && !error)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004240 error = "free_objects accounting error";
4241
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004242 name = cachep->name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004243 if (error)
4244 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4245
4246 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004247 name, active_objs, num_objs, cachep->buffer_size,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004248 cachep->num, (1 << cachep->gfporder));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004249 seq_printf(m, " : tunables %4u %4u %4u",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004250 cachep->limit, cachep->batchcount, cachep->shared);
Christoph Lametere498be72005-09-09 13:03:32 -07004251 seq_printf(m, " : slabdata %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004252 active_slabs, num_slabs, shared_avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004253#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004254 { /* list3 stats */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004255 unsigned long high = cachep->high_mark;
4256 unsigned long allocs = cachep->num_allocations;
4257 unsigned long grown = cachep->grown;
4258 unsigned long reaped = cachep->reaped;
4259 unsigned long errors = cachep->errors;
4260 unsigned long max_freeable = cachep->max_freeable;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004261 unsigned long node_allocs = cachep->node_allocs;
Christoph Lametere498be72005-09-09 13:03:32 -07004262 unsigned long node_frees = cachep->node_frees;
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004263 unsigned long overflows = cachep->node_overflow;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004264
Christoph Lametere498be72005-09-09 13:03:32 -07004265 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004266 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
Andrew Mortona737b3e2006-03-22 00:08:11 -08004267 reaped, errors, max_freeable, node_allocs,
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004268 node_frees, overflows);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004269 }
4270 /* cpu stats */
4271 {
4272 unsigned long allochit = atomic_read(&cachep->allochit);
4273 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4274 unsigned long freehit = atomic_read(&cachep->freehit);
4275 unsigned long freemiss = atomic_read(&cachep->freemiss);
4276
4277 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004278 allochit, allocmiss, freehit, freemiss);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004279 }
4280#endif
4281 seq_putc(m, '\n');
Linus Torvalds1da177e2005-04-16 15:20:36 -07004282 return 0;
4283}
4284
4285/*
4286 * slabinfo_op - iterator that generates /proc/slabinfo
4287 *
4288 * Output layout:
4289 * cache-name
4290 * num-active-objs
4291 * total-objs
4292 * object size
4293 * num-active-slabs
4294 * total-slabs
4295 * num-pages-per-slab
4296 * + further values on SMP and with statistics enabled
4297 */
4298
Helge Deller15ad7cd2006-12-06 20:40:36 -08004299const struct seq_operations slabinfo_op = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004300 .start = s_start,
4301 .next = s_next,
4302 .stop = s_stop,
4303 .show = s_show,
Linus Torvalds1da177e2005-04-16 15:20:36 -07004304};
4305
4306#define MAX_SLABINFO_WRITE 128
4307/**
4308 * slabinfo_write - Tuning for the slab allocator
4309 * @file: unused
4310 * @buffer: user buffer
4311 * @count: data length
4312 * @ppos: unused
4313 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004314ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4315 size_t count, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004316{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004317 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004318 int limit, batchcount, shared, res;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004319 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004320
Linus Torvalds1da177e2005-04-16 15:20:36 -07004321 if (count > MAX_SLABINFO_WRITE)
4322 return -EINVAL;
4323 if (copy_from_user(&kbuf, buffer, count))
4324 return -EFAULT;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004325 kbuf[MAX_SLABINFO_WRITE] = '\0';
Linus Torvalds1da177e2005-04-16 15:20:36 -07004326
4327 tmp = strchr(kbuf, ' ');
4328 if (!tmp)
4329 return -EINVAL;
4330 *tmp = '\0';
4331 tmp++;
4332 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4333 return -EINVAL;
4334
4335 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004336 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004337 res = -EINVAL;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004338 list_for_each_entry(cachep, &cache_chain, next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004339 if (!strcmp(cachep->name, kbuf)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08004340 if (limit < 1 || batchcount < 1 ||
4341 batchcount > limit || shared < 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07004342 res = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004343 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07004344 res = do_tune_cpucache(cachep, limit,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004345 batchcount, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004346 }
4347 break;
4348 }
4349 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004350 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004351 if (res >= 0)
4352 res = count;
4353 return res;
4354}
Al Viro871751e2006-03-25 03:06:39 -08004355
4356#ifdef CONFIG_DEBUG_SLAB_LEAK
4357
4358static void *leaks_start(struct seq_file *m, loff_t *pos)
4359{
4360 loff_t n = *pos;
4361 struct list_head *p;
4362
4363 mutex_lock(&cache_chain_mutex);
4364 p = cache_chain.next;
4365 while (n--) {
4366 p = p->next;
4367 if (p == &cache_chain)
4368 return NULL;
4369 }
4370 return list_entry(p, struct kmem_cache, next);
4371}
4372
4373static inline int add_caller(unsigned long *n, unsigned long v)
4374{
4375 unsigned long *p;
4376 int l;
4377 if (!v)
4378 return 1;
4379 l = n[1];
4380 p = n + 2;
4381 while (l) {
4382 int i = l/2;
4383 unsigned long *q = p + 2 * i;
4384 if (*q == v) {
4385 q[1]++;
4386 return 1;
4387 }
4388 if (*q > v) {
4389 l = i;
4390 } else {
4391 p = q + 2;
4392 l -= i + 1;
4393 }
4394 }
4395 if (++n[1] == n[0])
4396 return 0;
4397 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4398 p[0] = v;
4399 p[1] = 1;
4400 return 1;
4401}
4402
4403static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4404{
4405 void *p;
4406 int i;
4407 if (n[0] == n[1])
4408 return;
4409 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4410 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4411 continue;
4412 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4413 return;
4414 }
4415}
4416
4417static void show_symbol(struct seq_file *m, unsigned long address)
4418{
4419#ifdef CONFIG_KALLSYMS
Al Viro871751e2006-03-25 03:06:39 -08004420 unsigned long offset, size;
Alexey Dobriyana5c43da2007-05-08 00:28:47 -07004421 char modname[MODULE_NAME_LEN + 1], name[KSYM_NAME_LEN + 1];
Al Viro871751e2006-03-25 03:06:39 -08004422
Alexey Dobriyana5c43da2007-05-08 00:28:47 -07004423 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
Al Viro871751e2006-03-25 03:06:39 -08004424 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
Alexey Dobriyana5c43da2007-05-08 00:28:47 -07004425 if (modname[0])
Al Viro871751e2006-03-25 03:06:39 -08004426 seq_printf(m, " [%s]", modname);
4427 return;
4428 }
4429#endif
4430 seq_printf(m, "%p", (void *)address);
4431}
4432
4433static int leaks_show(struct seq_file *m, void *p)
4434{
4435 struct kmem_cache *cachep = p;
Al Viro871751e2006-03-25 03:06:39 -08004436 struct slab *slabp;
4437 struct kmem_list3 *l3;
4438 const char *name;
4439 unsigned long *n = m->private;
4440 int node;
4441 int i;
4442
4443 if (!(cachep->flags & SLAB_STORE_USER))
4444 return 0;
4445 if (!(cachep->flags & SLAB_RED_ZONE))
4446 return 0;
4447
4448 /* OK, we can do it */
4449
4450 n[1] = 0;
4451
4452 for_each_online_node(node) {
4453 l3 = cachep->nodelists[node];
4454 if (!l3)
4455 continue;
4456
4457 check_irq_on();
4458 spin_lock_irq(&l3->list_lock);
4459
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004460 list_for_each_entry(slabp, &l3->slabs_full, list)
Al Viro871751e2006-03-25 03:06:39 -08004461 handle_slab(n, cachep, slabp);
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004462 list_for_each_entry(slabp, &l3->slabs_partial, list)
Al Viro871751e2006-03-25 03:06:39 -08004463 handle_slab(n, cachep, slabp);
Al Viro871751e2006-03-25 03:06:39 -08004464 spin_unlock_irq(&l3->list_lock);
4465 }
4466 name = cachep->name;
4467 if (n[0] == n[1]) {
4468 /* Increase the buffer size */
4469 mutex_unlock(&cache_chain_mutex);
4470 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4471 if (!m->private) {
4472 /* Too bad, we are really out */
4473 m->private = n;
4474 mutex_lock(&cache_chain_mutex);
4475 return -ENOMEM;
4476 }
4477 *(unsigned long *)m->private = n[0] * 2;
4478 kfree(n);
4479 mutex_lock(&cache_chain_mutex);
4480 /* Now make sure this entry will be retried */
4481 m->count = m->size;
4482 return 0;
4483 }
4484 for (i = 0; i < n[1]; i++) {
4485 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4486 show_symbol(m, n[2*i+2]);
4487 seq_putc(m, '\n');
4488 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07004489
Al Viro871751e2006-03-25 03:06:39 -08004490 return 0;
4491}
4492
Helge Deller15ad7cd2006-12-06 20:40:36 -08004493const struct seq_operations slabstats_op = {
Al Viro871751e2006-03-25 03:06:39 -08004494 .start = leaks_start,
4495 .next = s_next,
4496 .stop = s_stop,
4497 .show = leaks_show,
4498};
4499#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004500#endif
4501
Manfred Spraul00e145b2005-09-03 15:55:07 -07004502/**
4503 * ksize - get the actual amount of memory allocated for a given object
4504 * @objp: Pointer to the object
4505 *
4506 * kmalloc may internally round up allocations and return more memory
4507 * than requested. ksize() can be used to determine the actual amount of
4508 * memory allocated. The caller may use this additional memory, even though
4509 * a smaller amount of memory was initially specified with the kmalloc call.
4510 * The caller must guarantee that objp points to a valid object previously
4511 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4512 * must not be freed during the duration of the call.
4513 */
Pekka Enbergfd76bab2007-05-06 14:48:40 -07004514size_t ksize(const void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004515{
Manfred Spraul00e145b2005-09-03 15:55:07 -07004516 if (unlikely(objp == NULL))
4517 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004518
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08004519 return obj_size(virt_to_cache(objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004520}