Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * JFFS2 -- Journalling Flash File System, Version 2. |
| 3 | * |
| 4 | * Copyright (C) 2001-2003 Red Hat, Inc. |
| 5 | * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de> |
| 6 | * |
| 7 | * Created by David Woodhouse <dwmw2@infradead.org> |
| 8 | * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de> |
| 9 | * |
| 10 | * For licensing information, see the file 'LICENCE' in this directory. |
| 11 | * |
Estelle Hammache | 9b88f47 | 2005-01-28 18:53:05 +0000 | [diff] [blame^] | 12 | * $Id: wbuf.c,v 1.84 2005/01/25 20:11:11 hammache Exp $ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 13 | * |
| 14 | */ |
| 15 | |
| 16 | #include <linux/kernel.h> |
| 17 | #include <linux/slab.h> |
| 18 | #include <linux/mtd/mtd.h> |
| 19 | #include <linux/crc32.h> |
| 20 | #include <linux/mtd/nand.h> |
| 21 | #include "nodelist.h" |
| 22 | |
| 23 | /* For testing write failures */ |
| 24 | #undef BREAKME |
| 25 | #undef BREAKMEHEADER |
| 26 | |
| 27 | #ifdef BREAKME |
| 28 | static unsigned char *brokenbuf; |
| 29 | #endif |
| 30 | |
| 31 | /* max. erase failures before we mark a block bad */ |
| 32 | #define MAX_ERASE_FAILURES 2 |
| 33 | |
| 34 | /* two seconds timeout for timed wbuf-flushing */ |
| 35 | #define WBUF_FLUSH_TIMEOUT 2 * HZ |
| 36 | |
| 37 | struct jffs2_inodirty { |
| 38 | uint32_t ino; |
| 39 | struct jffs2_inodirty *next; |
| 40 | }; |
| 41 | |
| 42 | static struct jffs2_inodirty inodirty_nomem; |
| 43 | |
| 44 | static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino) |
| 45 | { |
| 46 | struct jffs2_inodirty *this = c->wbuf_inodes; |
| 47 | |
| 48 | /* If a malloc failed, consider _everything_ dirty */ |
| 49 | if (this == &inodirty_nomem) |
| 50 | return 1; |
| 51 | |
| 52 | /* If ino == 0, _any_ non-GC writes mean 'yes' */ |
| 53 | if (this && !ino) |
| 54 | return 1; |
| 55 | |
| 56 | /* Look to see if the inode in question is pending in the wbuf */ |
| 57 | while (this) { |
| 58 | if (this->ino == ino) |
| 59 | return 1; |
| 60 | this = this->next; |
| 61 | } |
| 62 | return 0; |
| 63 | } |
| 64 | |
| 65 | static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c) |
| 66 | { |
| 67 | struct jffs2_inodirty *this; |
| 68 | |
| 69 | this = c->wbuf_inodes; |
| 70 | |
| 71 | if (this != &inodirty_nomem) { |
| 72 | while (this) { |
| 73 | struct jffs2_inodirty *next = this->next; |
| 74 | kfree(this); |
| 75 | this = next; |
| 76 | } |
| 77 | } |
| 78 | c->wbuf_inodes = NULL; |
| 79 | } |
| 80 | |
| 81 | static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino) |
| 82 | { |
| 83 | struct jffs2_inodirty *new; |
| 84 | |
| 85 | /* Mark the superblock dirty so that kupdated will flush... */ |
| 86 | OFNI_BS_2SFFJ(c)->s_dirt = 1; |
| 87 | |
| 88 | if (jffs2_wbuf_pending_for_ino(c, ino)) |
| 89 | return; |
| 90 | |
| 91 | new = kmalloc(sizeof(*new), GFP_KERNEL); |
| 92 | if (!new) { |
| 93 | D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n")); |
| 94 | jffs2_clear_wbuf_ino_list(c); |
| 95 | c->wbuf_inodes = &inodirty_nomem; |
| 96 | return; |
| 97 | } |
| 98 | new->ino = ino; |
| 99 | new->next = c->wbuf_inodes; |
| 100 | c->wbuf_inodes = new; |
| 101 | return; |
| 102 | } |
| 103 | |
| 104 | static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c) |
| 105 | { |
| 106 | struct list_head *this, *next; |
| 107 | static int n; |
| 108 | |
| 109 | if (list_empty(&c->erasable_pending_wbuf_list)) |
| 110 | return; |
| 111 | |
| 112 | list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) { |
| 113 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); |
| 114 | |
| 115 | D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset)); |
| 116 | list_del(this); |
| 117 | if ((jiffies + (n++)) & 127) { |
| 118 | /* Most of the time, we just erase it immediately. Otherwise we |
| 119 | spend ages scanning it on mount, etc. */ |
| 120 | D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n")); |
| 121 | list_add_tail(&jeb->list, &c->erase_pending_list); |
| 122 | c->nr_erasing_blocks++; |
| 123 | jffs2_erase_pending_trigger(c); |
| 124 | } else { |
| 125 | /* Sometimes, however, we leave it elsewhere so it doesn't get |
| 126 | immediately reused, and we spread the load a bit. */ |
| 127 | D1(printk(KERN_DEBUG "...and adding to erasable_list\n")); |
| 128 | list_add_tail(&jeb->list, &c->erasable_list); |
| 129 | } |
| 130 | } |
| 131 | } |
| 132 | |
Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 133 | #define REFILE_NOTEMPTY 0 |
| 134 | #define REFILE_ANYWAY 1 |
| 135 | |
| 136 | static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 137 | { |
| 138 | D1(printk("About to refile bad block at %08x\n", jeb->offset)); |
| 139 | |
| 140 | D2(jffs2_dump_block_lists(c)); |
| 141 | /* File the existing block on the bad_used_list.... */ |
| 142 | if (c->nextblock == jeb) |
| 143 | c->nextblock = NULL; |
| 144 | else /* Not sure this should ever happen... need more coffee */ |
| 145 | list_del(&jeb->list); |
| 146 | if (jeb->first_node) { |
| 147 | D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset)); |
| 148 | list_add(&jeb->list, &c->bad_used_list); |
| 149 | } else { |
Estelle Hammache | 9b88f47 | 2005-01-28 18:53:05 +0000 | [diff] [blame^] | 150 | BUG_ON(allow_empty == REFILE_NOTEMPTY); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 151 | /* It has to have had some nodes or we couldn't be here */ |
| 152 | D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset)); |
| 153 | list_add(&jeb->list, &c->erase_pending_list); |
| 154 | c->nr_erasing_blocks++; |
| 155 | jffs2_erase_pending_trigger(c); |
| 156 | } |
| 157 | D2(jffs2_dump_block_lists(c)); |
| 158 | |
| 159 | /* Adjust its size counts accordingly */ |
| 160 | c->wasted_size += jeb->free_size; |
| 161 | c->free_size -= jeb->free_size; |
| 162 | jeb->wasted_size += jeb->free_size; |
| 163 | jeb->free_size = 0; |
| 164 | |
| 165 | ACCT_SANITY_CHECK(c,jeb); |
| 166 | D1(ACCT_PARANOIA_CHECK(jeb)); |
| 167 | } |
| 168 | |
| 169 | /* Recover from failure to write wbuf. Recover the nodes up to the |
| 170 | * wbuf, not the one which we were starting to try to write. */ |
| 171 | |
| 172 | static void jffs2_wbuf_recover(struct jffs2_sb_info *c) |
| 173 | { |
| 174 | struct jffs2_eraseblock *jeb, *new_jeb; |
| 175 | struct jffs2_raw_node_ref **first_raw, **raw; |
| 176 | size_t retlen; |
| 177 | int ret; |
| 178 | unsigned char *buf; |
| 179 | uint32_t start, end, ofs, len; |
| 180 | |
| 181 | spin_lock(&c->erase_completion_lock); |
| 182 | |
| 183 | jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; |
| 184 | |
Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 185 | jffs2_block_refile(c, jeb, REFILE_NOTEMPTY); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 186 | |
| 187 | /* Find the first node to be recovered, by skipping over every |
| 188 | node which ends before the wbuf starts, or which is obsolete. */ |
| 189 | first_raw = &jeb->first_node; |
| 190 | while (*first_raw && |
| 191 | (ref_obsolete(*first_raw) || |
| 192 | (ref_offset(*first_raw)+ref_totlen(c, jeb, *first_raw)) < c->wbuf_ofs)) { |
| 193 | D1(printk(KERN_DEBUG "Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n", |
| 194 | ref_offset(*first_raw), ref_flags(*first_raw), |
| 195 | (ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw)), |
| 196 | c->wbuf_ofs)); |
| 197 | first_raw = &(*first_raw)->next_phys; |
| 198 | } |
| 199 | |
| 200 | if (!*first_raw) { |
| 201 | /* All nodes were obsolete. Nothing to recover. */ |
| 202 | D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n")); |
| 203 | spin_unlock(&c->erase_completion_lock); |
| 204 | return; |
| 205 | } |
| 206 | |
| 207 | start = ref_offset(*first_raw); |
| 208 | end = ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw); |
| 209 | |
| 210 | /* Find the last node to be recovered */ |
| 211 | raw = first_raw; |
| 212 | while ((*raw)) { |
| 213 | if (!ref_obsolete(*raw)) |
| 214 | end = ref_offset(*raw) + ref_totlen(c, jeb, *raw); |
| 215 | |
| 216 | raw = &(*raw)->next_phys; |
| 217 | } |
| 218 | spin_unlock(&c->erase_completion_lock); |
| 219 | |
| 220 | D1(printk(KERN_DEBUG "wbuf recover %08x-%08x\n", start, end)); |
| 221 | |
| 222 | buf = NULL; |
| 223 | if (start < c->wbuf_ofs) { |
| 224 | /* First affected node was already partially written. |
| 225 | * Attempt to reread the old data into our buffer. */ |
| 226 | |
| 227 | buf = kmalloc(end - start, GFP_KERNEL); |
| 228 | if (!buf) { |
| 229 | printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n"); |
| 230 | |
| 231 | goto read_failed; |
| 232 | } |
| 233 | |
| 234 | /* Do the read... */ |
| 235 | if (jffs2_cleanmarker_oob(c)) |
| 236 | ret = c->mtd->read_ecc(c->mtd, start, c->wbuf_ofs - start, &retlen, buf, NULL, c->oobinfo); |
| 237 | else |
| 238 | ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf); |
| 239 | |
| 240 | if (ret == -EBADMSG && retlen == c->wbuf_ofs - start) { |
| 241 | /* ECC recovered */ |
| 242 | ret = 0; |
| 243 | } |
| 244 | if (ret || retlen != c->wbuf_ofs - start) { |
| 245 | printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n"); |
| 246 | |
| 247 | kfree(buf); |
| 248 | buf = NULL; |
| 249 | read_failed: |
| 250 | first_raw = &(*first_raw)->next_phys; |
| 251 | /* If this was the only node to be recovered, give up */ |
| 252 | if (!(*first_raw)) |
| 253 | return; |
| 254 | |
| 255 | /* It wasn't. Go on and try to recover nodes complete in the wbuf */ |
| 256 | start = ref_offset(*first_raw); |
| 257 | } else { |
| 258 | /* Read succeeded. Copy the remaining data from the wbuf */ |
| 259 | memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs); |
| 260 | } |
| 261 | } |
| 262 | /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards. |
| 263 | Either 'buf' contains the data, or we find it in the wbuf */ |
| 264 | |
| 265 | |
| 266 | /* ... and get an allocation of space from a shiny new block instead */ |
| 267 | ret = jffs2_reserve_space_gc(c, end-start, &ofs, &len); |
| 268 | if (ret) { |
| 269 | printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n"); |
Estelle Hammache | 9b88f47 | 2005-01-28 18:53:05 +0000 | [diff] [blame^] | 270 | kfree(buf); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 271 | return; |
| 272 | } |
| 273 | if (end-start >= c->wbuf_pagesize) { |
Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 274 | /* Need to do another write immediately, but it's possible |
Estelle Hammache | 9b88f47 | 2005-01-28 18:53:05 +0000 | [diff] [blame^] | 275 | that this is just because the wbuf itself is completely |
| 276 | full, and there's nothing earlier read back from the |
| 277 | flash. Hence 'buf' isn't necessarily what we're writing |
| 278 | from. */ |
Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 279 | unsigned char *rewrite_buf = buf?:c->wbuf; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 280 | uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize); |
| 281 | |
| 282 | D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n", |
| 283 | towrite, ofs)); |
| 284 | |
| 285 | #ifdef BREAKMEHEADER |
| 286 | static int breakme; |
| 287 | if (breakme++ == 20) { |
| 288 | printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs); |
| 289 | breakme = 0; |
| 290 | c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen, |
| 291 | brokenbuf, NULL, c->oobinfo); |
| 292 | ret = -EIO; |
| 293 | } else |
| 294 | #endif |
| 295 | if (jffs2_cleanmarker_oob(c)) |
| 296 | ret = c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen, |
Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 297 | rewrite_buf, NULL, c->oobinfo); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 298 | else |
Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 299 | ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, rewrite_buf); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 300 | |
| 301 | if (ret || retlen != towrite) { |
| 302 | /* Argh. We tried. Really we did. */ |
| 303 | printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n"); |
Estelle Hammache | 9b88f47 | 2005-01-28 18:53:05 +0000 | [diff] [blame^] | 304 | kfree(buf); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 305 | |
| 306 | if (retlen) { |
| 307 | struct jffs2_raw_node_ref *raw2; |
| 308 | |
| 309 | raw2 = jffs2_alloc_raw_node_ref(); |
| 310 | if (!raw2) |
| 311 | return; |
| 312 | |
| 313 | raw2->flash_offset = ofs | REF_OBSOLETE; |
| 314 | raw2->__totlen = ref_totlen(c, jeb, *first_raw); |
| 315 | raw2->next_phys = NULL; |
| 316 | raw2->next_in_ino = NULL; |
| 317 | |
| 318 | jffs2_add_physical_node_ref(c, raw2); |
| 319 | } |
| 320 | return; |
| 321 | } |
| 322 | printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs); |
| 323 | |
| 324 | c->wbuf_len = (end - start) - towrite; |
| 325 | c->wbuf_ofs = ofs + towrite; |
Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 326 | memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 327 | /* Don't muck about with c->wbuf_inodes. False positives are harmless. */ |
Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 328 | if (buf) |
| 329 | kfree(buf); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 330 | } else { |
| 331 | /* OK, now we're left with the dregs in whichever buffer we're using */ |
| 332 | if (buf) { |
| 333 | memcpy(c->wbuf, buf, end-start); |
| 334 | kfree(buf); |
| 335 | } else { |
| 336 | memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start); |
| 337 | } |
| 338 | c->wbuf_ofs = ofs; |
| 339 | c->wbuf_len = end - start; |
| 340 | } |
| 341 | |
| 342 | /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */ |
| 343 | new_jeb = &c->blocks[ofs / c->sector_size]; |
| 344 | |
| 345 | spin_lock(&c->erase_completion_lock); |
| 346 | if (new_jeb->first_node) { |
| 347 | /* Odd, but possible with ST flash later maybe */ |
| 348 | new_jeb->last_node->next_phys = *first_raw; |
| 349 | } else { |
| 350 | new_jeb->first_node = *first_raw; |
| 351 | } |
| 352 | |
| 353 | raw = first_raw; |
| 354 | while (*raw) { |
| 355 | uint32_t rawlen = ref_totlen(c, jeb, *raw); |
| 356 | |
| 357 | D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n", |
| 358 | rawlen, ref_offset(*raw), ref_flags(*raw), ofs)); |
| 359 | |
| 360 | if (ref_obsolete(*raw)) { |
| 361 | /* Shouldn't really happen much */ |
| 362 | new_jeb->dirty_size += rawlen; |
| 363 | new_jeb->free_size -= rawlen; |
| 364 | c->dirty_size += rawlen; |
| 365 | } else { |
| 366 | new_jeb->used_size += rawlen; |
| 367 | new_jeb->free_size -= rawlen; |
| 368 | jeb->dirty_size += rawlen; |
| 369 | jeb->used_size -= rawlen; |
| 370 | c->dirty_size += rawlen; |
| 371 | } |
| 372 | c->free_size -= rawlen; |
| 373 | (*raw)->flash_offset = ofs | ref_flags(*raw); |
| 374 | ofs += rawlen; |
| 375 | new_jeb->last_node = *raw; |
| 376 | |
| 377 | raw = &(*raw)->next_phys; |
| 378 | } |
| 379 | |
| 380 | /* Fix up the original jeb now it's on the bad_list */ |
| 381 | *first_raw = NULL; |
| 382 | if (first_raw == &jeb->first_node) { |
| 383 | jeb->last_node = NULL; |
| 384 | D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset)); |
| 385 | list_del(&jeb->list); |
| 386 | list_add(&jeb->list, &c->erase_pending_list); |
| 387 | c->nr_erasing_blocks++; |
| 388 | jffs2_erase_pending_trigger(c); |
| 389 | } |
| 390 | else |
| 391 | jeb->last_node = container_of(first_raw, struct jffs2_raw_node_ref, next_phys); |
| 392 | |
| 393 | ACCT_SANITY_CHECK(c,jeb); |
| 394 | D1(ACCT_PARANOIA_CHECK(jeb)); |
| 395 | |
| 396 | ACCT_SANITY_CHECK(c,new_jeb); |
| 397 | D1(ACCT_PARANOIA_CHECK(new_jeb)); |
| 398 | |
| 399 | spin_unlock(&c->erase_completion_lock); |
| 400 | |
| 401 | D1(printk(KERN_DEBUG "wbuf recovery completed OK\n")); |
| 402 | } |
| 403 | |
| 404 | /* Meaning of pad argument: |
| 405 | 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway. |
| 406 | 1: Pad, do not adjust nextblock free_size |
| 407 | 2: Pad, adjust nextblock free_size |
| 408 | */ |
| 409 | #define NOPAD 0 |
| 410 | #define PAD_NOACCOUNT 1 |
| 411 | #define PAD_ACCOUNTING 2 |
| 412 | |
| 413 | static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad) |
| 414 | { |
| 415 | int ret; |
| 416 | size_t retlen; |
| 417 | |
| 418 | /* Nothing to do if not NAND flash. In particular, we shouldn't |
| 419 | del_timer() the timer we never initialised. */ |
| 420 | if (jffs2_can_mark_obsolete(c)) |
| 421 | return 0; |
| 422 | |
| 423 | if (!down_trylock(&c->alloc_sem)) { |
| 424 | up(&c->alloc_sem); |
| 425 | printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n"); |
| 426 | BUG(); |
| 427 | } |
| 428 | |
| 429 | if(!c->wbuf || !c->wbuf_len) |
| 430 | return 0; |
| 431 | |
| 432 | /* claim remaining space on the page |
| 433 | this happens, if we have a change to a new block, |
| 434 | or if fsync forces us to flush the writebuffer. |
| 435 | if we have a switch to next page, we will not have |
| 436 | enough remaining space for this. |
| 437 | */ |
| 438 | if (pad) { |
| 439 | c->wbuf_len = PAD(c->wbuf_len); |
| 440 | |
| 441 | /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR |
| 442 | with 8 byte page size */ |
| 443 | memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len); |
| 444 | |
| 445 | if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) { |
| 446 | struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len); |
| 447 | padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); |
| 448 | padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING); |
| 449 | padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len); |
| 450 | padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4)); |
| 451 | } |
| 452 | } |
| 453 | /* else jffs2_flash_writev has actually filled in the rest of the |
| 454 | buffer for us, and will deal with the node refs etc. later. */ |
| 455 | |
| 456 | #ifdef BREAKME |
| 457 | static int breakme; |
| 458 | if (breakme++ == 20) { |
| 459 | printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs); |
| 460 | breakme = 0; |
| 461 | c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, |
| 462 | &retlen, brokenbuf, NULL, c->oobinfo); |
| 463 | ret = -EIO; |
| 464 | } else |
| 465 | #endif |
| 466 | |
| 467 | if (jffs2_cleanmarker_oob(c)) |
| 468 | ret = c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf, NULL, c->oobinfo); |
| 469 | else |
| 470 | ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf); |
| 471 | |
| 472 | if (ret || retlen != c->wbuf_pagesize) { |
| 473 | if (ret) |
| 474 | printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret); |
| 475 | else { |
| 476 | printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n", |
| 477 | retlen, c->wbuf_pagesize); |
| 478 | ret = -EIO; |
| 479 | } |
| 480 | |
| 481 | jffs2_wbuf_recover(c); |
| 482 | |
| 483 | return ret; |
| 484 | } |
| 485 | |
| 486 | spin_lock(&c->erase_completion_lock); |
| 487 | |
| 488 | /* Adjust free size of the block if we padded. */ |
| 489 | if (pad) { |
| 490 | struct jffs2_eraseblock *jeb; |
| 491 | |
| 492 | jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; |
| 493 | |
| 494 | D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n", |
| 495 | (jeb==c->nextblock)?"next":"", jeb->offset)); |
| 496 | |
| 497 | /* wbuf_pagesize - wbuf_len is the amount of space that's to be |
| 498 | padded. If there is less free space in the block than that, |
| 499 | something screwed up */ |
| 500 | if (jeb->free_size < (c->wbuf_pagesize - c->wbuf_len)) { |
| 501 | printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n", |
| 502 | c->wbuf_ofs, c->wbuf_len, c->wbuf_pagesize-c->wbuf_len); |
| 503 | printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n", |
| 504 | jeb->offset, jeb->free_size); |
| 505 | BUG(); |
| 506 | } |
| 507 | jeb->free_size -= (c->wbuf_pagesize - c->wbuf_len); |
| 508 | c->free_size -= (c->wbuf_pagesize - c->wbuf_len); |
| 509 | jeb->wasted_size += (c->wbuf_pagesize - c->wbuf_len); |
| 510 | c->wasted_size += (c->wbuf_pagesize - c->wbuf_len); |
| 511 | } |
| 512 | |
| 513 | /* Stick any now-obsoleted blocks on the erase_pending_list */ |
| 514 | jffs2_refile_wbuf_blocks(c); |
| 515 | jffs2_clear_wbuf_ino_list(c); |
| 516 | spin_unlock(&c->erase_completion_lock); |
| 517 | |
| 518 | memset(c->wbuf,0xff,c->wbuf_pagesize); |
| 519 | /* adjust write buffer offset, else we get a non contiguous write bug */ |
| 520 | c->wbuf_ofs += c->wbuf_pagesize; |
| 521 | c->wbuf_len = 0; |
| 522 | return 0; |
| 523 | } |
| 524 | |
| 525 | /* Trigger garbage collection to flush the write-buffer. |
| 526 | If ino arg is zero, do it if _any_ real (i.e. not GC) writes are |
| 527 | outstanding. If ino arg non-zero, do it only if a write for the |
| 528 | given inode is outstanding. */ |
| 529 | int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino) |
| 530 | { |
| 531 | uint32_t old_wbuf_ofs; |
| 532 | uint32_t old_wbuf_len; |
| 533 | int ret = 0; |
| 534 | |
| 535 | D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino)); |
| 536 | |
| 537 | down(&c->alloc_sem); |
| 538 | if (!jffs2_wbuf_pending_for_ino(c, ino)) { |
| 539 | D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino)); |
| 540 | up(&c->alloc_sem); |
| 541 | return 0; |
| 542 | } |
| 543 | |
| 544 | old_wbuf_ofs = c->wbuf_ofs; |
| 545 | old_wbuf_len = c->wbuf_len; |
| 546 | |
| 547 | if (c->unchecked_size) { |
| 548 | /* GC won't make any progress for a while */ |
| 549 | D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n")); |
| 550 | down_write(&c->wbuf_sem); |
| 551 | ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); |
Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 552 | /* retry flushing wbuf in case jffs2_wbuf_recover |
| 553 | left some data in the wbuf */ |
| 554 | if (ret) |
Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 555 | ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 556 | up_write(&c->wbuf_sem); |
| 557 | } else while (old_wbuf_len && |
| 558 | old_wbuf_ofs == c->wbuf_ofs) { |
| 559 | |
| 560 | up(&c->alloc_sem); |
| 561 | |
| 562 | D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n")); |
| 563 | |
| 564 | ret = jffs2_garbage_collect_pass(c); |
| 565 | if (ret) { |
| 566 | /* GC failed. Flush it with padding instead */ |
| 567 | down(&c->alloc_sem); |
| 568 | down_write(&c->wbuf_sem); |
| 569 | ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); |
Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 570 | /* retry flushing wbuf in case jffs2_wbuf_recover |
| 571 | left some data in the wbuf */ |
| 572 | if (ret) |
Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 573 | ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 574 | up_write(&c->wbuf_sem); |
| 575 | break; |
| 576 | } |
| 577 | down(&c->alloc_sem); |
| 578 | } |
| 579 | |
| 580 | D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n")); |
| 581 | |
| 582 | up(&c->alloc_sem); |
| 583 | return ret; |
| 584 | } |
| 585 | |
| 586 | /* Pad write-buffer to end and write it, wasting space. */ |
| 587 | int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c) |
| 588 | { |
| 589 | int ret; |
| 590 | |
| 591 | down_write(&c->wbuf_sem); |
| 592 | ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); |
Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 593 | /* retry - maybe wbuf recover left some data in wbuf. */ |
| 594 | if (ret) |
| 595 | ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 596 | up_write(&c->wbuf_sem); |
| 597 | |
| 598 | return ret; |
| 599 | } |
| 600 | |
| 601 | #define PAGE_DIV(x) ( (x) & (~(c->wbuf_pagesize - 1)) ) |
| 602 | #define PAGE_MOD(x) ( (x) & (c->wbuf_pagesize - 1) ) |
| 603 | int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsigned long count, loff_t to, size_t *retlen, uint32_t ino) |
| 604 | { |
| 605 | struct kvec outvecs[3]; |
| 606 | uint32_t totlen = 0; |
| 607 | uint32_t split_ofs = 0; |
| 608 | uint32_t old_totlen; |
| 609 | int ret, splitvec = -1; |
| 610 | int invec, outvec; |
| 611 | size_t wbuf_retlen; |
| 612 | unsigned char *wbuf_ptr; |
| 613 | size_t donelen = 0; |
| 614 | uint32_t outvec_to = to; |
| 615 | |
| 616 | /* If not NAND flash, don't bother */ |
| 617 | if (!c->wbuf) |
| 618 | return jffs2_flash_direct_writev(c, invecs, count, to, retlen); |
| 619 | |
| 620 | down_write(&c->wbuf_sem); |
| 621 | |
| 622 | /* If wbuf_ofs is not initialized, set it to target address */ |
| 623 | if (c->wbuf_ofs == 0xFFFFFFFF) { |
| 624 | c->wbuf_ofs = PAGE_DIV(to); |
| 625 | c->wbuf_len = PAGE_MOD(to); |
| 626 | memset(c->wbuf,0xff,c->wbuf_pagesize); |
| 627 | } |
| 628 | |
| 629 | /* Fixup the wbuf if we are moving to a new eraseblock. The checks below |
| 630 | fail for ECC'd NOR because cleanmarker == 16, so a block starts at |
| 631 | xxx0010. */ |
| 632 | if (jffs2_nor_ecc(c)) { |
| 633 | if (((c->wbuf_ofs % c->sector_size) == 0) && !c->wbuf_len) { |
| 634 | c->wbuf_ofs = PAGE_DIV(to); |
| 635 | c->wbuf_len = PAGE_MOD(to); |
| 636 | memset(c->wbuf,0xff,c->wbuf_pagesize); |
| 637 | } |
| 638 | } |
| 639 | |
| 640 | /* Sanity checks on target address. |
| 641 | It's permitted to write at PAD(c->wbuf_len+c->wbuf_ofs), |
| 642 | and it's permitted to write at the beginning of a new |
| 643 | erase block. Anything else, and you die. |
| 644 | New block starts at xxx000c (0-b = block header) |
| 645 | */ |
| 646 | if ( (to & ~(c->sector_size-1)) != (c->wbuf_ofs & ~(c->sector_size-1)) ) { |
| 647 | /* It's a write to a new block */ |
| 648 | if (c->wbuf_len) { |
| 649 | D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx causes flush of wbuf at 0x%08x\n", (unsigned long)to, c->wbuf_ofs)); |
| 650 | ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); |
| 651 | if (ret) { |
| 652 | /* the underlying layer has to check wbuf_len to do the cleanup */ |
| 653 | D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret)); |
| 654 | *retlen = 0; |
| 655 | goto exit; |
| 656 | } |
| 657 | } |
| 658 | /* set pointer to new block */ |
| 659 | c->wbuf_ofs = PAGE_DIV(to); |
| 660 | c->wbuf_len = PAGE_MOD(to); |
| 661 | } |
| 662 | |
| 663 | if (to != PAD(c->wbuf_ofs + c->wbuf_len)) { |
| 664 | /* We're not writing immediately after the writebuffer. Bad. */ |
| 665 | printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write to %08lx\n", (unsigned long)to); |
| 666 | if (c->wbuf_len) |
| 667 | printk(KERN_CRIT "wbuf was previously %08x-%08x\n", |
| 668 | c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len); |
| 669 | BUG(); |
| 670 | } |
| 671 | |
| 672 | /* Note outvecs[3] above. We know count is never greater than 2 */ |
| 673 | if (count > 2) { |
| 674 | printk(KERN_CRIT "jffs2_flash_writev(): count is %ld\n", count); |
| 675 | BUG(); |
| 676 | } |
| 677 | |
| 678 | invec = 0; |
| 679 | outvec = 0; |
| 680 | |
| 681 | /* Fill writebuffer first, if already in use */ |
| 682 | if (c->wbuf_len) { |
| 683 | uint32_t invec_ofs = 0; |
| 684 | |
| 685 | /* adjust alignment offset */ |
| 686 | if (c->wbuf_len != PAGE_MOD(to)) { |
| 687 | c->wbuf_len = PAGE_MOD(to); |
| 688 | /* take care of alignment to next page */ |
| 689 | if (!c->wbuf_len) |
| 690 | c->wbuf_len = c->wbuf_pagesize; |
| 691 | } |
| 692 | |
| 693 | while(c->wbuf_len < c->wbuf_pagesize) { |
| 694 | uint32_t thislen; |
| 695 | |
| 696 | if (invec == count) |
| 697 | goto alldone; |
| 698 | |
| 699 | thislen = c->wbuf_pagesize - c->wbuf_len; |
| 700 | |
| 701 | if (thislen >= invecs[invec].iov_len) |
| 702 | thislen = invecs[invec].iov_len; |
| 703 | |
| 704 | invec_ofs = thislen; |
| 705 | |
| 706 | memcpy(c->wbuf + c->wbuf_len, invecs[invec].iov_base, thislen); |
| 707 | c->wbuf_len += thislen; |
| 708 | donelen += thislen; |
| 709 | /* Get next invec, if actual did not fill the buffer */ |
| 710 | if (c->wbuf_len < c->wbuf_pagesize) |
| 711 | invec++; |
| 712 | } |
| 713 | |
| 714 | /* write buffer is full, flush buffer */ |
| 715 | ret = __jffs2_flush_wbuf(c, NOPAD); |
| 716 | if (ret) { |
| 717 | /* the underlying layer has to check wbuf_len to do the cleanup */ |
| 718 | D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret)); |
| 719 | /* Retlen zero to make sure our caller doesn't mark the space dirty. |
| 720 | We've already done everything that's necessary */ |
| 721 | *retlen = 0; |
| 722 | goto exit; |
| 723 | } |
| 724 | outvec_to += donelen; |
| 725 | c->wbuf_ofs = outvec_to; |
| 726 | |
| 727 | /* All invecs done ? */ |
| 728 | if (invec == count) |
| 729 | goto alldone; |
| 730 | |
| 731 | /* Set up the first outvec, containing the remainder of the |
| 732 | invec we partially used */ |
| 733 | if (invecs[invec].iov_len > invec_ofs) { |
| 734 | outvecs[0].iov_base = invecs[invec].iov_base+invec_ofs; |
| 735 | totlen = outvecs[0].iov_len = invecs[invec].iov_len-invec_ofs; |
| 736 | if (totlen > c->wbuf_pagesize) { |
| 737 | splitvec = outvec; |
| 738 | split_ofs = outvecs[0].iov_len - PAGE_MOD(totlen); |
| 739 | } |
| 740 | outvec++; |
| 741 | } |
| 742 | invec++; |
| 743 | } |
| 744 | |
| 745 | /* OK, now we've flushed the wbuf and the start of the bits |
| 746 | we have been asked to write, now to write the rest.... */ |
| 747 | |
| 748 | /* totlen holds the amount of data still to be written */ |
| 749 | old_totlen = totlen; |
| 750 | for ( ; invec < count; invec++,outvec++ ) { |
| 751 | outvecs[outvec].iov_base = invecs[invec].iov_base; |
| 752 | totlen += outvecs[outvec].iov_len = invecs[invec].iov_len; |
| 753 | if (PAGE_DIV(totlen) != PAGE_DIV(old_totlen)) { |
| 754 | splitvec = outvec; |
| 755 | split_ofs = outvecs[outvec].iov_len - PAGE_MOD(totlen); |
| 756 | old_totlen = totlen; |
| 757 | } |
| 758 | } |
| 759 | |
| 760 | /* Now the outvecs array holds all the remaining data to write */ |
| 761 | /* Up to splitvec,split_ofs is to be written immediately. The rest |
| 762 | goes into the (now-empty) wbuf */ |
| 763 | |
| 764 | if (splitvec != -1) { |
| 765 | uint32_t remainder; |
| 766 | |
| 767 | remainder = outvecs[splitvec].iov_len - split_ofs; |
| 768 | outvecs[splitvec].iov_len = split_ofs; |
| 769 | |
| 770 | /* We did cross a page boundary, so we write some now */ |
| 771 | if (jffs2_cleanmarker_oob(c)) |
| 772 | ret = c->mtd->writev_ecc(c->mtd, outvecs, splitvec+1, outvec_to, &wbuf_retlen, NULL, c->oobinfo); |
| 773 | else |
| 774 | ret = jffs2_flash_direct_writev(c, outvecs, splitvec+1, outvec_to, &wbuf_retlen); |
| 775 | |
| 776 | if (ret < 0 || wbuf_retlen != PAGE_DIV(totlen)) { |
| 777 | /* At this point we have no problem, |
Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 778 | c->wbuf is empty. However refile nextblock to avoid |
| 779 | writing again to same address. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 780 | */ |
Estelle Hammache | 7f716cf | 2005-01-24 21:24:18 +0000 | [diff] [blame] | 781 | struct jffs2_eraseblock *jeb; |
| 782 | |
| 783 | spin_lock(&c->erase_completion_lock); |
| 784 | |
| 785 | jeb = &c->blocks[outvec_to / c->sector_size]; |
| 786 | jffs2_block_refile(c, jeb, REFILE_ANYWAY); |
| 787 | |
| 788 | *retlen = 0; |
| 789 | spin_unlock(&c->erase_completion_lock); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 790 | goto exit; |
| 791 | } |
| 792 | |
| 793 | donelen += wbuf_retlen; |
| 794 | c->wbuf_ofs = PAGE_DIV(outvec_to) + PAGE_DIV(totlen); |
| 795 | |
| 796 | if (remainder) { |
| 797 | outvecs[splitvec].iov_base += split_ofs; |
| 798 | outvecs[splitvec].iov_len = remainder; |
| 799 | } else { |
| 800 | splitvec++; |
| 801 | } |
| 802 | |
| 803 | } else { |
| 804 | splitvec = 0; |
| 805 | } |
| 806 | |
| 807 | /* Now splitvec points to the start of the bits we have to copy |
| 808 | into the wbuf */ |
| 809 | wbuf_ptr = c->wbuf; |
| 810 | |
| 811 | for ( ; splitvec < outvec; splitvec++) { |
| 812 | /* Don't copy the wbuf into itself */ |
| 813 | if (outvecs[splitvec].iov_base == c->wbuf) |
| 814 | continue; |
| 815 | memcpy(wbuf_ptr, outvecs[splitvec].iov_base, outvecs[splitvec].iov_len); |
| 816 | wbuf_ptr += outvecs[splitvec].iov_len; |
| 817 | donelen += outvecs[splitvec].iov_len; |
| 818 | } |
| 819 | c->wbuf_len = wbuf_ptr - c->wbuf; |
| 820 | |
| 821 | /* If there's a remainder in the wbuf and it's a non-GC write, |
| 822 | remember that the wbuf affects this ino */ |
| 823 | alldone: |
| 824 | *retlen = donelen; |
| 825 | |
| 826 | if (c->wbuf_len && ino) |
| 827 | jffs2_wbuf_dirties_inode(c, ino); |
| 828 | |
| 829 | ret = 0; |
| 830 | |
| 831 | exit: |
| 832 | up_write(&c->wbuf_sem); |
| 833 | return ret; |
| 834 | } |
| 835 | |
| 836 | /* |
| 837 | * This is the entry for flash write. |
| 838 | * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev |
| 839 | */ |
| 840 | int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, const u_char *buf) |
| 841 | { |
| 842 | struct kvec vecs[1]; |
| 843 | |
| 844 | if (jffs2_can_mark_obsolete(c)) |
| 845 | return c->mtd->write(c->mtd, ofs, len, retlen, buf); |
| 846 | |
| 847 | vecs[0].iov_base = (unsigned char *) buf; |
| 848 | vecs[0].iov_len = len; |
| 849 | return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0); |
| 850 | } |
| 851 | |
| 852 | /* |
| 853 | Handle readback from writebuffer and ECC failure return |
| 854 | */ |
| 855 | int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf) |
| 856 | { |
| 857 | loff_t orbf = 0, owbf = 0, lwbf = 0; |
| 858 | int ret; |
| 859 | |
| 860 | /* Read flash */ |
| 861 | if (!jffs2_can_mark_obsolete(c)) { |
| 862 | down_read(&c->wbuf_sem); |
| 863 | |
| 864 | if (jffs2_cleanmarker_oob(c)) |
| 865 | ret = c->mtd->read_ecc(c->mtd, ofs, len, retlen, buf, NULL, c->oobinfo); |
| 866 | else |
| 867 | ret = c->mtd->read(c->mtd, ofs, len, retlen, buf); |
| 868 | |
| 869 | if ( (ret == -EBADMSG) && (*retlen == len) ) { |
| 870 | printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n", |
| 871 | len, ofs); |
| 872 | /* |
| 873 | * We have the raw data without ECC correction in the buffer, maybe |
| 874 | * we are lucky and all data or parts are correct. We check the node. |
| 875 | * If data are corrupted node check will sort it out. |
| 876 | * We keep this block, it will fail on write or erase and the we |
| 877 | * mark it bad. Or should we do that now? But we should give him a chance. |
| 878 | * Maybe we had a system crash or power loss before the ecc write or |
| 879 | * a erase was completed. |
| 880 | * So we return success. :) |
| 881 | */ |
| 882 | ret = 0; |
| 883 | } |
| 884 | } else |
| 885 | return c->mtd->read(c->mtd, ofs, len, retlen, buf); |
| 886 | |
| 887 | /* if no writebuffer available or write buffer empty, return */ |
| 888 | if (!c->wbuf_pagesize || !c->wbuf_len) |
| 889 | goto exit; |
| 890 | |
| 891 | /* if we read in a different block, return */ |
| 892 | if ( (ofs & ~(c->sector_size-1)) != (c->wbuf_ofs & ~(c->sector_size-1)) ) |
| 893 | goto exit; |
| 894 | |
| 895 | if (ofs >= c->wbuf_ofs) { |
| 896 | owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */ |
| 897 | if (owbf > c->wbuf_len) /* is read beyond write buffer ? */ |
| 898 | goto exit; |
| 899 | lwbf = c->wbuf_len - owbf; /* number of bytes to copy */ |
| 900 | if (lwbf > len) |
| 901 | lwbf = len; |
| 902 | } else { |
| 903 | orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */ |
| 904 | if (orbf > len) /* is write beyond write buffer ? */ |
| 905 | goto exit; |
| 906 | lwbf = len - orbf; /* number of bytes to copy */ |
| 907 | if (lwbf > c->wbuf_len) |
| 908 | lwbf = c->wbuf_len; |
| 909 | } |
| 910 | if (lwbf > 0) |
| 911 | memcpy(buf+orbf,c->wbuf+owbf,lwbf); |
| 912 | |
| 913 | exit: |
| 914 | up_read(&c->wbuf_sem); |
| 915 | return ret; |
| 916 | } |
| 917 | |
| 918 | /* |
| 919 | * Check, if the out of band area is empty |
| 920 | */ |
| 921 | int jffs2_check_oob_empty( struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int mode) |
| 922 | { |
| 923 | unsigned char *buf; |
| 924 | int ret = 0; |
| 925 | int i,len,page; |
| 926 | size_t retlen; |
| 927 | int oob_size; |
| 928 | |
| 929 | /* allocate a buffer for all oob data in this sector */ |
| 930 | oob_size = c->mtd->oobsize; |
| 931 | len = 4 * oob_size; |
| 932 | buf = kmalloc(len, GFP_KERNEL); |
| 933 | if (!buf) { |
| 934 | printk(KERN_NOTICE "jffs2_check_oob_empty(): allocation of temporary data buffer for oob check failed\n"); |
| 935 | return -ENOMEM; |
| 936 | } |
| 937 | /* |
| 938 | * if mode = 0, we scan for a total empty oob area, else we have |
| 939 | * to take care of the cleanmarker in the first page of the block |
| 940 | */ |
| 941 | ret = jffs2_flash_read_oob(c, jeb->offset, len , &retlen, buf); |
| 942 | if (ret) { |
| 943 | D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB failed %d for block at %08x\n", ret, jeb->offset)); |
| 944 | goto out; |
| 945 | } |
| 946 | |
| 947 | if (retlen < len) { |
| 948 | D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB return short read " |
| 949 | "(%zd bytes not %d) for block at %08x\n", retlen, len, jeb->offset)); |
| 950 | ret = -EIO; |
| 951 | goto out; |
| 952 | } |
| 953 | |
| 954 | /* Special check for first page */ |
| 955 | for(i = 0; i < oob_size ; i++) { |
| 956 | /* Yeah, we know about the cleanmarker. */ |
| 957 | if (mode && i >= c->fsdata_pos && |
| 958 | i < c->fsdata_pos + c->fsdata_len) |
| 959 | continue; |
| 960 | |
| 961 | if (buf[i] != 0xFF) { |
| 962 | D2(printk(KERN_DEBUG "Found %02x at %x in OOB for %08x\n", |
| 963 | buf[page+i], page+i, jeb->offset)); |
| 964 | ret = 1; |
| 965 | goto out; |
| 966 | } |
| 967 | } |
| 968 | |
| 969 | /* we know, we are aligned :) */ |
| 970 | for (page = oob_size; page < len; page += sizeof(long)) { |
| 971 | unsigned long dat = *(unsigned long *)(&buf[page]); |
| 972 | if(dat != -1) { |
| 973 | ret = 1; |
| 974 | goto out; |
| 975 | } |
| 976 | } |
| 977 | |
| 978 | out: |
| 979 | kfree(buf); |
| 980 | |
| 981 | return ret; |
| 982 | } |
| 983 | |
| 984 | /* |
| 985 | * Scan for a valid cleanmarker and for bad blocks |
| 986 | * For virtual blocks (concatenated physical blocks) check the cleanmarker |
| 987 | * only in the first page of the first physical block, but scan for bad blocks in all |
| 988 | * physical blocks |
| 989 | */ |
| 990 | int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) |
| 991 | { |
| 992 | struct jffs2_unknown_node n; |
| 993 | unsigned char buf[2 * NAND_MAX_OOBSIZE]; |
| 994 | unsigned char *p; |
| 995 | int ret, i, cnt, retval = 0; |
| 996 | size_t retlen, offset; |
| 997 | int oob_size; |
| 998 | |
| 999 | offset = jeb->offset; |
| 1000 | oob_size = c->mtd->oobsize; |
| 1001 | |
| 1002 | /* Loop through the physical blocks */ |
| 1003 | for (cnt = 0; cnt < (c->sector_size / c->mtd->erasesize); cnt++) { |
| 1004 | /* Check first if the block is bad. */ |
| 1005 | if (c->mtd->block_isbad (c->mtd, offset)) { |
| 1006 | D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Bad block at %08x\n", jeb->offset)); |
| 1007 | return 2; |
| 1008 | } |
| 1009 | /* |
| 1010 | * We read oob data from page 0 and 1 of the block. |
| 1011 | * page 0 contains cleanmarker and badblock info |
| 1012 | * page 1 contains failure count of this block |
| 1013 | */ |
| 1014 | ret = c->mtd->read_oob (c->mtd, offset, oob_size << 1, &retlen, buf); |
| 1015 | |
| 1016 | if (ret) { |
| 1017 | D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB failed %d for block at %08x\n", ret, jeb->offset)); |
| 1018 | return ret; |
| 1019 | } |
| 1020 | if (retlen < (oob_size << 1)) { |
| 1021 | D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB return short read (%zd bytes not %d) for block at %08x\n", retlen, oob_size << 1, jeb->offset)); |
| 1022 | return -EIO; |
| 1023 | } |
| 1024 | |
| 1025 | /* Check cleanmarker only on the first physical block */ |
| 1026 | if (!cnt) { |
| 1027 | n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK); |
| 1028 | n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER); |
| 1029 | n.totlen = cpu_to_je32 (8); |
| 1030 | p = (unsigned char *) &n; |
| 1031 | |
| 1032 | for (i = 0; i < c->fsdata_len; i++) { |
| 1033 | if (buf[c->fsdata_pos + i] != p[i]) { |
| 1034 | retval = 1; |
| 1035 | } |
| 1036 | } |
| 1037 | D1(if (retval == 1) { |
| 1038 | printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Cleanmarker node not detected in block at %08x\n", jeb->offset); |
| 1039 | printk(KERN_WARNING "OOB at %08x was ", offset); |
| 1040 | for (i=0; i < oob_size; i++) { |
| 1041 | printk("%02x ", buf[i]); |
| 1042 | } |
| 1043 | printk("\n"); |
| 1044 | }) |
| 1045 | } |
| 1046 | offset += c->mtd->erasesize; |
| 1047 | } |
| 1048 | return retval; |
| 1049 | } |
| 1050 | |
| 1051 | int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) |
| 1052 | { |
| 1053 | struct jffs2_unknown_node n; |
| 1054 | int ret; |
| 1055 | size_t retlen; |
| 1056 | |
| 1057 | n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); |
| 1058 | n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER); |
| 1059 | n.totlen = cpu_to_je32(8); |
| 1060 | |
| 1061 | ret = jffs2_flash_write_oob(c, jeb->offset + c->fsdata_pos, c->fsdata_len, &retlen, (unsigned char *)&n); |
| 1062 | |
| 1063 | if (ret) { |
| 1064 | D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Write failed for block at %08x: error %d\n", jeb->offset, ret)); |
| 1065 | return ret; |
| 1066 | } |
| 1067 | if (retlen != c->fsdata_len) { |
| 1068 | D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Short write for block at %08x: %zd not %d\n", jeb->offset, retlen, c->fsdata_len)); |
| 1069 | return ret; |
| 1070 | } |
| 1071 | return 0; |
| 1072 | } |
| 1073 | |
| 1074 | /* |
| 1075 | * On NAND we try to mark this block bad. If the block was erased more |
| 1076 | * than MAX_ERASE_FAILURES we mark it finaly bad. |
| 1077 | * Don't care about failures. This block remains on the erase-pending |
| 1078 | * or badblock list as long as nobody manipulates the flash with |
| 1079 | * a bootloader or something like that. |
| 1080 | */ |
| 1081 | |
| 1082 | int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset) |
| 1083 | { |
| 1084 | int ret; |
| 1085 | |
| 1086 | /* if the count is < max, we try to write the counter to the 2nd page oob area */ |
| 1087 | if( ++jeb->bad_count < MAX_ERASE_FAILURES) |
| 1088 | return 0; |
| 1089 | |
| 1090 | if (!c->mtd->block_markbad) |
| 1091 | return 1; // What else can we do? |
| 1092 | |
| 1093 | D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset)); |
| 1094 | ret = c->mtd->block_markbad(c->mtd, bad_offset); |
| 1095 | |
| 1096 | if (ret) { |
| 1097 | D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret)); |
| 1098 | return ret; |
| 1099 | } |
| 1100 | return 1; |
| 1101 | } |
| 1102 | |
| 1103 | #define NAND_JFFS2_OOB16_FSDALEN 8 |
| 1104 | |
| 1105 | static struct nand_oobinfo jffs2_oobinfo_docecc = { |
| 1106 | .useecc = MTD_NANDECC_PLACE, |
| 1107 | .eccbytes = 6, |
| 1108 | .eccpos = {0,1,2,3,4,5} |
| 1109 | }; |
| 1110 | |
| 1111 | |
| 1112 | static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c) |
| 1113 | { |
| 1114 | struct nand_oobinfo *oinfo = &c->mtd->oobinfo; |
| 1115 | |
| 1116 | /* Do this only, if we have an oob buffer */ |
| 1117 | if (!c->mtd->oobsize) |
| 1118 | return 0; |
| 1119 | |
| 1120 | /* Cleanmarker is out-of-band, so inline size zero */ |
| 1121 | c->cleanmarker_size = 0; |
| 1122 | |
| 1123 | /* Should we use autoplacement ? */ |
| 1124 | if (oinfo && oinfo->useecc == MTD_NANDECC_AUTOPLACE) { |
| 1125 | D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n")); |
| 1126 | /* Get the position of the free bytes */ |
| 1127 | if (!oinfo->oobfree[0][1]) { |
| 1128 | printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep. Autoplacement selected and no empty space in oob\n"); |
| 1129 | return -ENOSPC; |
| 1130 | } |
| 1131 | c->fsdata_pos = oinfo->oobfree[0][0]; |
| 1132 | c->fsdata_len = oinfo->oobfree[0][1]; |
| 1133 | if (c->fsdata_len > 8) |
| 1134 | c->fsdata_len = 8; |
| 1135 | } else { |
| 1136 | /* This is just a legacy fallback and should go away soon */ |
| 1137 | switch(c->mtd->ecctype) { |
| 1138 | case MTD_ECC_RS_DiskOnChip: |
| 1139 | printk(KERN_WARNING "JFFS2 using DiskOnChip hardware ECC without autoplacement. Fix it!\n"); |
| 1140 | c->oobinfo = &jffs2_oobinfo_docecc; |
| 1141 | c->fsdata_pos = 6; |
| 1142 | c->fsdata_len = NAND_JFFS2_OOB16_FSDALEN; |
| 1143 | c->badblock_pos = 15; |
| 1144 | break; |
| 1145 | |
| 1146 | default: |
| 1147 | D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n")); |
| 1148 | return -EINVAL; |
| 1149 | } |
| 1150 | } |
| 1151 | return 0; |
| 1152 | } |
| 1153 | |
| 1154 | int jffs2_nand_flash_setup(struct jffs2_sb_info *c) |
| 1155 | { |
| 1156 | int res; |
| 1157 | |
| 1158 | /* Initialise write buffer */ |
| 1159 | init_rwsem(&c->wbuf_sem); |
| 1160 | c->wbuf_pagesize = c->mtd->oobblock; |
| 1161 | c->wbuf_ofs = 0xFFFFFFFF; |
| 1162 | |
| 1163 | c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); |
| 1164 | if (!c->wbuf) |
| 1165 | return -ENOMEM; |
| 1166 | |
| 1167 | res = jffs2_nand_set_oobinfo(c); |
| 1168 | |
| 1169 | #ifdef BREAKME |
| 1170 | if (!brokenbuf) |
| 1171 | brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); |
| 1172 | if (!brokenbuf) { |
| 1173 | kfree(c->wbuf); |
| 1174 | return -ENOMEM; |
| 1175 | } |
| 1176 | memset(brokenbuf, 0xdb, c->wbuf_pagesize); |
| 1177 | #endif |
| 1178 | return res; |
| 1179 | } |
| 1180 | |
| 1181 | void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c) |
| 1182 | { |
| 1183 | kfree(c->wbuf); |
| 1184 | } |
| 1185 | |
| 1186 | #ifdef CONFIG_JFFS2_FS_NOR_ECC |
| 1187 | int jffs2_nor_ecc_flash_setup(struct jffs2_sb_info *c) { |
| 1188 | /* Cleanmarker is actually larger on the flashes */ |
| 1189 | c->cleanmarker_size = 16; |
| 1190 | |
| 1191 | /* Initialize write buffer */ |
| 1192 | init_rwsem(&c->wbuf_sem); |
| 1193 | c->wbuf_pagesize = c->mtd->eccsize; |
| 1194 | c->wbuf_ofs = 0xFFFFFFFF; |
| 1195 | |
| 1196 | c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); |
| 1197 | if (!c->wbuf) |
| 1198 | return -ENOMEM; |
| 1199 | |
| 1200 | return 0; |
| 1201 | } |
| 1202 | |
| 1203 | void jffs2_nor_ecc_flash_cleanup(struct jffs2_sb_info *c) { |
| 1204 | kfree(c->wbuf); |
| 1205 | } |
| 1206 | #endif |