blob: b6029785714c58d3a192aed66fc59fa086b23204 [file] [log] [blame]
Jaegeuk Kim0b81d072015-05-15 16:26:10 -07001/*
2 * This contains encryption functions for per-file encryption.
3 *
4 * Copyright (C) 2015, Google, Inc.
5 * Copyright (C) 2015, Motorola Mobility
6 *
7 * Written by Michael Halcrow, 2014.
8 *
9 * Filename encryption additions
10 * Uday Savagaonkar, 2014
11 * Encryption policy handling additions
12 * Ildar Muslukhov, 2014
13 * Add fscrypt_pullback_bio_page()
14 * Jaegeuk Kim, 2015.
15 *
16 * This has not yet undergone a rigorous security audit.
17 *
18 * The usage of AES-XTS should conform to recommendations in NIST
19 * Special Publication 800-38E and IEEE P1619/D16.
20 */
21
Jaegeuk Kim0b81d072015-05-15 16:26:10 -070022#include <linux/pagemap.h>
23#include <linux/mempool.h>
24#include <linux/module.h>
25#include <linux/scatterlist.h>
26#include <linux/ratelimit.h>
27#include <linux/bio.h>
28#include <linux/dcache.h>
Jaegeuk Kim03a8bb02016-04-12 16:05:36 -070029#include <linux/namei.h>
Jaegeuk Kim0b81d072015-05-15 16:26:10 -070030#include <linux/fscrypto.h>
31
32static unsigned int num_prealloc_crypto_pages = 32;
33static unsigned int num_prealloc_crypto_ctxs = 128;
34
35module_param(num_prealloc_crypto_pages, uint, 0444);
36MODULE_PARM_DESC(num_prealloc_crypto_pages,
37 "Number of crypto pages to preallocate");
38module_param(num_prealloc_crypto_ctxs, uint, 0444);
39MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
40 "Number of crypto contexts to preallocate");
41
42static mempool_t *fscrypt_bounce_page_pool = NULL;
43
44static LIST_HEAD(fscrypt_free_ctxs);
45static DEFINE_SPINLOCK(fscrypt_ctx_lock);
46
47static struct workqueue_struct *fscrypt_read_workqueue;
48static DEFINE_MUTEX(fscrypt_init_mutex);
49
50static struct kmem_cache *fscrypt_ctx_cachep;
51struct kmem_cache *fscrypt_info_cachep;
52
53/**
54 * fscrypt_release_ctx() - Releases an encryption context
55 * @ctx: The encryption context to release.
56 *
57 * If the encryption context was allocated from the pre-allocated pool, returns
58 * it to that pool. Else, frees it.
59 *
60 * If there's a bounce page in the context, this frees that.
61 */
62void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
63{
64 unsigned long flags;
65
66 if (ctx->flags & FS_WRITE_PATH_FL && ctx->w.bounce_page) {
67 mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
68 ctx->w.bounce_page = NULL;
69 }
70 ctx->w.control_page = NULL;
71 if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
72 kmem_cache_free(fscrypt_ctx_cachep, ctx);
73 } else {
74 spin_lock_irqsave(&fscrypt_ctx_lock, flags);
75 list_add(&ctx->free_list, &fscrypt_free_ctxs);
76 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
77 }
78}
79EXPORT_SYMBOL(fscrypt_release_ctx);
80
81/**
82 * fscrypt_get_ctx() - Gets an encryption context
83 * @inode: The inode for which we are doing the crypto
Jaegeuk Kimb32e44822016-04-11 15:51:57 -070084 * @gfp_flags: The gfp flag for memory allocation
Jaegeuk Kim0b81d072015-05-15 16:26:10 -070085 *
86 * Allocates and initializes an encryption context.
87 *
88 * Return: An allocated and initialized encryption context on success; error
89 * value or NULL otherwise.
90 */
David Gstir0b93e1b2016-11-13 22:20:47 +010091struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags)
Jaegeuk Kim0b81d072015-05-15 16:26:10 -070092{
93 struct fscrypt_ctx *ctx = NULL;
94 struct fscrypt_info *ci = inode->i_crypt_info;
95 unsigned long flags;
96
97 if (ci == NULL)
98 return ERR_PTR(-ENOKEY);
99
100 /*
101 * We first try getting the ctx from a free list because in
102 * the common case the ctx will have an allocated and
103 * initialized crypto tfm, so it's probably a worthwhile
104 * optimization. For the bounce page, we first try getting it
105 * from the kernel allocator because that's just about as fast
106 * as getting it from a list and because a cache of free pages
107 * should generally be a "last resort" option for a filesystem
108 * to be able to do its job.
109 */
110 spin_lock_irqsave(&fscrypt_ctx_lock, flags);
111 ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
112 struct fscrypt_ctx, free_list);
113 if (ctx)
114 list_del(&ctx->free_list);
115 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
116 if (!ctx) {
Jaegeuk Kimb32e44822016-04-11 15:51:57 -0700117 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700118 if (!ctx)
119 return ERR_PTR(-ENOMEM);
120 ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
121 } else {
122 ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
123 }
124 ctx->flags &= ~FS_WRITE_PATH_FL;
125 return ctx;
126}
127EXPORT_SYMBOL(fscrypt_get_ctx);
128
129/**
Eric Biggers53fd7552016-09-15 16:51:01 -0400130 * page_crypt_complete() - completion callback for page crypto
131 * @req: The asynchronous cipher request context
132 * @res: The result of the cipher operation
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700133 */
Eric Biggers53fd7552016-09-15 16:51:01 -0400134static void page_crypt_complete(struct crypto_async_request *req, int res)
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700135{
136 struct fscrypt_completion_result *ecr = req->data;
137
138 if (res == -EINPROGRESS)
139 return;
140 ecr->res = res;
141 complete(&ecr->completion);
142}
143
144typedef enum {
145 FS_DECRYPT = 0,
146 FS_ENCRYPT,
147} fscrypt_direction_t;
148
David Gstir0b93e1b2016-11-13 22:20:47 +0100149static int do_page_crypto(const struct inode *inode,
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700150 fscrypt_direction_t rw, pgoff_t index,
Jaegeuk Kimb32e44822016-04-11 15:51:57 -0700151 struct page *src_page, struct page *dest_page,
David Gstir7821d4d2016-11-13 22:20:46 +0100152 unsigned int src_len, unsigned int src_offset,
Jaegeuk Kimb32e44822016-04-11 15:51:57 -0700153 gfp_t gfp_flags)
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700154{
Eric Biggersfb445432016-10-12 23:30:16 -0400155 struct {
156 __le64 index;
157 u8 padding[FS_XTS_TWEAK_SIZE - sizeof(__le64)];
158 } xts_tweak;
Linus Torvaldsd4075742016-03-21 11:03:02 -0700159 struct skcipher_request *req = NULL;
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700160 DECLARE_FS_COMPLETION_RESULT(ecr);
161 struct scatterlist dst, src;
162 struct fscrypt_info *ci = inode->i_crypt_info;
Linus Torvaldsd4075742016-03-21 11:03:02 -0700163 struct crypto_skcipher *tfm = ci->ci_ctfm;
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700164 int res = 0;
165
Jaegeuk Kimb32e44822016-04-11 15:51:57 -0700166 req = skcipher_request_alloc(tfm, gfp_flags);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700167 if (!req) {
168 printk_ratelimited(KERN_ERR
169 "%s: crypto_request_alloc() failed\n",
170 __func__);
171 return -ENOMEM;
172 }
173
Linus Torvaldsd4075742016-03-21 11:03:02 -0700174 skcipher_request_set_callback(
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700175 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
Eric Biggers53fd7552016-09-15 16:51:01 -0400176 page_crypt_complete, &ecr);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700177
Eric Biggersfb445432016-10-12 23:30:16 -0400178 BUILD_BUG_ON(sizeof(xts_tweak) != FS_XTS_TWEAK_SIZE);
179 xts_tweak.index = cpu_to_le64(index);
180 memset(xts_tweak.padding, 0, sizeof(xts_tweak.padding));
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700181
182 sg_init_table(&dst, 1);
David Gstir7821d4d2016-11-13 22:20:46 +0100183 sg_set_page(&dst, dest_page, src_len, src_offset);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700184 sg_init_table(&src, 1);
David Gstir7821d4d2016-11-13 22:20:46 +0100185 sg_set_page(&src, src_page, src_len, src_offset);
186 skcipher_request_set_crypt(req, &src, &dst, src_len, &xts_tweak);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700187 if (rw == FS_DECRYPT)
Linus Torvaldsd4075742016-03-21 11:03:02 -0700188 res = crypto_skcipher_decrypt(req);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700189 else
Linus Torvaldsd4075742016-03-21 11:03:02 -0700190 res = crypto_skcipher_encrypt(req);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700191 if (res == -EINPROGRESS || res == -EBUSY) {
192 BUG_ON(req->base.data != &ecr);
193 wait_for_completion(&ecr.completion);
194 res = ecr.res;
195 }
Linus Torvaldsd4075742016-03-21 11:03:02 -0700196 skcipher_request_free(req);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700197 if (res) {
198 printk_ratelimited(KERN_ERR
Linus Torvaldsd4075742016-03-21 11:03:02 -0700199 "%s: crypto_skcipher_encrypt() returned %d\n",
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700200 __func__, res);
201 return res;
202 }
203 return 0;
204}
205
Jaegeuk Kimb32e44822016-04-11 15:51:57 -0700206static struct page *alloc_bounce_page(struct fscrypt_ctx *ctx, gfp_t gfp_flags)
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700207{
Jaegeuk Kimb32e44822016-04-11 15:51:57 -0700208 ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700209 if (ctx->w.bounce_page == NULL)
210 return ERR_PTR(-ENOMEM);
211 ctx->flags |= FS_WRITE_PATH_FL;
212 return ctx->w.bounce_page;
213}
214
215/**
216 * fscypt_encrypt_page() - Encrypts a page
David Gstir7821d4d2016-11-13 22:20:46 +0100217 * @inode: The inode for which the encryption should take place
218 * @plaintext_page: The page to encrypt. Must be locked.
219 * @plaintext_len: Length of plaintext within page
220 * @plaintext_offset: Offset of plaintext within page
David Gstir9c4bb8a2016-11-13 22:20:48 +0100221 * @index: Index for encryption. This is mainly the page index, but
222 * but might be different for multiple calls on same page.
David Gstir7821d4d2016-11-13 22:20:46 +0100223 * @gfp_flags: The gfp flag for memory allocation
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700224 *
David Gstir1c7dcf62016-11-13 22:20:44 +0100225 * Encrypts plaintext_page using the ctx encryption context. If
226 * the filesystem supports it, encryption is performed in-place, otherwise a
227 * new ciphertext_page is allocated and returned.
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700228 *
229 * Called on the page write path. The caller must call
230 * fscrypt_restore_control_page() on the returned ciphertext page to
231 * release the bounce buffer and the encryption context.
232 *
233 * Return: An allocated page with the encrypted content on success. Else, an
234 * error value or NULL.
235 */
David Gstir0b93e1b2016-11-13 22:20:47 +0100236struct page *fscrypt_encrypt_page(const struct inode *inode,
David Gstir7821d4d2016-11-13 22:20:46 +0100237 struct page *plaintext_page,
238 unsigned int plaintext_len,
239 unsigned int plaintext_offset,
David Gstir9c4bb8a2016-11-13 22:20:48 +0100240 pgoff_t index, gfp_t gfp_flags)
David Gstir7821d4d2016-11-13 22:20:46 +0100241
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700242{
243 struct fscrypt_ctx *ctx;
David Gstir1c7dcf62016-11-13 22:20:44 +0100244 struct page *ciphertext_page = plaintext_page;
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700245 int err;
246
David Gstir7821d4d2016-11-13 22:20:46 +0100247 BUG_ON(plaintext_len % FS_CRYPTO_BLOCK_SIZE != 0);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700248
Jaegeuk Kimb32e44822016-04-11 15:51:57 -0700249 ctx = fscrypt_get_ctx(inode, gfp_flags);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700250 if (IS_ERR(ctx))
251 return (struct page *)ctx;
252
David Gstir1c7dcf62016-11-13 22:20:44 +0100253 if (!(inode->i_sb->s_cop->flags & FS_CFLG_INPLACE_ENCRYPTION)) {
254 /* The encryption operation will require a bounce page. */
255 ciphertext_page = alloc_bounce_page(ctx, gfp_flags);
256 if (IS_ERR(ciphertext_page))
257 goto errout;
258 }
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700259
260 ctx->w.control_page = plaintext_page;
David Gstir9c4bb8a2016-11-13 22:20:48 +0100261 err = do_page_crypto(inode, FS_ENCRYPT, index,
Jaegeuk Kimb32e44822016-04-11 15:51:57 -0700262 plaintext_page, ciphertext_page,
David Gstir7821d4d2016-11-13 22:20:46 +0100263 plaintext_len, plaintext_offset,
Jaegeuk Kimb32e44822016-04-11 15:51:57 -0700264 gfp_flags);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700265 if (err) {
266 ciphertext_page = ERR_PTR(err);
267 goto errout;
268 }
David Gstir1c7dcf62016-11-13 22:20:44 +0100269 if (!(inode->i_sb->s_cop->flags & FS_CFLG_INPLACE_ENCRYPTION)) {
270 SetPagePrivate(ciphertext_page);
271 set_page_private(ciphertext_page, (unsigned long)ctx);
272 lock_page(ciphertext_page);
273 }
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700274 return ciphertext_page;
275
276errout:
277 fscrypt_release_ctx(ctx);
278 return ciphertext_page;
279}
280EXPORT_SYMBOL(fscrypt_encrypt_page);
281
282/**
David Gstir7821d4d2016-11-13 22:20:46 +0100283 * fscrypt_decrypt_page() - Decrypts a page in-place
284 * @inode: Encrypted inode to decrypt.
David Gstirb50f7b22016-11-13 22:20:45 +0100285 * @page: The page to decrypt. Must be locked.
David Gstir7821d4d2016-11-13 22:20:46 +0100286 * @len: Number of bytes in @page to be decrypted.
287 * @offs: Start of data in @page.
David Gstir9c4bb8a2016-11-13 22:20:48 +0100288 * @index: Index for encryption.
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700289 *
290 * Decrypts page in-place using the ctx encryption context.
291 *
292 * Called from the read completion callback.
293 *
294 * Return: Zero on success, non-zero otherwise.
295 */
David Gstir0b93e1b2016-11-13 22:20:47 +0100296int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
David Gstir9c4bb8a2016-11-13 22:20:48 +0100297 unsigned int len, unsigned int offs, pgoff_t index)
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700298{
David Gstir7821d4d2016-11-13 22:20:46 +0100299 return do_page_crypto(inode, FS_DECRYPT, page->index, page, page, len, offs,
David Gstirb50f7b22016-11-13 22:20:45 +0100300 GFP_NOFS);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700301}
302EXPORT_SYMBOL(fscrypt_decrypt_page);
303
David Gstir0b93e1b2016-11-13 22:20:47 +0100304int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700305 sector_t pblk, unsigned int len)
306{
307 struct fscrypt_ctx *ctx;
308 struct page *ciphertext_page = NULL;
309 struct bio *bio;
310 int ret, err = 0;
311
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300312 BUG_ON(inode->i_sb->s_blocksize != PAGE_SIZE);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700313
Jaegeuk Kimb32e44822016-04-11 15:51:57 -0700314 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700315 if (IS_ERR(ctx))
316 return PTR_ERR(ctx);
317
Jaegeuk Kimb32e44822016-04-11 15:51:57 -0700318 ciphertext_page = alloc_bounce_page(ctx, GFP_NOWAIT);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700319 if (IS_ERR(ciphertext_page)) {
320 err = PTR_ERR(ciphertext_page);
321 goto errout;
322 }
323
324 while (len--) {
325 err = do_page_crypto(inode, FS_ENCRYPT, lblk,
Jaegeuk Kimb32e44822016-04-11 15:51:57 -0700326 ZERO_PAGE(0), ciphertext_page,
David Gstir7821d4d2016-11-13 22:20:46 +0100327 PAGE_SIZE, 0, GFP_NOFS);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700328 if (err)
329 goto errout;
330
Jaegeuk Kimb32e44822016-04-11 15:51:57 -0700331 bio = bio_alloc(GFP_NOWAIT, 1);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700332 if (!bio) {
333 err = -ENOMEM;
334 goto errout;
335 }
336 bio->bi_bdev = inode->i_sb->s_bdev;
337 bio->bi_iter.bi_sector =
338 pblk << (inode->i_sb->s_blocksize_bits - 9);
Mike Christie95fe6c12016-06-05 14:31:48 -0500339 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700340 ret = bio_add_page(bio, ciphertext_page,
341 inode->i_sb->s_blocksize, 0);
342 if (ret != inode->i_sb->s_blocksize) {
343 /* should never happen! */
344 WARN_ON(1);
345 bio_put(bio);
346 err = -EIO;
347 goto errout;
348 }
Mike Christie4e49ea42016-06-05 14:31:41 -0500349 err = submit_bio_wait(bio);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700350 if ((err == 0) && bio->bi_error)
351 err = -EIO;
352 bio_put(bio);
353 if (err)
354 goto errout;
355 lblk++;
356 pblk++;
357 }
358 err = 0;
359errout:
360 fscrypt_release_ctx(ctx);
361 return err;
362}
363EXPORT_SYMBOL(fscrypt_zeroout_range);
364
365/*
366 * Validate dentries for encrypted directories to make sure we aren't
367 * potentially caching stale data after a key has been added or
368 * removed.
369 */
370static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
371{
Jaegeuk Kimd7d75352016-04-11 15:10:11 -0700372 struct dentry *dir;
373 struct fscrypt_info *ci;
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700374 int dir_has_key, cached_with_key;
375
Jaegeuk Kim03a8bb02016-04-12 16:05:36 -0700376 if (flags & LOOKUP_RCU)
377 return -ECHILD;
378
Jaegeuk Kimd7d75352016-04-11 15:10:11 -0700379 dir = dget_parent(dentry);
380 if (!d_inode(dir)->i_sb->s_cop->is_encrypted(d_inode(dir))) {
381 dput(dir);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700382 return 0;
Jaegeuk Kimd7d75352016-04-11 15:10:11 -0700383 }
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700384
Jaegeuk Kimd7d75352016-04-11 15:10:11 -0700385 ci = d_inode(dir)->i_crypt_info;
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700386 if (ci && ci->ci_keyring_key &&
387 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
388 (1 << KEY_FLAG_REVOKED) |
389 (1 << KEY_FLAG_DEAD))))
390 ci = NULL;
391
392 /* this should eventually be an flag in d_flags */
393 spin_lock(&dentry->d_lock);
394 cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
395 spin_unlock(&dentry->d_lock);
396 dir_has_key = (ci != NULL);
Jaegeuk Kimd7d75352016-04-11 15:10:11 -0700397 dput(dir);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700398
399 /*
400 * If the dentry was cached without the key, and it is a
401 * negative dentry, it might be a valid name. We can't check
402 * if the key has since been made available due to locking
403 * reasons, so we fail the validation so ext4_lookup() can do
404 * this check.
405 *
406 * We also fail the validation if the dentry was created with
407 * the key present, but we no longer have the key, or vice versa.
408 */
409 if ((!cached_with_key && d_is_negative(dentry)) ||
410 (!cached_with_key && dir_has_key) ||
411 (cached_with_key && !dir_has_key))
412 return 0;
413 return 1;
414}
415
416const struct dentry_operations fscrypt_d_ops = {
417 .d_revalidate = fscrypt_d_revalidate,
418};
419EXPORT_SYMBOL(fscrypt_d_ops);
420
421/*
422 * Call fscrypt_decrypt_page on every single page, reusing the encryption
423 * context.
424 */
425static void completion_pages(struct work_struct *work)
426{
427 struct fscrypt_ctx *ctx =
428 container_of(work, struct fscrypt_ctx, r.work);
429 struct bio *bio = ctx->r.bio;
430 struct bio_vec *bv;
431 int i;
432
433 bio_for_each_segment_all(bv, bio, i) {
434 struct page *page = bv->bv_page;
David Gstir7821d4d2016-11-13 22:20:46 +0100435 int ret = fscrypt_decrypt_page(page->mapping->host, page,
David Gstir9c4bb8a2016-11-13 22:20:48 +0100436 PAGE_SIZE, 0, page->index);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700437
438 if (ret) {
439 WARN_ON_ONCE(1);
440 SetPageError(page);
441 } else {
442 SetPageUptodate(page);
443 }
444 unlock_page(page);
445 }
446 fscrypt_release_ctx(ctx);
447 bio_put(bio);
448}
449
450void fscrypt_decrypt_bio_pages(struct fscrypt_ctx *ctx, struct bio *bio)
451{
452 INIT_WORK(&ctx->r.work, completion_pages);
453 ctx->r.bio = bio;
454 queue_work(fscrypt_read_workqueue, &ctx->r.work);
455}
456EXPORT_SYMBOL(fscrypt_decrypt_bio_pages);
457
458void fscrypt_pullback_bio_page(struct page **page, bool restore)
459{
460 struct fscrypt_ctx *ctx;
461 struct page *bounce_page;
462
463 /* The bounce data pages are unmapped. */
464 if ((*page)->mapping)
465 return;
466
467 /* The bounce data page is unmapped. */
468 bounce_page = *page;
469 ctx = (struct fscrypt_ctx *)page_private(bounce_page);
470
471 /* restore control page */
472 *page = ctx->w.control_page;
473
474 if (restore)
475 fscrypt_restore_control_page(bounce_page);
476}
477EXPORT_SYMBOL(fscrypt_pullback_bio_page);
478
479void fscrypt_restore_control_page(struct page *page)
480{
481 struct fscrypt_ctx *ctx;
482
483 ctx = (struct fscrypt_ctx *)page_private(page);
484 set_page_private(page, (unsigned long)NULL);
485 ClearPagePrivate(page);
486 unlock_page(page);
487 fscrypt_release_ctx(ctx);
488}
489EXPORT_SYMBOL(fscrypt_restore_control_page);
490
491static void fscrypt_destroy(void)
492{
493 struct fscrypt_ctx *pos, *n;
494
495 list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
496 kmem_cache_free(fscrypt_ctx_cachep, pos);
497 INIT_LIST_HEAD(&fscrypt_free_ctxs);
498 mempool_destroy(fscrypt_bounce_page_pool);
499 fscrypt_bounce_page_pool = NULL;
500}
501
502/**
503 * fscrypt_initialize() - allocate major buffers for fs encryption.
504 *
505 * We only call this when we start accessing encrypted files, since it
506 * results in memory getting allocated that wouldn't otherwise be used.
507 *
508 * Return: Zero on success, non-zero otherwise.
509 */
510int fscrypt_initialize(void)
511{
512 int i, res = -ENOMEM;
513
514 if (fscrypt_bounce_page_pool)
515 return 0;
516
517 mutex_lock(&fscrypt_init_mutex);
518 if (fscrypt_bounce_page_pool)
519 goto already_initialized;
520
521 for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
522 struct fscrypt_ctx *ctx;
523
524 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
525 if (!ctx)
526 goto fail;
527 list_add(&ctx->free_list, &fscrypt_free_ctxs);
528 }
529
530 fscrypt_bounce_page_pool =
531 mempool_create_page_pool(num_prealloc_crypto_pages, 0);
532 if (!fscrypt_bounce_page_pool)
533 goto fail;
534
535already_initialized:
536 mutex_unlock(&fscrypt_init_mutex);
537 return 0;
538fail:
539 fscrypt_destroy();
540 mutex_unlock(&fscrypt_init_mutex);
541 return res;
542}
543EXPORT_SYMBOL(fscrypt_initialize);
544
545/**
546 * fscrypt_init() - Set up for fs encryption.
547 */
548static int __init fscrypt_init(void)
549{
550 fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
551 WQ_HIGHPRI, 0);
552 if (!fscrypt_read_workqueue)
553 goto fail;
554
555 fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
556 if (!fscrypt_ctx_cachep)
557 goto fail_free_queue;
558
559 fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
560 if (!fscrypt_info_cachep)
561 goto fail_free_ctx;
562
563 return 0;
564
565fail_free_ctx:
566 kmem_cache_destroy(fscrypt_ctx_cachep);
567fail_free_queue:
568 destroy_workqueue(fscrypt_read_workqueue);
569fail:
570 return -ENOMEM;
571}
572module_init(fscrypt_init)
573
574/**
575 * fscrypt_exit() - Shutdown the fs encryption system
576 */
577static void __exit fscrypt_exit(void)
578{
579 fscrypt_destroy();
580
581 if (fscrypt_read_workqueue)
582 destroy_workqueue(fscrypt_read_workqueue);
583 kmem_cache_destroy(fscrypt_ctx_cachep);
584 kmem_cache_destroy(fscrypt_info_cachep);
585}
586module_exit(fscrypt_exit);
587
588MODULE_LICENSE("GPL");