Satya Tangirala | a892c8d | 2020-05-14 00:37:18 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright 2019 Google LLC |
| 4 | */ |
| 5 | |
| 6 | /* |
| 7 | * Refer to Documentation/block/inline-encryption.rst for detailed explanation. |
| 8 | */ |
| 9 | |
| 10 | #define pr_fmt(fmt) "blk-crypto: " fmt |
| 11 | |
| 12 | #include <linux/bio.h> |
| 13 | #include <linux/blkdev.h> |
| 14 | #include <linux/keyslot-manager.h> |
| 15 | #include <linux/module.h> |
| 16 | #include <linux/slab.h> |
| 17 | |
| 18 | #include "blk-crypto-internal.h" |
| 19 | |
| 20 | const struct blk_crypto_mode blk_crypto_modes[] = { |
| 21 | [BLK_ENCRYPTION_MODE_AES_256_XTS] = { |
Satya Tangirala | 488f668 | 2020-05-14 00:37:20 +0000 | [diff] [blame] | 22 | .cipher_str = "xts(aes)", |
Satya Tangirala | a892c8d | 2020-05-14 00:37:18 +0000 | [diff] [blame] | 23 | .keysize = 64, |
| 24 | .ivsize = 16, |
| 25 | }, |
| 26 | [BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV] = { |
Satya Tangirala | 488f668 | 2020-05-14 00:37:20 +0000 | [diff] [blame] | 27 | .cipher_str = "essiv(cbc(aes),sha256)", |
Satya Tangirala | a892c8d | 2020-05-14 00:37:18 +0000 | [diff] [blame] | 28 | .keysize = 16, |
| 29 | .ivsize = 16, |
| 30 | }, |
| 31 | [BLK_ENCRYPTION_MODE_ADIANTUM] = { |
Satya Tangirala | 488f668 | 2020-05-14 00:37:20 +0000 | [diff] [blame] | 32 | .cipher_str = "adiantum(xchacha12,aes)", |
Satya Tangirala | a892c8d | 2020-05-14 00:37:18 +0000 | [diff] [blame] | 33 | .keysize = 32, |
| 34 | .ivsize = 32, |
| 35 | }, |
| 36 | }; |
| 37 | |
| 38 | /* |
| 39 | * This number needs to be at least (the number of threads doing IO |
| 40 | * concurrently) * (maximum recursive depth of a bio), so that we don't |
| 41 | * deadlock on crypt_ctx allocations. The default is chosen to be the same |
| 42 | * as the default number of post read contexts in both EXT4 and F2FS. |
| 43 | */ |
| 44 | static int num_prealloc_crypt_ctxs = 128; |
| 45 | |
| 46 | module_param(num_prealloc_crypt_ctxs, int, 0444); |
| 47 | MODULE_PARM_DESC(num_prealloc_crypt_ctxs, |
| 48 | "Number of bio crypto contexts to preallocate"); |
| 49 | |
| 50 | static struct kmem_cache *bio_crypt_ctx_cache; |
| 51 | static mempool_t *bio_crypt_ctx_pool; |
| 52 | |
| 53 | static int __init bio_crypt_ctx_init(void) |
| 54 | { |
| 55 | size_t i; |
| 56 | |
| 57 | bio_crypt_ctx_cache = KMEM_CACHE(bio_crypt_ctx, 0); |
| 58 | if (!bio_crypt_ctx_cache) |
| 59 | goto out_no_mem; |
| 60 | |
| 61 | bio_crypt_ctx_pool = mempool_create_slab_pool(num_prealloc_crypt_ctxs, |
| 62 | bio_crypt_ctx_cache); |
| 63 | if (!bio_crypt_ctx_pool) |
| 64 | goto out_no_mem; |
| 65 | |
| 66 | /* This is assumed in various places. */ |
| 67 | BUILD_BUG_ON(BLK_ENCRYPTION_MODE_INVALID != 0); |
| 68 | |
| 69 | /* Sanity check that no algorithm exceeds the defined limits. */ |
| 70 | for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) { |
| 71 | BUG_ON(blk_crypto_modes[i].keysize > BLK_CRYPTO_MAX_KEY_SIZE); |
| 72 | BUG_ON(blk_crypto_modes[i].ivsize > BLK_CRYPTO_MAX_IV_SIZE); |
| 73 | } |
| 74 | |
| 75 | return 0; |
| 76 | out_no_mem: |
| 77 | panic("Failed to allocate mem for bio crypt ctxs\n"); |
| 78 | } |
| 79 | subsys_initcall(bio_crypt_ctx_init); |
| 80 | |
| 81 | void bio_crypt_set_ctx(struct bio *bio, const struct blk_crypto_key *key, |
| 82 | const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], gfp_t gfp_mask) |
| 83 | { |
| 84 | struct bio_crypt_ctx *bc = mempool_alloc(bio_crypt_ctx_pool, gfp_mask); |
| 85 | |
| 86 | bc->bc_key = key; |
| 87 | memcpy(bc->bc_dun, dun, sizeof(bc->bc_dun)); |
| 88 | |
| 89 | bio->bi_crypt_context = bc; |
| 90 | } |
| 91 | |
| 92 | void __bio_crypt_free_ctx(struct bio *bio) |
| 93 | { |
| 94 | mempool_free(bio->bi_crypt_context, bio_crypt_ctx_pool); |
| 95 | bio->bi_crypt_context = NULL; |
| 96 | } |
| 97 | |
| 98 | void __bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask) |
| 99 | { |
| 100 | dst->bi_crypt_context = mempool_alloc(bio_crypt_ctx_pool, gfp_mask); |
| 101 | *dst->bi_crypt_context = *src->bi_crypt_context; |
| 102 | } |
| 103 | EXPORT_SYMBOL_GPL(__bio_crypt_clone); |
| 104 | |
| 105 | /* Increments @dun by @inc, treating @dun as a multi-limb integer. */ |
| 106 | void bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], |
| 107 | unsigned int inc) |
| 108 | { |
| 109 | int i; |
| 110 | |
| 111 | for (i = 0; inc && i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) { |
| 112 | dun[i] += inc; |
| 113 | /* |
| 114 | * If the addition in this limb overflowed, then we need to |
| 115 | * carry 1 into the next limb. Else the carry is 0. |
| 116 | */ |
| 117 | if (dun[i] < inc) |
| 118 | inc = 1; |
| 119 | else |
| 120 | inc = 0; |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | void __bio_crypt_advance(struct bio *bio, unsigned int bytes) |
| 125 | { |
| 126 | struct bio_crypt_ctx *bc = bio->bi_crypt_context; |
| 127 | |
| 128 | bio_crypt_dun_increment(bc->bc_dun, |
| 129 | bytes >> bc->bc_key->data_unit_size_bits); |
| 130 | } |
| 131 | |
| 132 | /* |
| 133 | * Returns true if @bc->bc_dun plus @bytes converted to data units is equal to |
| 134 | * @next_dun, treating the DUNs as multi-limb integers. |
| 135 | */ |
| 136 | bool bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx *bc, |
| 137 | unsigned int bytes, |
| 138 | const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]) |
| 139 | { |
| 140 | int i; |
| 141 | unsigned int carry = bytes >> bc->bc_key->data_unit_size_bits; |
| 142 | |
| 143 | for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) { |
| 144 | if (bc->bc_dun[i] + carry != next_dun[i]) |
| 145 | return false; |
| 146 | /* |
| 147 | * If the addition in this limb overflowed, then we need to |
| 148 | * carry 1 into the next limb. Else the carry is 0. |
| 149 | */ |
| 150 | if ((bc->bc_dun[i] + carry) < carry) |
| 151 | carry = 1; |
| 152 | else |
| 153 | carry = 0; |
| 154 | } |
| 155 | |
| 156 | /* If the DUN wrapped through 0, don't treat it as contiguous. */ |
| 157 | return carry == 0; |
| 158 | } |
| 159 | |
| 160 | /* |
| 161 | * Checks that two bio crypt contexts are compatible - i.e. that |
| 162 | * they are mergeable except for data_unit_num continuity. |
| 163 | */ |
| 164 | static bool bio_crypt_ctx_compatible(struct bio_crypt_ctx *bc1, |
| 165 | struct bio_crypt_ctx *bc2) |
| 166 | { |
| 167 | if (!bc1) |
| 168 | return !bc2; |
| 169 | |
| 170 | return bc2 && bc1->bc_key == bc2->bc_key; |
| 171 | } |
| 172 | |
| 173 | bool bio_crypt_rq_ctx_compatible(struct request *rq, struct bio *bio) |
| 174 | { |
| 175 | return bio_crypt_ctx_compatible(rq->crypt_ctx, bio->bi_crypt_context); |
| 176 | } |
| 177 | |
| 178 | /* |
| 179 | * Checks that two bio crypt contexts are compatible, and also |
| 180 | * that their data_unit_nums are continuous (and can hence be merged) |
| 181 | * in the order @bc1 followed by @bc2. |
| 182 | */ |
| 183 | bool bio_crypt_ctx_mergeable(struct bio_crypt_ctx *bc1, unsigned int bc1_bytes, |
| 184 | struct bio_crypt_ctx *bc2) |
| 185 | { |
| 186 | if (!bio_crypt_ctx_compatible(bc1, bc2)) |
| 187 | return false; |
| 188 | |
| 189 | return !bc1 || bio_crypt_dun_is_contiguous(bc1, bc1_bytes, bc2->bc_dun); |
| 190 | } |
| 191 | |
| 192 | /* Check that all I/O segments are data unit aligned. */ |
| 193 | static bool bio_crypt_check_alignment(struct bio *bio) |
| 194 | { |
| 195 | const unsigned int data_unit_size = |
| 196 | bio->bi_crypt_context->bc_key->crypto_cfg.data_unit_size; |
| 197 | struct bvec_iter iter; |
| 198 | struct bio_vec bv; |
| 199 | |
| 200 | bio_for_each_segment(bv, bio, iter) { |
| 201 | if (!IS_ALIGNED(bv.bv_len | bv.bv_offset, data_unit_size)) |
| 202 | return false; |
| 203 | } |
| 204 | |
| 205 | return true; |
| 206 | } |
| 207 | |
| 208 | blk_status_t __blk_crypto_init_request(struct request *rq) |
| 209 | { |
| 210 | return blk_ksm_get_slot_for_key(rq->q->ksm, rq->crypt_ctx->bc_key, |
| 211 | &rq->crypt_keyslot); |
| 212 | } |
| 213 | |
| 214 | /** |
| 215 | * __blk_crypto_free_request - Uninitialize the crypto fields of a request. |
| 216 | * |
| 217 | * @rq: The request whose crypto fields to uninitialize. |
| 218 | * |
| 219 | * Completely uninitializes the crypto fields of a request. If a keyslot has |
| 220 | * been programmed into some inline encryption hardware, that keyslot is |
| 221 | * released. The rq->crypt_ctx is also freed. |
| 222 | */ |
| 223 | void __blk_crypto_free_request(struct request *rq) |
| 224 | { |
| 225 | blk_ksm_put_slot(rq->crypt_keyslot); |
| 226 | mempool_free(rq->crypt_ctx, bio_crypt_ctx_pool); |
| 227 | blk_crypto_rq_set_defaults(rq); |
| 228 | } |
| 229 | |
| 230 | /** |
| 231 | * __blk_crypto_bio_prep - Prepare bio for inline encryption |
| 232 | * |
| 233 | * @bio_ptr: pointer to original bio pointer |
| 234 | * |
Satya Tangirala | 488f668 | 2020-05-14 00:37:20 +0000 | [diff] [blame] | 235 | * If the bio crypt context provided for the bio is supported by the underlying |
| 236 | * device's inline encryption hardware, do nothing. |
| 237 | * |
| 238 | * Otherwise, try to perform en/decryption for this bio by falling back to the |
| 239 | * kernel crypto API. When the crypto API fallback is used for encryption, |
| 240 | * blk-crypto may choose to split the bio into 2 - the first one that will |
| 241 | * continue to be processed and the second one that will be resubmitted via |
| 242 | * generic_make_request. A bounce bio will be allocated to encrypt the contents |
| 243 | * of the aforementioned "first one", and *bio_ptr will be updated to this |
| 244 | * bounce bio. |
Satya Tangirala | a892c8d | 2020-05-14 00:37:18 +0000 | [diff] [blame] | 245 | * |
| 246 | * Caller must ensure bio has bio_crypt_ctx. |
| 247 | * |
| 248 | * Return: true on success; false on error (and bio->bi_status will be set |
| 249 | * appropriately, and bio_endio() will have been called so bio |
| 250 | * submission should abort). |
| 251 | */ |
| 252 | bool __blk_crypto_bio_prep(struct bio **bio_ptr) |
| 253 | { |
| 254 | struct bio *bio = *bio_ptr; |
| 255 | const struct blk_crypto_key *bc_key = bio->bi_crypt_context->bc_key; |
Satya Tangirala | a892c8d | 2020-05-14 00:37:18 +0000 | [diff] [blame] | 256 | |
| 257 | /* Error if bio has no data. */ |
Satya Tangirala | 488f668 | 2020-05-14 00:37:20 +0000 | [diff] [blame] | 258 | if (WARN_ON_ONCE(!bio_has_data(bio))) { |
| 259 | bio->bi_status = BLK_STS_IOERR; |
Satya Tangirala | a892c8d | 2020-05-14 00:37:18 +0000 | [diff] [blame] | 260 | goto fail; |
| 261 | } |
| 262 | |
Satya Tangirala | 488f668 | 2020-05-14 00:37:20 +0000 | [diff] [blame] | 263 | if (!bio_crypt_check_alignment(bio)) { |
| 264 | bio->bi_status = BLK_STS_IOERR; |
| 265 | goto fail; |
| 266 | } |
| 267 | |
| 268 | /* |
| 269 | * Success if device supports the encryption context, or if we succeeded |
| 270 | * in falling back to the crypto API. |
| 271 | */ |
| 272 | if (blk_ksm_crypto_cfg_supported(bio->bi_disk->queue->ksm, |
| 273 | &bc_key->crypto_cfg)) |
| 274 | return true; |
| 275 | |
| 276 | if (blk_crypto_fallback_bio_prep(bio_ptr)) |
| 277 | return true; |
Satya Tangirala | a892c8d | 2020-05-14 00:37:18 +0000 | [diff] [blame] | 278 | fail: |
Satya Tangirala | a892c8d | 2020-05-14 00:37:18 +0000 | [diff] [blame] | 279 | bio_endio(*bio_ptr); |
| 280 | return false; |
| 281 | } |
| 282 | |
| 283 | /** |
| 284 | * __blk_crypto_rq_bio_prep - Prepare a request's crypt_ctx when its first bio |
| 285 | * is inserted |
| 286 | * |
| 287 | * @rq: The request to prepare |
| 288 | * @bio: The first bio being inserted into the request |
| 289 | * @gfp_mask: gfp mask |
| 290 | */ |
| 291 | void __blk_crypto_rq_bio_prep(struct request *rq, struct bio *bio, |
| 292 | gfp_t gfp_mask) |
| 293 | { |
| 294 | if (!rq->crypt_ctx) |
| 295 | rq->crypt_ctx = mempool_alloc(bio_crypt_ctx_pool, gfp_mask); |
| 296 | *rq->crypt_ctx = *bio->bi_crypt_context; |
| 297 | } |
| 298 | |
| 299 | /** |
| 300 | * blk_crypto_init_key() - Prepare a key for use with blk-crypto |
| 301 | * @blk_key: Pointer to the blk_crypto_key to initialize. |
| 302 | * @raw_key: Pointer to the raw key. Must be the correct length for the chosen |
| 303 | * @crypto_mode; see blk_crypto_modes[]. |
| 304 | * @crypto_mode: identifier for the encryption algorithm to use |
| 305 | * @dun_bytes: number of bytes that will be used to specify the DUN when this |
| 306 | * key is used |
| 307 | * @data_unit_size: the data unit size to use for en/decryption |
| 308 | * |
| 309 | * Return: 0 on success, -errno on failure. The caller is responsible for |
| 310 | * zeroizing both blk_key and raw_key when done with them. |
| 311 | */ |
| 312 | int blk_crypto_init_key(struct blk_crypto_key *blk_key, const u8 *raw_key, |
| 313 | enum blk_crypto_mode_num crypto_mode, |
| 314 | unsigned int dun_bytes, |
| 315 | unsigned int data_unit_size) |
| 316 | { |
| 317 | const struct blk_crypto_mode *mode; |
| 318 | |
| 319 | memset(blk_key, 0, sizeof(*blk_key)); |
| 320 | |
| 321 | if (crypto_mode >= ARRAY_SIZE(blk_crypto_modes)) |
| 322 | return -EINVAL; |
| 323 | |
| 324 | mode = &blk_crypto_modes[crypto_mode]; |
| 325 | if (mode->keysize == 0) |
| 326 | return -EINVAL; |
| 327 | |
| 328 | if (dun_bytes == 0 || dun_bytes > BLK_CRYPTO_MAX_IV_SIZE) |
| 329 | return -EINVAL; |
| 330 | |
| 331 | if (!is_power_of_2(data_unit_size)) |
| 332 | return -EINVAL; |
| 333 | |
| 334 | blk_key->crypto_cfg.crypto_mode = crypto_mode; |
| 335 | blk_key->crypto_cfg.dun_bytes = dun_bytes; |
| 336 | blk_key->crypto_cfg.data_unit_size = data_unit_size; |
| 337 | blk_key->data_unit_size_bits = ilog2(data_unit_size); |
| 338 | blk_key->size = mode->keysize; |
| 339 | memcpy(blk_key->raw, raw_key, mode->keysize); |
| 340 | |
| 341 | return 0; |
| 342 | } |
| 343 | |
Satya Tangirala | 488f668 | 2020-05-14 00:37:20 +0000 | [diff] [blame] | 344 | /* |
| 345 | * Check if bios with @cfg can be en/decrypted by blk-crypto (i.e. either the |
| 346 | * request queue it's submitted to supports inline crypto, or the |
| 347 | * blk-crypto-fallback is enabled and supports the cfg). |
| 348 | */ |
Satya Tangirala | a892c8d | 2020-05-14 00:37:18 +0000 | [diff] [blame] | 349 | bool blk_crypto_config_supported(struct request_queue *q, |
| 350 | const struct blk_crypto_config *cfg) |
| 351 | { |
Satya Tangirala | 488f668 | 2020-05-14 00:37:20 +0000 | [diff] [blame] | 352 | return IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) || |
| 353 | blk_ksm_crypto_cfg_supported(q->ksm, cfg); |
Satya Tangirala | a892c8d | 2020-05-14 00:37:18 +0000 | [diff] [blame] | 354 | } |
| 355 | |
| 356 | /** |
| 357 | * blk_crypto_start_using_key() - Start using a blk_crypto_key on a device |
| 358 | * @key: A key to use on the device |
| 359 | * @q: the request queue for the device |
| 360 | * |
Satya Tangirala | 488f668 | 2020-05-14 00:37:20 +0000 | [diff] [blame] | 361 | * Upper layers must call this function to ensure that either the hardware |
| 362 | * supports the key's crypto settings, or the crypto API fallback has transforms |
| 363 | * for the needed mode allocated and ready to go. This function may allocate |
| 364 | * an skcipher, and *should not* be called from the data path, since that might |
| 365 | * cause a deadlock |
Satya Tangirala | a892c8d | 2020-05-14 00:37:18 +0000 | [diff] [blame] | 366 | * |
Satya Tangirala | 488f668 | 2020-05-14 00:37:20 +0000 | [diff] [blame] | 367 | * Return: 0 on success; -ENOPKG if the hardware doesn't support the key and |
| 368 | * blk-crypto-fallback is either disabled or the needed algorithm |
| 369 | * is disabled in the crypto API; or another -errno code. |
Satya Tangirala | a892c8d | 2020-05-14 00:37:18 +0000 | [diff] [blame] | 370 | */ |
| 371 | int blk_crypto_start_using_key(const struct blk_crypto_key *key, |
| 372 | struct request_queue *q) |
| 373 | { |
| 374 | if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg)) |
| 375 | return 0; |
Satya Tangirala | 488f668 | 2020-05-14 00:37:20 +0000 | [diff] [blame] | 376 | return blk_crypto_fallback_start_using_mode(key->crypto_cfg.crypto_mode); |
Satya Tangirala | a892c8d | 2020-05-14 00:37:18 +0000 | [diff] [blame] | 377 | } |
| 378 | |
| 379 | /** |
| 380 | * blk_crypto_evict_key() - Evict a key from any inline encryption hardware |
| 381 | * it may have been programmed into |
| 382 | * @q: The request queue who's associated inline encryption hardware this key |
| 383 | * might have been programmed into |
| 384 | * @key: The key to evict |
| 385 | * |
| 386 | * Upper layers (filesystems) must call this function to ensure that a key is |
| 387 | * evicted from any hardware that it might have been programmed into. The key |
| 388 | * must not be in use by any in-flight IO when this function is called. |
| 389 | * |
| 390 | * Return: 0 on success or if key is not present in the q's ksm, -err on error. |
| 391 | */ |
| 392 | int blk_crypto_evict_key(struct request_queue *q, |
| 393 | const struct blk_crypto_key *key) |
| 394 | { |
| 395 | if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg)) |
| 396 | return blk_ksm_evict_key(q->ksm, key); |
| 397 | |
Satya Tangirala | 488f668 | 2020-05-14 00:37:20 +0000 | [diff] [blame] | 398 | /* |
| 399 | * If the request queue's associated inline encryption hardware didn't |
| 400 | * have support for the key, then the key might have been programmed |
| 401 | * into the fallback keyslot manager, so try to evict from there. |
| 402 | */ |
| 403 | return blk_crypto_fallback_evict_key(key); |
Satya Tangirala | a892c8d | 2020-05-14 00:37:18 +0000 | [diff] [blame] | 404 | } |