blob: 4dc10105d61023311586f6f930950d4dc04d44ea [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 Madge Horizon ATM Adapter driver.
3 Copyright (C) 1995-1999 Madge Networks Ltd.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18
19 The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20 system and in the file COPYING in the Linux kernel source.
21*/
22
23/*
24 IMPORTANT NOTE: Madge Networks no longer makes the adapters
25 supported by this driver and makes no commitment to maintain it.
26*/
27
28#include <linux/module.h>
29#include <linux/kernel.h>
30#include <linux/mm.h>
31#include <linux/pci.h>
32#include <linux/errno.h>
33#include <linux/atm.h>
34#include <linux/atmdev.h>
35#include <linux/sonet.h>
36#include <linux/skbuff.h>
37#include <linux/time.h>
38#include <linux/delay.h>
39#include <linux/uio.h>
40#include <linux/init.h>
41#include <linux/ioport.h>
42#include <linux/wait.h>
43
44#include <asm/system.h>
45#include <asm/io.h>
46#include <asm/atomic.h>
47#include <asm/uaccess.h>
48#include <asm/string.h>
49#include <asm/byteorder.h>
50
51#include "horizon.h"
52
53#define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
54#define description_string "Madge ATM Horizon [Ultra] driver"
55#define version_string "1.2.1"
56
57static inline void __init show_version (void) {
58 printk ("%s version %s\n", description_string, version_string);
59}
60
61/*
62
63 CREDITS
64
65 Driver and documentation by:
66
67 Chris Aston Madge Networks
68 Giuliano Procida Madge Networks
69 Simon Benham Madge Networks
70 Simon Johnson Madge Networks
71 Various Others Madge Networks
72
73 Some inspiration taken from other drivers by:
74
75 Alexandru Cucos UTBv
76 Kari Mettinen University of Helsinki
77 Werner Almesberger EPFL LRC
78
79 Theory of Operation
80
81 I Hardware, detection, initialisation and shutdown.
82
83 1. Supported Hardware
84
85 This driver should handle all variants of the PCI Madge ATM adapters
86 with the Horizon chipset. These are all PCI cards supporting PIO, BM
87 DMA and a form of MMIO (registers only, not internal RAM).
88
89 The driver is only known to work with SONET and UTP Horizon Ultra
90 cards at 155Mb/s. However, code is in place to deal with both the
91 original Horizon and 25Mb/s operation.
92
93 There are two revisions of the Horizon ASIC: the original and the
94 Ultra. Details of hardware bugs are in section III.
95
96 The ASIC version can be distinguished by chip markings but is NOT
97 indicated by the PCI revision (all adapters seem to have PCI rev 1).
98
99 I believe that:
100
101 Horizon => Collage 25 PCI Adapter (UTP and STP)
102 Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
103 Ambassador x => Collage 155 PCI Server (completely different)
104
105 Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
106 have a Madge B154 plus glue logic serializer. I have also found a
107 really ancient version of this with slightly different glue. It
108 comes with the revision 0 (140-025-01) ASIC.
109
110 Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
111 output (UTP) or an HP HFBR 5205 output (SONET). It has either
112 Madge's SAMBA framer or a SUNI-lite device (early versions). It
113 comes with the revision 1 (140-027-01) ASIC.
114
115 2. Detection
116
117 All Horizon-based cards present with the same PCI Vendor and Device
118 IDs. The standard Linux 2.2 PCI API is used to locate any cards and
119 to enable bus-mastering (with appropriate latency).
120
121 ATM_LAYER_STATUS in the control register distinguishes between the
122 two possible physical layers (25 and 155). It is not clear whether
123 the 155 cards can also operate at 25Mbps. We rely on the fact that a
124 card operates at 155 if and only if it has the newer Horizon Ultra
125 ASIC.
126
127 For 155 cards the two possible framers are probed for and then set
128 up for loop-timing.
129
130 3. Initialisation
131
132 The card is reset and then put into a known state. The physical
133 layer is configured for normal operation at the appropriate speed;
134 in the case of the 155 cards, the framer is initialised with
135 line-based timing; the internal RAM is zeroed and the allocation of
136 buffers for RX and TX is made; the Burnt In Address is read and
137 copied to the ATM ESI; various policy settings for RX (VPI bits,
138 unknown VCs, oam cells) are made. Ideally all policy items should be
139 configurable at module load (if not actually on-demand), however,
140 only the vpi vs vci bit allocation can be specified at insmod.
141
142 4. Shutdown
143
144 This is in response to module_cleaup. No VCs are in use and the card
145 should be idle; it is reset.
146
147 II Driver software (as it should be)
148
149 0. Traffic Parameters
150
151 The traffic classes (not an enumeration) are currently: ATM_NONE (no
152 traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
153 (compatible with everything). Together with (perhaps only some of)
154 the following items they make up the traffic specification.
155
156 struct atm_trafprm {
157 unsigned char traffic_class; traffic class (ATM_UBR, ...)
158 int max_pcr; maximum PCR in cells per second
159 int pcr; desired PCR in cells per second
160 int min_pcr; minimum PCR in cells per second
161 int max_cdv; maximum CDV in microseconds
162 int max_sdu; maximum SDU in bytes
163 };
164
165 Note that these denote bandwidth available not bandwidth used; the
166 possibilities according to ATMF are:
167
168 Real Time (cdv and max CDT given)
169
170 CBR(pcr) pcr bandwidth always available
171 rtVBR(pcr,scr,mbs) scr bandwidth always available, upto pcr at mbs too
172
173 Non Real Time
174
175 nrtVBR(pcr,scr,mbs) scr bandwidth always available, upto pcr at mbs too
176 UBR()
177 ABR(mcr,pcr) mcr bandwidth always available, upto pcr (depending) too
178
179 mbs is max burst size (bucket)
180 pcr and scr have associated cdvt values
181 mcr is like scr but has no cdtv
182 cdtv may differ at each hop
183
184 Some of the above items are qos items (as opposed to traffic
185 parameters). We have nothing to do with qos. All except ABR can have
186 their traffic parameters converted to GCRA parameters. The GCRA may
187 be implemented as a (real-number) leaky bucket. The GCRA can be used
188 in complicated ways by switches and in simpler ways by end-stations.
189 It can be used both to filter incoming cells and shape out-going
190 cells.
191
192 ATM Linux actually supports:
193
194 ATM_NONE() (no traffic in this direction)
195 ATM_UBR(max_frame_size)
196 ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
197
198 0 or ATM_MAX_PCR are used to indicate maximum available PCR
199
200 A traffic specification consists of the AAL type and separate
201 traffic specifications for either direction. In ATM Linux it is:
202
203 struct atm_qos {
204 struct atm_trafprm txtp;
205 struct atm_trafprm rxtp;
206 unsigned char aal;
207 };
208
209 AAL types are:
210
211 ATM_NO_AAL AAL not specified
212 ATM_AAL0 "raw" ATM cells
213 ATM_AAL1 AAL1 (CBR)
214 ATM_AAL2 AAL2 (VBR)
215 ATM_AAL34 AAL3/4 (data)
216 ATM_AAL5 AAL5 (data)
217 ATM_SAAL signaling AAL
218
219 The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
220 it does not implement AAL 3/4 SAR and it has a different notion of
221 "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
222 supported by this driver.
223
224 The Horizon has limited support for ABR (including UBR), VBR and
225 CBR. Each TX channel has a bucket (containing up to 31 cell units)
226 and two timers (PCR and SCR) associated with it that can be used to
227 govern cell emissions and host notification (in the case of ABR this
228 is presumably so that RM cells may be emitted at appropriate times).
229 The timers may either be disabled or may be set to any of 240 values
230 (determined by the clock crystal, a fixed (?) per-device divider, a
231 configurable divider and a configurable timer preload value).
232
233 At the moment only UBR and CBR are supported by the driver. VBR will
234 be supported as soon as ATM for Linux supports it. ABR support is
235 very unlikely as RM cell handling is completely up to the driver.
236
237 1. TX (TX channel setup and TX transfer)
238
239 The TX half of the driver owns the TX Horizon registers. The TX
240 component in the IRQ handler is the BM completion handler. This can
241 only be entered when tx_busy is true (enforced by hardware). The
242 other TX component can only be entered when tx_busy is false
243 (enforced by driver). So TX is single-threaded.
244
245 Apart from a minor optimisation to not re-select the last channel,
246 the TX send component works as follows:
247
248 Atomic test and set tx_busy until we succeed; we should implement
249 some sort of timeout so that tx_busy will never be stuck at true.
250
251 If no TX channel is set up for this VC we wait for an idle one (if
252 necessary) and set it up.
253
254 At this point we have a TX channel ready for use. We wait for enough
255 buffers to become available then start a TX transmit (set the TX
256 descriptor, schedule transfer, exit).
257
258 The IRQ component handles TX completion (stats, free buffer, tx_busy
259 unset, exit). We also re-schedule further transfers for the same
260 frame if needed.
261
262 TX setup in more detail:
263
264 TX open is a nop, the relevant information is held in the hrz_vcc
265 (vcc->dev_data) structure and is "cached" on the card.
266
267 TX close gets the TX lock and clears the channel from the "cache".
268
269 2. RX (Data Available and RX transfer)
270
271 The RX half of the driver owns the RX registers. There are two RX
272 components in the IRQ handler: the data available handler deals with
273 fresh data that has arrived on the card, the BM completion handler
274 is very similar to the TX completion handler. The data available
275 handler grabs the rx_lock and it is only released once the data has
276 been discarded or completely transferred to the host. The BM
277 completion handler only runs when the lock is held; the data
278 available handler is locked out over the same period.
279
280 Data available on the card triggers an interrupt. If the data is not
281 suitable for our existing RX channels or we cannot allocate a buffer
282 it is flushed. Otherwise an RX receive is scheduled. Multiple RX
283 transfers may be scheduled for the same frame.
284
285 RX setup in more detail:
286
287 RX open...
288 RX close...
289
290 III Hardware Bugs
291
292 0. Byte vs Word addressing of adapter RAM.
293
294 A design feature; see the .h file (especially the memory map).
295
296 1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
297
298 The host must not start a transmit direction transfer at a
299 non-four-byte boundary in host memory. Instead the host should
300 perform a byte, or a two byte, or one byte followed by two byte
301 transfer in order to start the rest of the transfer on a four byte
302 boundary. RX is OK.
303
304 Simultaneous transmit and receive direction bus master transfers are
305 not allowed.
306
307 The simplest solution to these two is to always do PIO (never DMA)
308 in the TX direction on the original Horizon. More complicated
309 solutions are likely to hurt my brain.
310
311 2. Loss of buffer on close VC
312
313 When a VC is being closed, the buffer associated with it is not
314 returned to the pool. The host must store the reference to this
315 buffer and when opening a new VC then give it to that new VC.
316
317 The host intervention currently consists of stacking such a buffer
318 pointer at VC close and checking the stack at VC open.
319
320 3. Failure to close a VC
321
322 If a VC is currently receiving a frame then closing the VC may fail
323 and the frame continues to be received.
324
325 The solution is to make sure any received frames are flushed when
326 ready. This is currently done just before the solution to 2.
327
328 4. PCI bus (original Horizon only, fixed in Ultra)
329
330 Reading from the data port prior to initialisation will hang the PCI
331 bus. Just don't do that then! We don't.
332
333 IV To Do List
334
335 . Timer code may be broken.
336
337 . Allow users to specify buffer allocation split for TX and RX.
338
339 . Deal once and for all with buggy VC close.
340
341 . Handle interrupted and/or non-blocking operations.
342
343 . Change some macros to functions and move from .h to .c.
344
345 . Try to limit the number of TX frames each VC may have queued, in
346 order to reduce the chances of TX buffer exhaustion.
347
348 . Implement VBR (bucket and timers not understood) and ABR (need to
349 do RM cells manually); also no Linux support for either.
350
351 . Implement QoS changes on open VCs (involves extracting parts of VC open
352 and close into separate functions and using them to make changes).
353
354*/
355
356/********** globals **********/
357
358static void do_housekeeping (unsigned long arg);
359
360static unsigned short debug = 0;
361static unsigned short vpi_bits = 0;
362static int max_tx_size = 9000;
363static int max_rx_size = 9000;
364static unsigned char pci_lat = 0;
365
366/********** access functions **********/
367
368/* Read / Write Horizon registers */
369static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
370 outl (cpu_to_le32 (data), dev->iobase + reg);
371}
372
373static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
374 return le32_to_cpu (inl (dev->iobase + reg));
375}
376
377static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
378 outw (cpu_to_le16 (data), dev->iobase + reg);
379}
380
381static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
382 return le16_to_cpu (inw (dev->iobase + reg));
383}
384
385static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
386 outsb (dev->iobase + reg, addr, len);
387}
388
389static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
390 insb (dev->iobase + reg, addr, len);
391}
392
393/* Read / Write to a given address in Horizon buffer memory.
394 Interrupts must be disabled between the address register and data
395 port accesses as these must form an atomic operation. */
396static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
397 // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
398 wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
399 wr_regl (dev, MEMORY_PORT_OFF, data);
400}
401
402static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
403 // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
404 wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
405 return rd_regl (dev, MEMORY_PORT_OFF);
406}
407
408static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
409 wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
410 wr_regl (dev, MEMORY_PORT_OFF, data);
411}
412
413static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
414 wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
415 return rd_regl (dev, MEMORY_PORT_OFF);
416}
417
418/********** specialised access functions **********/
419
420/* RX */
421
422static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
423 wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
424 return;
425}
426
427static inline void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
428 while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
429 ;
430 return;
431}
432
433static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
434 wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
435 return;
436}
437
438static inline void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
439 while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
440 ;
441 return;
442}
443
444/* TX */
445
446static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
447 wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
448 return;
449}
450
451/* Update or query one configuration parameter of a particular channel. */
452
453static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
454 wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
455 chan * TX_CHANNEL_CONFIG_MULT | mode);
456 wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
457 return;
458}
459
460static inline u16 query_tx_channel_config (hrz_dev * dev, short chan, u8 mode) {
461 wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
462 chan * TX_CHANNEL_CONFIG_MULT | mode);
463 return rd_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF);
464}
465
466/********** dump functions **********/
467
468static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
469#ifdef DEBUG_HORIZON
470 unsigned int i;
471 unsigned char * data = skb->data;
472 PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
473 for (i=0; i<skb->len && i < 256;i++)
474 PRINTDM (DBG_DATA, "%02x ", data[i]);
475 PRINTDE (DBG_DATA,"");
476#else
477 (void) prefix;
478 (void) vc;
479 (void) skb;
480#endif
481 return;
482}
483
484static inline void dump_regs (hrz_dev * dev) {
485#ifdef DEBUG_HORIZON
486 PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
487 PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
488 PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
489 PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
490 PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
491 PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
492#else
493 (void) dev;
494#endif
495 return;
496}
497
498static inline void dump_framer (hrz_dev * dev) {
499#ifdef DEBUG_HORIZON
500 unsigned int i;
501 PRINTDB (DBG_REGS, "framer registers:");
502 for (i = 0; i < 0x10; ++i)
503 PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
504 PRINTDE (DBG_REGS,"");
505#else
506 (void) dev;
507#endif
508 return;
509}
510
511/********** VPI/VCI <-> (RX) channel conversions **********/
512
513/* RX channels are 10 bit integers, these fns are quite paranoid */
514
515static inline int channel_to_vpivci (const u16 channel, short * vpi, int * vci) {
516 unsigned short vci_bits = 10 - vpi_bits;
517 if ((channel & RX_CHANNEL_MASK) == channel) {
518 *vci = channel & ((~0)<<vci_bits);
519 *vpi = channel >> vci_bits;
520 return channel ? 0 : -EINVAL;
521 }
522 return -EINVAL;
523}
524
525static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
526 unsigned short vci_bits = 10 - vpi_bits;
527 if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
528 *channel = vpi<<vci_bits | vci;
529 return *channel ? 0 : -EINVAL;
530 }
531 return -EINVAL;
532}
533
534/********** decode RX queue entries **********/
535
536static inline u16 rx_q_entry_to_length (u32 x) {
537 return x & RX_Q_ENTRY_LENGTH_MASK;
538}
539
540static inline u16 rx_q_entry_to_rx_channel (u32 x) {
541 return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
542}
543
544/* Cell Transmit Rate Values
545 *
546 * the cell transmit rate (cells per sec) can be set to a variety of
547 * different values by specifying two parameters: a timer preload from
548 * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
549 * an exponent from 0 to 14; the special value 15 disables the timer).
550 *
551 * cellrate = baserate / (preload * 2^divider)
552 *
553 * The maximum cell rate that can be specified is therefore just the
554 * base rate. Halving the preload is equivalent to adding 1 to the
555 * divider and so values 1 to 8 of the preload are redundant except
556 * in the case of a maximal divider (14).
557 *
558 * Given a desired cell rate, an algorithm to determine the preload
559 * and divider is:
560 *
561 * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
562 * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
563 * if x <= 16 then set p = x, d = 0 (high rates), done
564 * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
565 * know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
566 * we find the range (n will be between 1 and 14), set d = n
567 * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
568 *
569 * The algorithm used below is a minor variant of the above.
570 *
571 * The base rate is derived from the oscillator frequency (Hz) using a
572 * fixed divider:
573 *
574 * baserate = freq / 32 in the case of some Unknown Card
575 * baserate = freq / 8 in the case of the Horizon 25
576 * baserate = freq / 8 in the case of the Horizon Ultra 155
577 *
578 * The Horizon cards have oscillators and base rates as follows:
579 *
580 * Card Oscillator Base Rate
581 * Unknown Card 33 MHz 1.03125 MHz (33 MHz = PCI freq)
582 * Horizon 25 32 MHz 4 MHz
583 * Horizon Ultra 155 40 MHz 5 MHz
584 *
585 * The following defines give the base rates in Hz. These were
586 * previously a factor of 100 larger, no doubt someone was using
587 * cps*100.
588 */
589
590#define BR_UKN 1031250l
591#define BR_HRZ 4000000l
592#define BR_ULT 5000000l
593
594// d is an exponent
595#define CR_MIND 0
596#define CR_MAXD 14
597
598// p ranges from 1 to a power of 2
599#define CR_MAXPEXP 4
600
601static int make_rate (const hrz_dev * dev, u32 c, rounding r,
602 u16 * bits, unsigned int * actual)
603{
604 // note: rounding the rate down means rounding 'p' up
605 const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
606
607 u32 div = CR_MIND;
608 u32 pre;
609
610 // br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
611 // the tests below. We could think harder about exact possibilities
612 // of failure...
613
614 unsigned long br_man = br;
615 unsigned int br_exp = 0;
616
617 PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
618 r == round_up ? "up" : r == round_down ? "down" : "nearest");
619
620 // avoid div by zero
621 if (!c) {
622 PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
623 return -EINVAL;
624 }
625
626 while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
627 br_man = br_man >> 1;
628 ++br_exp;
629 }
630 // (br >>br_exp) <<br_exp == br and
631 // br_exp <= CR_MAXPEXP+CR_MIND
632
633 if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
634 // Equivalent to: B <= (c << (MAXPEXP+MIND))
635 // take care of rounding
636 switch (r) {
637 case round_down:
638 pre = (br+(c<<div)-1)/(c<<div);
639 // but p must be non-zero
640 if (!pre)
641 pre = 1;
642 break;
643 case round_nearest:
644 pre = (br+(c<<div)/2)/(c<<div);
645 // but p must be non-zero
646 if (!pre)
647 pre = 1;
648 break;
649 default: /* round_up */
650 pre = br/(c<<div);
651 // but p must be non-zero
652 if (!pre)
653 return -EINVAL;
654 }
655 PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
656 goto got_it;
657 }
658
659 // at this point we have
660 // d == MIND and (c << (MAXPEXP+MIND)) < B
661 while (div < CR_MAXD) {
662 div++;
663 if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
664 // Equivalent to: B <= (c << (MAXPEXP+d))
665 // c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
666 // 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
667 // MAXP/2 < B/c2^d <= MAXP
668 // take care of rounding
669 switch (r) {
670 case round_down:
671 pre = (br+(c<<div)-1)/(c<<div);
672 break;
673 case round_nearest:
674 pre = (br+(c<<div)/2)/(c<<div);
675 break;
676 default: /* round_up */
677 pre = br/(c<<div);
678 }
679 PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
680 goto got_it;
681 }
682 }
683 // at this point we have
684 // d == MAXD and (c << (MAXPEXP+MAXD)) < B
685 // but we cannot go any higher
686 // take care of rounding
687 if (r == round_down)
688 return -EINVAL;
689 pre = 1 << CR_MAXPEXP;
690 PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
691got_it:
692 // paranoia
693 if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
694 PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
695 div, pre);
696 return -EINVAL;
697 } else {
698 if (bits)
699 *bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
700 if (actual) {
701 *actual = (br + (pre<<div) - 1) / (pre<<div);
702 PRINTD (DBG_QOS, "actual rate: %u", *actual);
703 }
704 return 0;
705 }
706}
707
708static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
709 u16 * bit_pattern, unsigned int * actual) {
710 unsigned int my_actual;
711
712 PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
713 c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
714
715 if (!actual)
716 // actual rate is not returned
717 actual = &my_actual;
718
719 if (make_rate (dev, c, round_nearest, bit_pattern, actual))
720 // should never happen as round_nearest always succeeds
721 return -1;
722
723 if (c - tol <= *actual && *actual <= c + tol)
724 // within tolerance
725 return 0;
726 else
727 // intolerant, try rounding instead
728 return make_rate (dev, c, r, bit_pattern, actual);
729}
730
731/********** Listen on a VC **********/
732
733static int hrz_open_rx (hrz_dev * dev, u16 channel) {
734 // is there any guarantee that we don't get two simulataneous
735 // identical calls of this function from different processes? yes
736 // rate_lock
737 unsigned long flags;
738 u32 channel_type; // u16?
739
740 u16 buf_ptr = RX_CHANNEL_IDLE;
741
742 rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
743
744 PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
745
746 spin_lock_irqsave (&dev->mem_lock, flags);
747 channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
748 spin_unlock_irqrestore (&dev->mem_lock, flags);
749
750 // very serious error, should never occur
751 if (channel_type != RX_CHANNEL_DISABLED) {
752 PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
753 return -EBUSY; // clean up?
754 }
755
756 // Give back spare buffer
757 if (dev->noof_spare_buffers) {
758 buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
759 PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
760 // should never occur
761 if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
762 // but easy to recover from
763 PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
764 buf_ptr = RX_CHANNEL_IDLE;
765 }
766 } else {
767 PRINTD (DBG_VCC, "using IDLE buffer pointer");
768 }
769
770 // Channel is currently disabled so change its status to idle
771
772 // do we really need to save the flags again?
773 spin_lock_irqsave (&dev->mem_lock, flags);
774
775 wr_mem (dev, &rx_desc->wr_buf_type,
776 buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
777 if (buf_ptr != RX_CHANNEL_IDLE)
778 wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
779
780 spin_unlock_irqrestore (&dev->mem_lock, flags);
781
782 // rxer->rate = make_rate (qos->peak_cells);
783
784 PRINTD (DBG_FLOW, "hrz_open_rx ok");
785
786 return 0;
787}
788
789#if 0
790/********** change vc rate for a given vc **********/
791
792static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
793 rxer->rate = make_rate (qos->peak_cells);
794}
795#endif
796
797/********** free an skb (as per ATM device driver documentation) **********/
798
799static inline void hrz_kfree_skb (struct sk_buff * skb) {
800 if (ATM_SKB(skb)->vcc->pop) {
801 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
802 } else {
803 dev_kfree_skb_any (skb);
804 }
805}
806
807/********** cancel listen on a VC **********/
808
809static void hrz_close_rx (hrz_dev * dev, u16 vc) {
810 unsigned long flags;
811
812 u32 value;
813
814 u32 r1, r2;
815
816 rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
817
818 int was_idle = 0;
819
820 spin_lock_irqsave (&dev->mem_lock, flags);
821 value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
822 spin_unlock_irqrestore (&dev->mem_lock, flags);
823
824 if (value == RX_CHANNEL_DISABLED) {
825 // I suppose this could happen once we deal with _NONE traffic properly
826 PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
827 return;
828 }
829 if (value == RX_CHANNEL_IDLE)
830 was_idle = 1;
831
832 spin_lock_irqsave (&dev->mem_lock, flags);
833
834 for (;;) {
835 wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
836
837 if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
838 break;
839
840 was_idle = 0;
841 }
842
843 if (was_idle) {
844 spin_unlock_irqrestore (&dev->mem_lock, flags);
845 return;
846 }
847
848 WAIT_FLUSH_RX_COMPLETE(dev);
849
850 // XXX Is this all really necessary? We can rely on the rx_data_av
851 // handler to discard frames that remain queued for delivery. If the
852 // worry is that immediately reopening the channel (perhaps by a
853 // different process) may cause some data to be mis-delivered then
854 // there may still be a simpler solution (such as busy-waiting on
855 // rx_busy once the channel is disabled or before a new one is
856 // opened - does this leave any holes?). Arguably setting up and
857 // tearing down the TX and RX halves of each virtual circuit could
858 // most safely be done within ?x_busy protected regions.
859
860 // OK, current changes are that Simon's marker is disabled and we DO
861 // look for NULL rxer elsewhere. The code here seems flush frames
862 // and then remember the last dead cell belonging to the channel
863 // just disabled - the cell gets relinked at the next vc_open.
864 // However, when all VCs are closed or only a few opened there are a
865 // handful of buffers that are unusable.
866
867 // Does anyone feel like documenting spare_buffers properly?
868 // Does anyone feel like fixing this in a nicer way?
869
870 // Flush any data which is left in the channel
871 for (;;) {
872 // Change the rx channel port to something different to the RX
873 // channel we are trying to close to force Horizon to flush the rx
874 // channel read and write pointers.
875
876 u16 other = vc^(RX_CHANS/2);
877
878 SELECT_RX_CHANNEL (dev, other);
879 WAIT_UPDATE_COMPLETE (dev);
880
881 r1 = rd_mem (dev, &rx_desc->rd_buf_type);
882
883 // Select this RX channel. Flush doesn't seem to work unless we
884 // select an RX channel before hand
885
886 SELECT_RX_CHANNEL (dev, vc);
887 WAIT_UPDATE_COMPLETE (dev);
888
889 // Attempt to flush a frame on this RX channel
890
891 FLUSH_RX_CHANNEL (dev, vc);
892 WAIT_FLUSH_RX_COMPLETE (dev);
893
894 // Force Horizon to flush rx channel read and write pointers as before
895
896 SELECT_RX_CHANNEL (dev, other);
897 WAIT_UPDATE_COMPLETE (dev);
898
899 r2 = rd_mem (dev, &rx_desc->rd_buf_type);
900
901 PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
902
903 if (r1 == r2) {
904 dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
905 break;
906 }
907 }
908
909#if 0
910 {
911 rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
912 rx_q_entry * rd_ptr = dev->rx_q_entry;
913
914 PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
915
916 while (rd_ptr != wr_ptr) {
917 u32 x = rd_mem (dev, (HDW *) rd_ptr);
918
919 if (vc == rx_q_entry_to_rx_channel (x)) {
920 x |= SIMONS_DODGEY_MARKER;
921
922 PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
923
924 wr_mem (dev, (HDW *) rd_ptr, x);
925 }
926
927 if (rd_ptr == dev->rx_q_wrap)
928 rd_ptr = dev->rx_q_reset;
929 else
930 rd_ptr++;
931 }
932 }
933#endif
934
935 spin_unlock_irqrestore (&dev->mem_lock, flags);
936
937 return;
938}
939
940/********** schedule RX transfers **********/
941
942// Note on tail recursion: a GCC developer said that it is not likely
943// to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
944// are sure it does as you may otherwise overflow the kernel stack.
945
946// giving this fn a return value would help GCC, alledgedly
947
948static void rx_schedule (hrz_dev * dev, int irq) {
949 unsigned int rx_bytes;
950
951 int pio_instead = 0;
952#ifndef TAILRECURSIONWORKS
953 pio_instead = 1;
954 while (pio_instead) {
955#endif
956 // bytes waiting for RX transfer
957 rx_bytes = dev->rx_bytes;
958
959#if 0
960 spin_count = 0;
961 while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
962 PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
963 if (++spin_count > 10) {
964 PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
965 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
966 clear_bit (rx_busy, &dev->flags);
967 hrz_kfree_skb (dev->rx_skb);
968 return;
969 }
970 }
971#endif
972
973 // this code follows the TX code but (at the moment) there is only
974 // one region - the skb itself. I don't know if this will change,
975 // but it doesn't hurt to have the code here, disabled.
976
977 if (rx_bytes) {
978 // start next transfer within same region
979 if (rx_bytes <= MAX_PIO_COUNT) {
980 PRINTD (DBG_RX|DBG_BUS, "(pio)");
981 pio_instead = 1;
982 }
983 if (rx_bytes <= MAX_TRANSFER_COUNT) {
984 PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
985 dev->rx_bytes = 0;
986 } else {
987 PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
988 dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
989 rx_bytes = MAX_TRANSFER_COUNT;
990 }
991 } else {
992 // rx_bytes == 0 -- we're between regions
993 // regions remaining to transfer
994#if 0
995 unsigned int rx_regions = dev->rx_regions;
996#else
997 unsigned int rx_regions = 0;
998#endif
999
1000 if (rx_regions) {
1001#if 0
1002 // start a new region
1003 dev->rx_addr = dev->rx_iovec->iov_base;
1004 rx_bytes = dev->rx_iovec->iov_len;
1005 ++dev->rx_iovec;
1006 dev->rx_regions = rx_regions - 1;
1007
1008 if (rx_bytes <= MAX_PIO_COUNT) {
1009 PRINTD (DBG_RX|DBG_BUS, "(pio)");
1010 pio_instead = 1;
1011 }
1012 if (rx_bytes <= MAX_TRANSFER_COUNT) {
1013 PRINTD (DBG_RX|DBG_BUS, "(full region)");
1014 dev->rx_bytes = 0;
1015 } else {
1016 PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
1017 dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1018 rx_bytes = MAX_TRANSFER_COUNT;
1019 }
1020#endif
1021 } else {
1022 // rx_regions == 0
1023 // that's all folks - end of frame
1024 struct sk_buff * skb = dev->rx_skb;
1025 // dev->rx_iovec = 0;
1026
1027 FLUSH_RX_CHANNEL (dev, dev->rx_channel);
1028
1029 dump_skb ("<<<", dev->rx_channel, skb);
1030
1031 PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1032
1033 {
1034 struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1035 // VC layer stats
1036 atomic_inc(&vcc->stats->rx);
Patrick McHardya61bbcf2005-08-14 17:24:31 -07001037 __net_timestamp(skb);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001038 // end of our responsability
1039 vcc->push (vcc, skb);
1040 }
1041 }
1042 }
1043
1044 // note: writing RX_COUNT clears any interrupt condition
1045 if (rx_bytes) {
1046 if (pio_instead) {
1047 if (irq)
1048 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1049 rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1050 } else {
1051 wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1052 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1053 }
1054 dev->rx_addr += rx_bytes;
1055 } else {
1056 if (irq)
1057 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1058 // allow another RX thread to start
1059 YELLOW_LED_ON(dev);
1060 clear_bit (rx_busy, &dev->flags);
1061 PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1062 }
1063
1064#ifdef TAILRECURSIONWORKS
1065 // and we all bless optimised tail calls
1066 if (pio_instead)
1067 return rx_schedule (dev, 0);
1068 return;
1069#else
1070 // grrrrrrr!
1071 irq = 0;
1072 }
1073 return;
1074#endif
1075}
1076
1077/********** handle RX bus master complete events **********/
1078
1079static inline void rx_bus_master_complete_handler (hrz_dev * dev) {
1080 if (test_bit (rx_busy, &dev->flags)) {
1081 rx_schedule (dev, 1);
1082 } else {
1083 PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1084 // clear interrupt condition on adapter
1085 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1086 }
1087 return;
1088}
1089
1090/********** (queue to) become the next TX thread **********/
1091
1092static inline int tx_hold (hrz_dev * dev) {
1093 PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
1094 wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
1095 PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
1096 if (signal_pending (current))
1097 return -1;
1098 PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1099 return 0;
1100}
1101
1102/********** allow another TX thread to start **********/
1103
1104static inline void tx_release (hrz_dev * dev) {
1105 clear_bit (tx_busy, &dev->flags);
1106 PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1107 wake_up_interruptible (&dev->tx_queue);
1108}
1109
1110/********** schedule TX transfers **********/
1111
1112static void tx_schedule (hrz_dev * const dev, int irq) {
1113 unsigned int tx_bytes;
1114
1115 int append_desc = 0;
1116
1117 int pio_instead = 0;
1118#ifndef TAILRECURSIONWORKS
1119 pio_instead = 1;
1120 while (pio_instead) {
1121#endif
1122 // bytes in current region waiting for TX transfer
1123 tx_bytes = dev->tx_bytes;
1124
1125#if 0
1126 spin_count = 0;
1127 while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1128 PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1129 if (++spin_count > 10) {
1130 PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1131 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1132 tx_release (dev);
1133 hrz_kfree_skb (dev->tx_skb);
1134 return;
1135 }
1136 }
1137#endif
1138
1139 if (tx_bytes) {
1140 // start next transfer within same region
1141 if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1142 PRINTD (DBG_TX|DBG_BUS, "(pio)");
1143 pio_instead = 1;
1144 }
1145 if (tx_bytes <= MAX_TRANSFER_COUNT) {
1146 PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1147 if (!dev->tx_iovec) {
1148 // end of last region
1149 append_desc = 1;
1150 }
1151 dev->tx_bytes = 0;
1152 } else {
1153 PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1154 dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1155 tx_bytes = MAX_TRANSFER_COUNT;
1156 }
1157 } else {
1158 // tx_bytes == 0 -- we're between regions
1159 // regions remaining to transfer
1160 unsigned int tx_regions = dev->tx_regions;
1161
1162 if (tx_regions) {
1163 // start a new region
1164 dev->tx_addr = dev->tx_iovec->iov_base;
1165 tx_bytes = dev->tx_iovec->iov_len;
1166 ++dev->tx_iovec;
1167 dev->tx_regions = tx_regions - 1;
1168
1169 if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1170 PRINTD (DBG_TX|DBG_BUS, "(pio)");
1171 pio_instead = 1;
1172 }
1173 if (tx_bytes <= MAX_TRANSFER_COUNT) {
1174 PRINTD (DBG_TX|DBG_BUS, "(full region)");
1175 dev->tx_bytes = 0;
1176 } else {
1177 PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1178 dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1179 tx_bytes = MAX_TRANSFER_COUNT;
1180 }
1181 } else {
1182 // tx_regions == 0
1183 // that's all folks - end of frame
1184 struct sk_buff * skb = dev->tx_skb;
1185 dev->tx_iovec = NULL;
1186
1187 // VC layer stats
1188 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1189
1190 // free the skb
1191 hrz_kfree_skb (skb);
1192 }
1193 }
1194
1195 // note: writing TX_COUNT clears any interrupt condition
1196 if (tx_bytes) {
1197 if (pio_instead) {
1198 if (irq)
1199 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1200 wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1201 if (append_desc)
1202 wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1203 } else {
1204 wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1205 if (append_desc)
1206 wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1207 wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1208 append_desc
1209 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1210 : tx_bytes);
1211 }
1212 dev->tx_addr += tx_bytes;
1213 } else {
1214 if (irq)
1215 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1216 YELLOW_LED_ON(dev);
1217 tx_release (dev);
1218 }
1219
1220#ifdef TAILRECURSIONWORKS
1221 // and we all bless optimised tail calls
1222 if (pio_instead)
1223 return tx_schedule (dev, 0);
1224 return;
1225#else
1226 // grrrrrrr!
1227 irq = 0;
1228 }
1229 return;
1230#endif
1231}
1232
1233/********** handle TX bus master complete events **********/
1234
1235static inline void tx_bus_master_complete_handler (hrz_dev * dev) {
1236 if (test_bit (tx_busy, &dev->flags)) {
1237 tx_schedule (dev, 1);
1238 } else {
1239 PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1240 // clear interrupt condition on adapter
1241 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1242 }
1243 return;
1244}
1245
1246/********** move RX Q pointer to next item in circular buffer **********/
1247
1248// called only from IRQ sub-handler
1249static inline u32 rx_queue_entry_next (hrz_dev * dev) {
1250 u32 rx_queue_entry;
1251 spin_lock (&dev->mem_lock);
1252 rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1253 if (dev->rx_q_entry == dev->rx_q_wrap)
1254 dev->rx_q_entry = dev->rx_q_reset;
1255 else
1256 dev->rx_q_entry++;
1257 wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1258 spin_unlock (&dev->mem_lock);
1259 return rx_queue_entry;
1260}
1261
1262/********** handle RX disabled by device **********/
1263
1264static inline void rx_disabled_handler (hrz_dev * dev) {
1265 wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1266 // count me please
1267 PRINTK (KERN_WARNING, "RX was disabled!");
1268}
1269
1270/********** handle RX data received by device **********/
1271
1272// called from IRQ handler
1273static inline void rx_data_av_handler (hrz_dev * dev) {
1274 u32 rx_queue_entry;
1275 u32 rx_queue_entry_flags;
1276 u16 rx_len;
1277 u16 rx_channel;
1278
1279 PRINTD (DBG_FLOW, "hrz_data_av_handler");
1280
1281 // try to grab rx lock (not possible during RX bus mastering)
1282 if (test_and_set_bit (rx_busy, &dev->flags)) {
1283 PRINTD (DBG_RX, "locked out of rx lock");
1284 return;
1285 }
1286 PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1287 // lock is cleared if we fail now, o/w after bus master completion
1288
1289 YELLOW_LED_OFF(dev);
1290
1291 rx_queue_entry = rx_queue_entry_next (dev);
1292
1293 rx_len = rx_q_entry_to_length (rx_queue_entry);
1294 rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1295
1296 WAIT_FLUSH_RX_COMPLETE (dev);
1297
1298 SELECT_RX_CHANNEL (dev, rx_channel);
1299
1300 PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1301 rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1302
1303 if (!rx_len) {
1304 // (at least) bus-mastering breaks if we try to handle a
1305 // zero-length frame, besides AAL5 does not support them
1306 PRINTK (KERN_ERR, "zero-length frame!");
1307 rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1308 }
1309
1310 if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1311 PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1312 }
1313 if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1314 struct atm_vcc * atm_vcc;
1315
1316 PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1317
1318 atm_vcc = dev->rxer[rx_channel];
1319 // if no vcc is assigned to this channel, we should drop the frame
1320 // (is this what SIMONS etc. was trying to achieve?)
1321
1322 if (atm_vcc) {
1323
1324 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1325
1326 if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1327
1328 struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1329 if (skb) {
1330 // remember this so we can push it later
1331 dev->rx_skb = skb;
1332 // remember this so we can flush it later
1333 dev->rx_channel = rx_channel;
1334
1335 // prepare socket buffer
1336 skb_put (skb, rx_len);
1337 ATM_SKB(skb)->vcc = atm_vcc;
1338
1339 // simple transfer
1340 // dev->rx_regions = 0;
1341 // dev->rx_iovec = 0;
1342 dev->rx_bytes = rx_len;
1343 dev->rx_addr = skb->data;
1344 PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1345 skb->data, rx_len);
1346
1347 // do the business
1348 rx_schedule (dev, 0);
1349 return;
1350
1351 } else {
1352 PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1353 }
1354
1355 } else {
1356 PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1357 // do we count this?
1358 }
1359
1360 } else {
1361 PRINTK (KERN_WARNING, "dropped over-size frame");
1362 // do we count this?
1363 }
1364
1365 } else {
1366 PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1367 // do we count this?
1368 }
1369
1370 } else {
1371 // Wait update complete ? SPONG
1372 }
1373
1374 // RX was aborted
1375 YELLOW_LED_ON(dev);
1376
1377 FLUSH_RX_CHANNEL (dev,rx_channel);
1378 clear_bit (rx_busy, &dev->flags);
1379
1380 return;
1381}
1382
1383/********** interrupt handler **********/
1384
David Howells7d12e782006-10-05 14:55:46 +01001385static irqreturn_t interrupt_handler(int irq, void *dev_id) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001386 hrz_dev * dev = (hrz_dev *) dev_id;
1387 u32 int_source;
1388 unsigned int irq_ok;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001389
1390 PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1391
Linus Torvalds1da177e2005-04-16 15:20:36 -07001392 // definitely for us
1393 irq_ok = 0;
1394 while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1395 & INTERESTING_INTERRUPTS)) {
1396 // In the interests of fairness, the (inline) handlers below are
1397 // called in sequence and without immediate return to the head of
1398 // the while loop. This is only of issue for slow hosts (or when
1399 // debugging messages are on). Really slow hosts may find a fast
1400 // sender keeps them permanently in the IRQ handler. :(
1401
1402 // (only an issue for slow hosts) RX completion goes before
1403 // rx_data_av as the former implies rx_busy and so the latter
1404 // would just abort. If it reschedules another transfer
1405 // (continuing the same frame) then it will not clear rx_busy.
1406
1407 // (only an issue for slow hosts) TX completion goes before RX
1408 // data available as it is a much shorter routine - there is the
1409 // chance that any further transfers it schedules will be complete
1410 // by the time of the return to the head of the while loop
1411
1412 if (int_source & RX_BUS_MASTER_COMPLETE) {
1413 ++irq_ok;
1414 PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1415 rx_bus_master_complete_handler (dev);
1416 }
1417 if (int_source & TX_BUS_MASTER_COMPLETE) {
1418 ++irq_ok;
1419 PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1420 tx_bus_master_complete_handler (dev);
1421 }
1422 if (int_source & RX_DATA_AV) {
1423 ++irq_ok;
1424 PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1425 rx_data_av_handler (dev);
1426 }
1427 }
1428 if (irq_ok) {
1429 PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1430 } else {
1431 PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1432 }
1433
1434 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1435 if (irq_ok)
1436 return IRQ_HANDLED;
1437 return IRQ_NONE;
1438}
1439
1440/********** housekeeping **********/
1441
1442static void do_housekeeping (unsigned long arg) {
1443 // just stats at the moment
1444 hrz_dev * dev = (hrz_dev *) arg;
1445
1446 // collect device-specific (not driver/atm-linux) stats here
1447 dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1448 dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1449 dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1450 dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1451
1452 mod_timer (&dev->housekeeping, jiffies + HZ/10);
1453
1454 return;
1455}
1456
1457/********** find an idle channel for TX and set it up **********/
1458
1459// called with tx_busy set
1460static inline short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1461 unsigned short idle_channels;
1462 short tx_channel = -1;
1463 unsigned int spin_count;
1464 PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1465
1466 // better would be to fail immediately, the caller can then decide whether
1467 // to wait or drop (depending on whether this is UBR etc.)
1468 spin_count = 0;
1469 while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1470 PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1471 // delay a bit here
1472 if (++spin_count > 100) {
1473 PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1474 return -EBUSY;
1475 }
1476 }
1477
1478 // got an idle channel
1479 {
1480 // tx_idle ensures we look for idle channels in RR order
1481 int chan = dev->tx_idle;
1482
1483 int keep_going = 1;
1484 while (keep_going) {
1485 if (idle_channels & (1<<chan)) {
1486 tx_channel = chan;
1487 keep_going = 0;
1488 }
1489 ++chan;
1490 if (chan == TX_CHANS)
1491 chan = 0;
1492 }
1493
1494 dev->tx_idle = chan;
1495 }
1496
1497 // set up the channel we found
1498 {
1499 // Initialise the cell header in the transmit channel descriptor
1500 // a.k.a. prepare the channel and remember that we have done so.
1501
1502 tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
Dave Jonesb9255562005-11-10 12:55:52 -08001503 u32 rd_ptr;
1504 u32 wr_ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001505 u16 channel = vcc->channel;
1506
1507 unsigned long flags;
1508 spin_lock_irqsave (&dev->mem_lock, flags);
1509
1510 // Update the transmit channel record.
1511 dev->tx_channel_record[tx_channel] = channel;
1512
1513 // xBR channel
1514 update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1515 vcc->tx_xbr_bits);
1516
1517 // Update the PCR counter preload value etc.
1518 update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1519 vcc->tx_pcr_bits);
1520
1521#if 0
1522 if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1523 // SCR timer
1524 update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1525 vcc->tx_scr_bits);
1526
1527 // Bucket size...
1528 update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1529 vcc->tx_bucket_bits);
1530
1531 // ... and fullness
1532 update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1533 vcc->tx_bucket_bits);
1534 }
1535#endif
1536
1537 // Initialise the read and write buffer pointers
1538 rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1539 wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1540
1541 // idle TX channels should have identical pointers
1542 if (rd_ptr != wr_ptr) {
1543 PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1544 // spin_unlock... return -E...
1545 // I wonder if gcc would get rid of one of the pointer aliases
1546 }
1547 PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1548 rd_ptr, wr_ptr);
1549
1550 switch (vcc->aal) {
1551 case aal0:
1552 PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1553 rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1554 wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1555 break;
1556 case aal34:
1557 PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1558 rd_ptr |= CHANNEL_TYPE_AAL3_4;
1559 wr_ptr |= CHANNEL_TYPE_AAL3_4;
1560 break;
1561 case aal5:
1562 rd_ptr |= CHANNEL_TYPE_AAL5;
1563 wr_ptr |= CHANNEL_TYPE_AAL5;
1564 // Initialise the CRC
1565 wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1566 break;
1567 }
1568
1569 wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1570 wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1571
1572 // Write the Cell Header
1573 // Payload Type, CLP and GFC would go here if non-zero
1574 wr_mem (dev, &tx_desc->cell_header, channel);
1575
1576 spin_unlock_irqrestore (&dev->mem_lock, flags);
1577 }
1578
1579 return tx_channel;
1580}
1581
1582/********** send a frame **********/
1583
1584static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1585 unsigned int spin_count;
1586 int free_buffers;
1587 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1588 hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1589 u16 channel = vcc->channel;
1590
1591 u32 buffers_required;
1592
1593 /* signed for error return */
1594 short tx_channel;
1595
1596 PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1597 channel, skb->data, skb->len);
1598
1599 dump_skb (">>>", channel, skb);
1600
1601 if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1602 PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1603 hrz_kfree_skb (skb);
1604 return -EIO;
1605 }
1606
1607 // don't understand this
1608 ATM_SKB(skb)->vcc = atm_vcc;
1609
1610 if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1611 PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1612 hrz_kfree_skb (skb);
1613 return -EIO;
1614 }
1615
1616 if (!channel) {
1617 PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1618 hrz_kfree_skb (skb);
1619 return -EIO;
1620 }
1621
1622#if 0
1623 {
1624 // where would be a better place for this? housekeeping?
1625 u16 status;
1626 pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1627 if (status & PCI_STATUS_REC_MASTER_ABORT) {
1628 PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1629 status &= ~PCI_STATUS_REC_MASTER_ABORT;
1630 pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1631 if (test_bit (tx_busy, &dev->flags)) {
1632 hrz_kfree_skb (dev->tx_skb);
1633 tx_release (dev);
1634 }
1635 }
1636 }
1637#endif
1638
1639#ifdef DEBUG_HORIZON
1640 /* wey-hey! */
1641 if (channel == 1023) {
1642 unsigned int i;
1643 unsigned short d = 0;
1644 char * s = skb->data;
1645 if (*s++ == 'D') {
1646 for (i = 0; i < 4; ++i) {
1647 d = (d<<4) | ((*s <= '9') ? (*s - '0') : (*s - 'a' + 10));
1648 ++s;
1649 }
1650 PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1651 }
1652 }
1653#endif
1654
1655 // wait until TX is free and grab lock
1656 if (tx_hold (dev)) {
1657 hrz_kfree_skb (skb);
1658 return -ERESTARTSYS;
1659 }
1660
1661 // Wait for enough space to be available in transmit buffer memory.
1662
1663 // should be number of cells needed + 2 (according to hardware docs)
1664 // = ((framelen+8)+47) / 48 + 2
1665 // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1666 buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1667
1668 // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1669 spin_count = 0;
1670 while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1671 PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1672 free_buffers, buffers_required);
1673 // what is the appropriate delay? implement a timeout? (depending on line speed?)
1674 // mdelay (1);
1675 // what happens if we kill (current_pid, SIGKILL) ?
1676 schedule();
1677 if (++spin_count > 1000) {
1678 PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1679 free_buffers, buffers_required);
1680 tx_release (dev);
1681 hrz_kfree_skb (skb);
1682 return -ERESTARTSYS;
1683 }
1684 }
1685
1686 // Select a channel to transmit the frame on.
1687 if (channel == dev->last_vc) {
1688 PRINTD (DBG_TX, "last vc hack: hit");
1689 tx_channel = dev->tx_last;
1690 } else {
1691 PRINTD (DBG_TX, "last vc hack: miss");
1692 // Are we currently transmitting this VC on one of the channels?
1693 for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1694 if (dev->tx_channel_record[tx_channel] == channel) {
1695 PRINTD (DBG_TX, "vc already on channel: hit");
1696 break;
1697 }
1698 if (tx_channel == TX_CHANS) {
1699 PRINTD (DBG_TX, "vc already on channel: miss");
1700 // Find and set up an idle channel.
1701 tx_channel = setup_idle_tx_channel (dev, vcc);
1702 if (tx_channel < 0) {
1703 PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1704 tx_release (dev);
1705 return tx_channel;
1706 }
1707 }
1708
1709 PRINTD (DBG_TX, "got channel");
1710 SELECT_TX_CHANNEL(dev, tx_channel);
1711
1712 dev->last_vc = channel;
1713 dev->tx_last = tx_channel;
1714 }
1715
1716 PRINTD (DBG_TX, "using channel %u", tx_channel);
1717
1718 YELLOW_LED_OFF(dev);
1719
1720 // TX start transfer
1721
1722 {
1723 unsigned int tx_len = skb->len;
1724 unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1725 // remember this so we can free it later
1726 dev->tx_skb = skb;
1727
1728 if (tx_iovcnt) {
1729 // scatter gather transfer
1730 dev->tx_regions = tx_iovcnt;
1731 dev->tx_iovec = NULL; /* @@@ needs rewritten */
1732 dev->tx_bytes = 0;
1733 PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1734 skb->data, tx_len);
1735 tx_release (dev);
1736 hrz_kfree_skb (skb);
1737 return -EIO;
1738 } else {
1739 // simple transfer
1740 dev->tx_regions = 0;
1741 dev->tx_iovec = NULL;
1742 dev->tx_bytes = tx_len;
1743 dev->tx_addr = skb->data;
1744 PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1745 skb->data, tx_len);
1746 }
1747
1748 // and do the business
1749 tx_schedule (dev, 0);
1750
1751 }
1752
1753 return 0;
1754}
1755
1756/********** reset a card **********/
1757
1758static void hrz_reset (const hrz_dev * dev) {
1759 u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1760
1761 // why not set RESET_HORIZON to one and wait for the card to
1762 // reassert that bit as zero? Like so:
1763 control_0_reg = control_0_reg & RESET_HORIZON;
1764 wr_regl (dev, CONTROL_0_REG, control_0_reg);
1765 while (control_0_reg & RESET_HORIZON)
1766 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1767
1768 // old reset code retained:
1769 wr_regl (dev, CONTROL_0_REG, control_0_reg |
1770 RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1771 // just guessing here
1772 udelay (1000);
1773
1774 wr_regl (dev, CONTROL_0_REG, control_0_reg);
1775}
1776
1777/********** read the burnt in address **********/
1778
1779static inline void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
1780{
1781 wr_regl (dev, CONTROL_0_REG, ctrl);
1782 udelay (5);
1783}
1784
1785static inline void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
1786{
1787 // DI must be valid around rising SK edge
1788 WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
1789 WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
1790}
1791
David S. Miller977a4152006-10-24 16:16:39 -07001792static u16 __devinit read_bia (const hrz_dev * dev, u16 addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001793{
1794 u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1795
1796 const unsigned int addr_bits = 6;
1797 const unsigned int data_bits = 16;
1798
1799 unsigned int i;
1800
1801 u16 res;
1802
1803 ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1804 WRITE_IT_WAIT(dev, ctrl);
1805
1806 // wake Serial EEPROM and send 110 (READ) command
1807 ctrl |= (SEEPROM_CS | SEEPROM_DI);
1808 CLOCK_IT(dev, ctrl);
1809
1810 ctrl |= SEEPROM_DI;
1811 CLOCK_IT(dev, ctrl);
1812
1813 ctrl &= ~SEEPROM_DI;
1814 CLOCK_IT(dev, ctrl);
1815
1816 for (i=0; i<addr_bits; i++) {
1817 if (addr & (1 << (addr_bits-1)))
1818 ctrl |= SEEPROM_DI;
1819 else
1820 ctrl &= ~SEEPROM_DI;
1821
1822 CLOCK_IT(dev, ctrl);
1823
1824 addr = addr << 1;
1825 }
1826
1827 // we could check that we have DO = 0 here
1828 ctrl &= ~SEEPROM_DI;
1829
1830 res = 0;
1831 for (i=0;i<data_bits;i++) {
1832 res = res >> 1;
1833
1834 CLOCK_IT(dev, ctrl);
1835
1836 if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1837 res |= (1 << (data_bits-1));
1838 }
1839
1840 ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1841 WRITE_IT_WAIT(dev, ctrl);
1842
1843 return res;
1844}
1845
1846/********** initialise a card **********/
1847
1848static int __init hrz_init (hrz_dev * dev) {
1849 int onefivefive;
1850
1851 u16 chan;
1852
1853 int buff_count;
1854
1855 HDW * mem;
1856
1857 cell_buf * tx_desc;
1858 cell_buf * rx_desc;
1859
1860 u32 ctrl;
1861
1862 ctrl = rd_regl (dev, CONTROL_0_REG);
1863 PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1864 onefivefive = ctrl & ATM_LAYER_STATUS;
1865
1866 if (onefivefive)
1867 printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1868 else
1869 printk (DEV_LABEL ": Horizon (at 25 MBps)");
1870
1871 printk (":");
1872 // Reset the card to get everything in a known state
1873
1874 printk (" reset");
1875 hrz_reset (dev);
1876
1877 // Clear all the buffer memory
1878
1879 printk (" clearing memory");
1880
1881 for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1882 wr_mem (dev, mem, 0);
1883
1884 printk (" tx channels");
1885
1886 // All transmit eight channels are set up as AAL5 ABR channels with
1887 // a 16us cell spacing. Why?
1888
1889 // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1890 // buffer at 110h etc.
1891
1892 for (chan = 0; chan < TX_CHANS; ++chan) {
1893 tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1894 cell_buf * buf = &memmap->inittxbufs[chan];
1895
1896 // initialise the read and write buffer pointers
1897 wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1898 wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1899
1900 // set the status of the initial buffers to empty
1901 wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1902 }
1903
1904 // Use space bufn3 at the moment for tx buffers
1905
1906 printk (" tx buffers");
1907
1908 tx_desc = memmap->bufn3;
1909
1910 wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1911
1912 for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1913 wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1914 tx_desc++;
1915 }
1916
1917 wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1918
1919 // Initialise the transmit free buffer count
1920 wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1921
1922 printk (" rx channels");
1923
1924 // Initialise all of the receive channels to be AAL5 disabled with
1925 // an interrupt threshold of 0
1926
1927 for (chan = 0; chan < RX_CHANS; ++chan) {
1928 rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1929
1930 wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1931 }
1932
1933 printk (" rx buffers");
1934
1935 // Use space bufn4 at the moment for rx buffers
1936
1937 rx_desc = memmap->bufn4;
1938
1939 wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1940
1941 for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1942 wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1943
1944 rx_desc++;
1945 }
1946
1947 wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1948
1949 // Initialise the receive free buffer count
1950 wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1951
1952 // Initialize Horizons registers
1953
1954 // TX config
1955 wr_regw (dev, TX_CONFIG_OFF,
1956 ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
1957
1958 // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
1959 wr_regw (dev, RX_CONFIG_OFF,
1960 DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
1961
1962 // RX line config
1963 wr_regw (dev, RX_LINE_CONFIG_OFF,
1964 LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
1965
1966 // Set the max AAL5 cell count to be just enough to contain the
1967 // largest AAL5 frame that the user wants to receive
1968 wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
1969 (max_rx_size + ATM_AAL5_TRAILER + ATM_CELL_PAYLOAD - 1) / ATM_CELL_PAYLOAD);
1970
1971 // Enable receive
1972 wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1973
1974 printk (" control");
1975
1976 // Drive the OE of the LEDs then turn the green LED on
1977 ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
1978 wr_regl (dev, CONTROL_0_REG, ctrl);
1979
1980 // Test for a 155-capable card
1981
1982 if (onefivefive) {
1983 // Select 155 mode... make this a choice (or: how do we detect
1984 // external line speed and switch?)
1985 ctrl |= ATM_LAYER_SELECT;
1986 wr_regl (dev, CONTROL_0_REG, ctrl);
1987
1988 // test SUNI-lite vs SAMBA
1989
1990 // Register 0x00 in the SUNI will have some of bits 3-7 set, and
1991 // they will always be zero for the SAMBA. Ha! Bloody hardware
1992 // engineers. It'll never work.
1993
1994 if (rd_framer (dev, 0) & 0x00f0) {
1995 // SUNI
1996 printk (" SUNI");
1997
1998 // Reset, just in case
1999 wr_framer (dev, 0x00, 0x0080);
2000 wr_framer (dev, 0x00, 0x0000);
2001
2002 // Configure transmit FIFO
2003 wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
2004
2005 // Set line timed mode
2006 wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
2007 } else {
2008 // SAMBA
2009 printk (" SAMBA");
2010
2011 // Reset, just in case
2012 wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
2013 wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
2014
2015 // Turn off diagnostic loopback and enable line-timed mode
2016 wr_framer (dev, 0, 0x0002);
2017
2018 // Turn on transmit outputs
2019 wr_framer (dev, 2, 0x0B80);
2020 }
2021 } else {
2022 // Select 25 mode
2023 ctrl &= ~ATM_LAYER_SELECT;
2024
2025 // Madge B154 setup
2026 // none required?
2027 }
2028
2029 printk (" LEDs");
2030
2031 GREEN_LED_ON(dev);
2032 YELLOW_LED_ON(dev);
2033
2034 printk (" ESI=");
2035
2036 {
2037 u16 b = 0;
2038 int i;
2039 u8 * esi = dev->atm_dev->esi;
2040
2041 // in the card I have, EEPROM
2042 // addresses 0, 1, 2 contain 0
2043 // addresess 5, 6 etc. contain ffff
2044 // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2045 // the read_bia routine gets the BIA in Ethernet bit order
2046
2047 for (i=0; i < ESI_LEN; ++i) {
2048 if (i % 2 == 0)
2049 b = read_bia (dev, i/2 + 2);
2050 else
2051 b = b >> 8;
2052 esi[i] = b & 0xFF;
2053 printk ("%02x", esi[i]);
2054 }
2055 }
2056
2057 // Enable RX_Q and ?X_COMPLETE interrupts only
2058 wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2059 printk (" IRQ on");
2060
2061 printk (".\n");
2062
2063 return onefivefive;
2064}
2065
2066/********** check max_sdu **********/
2067
2068static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2069 PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2070
2071 switch (aal) {
2072 case aal0:
2073 if (!(tp->max_sdu)) {
2074 PRINTD (DBG_QOS, "defaulting max_sdu");
2075 tp->max_sdu = ATM_AAL0_SDU;
2076 } else if (tp->max_sdu != ATM_AAL0_SDU) {
2077 PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2078 return -EINVAL;
2079 }
2080 break;
2081 case aal34:
2082 if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2083 PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2084 tp->max_sdu = ATM_MAX_AAL34_PDU;
2085 }
2086 break;
2087 case aal5:
2088 if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2089 PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2090 tp->max_sdu = max_frame_size;
2091 }
2092 break;
2093 }
2094 return 0;
2095}
2096
2097/********** check pcr **********/
2098
2099// something like this should be part of ATM Linux
2100static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2101 // we are assuming non-UBR, and non-special values of pcr
2102 if (tp->min_pcr == ATM_MAX_PCR)
2103 PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2104 else if (tp->min_pcr < 0)
2105 PRINTD (DBG_QOS, "luser gave negative min_pcr");
2106 else if (tp->min_pcr && tp->min_pcr > pcr)
2107 PRINTD (DBG_QOS, "pcr less than min_pcr");
2108 else
2109 // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2110 // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2111 // [this would get rid of next two conditionals]
2112 if ((0) && tp->max_pcr == ATM_MAX_PCR)
2113 PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2114 else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2115 PRINTD (DBG_QOS, "luser gave negative max_pcr");
2116 else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2117 PRINTD (DBG_QOS, "pcr greater than max_pcr");
2118 else {
2119 // each limit unspecified or not violated
2120 PRINTD (DBG_QOS, "xBR(pcr) OK");
2121 return 0;
2122 }
2123 PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2124 pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2125 return -EINVAL;
2126}
2127
2128/********** open VC **********/
2129
2130static int hrz_open (struct atm_vcc *atm_vcc)
2131{
2132 int error;
2133 u16 channel;
2134
2135 struct atm_qos * qos;
2136 struct atm_trafprm * txtp;
2137 struct atm_trafprm * rxtp;
2138
2139 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2140 hrz_vcc vcc;
2141 hrz_vcc * vccp; // allocated late
2142 short vpi = atm_vcc->vpi;
2143 int vci = atm_vcc->vci;
2144 PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2145
2146#ifdef ATM_VPI_UNSPEC
2147 // UNSPEC is deprecated, remove this code eventually
2148 if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2149 PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2150 return -EINVAL;
2151 }
2152#endif
2153
2154 error = vpivci_to_channel (&channel, vpi, vci);
2155 if (error) {
2156 PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2157 return error;
2158 }
2159
2160 vcc.channel = channel;
2161 // max speed for the moment
2162 vcc.tx_rate = 0x0;
2163
2164 qos = &atm_vcc->qos;
2165
2166 // check AAL and remember it
2167 switch (qos->aal) {
2168 case ATM_AAL0:
2169 // we would if it were 48 bytes and not 52!
2170 PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2171 vcc.aal = aal0;
2172 break;
2173 case ATM_AAL34:
2174 // we would if I knew how do the SAR!
2175 PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2176 vcc.aal = aal34;
2177 break;
2178 case ATM_AAL5:
2179 PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2180 vcc.aal = aal5;
2181 break;
2182 default:
2183 PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2184 return -EINVAL;
2185 break;
2186 }
2187
2188 // TX traffic parameters
2189
2190 // there are two, interrelated problems here: 1. the reservation of
2191 // PCR is not a binary choice, we are given bounds and/or a
2192 // desirable value; 2. the device is only capable of certain values,
2193 // most of which are not integers. It is almost certainly acceptable
2194 // to be off by a maximum of 1 to 10 cps.
2195
2196 // Pragmatic choice: always store an integral PCR as that which has
2197 // been allocated, even if we allocate a little (or a lot) less,
2198 // after rounding. The actual allocation depends on what we can
2199 // manage with our rate selection algorithm. The rate selection
2200 // algorithm is given an integral PCR and a tolerance and told
2201 // whether it should round the value up or down if the tolerance is
2202 // exceeded; it returns: a) the actual rate selected (rounded up to
2203 // the nearest integer), b) a bit pattern to feed to the timer
2204 // register, and c) a failure value if no applicable rate exists.
2205
2206 // Part of the job is done by atm_pcr_goal which gives us a PCR
2207 // specification which says: EITHER grab the maximum available PCR
2208 // (and perhaps a lower bound which we musn't pass), OR grab this
2209 // amount, rounding down if you have to (and perhaps a lower bound
2210 // which we musn't pass) OR grab this amount, rounding up if you
2211 // have to (and perhaps an upper bound which we musn't pass). If any
2212 // bounds ARE passed we fail. Note that rounding is only rounding to
2213 // match device limitations, we do not round down to satisfy
2214 // bandwidth availability even if this would not violate any given
2215 // lower bound.
2216
2217 // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2218 // (say) so this is not even a binary fixpoint cell rate (but this
2219 // device can do it). To avoid this sort of hassle we use a
2220 // tolerance parameter (currently fixed at 10 cps).
2221
2222 PRINTD (DBG_QOS, "TX:");
2223
2224 txtp = &qos->txtp;
2225
2226 // set up defaults for no traffic
2227 vcc.tx_rate = 0;
2228 // who knows what would actually happen if you try and send on this?
2229 vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2230 vcc.tx_pcr_bits = CLOCK_DISABLE;
2231#if 0
2232 vcc.tx_scr_bits = CLOCK_DISABLE;
2233 vcc.tx_bucket_bits = 0;
2234#endif
2235
2236 if (txtp->traffic_class != ATM_NONE) {
2237 error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2238 if (error) {
2239 PRINTD (DBG_QOS, "TX max_sdu check failed");
2240 return error;
2241 }
2242
2243 switch (txtp->traffic_class) {
2244 case ATM_UBR: {
2245 // we take "the PCR" as a rate-cap
2246 // not reserved
2247 vcc.tx_rate = 0;
2248 make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
2249 vcc.tx_xbr_bits = ABR_RATE_TYPE;
2250 break;
2251 }
2252#if 0
2253 case ATM_ABR: {
2254 // reserve min, allow up to max
2255 vcc.tx_rate = 0; // ?
2256 make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2257 vcc.tx_xbr_bits = ABR_RATE_TYPE;
2258 break;
2259 }
2260#endif
2261 case ATM_CBR: {
2262 int pcr = atm_pcr_goal (txtp);
2263 rounding r;
2264 if (!pcr) {
2265 // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2266 // should really have: once someone gets unlimited bandwidth
2267 // that no more non-UBR channels can be opened until the
2268 // unlimited one closes?? For the moment, round_down means
2269 // greedy people actually get something and not nothing
2270 r = round_down;
2271 // slight race (no locking) here so we may get -EAGAIN
2272 // later; the greedy bastards would deserve it :)
2273 PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2274 pcr = dev->tx_avail;
2275 } else if (pcr < 0) {
2276 r = round_down;
2277 pcr = -pcr;
2278 } else {
2279 r = round_up;
2280 }
2281 error = make_rate_with_tolerance (dev, pcr, r, 10,
2282 &vcc.tx_pcr_bits, &vcc.tx_rate);
2283 if (error) {
2284 PRINTD (DBG_QOS, "could not make rate from TX PCR");
2285 return error;
2286 }
2287 // not really clear what further checking is needed
2288 error = atm_pcr_check (txtp, vcc.tx_rate);
2289 if (error) {
2290 PRINTD (DBG_QOS, "TX PCR failed consistency check");
2291 return error;
2292 }
2293 vcc.tx_xbr_bits = CBR_RATE_TYPE;
2294 break;
2295 }
2296#if 0
2297 case ATM_VBR: {
2298 int pcr = atm_pcr_goal (txtp);
2299 // int scr = atm_scr_goal (txtp);
2300 int scr = pcr/2; // just for fun
2301 unsigned int mbs = 60; // just for fun
2302 rounding pr;
2303 rounding sr;
2304 unsigned int bucket;
2305 if (!pcr) {
2306 pr = round_nearest;
2307 pcr = 1<<30;
2308 } else if (pcr < 0) {
2309 pr = round_down;
2310 pcr = -pcr;
2311 } else {
2312 pr = round_up;
2313 }
2314 error = make_rate_with_tolerance (dev, pcr, pr, 10,
2315 &vcc.tx_pcr_bits, 0);
2316 if (!scr) {
2317 // see comments for PCR with CBR above
2318 sr = round_down;
2319 // slight race (no locking) here so we may get -EAGAIN
2320 // later; the greedy bastards would deserve it :)
2321 PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2322 scr = dev->tx_avail;
2323 } else if (scr < 0) {
2324 sr = round_down;
2325 scr = -scr;
2326 } else {
2327 sr = round_up;
2328 }
2329 error = make_rate_with_tolerance (dev, scr, sr, 10,
2330 &vcc.tx_scr_bits, &vcc.tx_rate);
2331 if (error) {
2332 PRINTD (DBG_QOS, "could not make rate from TX SCR");
2333 return error;
2334 }
2335 // not really clear what further checking is needed
2336 // error = atm_scr_check (txtp, vcc.tx_rate);
2337 if (error) {
2338 PRINTD (DBG_QOS, "TX SCR failed consistency check");
2339 return error;
2340 }
2341 // bucket calculations (from a piece of paper...) cell bucket
2342 // capacity must be largest integer smaller than m(p-s)/p + 1
2343 // where m = max burst size, p = pcr, s = scr
2344 bucket = mbs*(pcr-scr)/pcr;
2345 if (bucket*pcr != mbs*(pcr-scr))
2346 bucket += 1;
2347 if (bucket > BUCKET_MAX_SIZE) {
2348 PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2349 bucket, BUCKET_MAX_SIZE);
2350 bucket = BUCKET_MAX_SIZE;
2351 }
2352 vcc.tx_xbr_bits = VBR_RATE_TYPE;
2353 vcc.tx_bucket_bits = bucket;
2354 break;
2355 }
2356#endif
2357 default: {
2358 PRINTD (DBG_QOS, "unsupported TX traffic class");
2359 return -EINVAL;
2360 break;
2361 }
2362 }
2363 }
2364
2365 // RX traffic parameters
2366
2367 PRINTD (DBG_QOS, "RX:");
2368
2369 rxtp = &qos->rxtp;
2370
2371 // set up defaults for no traffic
2372 vcc.rx_rate = 0;
2373
2374 if (rxtp->traffic_class != ATM_NONE) {
2375 error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2376 if (error) {
2377 PRINTD (DBG_QOS, "RX max_sdu check failed");
2378 return error;
2379 }
2380 switch (rxtp->traffic_class) {
2381 case ATM_UBR: {
2382 // not reserved
2383 break;
2384 }
2385#if 0
2386 case ATM_ABR: {
2387 // reserve min
2388 vcc.rx_rate = 0; // ?
2389 break;
2390 }
2391#endif
2392 case ATM_CBR: {
2393 int pcr = atm_pcr_goal (rxtp);
2394 if (!pcr) {
2395 // slight race (no locking) here so we may get -EAGAIN
2396 // later; the greedy bastards would deserve it :)
2397 PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2398 pcr = dev->rx_avail;
2399 } else if (pcr < 0) {
2400 pcr = -pcr;
2401 }
2402 vcc.rx_rate = pcr;
2403 // not really clear what further checking is needed
2404 error = atm_pcr_check (rxtp, vcc.rx_rate);
2405 if (error) {
2406 PRINTD (DBG_QOS, "RX PCR failed consistency check");
2407 return error;
2408 }
2409 break;
2410 }
2411#if 0
2412 case ATM_VBR: {
2413 // int scr = atm_scr_goal (rxtp);
2414 int scr = 1<<16; // just for fun
2415 if (!scr) {
2416 // slight race (no locking) here so we may get -EAGAIN
2417 // later; the greedy bastards would deserve it :)
2418 PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2419 scr = dev->rx_avail;
2420 } else if (scr < 0) {
2421 scr = -scr;
2422 }
2423 vcc.rx_rate = scr;
2424 // not really clear what further checking is needed
2425 // error = atm_scr_check (rxtp, vcc.rx_rate);
2426 if (error) {
2427 PRINTD (DBG_QOS, "RX SCR failed consistency check");
2428 return error;
2429 }
2430 break;
2431 }
2432#endif
2433 default: {
2434 PRINTD (DBG_QOS, "unsupported RX traffic class");
2435 return -EINVAL;
2436 break;
2437 }
2438 }
2439 }
2440
2441
2442 // late abort useful for diagnostics
2443 if (vcc.aal != aal5) {
2444 PRINTD (DBG_QOS, "AAL not supported");
2445 return -EINVAL;
2446 }
2447
2448 // get space for our vcc stuff and copy parameters into it
2449 vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2450 if (!vccp) {
2451 PRINTK (KERN_ERR, "out of memory!");
2452 return -ENOMEM;
2453 }
2454 *vccp = vcc;
2455
2456 // clear error and grab cell rate resource lock
2457 error = 0;
2458 spin_lock (&dev->rate_lock);
2459
2460 if (vcc.tx_rate > dev->tx_avail) {
2461 PRINTD (DBG_QOS, "not enough TX PCR left");
2462 error = -EAGAIN;
2463 }
2464
2465 if (vcc.rx_rate > dev->rx_avail) {
2466 PRINTD (DBG_QOS, "not enough RX PCR left");
2467 error = -EAGAIN;
2468 }
2469
2470 if (!error) {
2471 // really consume cell rates
2472 dev->tx_avail -= vcc.tx_rate;
2473 dev->rx_avail -= vcc.rx_rate;
2474 PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2475 vcc.tx_rate, vcc.rx_rate);
2476 }
2477
2478 // release lock and exit on error
2479 spin_unlock (&dev->rate_lock);
2480 if (error) {
2481 PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2482 kfree (vccp);
2483 return error;
2484 }
2485
2486 // this is "immediately before allocating the connection identifier
2487 // in hardware" - so long as the next call does not fail :)
2488 set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2489
2490 // any errors here are very serious and should never occur
2491
2492 if (rxtp->traffic_class != ATM_NONE) {
2493 if (dev->rxer[channel]) {
2494 PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2495 error = -EBUSY;
2496 }
2497 if (!error)
2498 error = hrz_open_rx (dev, channel);
2499 if (error) {
2500 kfree (vccp);
2501 return error;
2502 }
2503 // this link allows RX frames through
2504 dev->rxer[channel] = atm_vcc;
2505 }
2506
2507 // success, set elements of atm_vcc
2508 atm_vcc->dev_data = (void *) vccp;
2509
2510 // indicate readiness
2511 set_bit(ATM_VF_READY,&atm_vcc->flags);
2512
2513 return 0;
2514}
2515
2516/********** close VC **********/
2517
2518static void hrz_close (struct atm_vcc * atm_vcc) {
2519 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2520 hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2521 u16 channel = vcc->channel;
2522 PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2523
2524 // indicate unreadiness
2525 clear_bit(ATM_VF_READY,&atm_vcc->flags);
2526
2527 if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2528 unsigned int i;
2529
2530 // let any TX on this channel that has started complete
2531 // no restart, just keep trying
2532 while (tx_hold (dev))
2533 ;
2534 // remove record of any tx_channel having been setup for this channel
2535 for (i = 0; i < TX_CHANS; ++i)
2536 if (dev->tx_channel_record[i] == channel) {
2537 dev->tx_channel_record[i] = -1;
2538 break;
2539 }
2540 if (dev->last_vc == channel)
2541 dev->tx_last = -1;
2542 tx_release (dev);
2543 }
2544
2545 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2546 // disable RXing - it tries quite hard
2547 hrz_close_rx (dev, channel);
2548 // forget the vcc - no more skbs will be pushed
2549 if (atm_vcc != dev->rxer[channel])
2550 PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2551 "arghhh! we're going to die!",
2552 atm_vcc, dev->rxer[channel]);
2553 dev->rxer[channel] = NULL;
2554 }
2555
2556 // atomically release our rate reservation
2557 spin_lock (&dev->rate_lock);
2558 PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2559 vcc->tx_rate, vcc->rx_rate);
2560 dev->tx_avail += vcc->tx_rate;
2561 dev->rx_avail += vcc->rx_rate;
2562 spin_unlock (&dev->rate_lock);
2563
2564 // free our structure
2565 kfree (vcc);
2566 // say the VPI/VCI is free again
2567 clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2568}
2569
2570#if 0
2571static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2572 void *optval, int optlen) {
2573 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2574 PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
2575 switch (level) {
2576 case SOL_SOCKET:
2577 switch (optname) {
2578// case SO_BCTXOPT:
2579// break;
2580// case SO_BCRXOPT:
2581// break;
2582 default:
2583 return -ENOPROTOOPT;
2584 break;
2585 };
2586 break;
2587 }
2588 return -EINVAL;
2589}
2590
2591static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2592 void *optval, int optlen) {
2593 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2594 PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
2595 switch (level) {
2596 case SOL_SOCKET:
2597 switch (optname) {
2598// case SO_BCTXOPT:
2599// break;
2600// case SO_BCRXOPT:
2601// break;
2602 default:
2603 return -ENOPROTOOPT;
2604 break;
2605 };
2606 break;
2607 }
2608 return -EINVAL;
2609}
2610#endif
2611
2612#if 0
2613static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2614 hrz_dev * dev = HRZ_DEV(atm_dev);
2615 PRINTD (DBG_FLOW, "hrz_ioctl");
2616 return -1;
2617}
2618
2619unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2620 hrz_dev * dev = HRZ_DEV(atm_dev);
2621 PRINTD (DBG_FLOW, "hrz_phy_get");
2622 return 0;
2623}
2624
2625static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2626 unsigned long addr) {
2627 hrz_dev * dev = HRZ_DEV(atm_dev);
2628 PRINTD (DBG_FLOW, "hrz_phy_put");
2629}
2630
2631static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2632 hrz_dev * dev = HRZ_DEV(vcc->dev);
2633 PRINTD (DBG_FLOW, "hrz_change_qos");
2634 return -1;
2635}
2636#endif
2637
2638/********** proc file contents **********/
2639
2640static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2641 hrz_dev * dev = HRZ_DEV(atm_dev);
2642 int left = *pos;
2643 PRINTD (DBG_FLOW, "hrz_proc_read");
2644
2645 /* more diagnostics here? */
2646
2647#if 0
2648 if (!left--) {
2649 unsigned int count = sprintf (page, "vbr buckets:");
2650 unsigned int i;
2651 for (i = 0; i < TX_CHANS; ++i)
2652 count += sprintf (page, " %u/%u",
2653 query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2654 query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2655 count += sprintf (page+count, ".\n");
2656 return count;
2657 }
2658#endif
2659
2660 if (!left--)
2661 return sprintf (page,
2662 "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2663 dev->tx_cell_count, dev->rx_cell_count,
2664 dev->hec_error_count, dev->unassigned_cell_count);
2665
2666 if (!left--)
2667 return sprintf (page,
2668 "free cell buffers: TX %hu, RX %hu+%hu.\n",
2669 rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2670 rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2671 dev->noof_spare_buffers);
2672
2673 if (!left--)
2674 return sprintf (page,
2675 "cps remaining: TX %u, RX %u\n",
2676 dev->tx_avail, dev->rx_avail);
2677
2678 return 0;
2679}
2680
2681static const struct atmdev_ops hrz_ops = {
2682 .open = hrz_open,
2683 .close = hrz_close,
2684 .send = hrz_send,
2685 .proc_read = hrz_proc_read,
2686 .owner = THIS_MODULE,
2687};
2688
2689static int __devinit hrz_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2690{
2691 hrz_dev * dev;
2692 int err = 0;
2693
2694 // adapter slot free, read resources from PCI configuration space
2695 u32 iobase = pci_resource_start (pci_dev, 0);
2696 u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2697 unsigned int irq;
2698 unsigned char lat;
2699
2700 PRINTD (DBG_FLOW, "hrz_probe");
2701
2702 if (pci_enable_device(pci_dev))
2703 return -EINVAL;
2704
2705 /* XXX DEV_LABEL is a guess */
2706 if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
2707 return -EINVAL;
2708 goto out_disable;
2709 }
2710
Om Narasimhan0c1cca12006-10-03 16:27:18 -07002711 dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002712 if (!dev) {
2713 // perhaps we should be nice: deregister all adapters and abort?
2714 PRINTD(DBG_ERR, "out of memory");
2715 err = -ENOMEM;
2716 goto out_release;
2717 }
2718
Linus Torvalds1da177e2005-04-16 15:20:36 -07002719 pci_set_drvdata(pci_dev, dev);
2720
2721 // grab IRQ and install handler - move this someplace more sensible
2722 irq = pci_dev->irq;
2723 if (request_irq(irq,
2724 interrupt_handler,
Thomas Gleixnerdace1452006-07-01 19:29:38 -07002725 IRQF_SHARED, /* irqflags guess */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002726 DEV_LABEL, /* name guess */
2727 dev)) {
2728 PRINTD(DBG_WARN, "request IRQ failed!");
2729 err = -EINVAL;
2730 goto out_free;
2731 }
2732
2733 PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2734 iobase, irq, membase);
2735
2736 dev->atm_dev = atm_dev_register(DEV_LABEL, &hrz_ops, -1, NULL);
2737 if (!(dev->atm_dev)) {
2738 PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
2739 err = -EINVAL;
2740 goto out_free_irq;
2741 }
2742
2743 PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2744 dev->atm_dev->number, dev, dev->atm_dev);
2745 dev->atm_dev->dev_data = (void *) dev;
2746 dev->pci_dev = pci_dev;
2747
2748 // enable bus master accesses
2749 pci_set_master(pci_dev);
2750
2751 // frobnicate latency (upwards, usually)
2752 pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
2753 if (pci_lat) {
2754 PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
2755 "changing", lat, pci_lat);
2756 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2757 } else if (lat < MIN_PCI_LATENCY) {
2758 PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
2759 "increasing", lat, MIN_PCI_LATENCY);
2760 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2761 }
2762
2763 dev->iobase = iobase;
2764 dev->irq = irq;
2765 dev->membase = membase;
2766
2767 dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2768 dev->rx_q_wrap = &memmap->rx_q_entries[RX_CHANS-1];
2769
2770 // these next three are performance hacks
2771 dev->last_vc = -1;
2772 dev->tx_last = -1;
2773 dev->tx_idle = 0;
2774
2775 dev->tx_regions = 0;
2776 dev->tx_bytes = 0;
2777 dev->tx_skb = NULL;
2778 dev->tx_iovec = NULL;
2779
2780 dev->tx_cell_count = 0;
2781 dev->rx_cell_count = 0;
2782 dev->hec_error_count = 0;
2783 dev->unassigned_cell_count = 0;
2784
2785 dev->noof_spare_buffers = 0;
2786
2787 {
2788 unsigned int i;
2789 for (i = 0; i < TX_CHANS; ++i)
2790 dev->tx_channel_record[i] = -1;
2791 }
2792
2793 dev->flags = 0;
2794
2795 // Allocate cell rates and remember ASIC version
2796 // Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2797 // Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2798 // Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2799
2800 if (hrz_init(dev)) {
2801 // to be really pedantic, this should be ATM_OC3c_PCR
2802 dev->tx_avail = ATM_OC3_PCR;
2803 dev->rx_avail = ATM_OC3_PCR;
2804 set_bit(ultra, &dev->flags); // NOT "|= ultra" !
2805 } else {
2806 dev->tx_avail = ((25600000/8)*26)/(27*53);
2807 dev->rx_avail = ((25600000/8)*26)/(27*53);
2808 PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2809 }
2810
2811 // rate changes spinlock
2812 spin_lock_init(&dev->rate_lock);
2813
2814 // on-board memory access spinlock; we want atomic reads and
2815 // writes to adapter memory (handles IRQ and SMP)
2816 spin_lock_init(&dev->mem_lock);
2817
2818 init_waitqueue_head(&dev->tx_queue);
2819
2820 // vpi in 0..4, vci in 6..10
2821 dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2822 dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2823
2824 init_timer(&dev->housekeeping);
2825 dev->housekeeping.function = do_housekeeping;
2826 dev->housekeeping.data = (unsigned long) dev;
2827 mod_timer(&dev->housekeeping, jiffies);
2828
2829out:
2830 return err;
2831
2832out_free_irq:
2833 free_irq(dev->irq, dev);
2834out_free:
2835 kfree(dev);
2836out_release:
2837 release_region(iobase, HRZ_IO_EXTENT);
2838out_disable:
2839 pci_disable_device(pci_dev);
2840 goto out;
2841}
2842
2843static void __devexit hrz_remove_one(struct pci_dev *pci_dev)
2844{
2845 hrz_dev *dev;
2846
2847 dev = pci_get_drvdata(pci_dev);
2848
2849 PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2850 del_timer_sync(&dev->housekeeping);
2851 hrz_reset(dev);
2852 atm_dev_deregister(dev->atm_dev);
2853 free_irq(dev->irq, dev);
2854 release_region(dev->iobase, HRZ_IO_EXTENT);
2855 kfree(dev);
2856
2857 pci_disable_device(pci_dev);
2858}
2859
2860static void __init hrz_check_args (void) {
2861#ifdef DEBUG_HORIZON
2862 PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2863#else
2864 if (debug)
2865 PRINTK (KERN_NOTICE, "no debug support in this image");
2866#endif
2867
2868 if (vpi_bits > HRZ_MAX_VPI)
2869 PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2870 vpi_bits = HRZ_MAX_VPI);
2871
2872 if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2873 PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2874 max_tx_size = TX_AAL5_LIMIT);
2875
2876 if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2877 PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2878 max_rx_size = RX_AAL5_LIMIT);
2879
2880 return;
2881}
2882
2883MODULE_AUTHOR(maintainer_string);
2884MODULE_DESCRIPTION(description_string);
2885MODULE_LICENSE("GPL");
2886module_param(debug, ushort, 0644);
2887module_param(vpi_bits, ushort, 0);
2888module_param(max_tx_size, int, 0);
2889module_param(max_rx_size, int, 0);
2890module_param(pci_lat, byte, 0);
2891MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2892MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2893MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2894MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2895MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2896
2897static struct pci_device_id hrz_pci_tbl[] = {
2898 { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
2899 0, 0, 0 },
2900 { 0, }
2901};
2902
2903MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
2904
2905static struct pci_driver hrz_driver = {
2906 .name = "horizon",
2907 .probe = hrz_probe,
2908 .remove = __devexit_p(hrz_remove_one),
2909 .id_table = hrz_pci_tbl,
2910};
2911
2912/********** module entry **********/
2913
2914static int __init hrz_module_init (void) {
2915 // sanity check - cast is needed since printk does not support %Zu
2916 if (sizeof(struct MEMMAP) != 128*1024/4) {
2917 PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).",
2918 (unsigned long) sizeof(struct MEMMAP));
2919 return -ENOMEM;
2920 }
2921
2922 show_version();
2923
2924 // check arguments
2925 hrz_check_args();
2926
2927 // get the juice
2928 return pci_register_driver(&hrz_driver);
2929}
2930
2931/********** module exit **********/
2932
2933static void __exit hrz_module_exit (void) {
2934 PRINTD (DBG_FLOW, "cleanup_module");
Tobias Klauserb45eccd2006-10-20 19:49:45 -07002935
2936 pci_unregister_driver(&hrz_driver);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002937}
2938
2939module_init(hrz_module_init);
2940module_exit(hrz_module_exit);