blob: 865570fe0d39dd2e5a5300041ee6f8bf32b8f6a9 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
Linus Torvalds1da177e2005-04-16 15:20:36 -070021#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/percpu.h>
26#include <linux/slab.h>
27#include <linux/smp_lock.h>
Randy Dunlap16f7e0f2006-01-11 12:17:46 -080028#include <linux/capability.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070029#include <linux/blkdev.h>
30#include <linux/file.h>
31#include <linux/quotaops.h>
32#include <linux/highmem.h>
33#include <linux/module.h>
34#include <linux/writeback.h>
35#include <linux/hash.h>
36#include <linux/suspend.h>
37#include <linux/buffer_head.h>
38#include <linux/bio.h>
39#include <linux/notifier.h>
40#include <linux/cpu.h>
41#include <linux/bitops.h>
42#include <linux/mpage.h>
Ingo Molnarfb1c8f92005-09-10 00:25:56 -070043#include <linux/bit_spinlock.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070044
45static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46static void invalidate_bh_lrus(void);
47
48#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50inline void
51init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52{
53 bh->b_end_io = handler;
54 bh->b_private = private;
55}
56
57static int sync_buffer(void *word)
58{
59 struct block_device *bd;
60 struct buffer_head *bh
61 = container_of(word, struct buffer_head, b_state);
62
63 smp_mb();
64 bd = bh->b_bdev;
65 if (bd)
66 blk_run_address_space(bd->bd_inode->i_mapping);
67 io_schedule();
68 return 0;
69}
70
71void fastcall __lock_buffer(struct buffer_head *bh)
72{
73 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74 TASK_UNINTERRUPTIBLE);
75}
76EXPORT_SYMBOL(__lock_buffer);
77
78void fastcall unlock_buffer(struct buffer_head *bh)
79{
80 clear_buffer_locked(bh);
81 smp_mb__after_clear_bit();
82 wake_up_bit(&bh->b_state, BH_Lock);
83}
84
85/*
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
89 */
90void __wait_on_buffer(struct buffer_head * bh)
91{
92 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93}
94
95static void
96__clear_page_buffers(struct page *page)
97{
98 ClearPagePrivate(page);
Hugh Dickins4c21e2f2005-10-29 18:16:40 -070099 set_page_private(page, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700100 page_cache_release(page);
101}
102
103static void buffer_io_error(struct buffer_head *bh)
104{
105 char b[BDEVNAME_SIZE];
106
107 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108 bdevname(bh->b_bdev, b),
109 (unsigned long long)bh->b_blocknr);
110}
111
112/*
113 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
114 * unlock the buffer. This is what ll_rw_block uses too.
115 */
116void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
117{
118 if (uptodate) {
119 set_buffer_uptodate(bh);
120 } else {
121 /* This happens, due to failed READA attempts. */
122 clear_buffer_uptodate(bh);
123 }
124 unlock_buffer(bh);
125 put_bh(bh);
126}
127
128void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
129{
130 char b[BDEVNAME_SIZE];
131
132 if (uptodate) {
133 set_buffer_uptodate(bh);
134 } else {
135 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
136 buffer_io_error(bh);
137 printk(KERN_WARNING "lost page write due to "
138 "I/O error on %s\n",
139 bdevname(bh->b_bdev, b));
140 }
141 set_buffer_write_io_error(bh);
142 clear_buffer_uptodate(bh);
143 }
144 unlock_buffer(bh);
145 put_bh(bh);
146}
147
148/*
149 * Write out and wait upon all the dirty data associated with a block
150 * device via its mapping. Does not take the superblock lock.
151 */
152int sync_blockdev(struct block_device *bdev)
153{
154 int ret = 0;
155
OGAWA Hirofumi28fd1292006-01-08 01:02:14 -0800156 if (bdev)
157 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700158 return ret;
159}
160EXPORT_SYMBOL(sync_blockdev);
161
Linus Torvalds1da177e2005-04-16 15:20:36 -0700162/*
163 * Write out and wait upon all dirty data associated with this
164 * device. Filesystem data as well as the underlying block
165 * device. Takes the superblock lock.
166 */
167int fsync_bdev(struct block_device *bdev)
168{
169 struct super_block *sb = get_super(bdev);
170 if (sb) {
171 int res = fsync_super(sb);
172 drop_super(sb);
173 return res;
174 }
175 return sync_blockdev(bdev);
176}
177
178/**
179 * freeze_bdev -- lock a filesystem and force it into a consistent state
180 * @bdev: blockdevice to lock
181 *
Arjan van de Venc039e312006-03-23 03:00:28 -0800182 * This takes the block device bd_mount_mutex to make sure no new mounts
Linus Torvalds1da177e2005-04-16 15:20:36 -0700183 * happen on bdev until thaw_bdev() is called.
184 * If a superblock is found on this device, we take the s_umount semaphore
185 * on it to make sure nobody unmounts until the snapshot creation is done.
186 */
187struct super_block *freeze_bdev(struct block_device *bdev)
188{
189 struct super_block *sb;
190
Arjan van de Venc039e312006-03-23 03:00:28 -0800191 mutex_lock(&bdev->bd_mount_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700192 sb = get_super(bdev);
193 if (sb && !(sb->s_flags & MS_RDONLY)) {
194 sb->s_frozen = SB_FREEZE_WRITE;
akpm@osdl.orgd59dd462005-05-01 08:58:47 -0700195 smp_wmb();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700196
OGAWA Hirofumid25b9a12006-03-25 03:07:44 -0800197 __fsync_super(sb);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700198
199 sb->s_frozen = SB_FREEZE_TRANS;
akpm@osdl.orgd59dd462005-05-01 08:58:47 -0700200 smp_wmb();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700201
202 sync_blockdev(sb->s_bdev);
203
204 if (sb->s_op->write_super_lockfs)
205 sb->s_op->write_super_lockfs(sb);
206 }
207
208 sync_blockdev(bdev);
209 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
210}
211EXPORT_SYMBOL(freeze_bdev);
212
213/**
214 * thaw_bdev -- unlock filesystem
215 * @bdev: blockdevice to unlock
216 * @sb: associated superblock
217 *
218 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
219 */
220void thaw_bdev(struct block_device *bdev, struct super_block *sb)
221{
222 if (sb) {
223 BUG_ON(sb->s_bdev != bdev);
224
225 if (sb->s_op->unlockfs)
226 sb->s_op->unlockfs(sb);
227 sb->s_frozen = SB_UNFROZEN;
akpm@osdl.orgd59dd462005-05-01 08:58:47 -0700228 smp_wmb();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700229 wake_up(&sb->s_wait_unfrozen);
230 drop_super(sb);
231 }
232
Arjan van de Venc039e312006-03-23 03:00:28 -0800233 mutex_unlock(&bdev->bd_mount_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700234}
235EXPORT_SYMBOL(thaw_bdev);
236
237/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700238 * Various filesystems appear to want __find_get_block to be non-blocking.
239 * But it's the page lock which protects the buffers. To get around this,
240 * we get exclusion from try_to_free_buffers with the blockdev mapping's
241 * private_lock.
242 *
243 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
244 * may be quite high. This code could TryLock the page, and if that
245 * succeeds, there is no need to take private_lock. (But if
246 * private_lock is contended then so is mapping->tree_lock).
247 */
248static struct buffer_head *
Coywolf Qi Hunt385fd4c2005-11-07 00:59:39 -0800249__find_get_block_slow(struct block_device *bdev, sector_t block)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700250{
251 struct inode *bd_inode = bdev->bd_inode;
252 struct address_space *bd_mapping = bd_inode->i_mapping;
253 struct buffer_head *ret = NULL;
254 pgoff_t index;
255 struct buffer_head *bh;
256 struct buffer_head *head;
257 struct page *page;
258 int all_mapped = 1;
259
260 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
261 page = find_get_page(bd_mapping, index);
262 if (!page)
263 goto out;
264
265 spin_lock(&bd_mapping->private_lock);
266 if (!page_has_buffers(page))
267 goto out_unlock;
268 head = page_buffers(page);
269 bh = head;
270 do {
271 if (bh->b_blocknr == block) {
272 ret = bh;
273 get_bh(bh);
274 goto out_unlock;
275 }
276 if (!buffer_mapped(bh))
277 all_mapped = 0;
278 bh = bh->b_this_page;
279 } while (bh != head);
280
281 /* we might be here because some of the buffers on this page are
282 * not mapped. This is due to various races between
283 * file io on the block device and getblk. It gets dealt with
284 * elsewhere, don't buffer_error if we had some unmapped buffers
285 */
286 if (all_mapped) {
287 printk("__find_get_block_slow() failed. "
288 "block=%llu, b_blocknr=%llu\n",
Badari Pulavarty205f87f2006-03-26 01:38:00 -0800289 (unsigned long long)block,
290 (unsigned long long)bh->b_blocknr);
291 printk("b_state=0x%08lx, b_size=%zu\n",
292 bh->b_state, bh->b_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700293 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
294 }
295out_unlock:
296 spin_unlock(&bd_mapping->private_lock);
297 page_cache_release(page);
298out:
299 return ret;
300}
301
302/* If invalidate_buffers() will trash dirty buffers, it means some kind
303 of fs corruption is going on. Trashing dirty data always imply losing
304 information that was supposed to be just stored on the physical layer
305 by the user.
306
307 Thus invalidate_buffers in general usage is not allwowed to trash
308 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
309 be preserved. These buffers are simply skipped.
310
311 We also skip buffers which are still in use. For example this can
312 happen if a userspace program is reading the block device.
313
314 NOTE: In the case where the user removed a removable-media-disk even if
315 there's still dirty data not synced on disk (due a bug in the device driver
316 or due an error of the user), by not destroying the dirty buffers we could
317 generate corruption also on the next media inserted, thus a parameter is
318 necessary to handle this case in the most safe way possible (trying
319 to not corrupt also the new disk inserted with the data belonging to
320 the old now corrupted disk). Also for the ramdisk the natural thing
321 to do in order to release the ramdisk memory is to destroy dirty buffers.
322
323 These are two special cases. Normal usage imply the device driver
324 to issue a sync on the device (without waiting I/O completion) and
325 then an invalidate_buffers call that doesn't trash dirty buffers.
326
327 For handling cache coherency with the blkdev pagecache the 'update' case
328 is been introduced. It is needed to re-read from disk any pinned
329 buffer. NOTE: re-reading from disk is destructive so we can do it only
330 when we assume nobody is changing the buffercache under our I/O and when
331 we think the disk contains more recent information than the buffercache.
332 The update == 1 pass marks the buffers we need to update, the update == 2
333 pass does the actual I/O. */
334void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
335{
Andrew Morton0e1dfc62006-07-30 03:03:28 -0700336 struct address_space *mapping = bdev->bd_inode->i_mapping;
337
338 if (mapping->nrpages == 0)
339 return;
340
Linus Torvalds1da177e2005-04-16 15:20:36 -0700341 invalidate_bh_lrus();
342 /*
343 * FIXME: what about destroy_dirty_buffers?
344 * We really want to use invalidate_inode_pages2() for
345 * that, but not until that's cleaned up.
346 */
Andrew Morton0e1dfc62006-07-30 03:03:28 -0700347 invalidate_inode_pages(mapping);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700348}
349
350/*
351 * Kick pdflush then try to free up some ZONE_NORMAL memory.
352 */
353static void free_more_memory(void)
354{
355 struct zone **zones;
356 pg_data_t *pgdat;
357
Pekka J Enberg687a21c2005-06-28 20:44:55 -0700358 wakeup_pdflush(1024);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700359 yield();
360
KAMEZAWA Hiroyukiec936fc2006-03-27 01:15:59 -0800361 for_each_online_pgdat(pgdat) {
Al Viroaf4ca452005-10-21 02:55:38 -0400362 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700363 if (*zones)
Darren Hart1ad539b2005-06-21 17:14:53 -0700364 try_to_free_pages(zones, GFP_NOFS);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700365 }
366}
367
368/*
369 * I/O completion handler for block_read_full_page() - pages
370 * which come unlocked at the end of I/O.
371 */
372static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
373{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700374 unsigned long flags;
Nick Piggina3972202005-07-07 17:56:56 -0700375 struct buffer_head *first;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700376 struct buffer_head *tmp;
377 struct page *page;
378 int page_uptodate = 1;
379
380 BUG_ON(!buffer_async_read(bh));
381
382 page = bh->b_page;
383 if (uptodate) {
384 set_buffer_uptodate(bh);
385 } else {
386 clear_buffer_uptodate(bh);
387 if (printk_ratelimit())
388 buffer_io_error(bh);
389 SetPageError(page);
390 }
391
392 /*
393 * Be _very_ careful from here on. Bad things can happen if
394 * two buffer heads end IO at almost the same time and both
395 * decide that the page is now completely done.
396 */
Nick Piggina3972202005-07-07 17:56:56 -0700397 first = page_buffers(page);
398 local_irq_save(flags);
399 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700400 clear_buffer_async_read(bh);
401 unlock_buffer(bh);
402 tmp = bh;
403 do {
404 if (!buffer_uptodate(tmp))
405 page_uptodate = 0;
406 if (buffer_async_read(tmp)) {
407 BUG_ON(!buffer_locked(tmp));
408 goto still_busy;
409 }
410 tmp = tmp->b_this_page;
411 } while (tmp != bh);
Nick Piggina3972202005-07-07 17:56:56 -0700412 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
413 local_irq_restore(flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700414
415 /*
416 * If none of the buffers had errors and they are all
417 * uptodate then we can set the page uptodate.
418 */
419 if (page_uptodate && !PageError(page))
420 SetPageUptodate(page);
421 unlock_page(page);
422 return;
423
424still_busy:
Nick Piggina3972202005-07-07 17:56:56 -0700425 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
426 local_irq_restore(flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700427 return;
428}
429
430/*
431 * Completion handler for block_write_full_page() - pages which are unlocked
432 * during I/O, and which have PageWriteback cleared upon I/O completion.
433 */
Adrian Bunkb6cd0b72006-06-27 02:53:54 -0700434static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700435{
436 char b[BDEVNAME_SIZE];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700437 unsigned long flags;
Nick Piggina3972202005-07-07 17:56:56 -0700438 struct buffer_head *first;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700439 struct buffer_head *tmp;
440 struct page *page;
441
442 BUG_ON(!buffer_async_write(bh));
443
444 page = bh->b_page;
445 if (uptodate) {
446 set_buffer_uptodate(bh);
447 } else {
448 if (printk_ratelimit()) {
449 buffer_io_error(bh);
450 printk(KERN_WARNING "lost page write due to "
451 "I/O error on %s\n",
452 bdevname(bh->b_bdev, b));
453 }
454 set_bit(AS_EIO, &page->mapping->flags);
Jan Kara58ff4072006-10-17 00:10:19 -0700455 set_buffer_write_io_error(bh);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700456 clear_buffer_uptodate(bh);
457 SetPageError(page);
458 }
459
Nick Piggina3972202005-07-07 17:56:56 -0700460 first = page_buffers(page);
461 local_irq_save(flags);
462 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
463
Linus Torvalds1da177e2005-04-16 15:20:36 -0700464 clear_buffer_async_write(bh);
465 unlock_buffer(bh);
466 tmp = bh->b_this_page;
467 while (tmp != bh) {
468 if (buffer_async_write(tmp)) {
469 BUG_ON(!buffer_locked(tmp));
470 goto still_busy;
471 }
472 tmp = tmp->b_this_page;
473 }
Nick Piggina3972202005-07-07 17:56:56 -0700474 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
475 local_irq_restore(flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700476 end_page_writeback(page);
477 return;
478
479still_busy:
Nick Piggina3972202005-07-07 17:56:56 -0700480 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
481 local_irq_restore(flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700482 return;
483}
484
485/*
486 * If a page's buffers are under async readin (end_buffer_async_read
487 * completion) then there is a possibility that another thread of
488 * control could lock one of the buffers after it has completed
489 * but while some of the other buffers have not completed. This
490 * locked buffer would confuse end_buffer_async_read() into not unlocking
491 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
492 * that this buffer is not under async I/O.
493 *
494 * The page comes unlocked when it has no locked buffer_async buffers
495 * left.
496 *
497 * PageLocked prevents anyone starting new async I/O reads any of
498 * the buffers.
499 *
500 * PageWriteback is used to prevent simultaneous writeout of the same
501 * page.
502 *
503 * PageLocked prevents anyone from starting writeback of a page which is
504 * under read I/O (PageWriteback is only ever set against a locked page).
505 */
506static void mark_buffer_async_read(struct buffer_head *bh)
507{
508 bh->b_end_io = end_buffer_async_read;
509 set_buffer_async_read(bh);
510}
511
512void mark_buffer_async_write(struct buffer_head *bh)
513{
514 bh->b_end_io = end_buffer_async_write;
515 set_buffer_async_write(bh);
516}
517EXPORT_SYMBOL(mark_buffer_async_write);
518
519
520/*
521 * fs/buffer.c contains helper functions for buffer-backed address space's
522 * fsync functions. A common requirement for buffer-based filesystems is
523 * that certain data from the backing blockdev needs to be written out for
524 * a successful fsync(). For example, ext2 indirect blocks need to be
525 * written back and waited upon before fsync() returns.
526 *
527 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
528 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
529 * management of a list of dependent buffers at ->i_mapping->private_list.
530 *
531 * Locking is a little subtle: try_to_free_buffers() will remove buffers
532 * from their controlling inode's queue when they are being freed. But
533 * try_to_free_buffers() will be operating against the *blockdev* mapping
534 * at the time, not against the S_ISREG file which depends on those buffers.
535 * So the locking for private_list is via the private_lock in the address_space
536 * which backs the buffers. Which is different from the address_space
537 * against which the buffers are listed. So for a particular address_space,
538 * mapping->private_lock does *not* protect mapping->private_list! In fact,
539 * mapping->private_list will always be protected by the backing blockdev's
540 * ->private_lock.
541 *
542 * Which introduces a requirement: all buffers on an address_space's
543 * ->private_list must be from the same address_space: the blockdev's.
544 *
545 * address_spaces which do not place buffers at ->private_list via these
546 * utility functions are free to use private_lock and private_list for
547 * whatever they want. The only requirement is that list_empty(private_list)
548 * be true at clear_inode() time.
549 *
550 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
551 * filesystems should do that. invalidate_inode_buffers() should just go
552 * BUG_ON(!list_empty).
553 *
554 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
555 * take an address_space, not an inode. And it should be called
556 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
557 * queued up.
558 *
559 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
560 * list if it is already on a list. Because if the buffer is on a list,
561 * it *must* already be on the right one. If not, the filesystem is being
562 * silly. This will save a ton of locking. But first we have to ensure
563 * that buffers are taken *off* the old inode's list when they are freed
564 * (presumably in truncate). That requires careful auditing of all
565 * filesystems (do it inside bforget()). It could also be done by bringing
566 * b_inode back.
567 */
568
569/*
570 * The buffer's backing address_space's private_lock must be held
571 */
572static inline void __remove_assoc_queue(struct buffer_head *bh)
573{
574 list_del_init(&bh->b_assoc_buffers);
Jan Kara58ff4072006-10-17 00:10:19 -0700575 WARN_ON(!bh->b_assoc_map);
576 if (buffer_write_io_error(bh))
577 set_bit(AS_EIO, &bh->b_assoc_map->flags);
578 bh->b_assoc_map = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700579}
580
581int inode_has_buffers(struct inode *inode)
582{
583 return !list_empty(&inode->i_data.private_list);
584}
585
586/*
587 * osync is designed to support O_SYNC io. It waits synchronously for
588 * all already-submitted IO to complete, but does not queue any new
589 * writes to the disk.
590 *
591 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
592 * you dirty the buffers, and then use osync_inode_buffers to wait for
593 * completion. Any other dirty buffers which are not yet queued for
594 * write will not be flushed to disk by the osync.
595 */
596static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
597{
598 struct buffer_head *bh;
599 struct list_head *p;
600 int err = 0;
601
602 spin_lock(lock);
603repeat:
604 list_for_each_prev(p, list) {
605 bh = BH_ENTRY(p);
606 if (buffer_locked(bh)) {
607 get_bh(bh);
608 spin_unlock(lock);
609 wait_on_buffer(bh);
610 if (!buffer_uptodate(bh))
611 err = -EIO;
612 brelse(bh);
613 spin_lock(lock);
614 goto repeat;
615 }
616 }
617 spin_unlock(lock);
618 return err;
619}
620
621/**
622 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
623 * buffers
Martin Waitz67be2dd2005-05-01 08:59:26 -0700624 * @mapping: the mapping which wants those buffers written
Linus Torvalds1da177e2005-04-16 15:20:36 -0700625 *
626 * Starts I/O against the buffers at mapping->private_list, and waits upon
627 * that I/O.
628 *
Martin Waitz67be2dd2005-05-01 08:59:26 -0700629 * Basically, this is a convenience function for fsync().
630 * @mapping is a file or directory which needs those buffers to be written for
631 * a successful fsync().
Linus Torvalds1da177e2005-04-16 15:20:36 -0700632 */
633int sync_mapping_buffers(struct address_space *mapping)
634{
635 struct address_space *buffer_mapping = mapping->assoc_mapping;
636
637 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
638 return 0;
639
640 return fsync_buffers_list(&buffer_mapping->private_lock,
641 &mapping->private_list);
642}
643EXPORT_SYMBOL(sync_mapping_buffers);
644
645/*
646 * Called when we've recently written block `bblock', and it is known that
647 * `bblock' was for a buffer_boundary() buffer. This means that the block at
648 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
649 * dirty, schedule it for IO. So that indirects merge nicely with their data.
650 */
651void write_boundary_block(struct block_device *bdev,
652 sector_t bblock, unsigned blocksize)
653{
654 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
655 if (bh) {
656 if (buffer_dirty(bh))
657 ll_rw_block(WRITE, 1, &bh);
658 put_bh(bh);
659 }
660}
661
662void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
663{
664 struct address_space *mapping = inode->i_mapping;
665 struct address_space *buffer_mapping = bh->b_page->mapping;
666
667 mark_buffer_dirty(bh);
668 if (!mapping->assoc_mapping) {
669 mapping->assoc_mapping = buffer_mapping;
670 } else {
Eric Sesterhenne827f922006-03-26 18:24:46 +0200671 BUG_ON(mapping->assoc_mapping != buffer_mapping);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700672 }
673 if (list_empty(&bh->b_assoc_buffers)) {
674 spin_lock(&buffer_mapping->private_lock);
675 list_move_tail(&bh->b_assoc_buffers,
676 &mapping->private_list);
Jan Kara58ff4072006-10-17 00:10:19 -0700677 bh->b_assoc_map = mapping;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700678 spin_unlock(&buffer_mapping->private_lock);
679 }
680}
681EXPORT_SYMBOL(mark_buffer_dirty_inode);
682
683/*
684 * Add a page to the dirty page list.
685 *
686 * It is a sad fact of life that this function is called from several places
687 * deeply under spinlocking. It may not sleep.
688 *
689 * If the page has buffers, the uptodate buffers are set dirty, to preserve
690 * dirty-state coherency between the page and the buffers. It the page does
691 * not have buffers then when they are later attached they will all be set
692 * dirty.
693 *
694 * The buffers are dirtied before the page is dirtied. There's a small race
695 * window in which a writepage caller may see the page cleanness but not the
696 * buffer dirtiness. That's fine. If this code were to set the page dirty
697 * before the buffers, a concurrent writepage caller could clear the page dirty
698 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
699 * page on the dirty page list.
700 *
701 * We use private_lock to lock against try_to_free_buffers while using the
702 * page's buffer list. Also use this to protect against clean buffers being
703 * added to the page after it was set dirty.
704 *
705 * FIXME: may need to call ->reservepage here as well. That's rather up to the
706 * address_space though.
707 */
708int __set_page_dirty_buffers(struct page *page)
709{
Nick Pigginebf7a222006-10-10 04:36:54 +0200710 struct address_space * const mapping = page_mapping(page);
711
712 if (unlikely(!mapping))
713 return !TestSetPageDirty(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700714
715 spin_lock(&mapping->private_lock);
716 if (page_has_buffers(page)) {
717 struct buffer_head *head = page_buffers(page);
718 struct buffer_head *bh = head;
719
720 do {
721 set_buffer_dirty(bh);
722 bh = bh->b_this_page;
723 } while (bh != head);
724 }
725 spin_unlock(&mapping->private_lock);
726
Andrew Morton8c085402006-12-10 02:19:24 -0800727 if (TestSetPageDirty(page))
728 return 0;
729
730 write_lock_irq(&mapping->tree_lock);
731 if (page->mapping) { /* Race with truncate? */
732 if (mapping_cap_account_dirty(mapping))
733 __inc_zone_page_state(page, NR_FILE_DIRTY);
734 radix_tree_tag_set(&mapping->page_tree,
735 page_index(page), PAGECACHE_TAG_DIRTY);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700736 }
Andrew Morton8c085402006-12-10 02:19:24 -0800737 write_unlock_irq(&mapping->tree_lock);
738 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
739 return 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700740}
741EXPORT_SYMBOL(__set_page_dirty_buffers);
742
743/*
744 * Write out and wait upon a list of buffers.
745 *
746 * We have conflicting pressures: we want to make sure that all
747 * initially dirty buffers get waited on, but that any subsequently
748 * dirtied buffers don't. After all, we don't want fsync to last
749 * forever if somebody is actively writing to the file.
750 *
751 * Do this in two main stages: first we copy dirty buffers to a
752 * temporary inode list, queueing the writes as we go. Then we clean
753 * up, waiting for those writes to complete.
754 *
755 * During this second stage, any subsequent updates to the file may end
756 * up refiling the buffer on the original inode's dirty list again, so
757 * there is a chance we will end up with a buffer queued for write but
758 * not yet completed on that list. So, as a final cleanup we go through
759 * the osync code to catch these locked, dirty buffers without requeuing
760 * any newly dirty buffers for write.
761 */
762static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
763{
764 struct buffer_head *bh;
765 struct list_head tmp;
766 int err = 0, err2;
767
768 INIT_LIST_HEAD(&tmp);
769
770 spin_lock(lock);
771 while (!list_empty(list)) {
772 bh = BH_ENTRY(list->next);
Jan Kara58ff4072006-10-17 00:10:19 -0700773 __remove_assoc_queue(bh);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700774 if (buffer_dirty(bh) || buffer_locked(bh)) {
775 list_add(&bh->b_assoc_buffers, &tmp);
776 if (buffer_dirty(bh)) {
777 get_bh(bh);
778 spin_unlock(lock);
779 /*
780 * Ensure any pending I/O completes so that
781 * ll_rw_block() actually writes the current
782 * contents - it is a noop if I/O is still in
783 * flight on potentially older contents.
784 */
Jan Karaa7662232005-09-06 15:19:10 -0700785 ll_rw_block(SWRITE, 1, &bh);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700786 brelse(bh);
787 spin_lock(lock);
788 }
789 }
790 }
791
792 while (!list_empty(&tmp)) {
793 bh = BH_ENTRY(tmp.prev);
Jan Kara58ff4072006-10-17 00:10:19 -0700794 list_del_init(&bh->b_assoc_buffers);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700795 get_bh(bh);
796 spin_unlock(lock);
797 wait_on_buffer(bh);
798 if (!buffer_uptodate(bh))
799 err = -EIO;
800 brelse(bh);
801 spin_lock(lock);
802 }
803
804 spin_unlock(lock);
805 err2 = osync_buffers_list(lock, list);
806 if (err)
807 return err;
808 else
809 return err2;
810}
811
812/*
813 * Invalidate any and all dirty buffers on a given inode. We are
814 * probably unmounting the fs, but that doesn't mean we have already
815 * done a sync(). Just drop the buffers from the inode list.
816 *
817 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
818 * assumes that all the buffers are against the blockdev. Not true
819 * for reiserfs.
820 */
821void invalidate_inode_buffers(struct inode *inode)
822{
823 if (inode_has_buffers(inode)) {
824 struct address_space *mapping = &inode->i_data;
825 struct list_head *list = &mapping->private_list;
826 struct address_space *buffer_mapping = mapping->assoc_mapping;
827
828 spin_lock(&buffer_mapping->private_lock);
829 while (!list_empty(list))
830 __remove_assoc_queue(BH_ENTRY(list->next));
831 spin_unlock(&buffer_mapping->private_lock);
832 }
833}
834
835/*
836 * Remove any clean buffers from the inode's buffer list. This is called
837 * when we're trying to free the inode itself. Those buffers can pin it.
838 *
839 * Returns true if all buffers were removed.
840 */
841int remove_inode_buffers(struct inode *inode)
842{
843 int ret = 1;
844
845 if (inode_has_buffers(inode)) {
846 struct address_space *mapping = &inode->i_data;
847 struct list_head *list = &mapping->private_list;
848 struct address_space *buffer_mapping = mapping->assoc_mapping;
849
850 spin_lock(&buffer_mapping->private_lock);
851 while (!list_empty(list)) {
852 struct buffer_head *bh = BH_ENTRY(list->next);
853 if (buffer_dirty(bh)) {
854 ret = 0;
855 break;
856 }
857 __remove_assoc_queue(bh);
858 }
859 spin_unlock(&buffer_mapping->private_lock);
860 }
861 return ret;
862}
863
864/*
865 * Create the appropriate buffers when given a page for data area and
866 * the size of each buffer.. Use the bh->b_this_page linked list to
867 * follow the buffers created. Return NULL if unable to create more
868 * buffers.
869 *
870 * The retry flag is used to differentiate async IO (paging, swapping)
871 * which may not fail from ordinary buffer allocations.
872 */
873struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
874 int retry)
875{
876 struct buffer_head *bh, *head;
877 long offset;
878
879try_again:
880 head = NULL;
881 offset = PAGE_SIZE;
882 while ((offset -= size) >= 0) {
883 bh = alloc_buffer_head(GFP_NOFS);
884 if (!bh)
885 goto no_grow;
886
887 bh->b_bdev = NULL;
888 bh->b_this_page = head;
889 bh->b_blocknr = -1;
890 head = bh;
891
892 bh->b_state = 0;
893 atomic_set(&bh->b_count, 0);
Chris Masonfc5cd582006-02-01 03:06:48 -0800894 bh->b_private = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700895 bh->b_size = size;
896
897 /* Link the buffer to its page */
898 set_bh_page(bh, page, offset);
899
Nathan Scott01ffe332006-01-17 09:02:07 +1100900 init_buffer(bh, NULL, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700901 }
902 return head;
903/*
904 * In case anything failed, we just free everything we got.
905 */
906no_grow:
907 if (head) {
908 do {
909 bh = head;
910 head = head->b_this_page;
911 free_buffer_head(bh);
912 } while (head);
913 }
914
915 /*
916 * Return failure for non-async IO requests. Async IO requests
917 * are not allowed to fail, so we have to wait until buffer heads
918 * become available. But we don't want tasks sleeping with
919 * partially complete buffers, so all were released above.
920 */
921 if (!retry)
922 return NULL;
923
924 /* We're _really_ low on memory. Now we just
925 * wait for old buffer heads to become free due to
926 * finishing IO. Since this is an async request and
927 * the reserve list is empty, we're sure there are
928 * async buffer heads in use.
929 */
930 free_more_memory();
931 goto try_again;
932}
933EXPORT_SYMBOL_GPL(alloc_page_buffers);
934
935static inline void
936link_dev_buffers(struct page *page, struct buffer_head *head)
937{
938 struct buffer_head *bh, *tail;
939
940 bh = head;
941 do {
942 tail = bh;
943 bh = bh->b_this_page;
944 } while (bh);
945 tail->b_this_page = head;
946 attach_page_buffers(page, head);
947}
948
949/*
950 * Initialise the state of a blockdev page's buffers.
951 */
952static void
953init_page_buffers(struct page *page, struct block_device *bdev,
954 sector_t block, int size)
955{
956 struct buffer_head *head = page_buffers(page);
957 struct buffer_head *bh = head;
958 int uptodate = PageUptodate(page);
959
960 do {
961 if (!buffer_mapped(bh)) {
962 init_buffer(bh, NULL, NULL);
963 bh->b_bdev = bdev;
964 bh->b_blocknr = block;
965 if (uptodate)
966 set_buffer_uptodate(bh);
967 set_buffer_mapped(bh);
968 }
969 block++;
970 bh = bh->b_this_page;
971 } while (bh != head);
972}
973
974/*
975 * Create the page-cache page that contains the requested block.
976 *
977 * This is user purely for blockdev mappings.
978 */
979static struct page *
980grow_dev_page(struct block_device *bdev, sector_t block,
981 pgoff_t index, int size)
982{
983 struct inode *inode = bdev->bd_inode;
984 struct page *page;
985 struct buffer_head *bh;
986
987 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
988 if (!page)
989 return NULL;
990
Eric Sesterhenne827f922006-03-26 18:24:46 +0200991 BUG_ON(!PageLocked(page));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700992
993 if (page_has_buffers(page)) {
994 bh = page_buffers(page);
995 if (bh->b_size == size) {
996 init_page_buffers(page, bdev, block, size);
997 return page;
998 }
999 if (!try_to_free_buffers(page))
1000 goto failed;
1001 }
1002
1003 /*
1004 * Allocate some buffers for this page
1005 */
1006 bh = alloc_page_buffers(page, size, 0);
1007 if (!bh)
1008 goto failed;
1009
1010 /*
1011 * Link the page to the buffers and initialise them. Take the
1012 * lock to be atomic wrt __find_get_block(), which does not
1013 * run under the page lock.
1014 */
1015 spin_lock(&inode->i_mapping->private_lock);
1016 link_dev_buffers(page, bh);
1017 init_page_buffers(page, bdev, block, size);
1018 spin_unlock(&inode->i_mapping->private_lock);
1019 return page;
1020
1021failed:
1022 BUG();
1023 unlock_page(page);
1024 page_cache_release(page);
1025 return NULL;
1026}
1027
1028/*
1029 * Create buffers for the specified block device block's page. If
1030 * that page was dirty, the buffers are set dirty also.
1031 *
1032 * Except that's a bug. Attaching dirty buffers to a dirty
1033 * blockdev's page can result in filesystem corruption, because
1034 * some of those buffers may be aliases of filesystem data.
1035 * grow_dev_page() will go BUG() if this happens.
1036 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08001037static int
Linus Torvalds1da177e2005-04-16 15:20:36 -07001038grow_buffers(struct block_device *bdev, sector_t block, int size)
1039{
1040 struct page *page;
1041 pgoff_t index;
1042 int sizebits;
1043
1044 sizebits = -1;
1045 do {
1046 sizebits++;
1047 } while ((size << sizebits) < PAGE_SIZE);
1048
1049 index = block >> sizebits;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001050
Andrew Mortone5657932006-10-11 01:21:46 -07001051 /*
1052 * Check for a block which wants to lie outside our maximum possible
1053 * pagecache index. (this comparison is done using sector_t types).
1054 */
1055 if (unlikely(index != block >> sizebits)) {
1056 char b[BDEVNAME_SIZE];
1057
1058 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1059 "device %s\n",
1060 __FUNCTION__, (unsigned long long)block,
1061 bdevname(bdev, b));
1062 return -EIO;
1063 }
1064 block = index << sizebits;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001065 /* Create a page with the proper size buffers.. */
1066 page = grow_dev_page(bdev, block, index, size);
1067 if (!page)
1068 return 0;
1069 unlock_page(page);
1070 page_cache_release(page);
1071 return 1;
1072}
1073
Adrian Bunk75c96f82005-05-05 16:16:09 -07001074static struct buffer_head *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001075__getblk_slow(struct block_device *bdev, sector_t block, int size)
1076{
1077 /* Size must be multiple of hard sectorsize */
1078 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1079 (size < 512 || size > PAGE_SIZE))) {
1080 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1081 size);
1082 printk(KERN_ERR "hardsect size: %d\n",
1083 bdev_hardsect_size(bdev));
1084
1085 dump_stack();
1086 return NULL;
1087 }
1088
1089 for (;;) {
1090 struct buffer_head * bh;
Andrew Mortone5657932006-10-11 01:21:46 -07001091 int ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001092
1093 bh = __find_get_block(bdev, block, size);
1094 if (bh)
1095 return bh;
1096
Andrew Mortone5657932006-10-11 01:21:46 -07001097 ret = grow_buffers(bdev, block, size);
1098 if (ret < 0)
1099 return NULL;
1100 if (ret == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001101 free_more_memory();
1102 }
1103}
1104
1105/*
1106 * The relationship between dirty buffers and dirty pages:
1107 *
1108 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1109 * the page is tagged dirty in its radix tree.
1110 *
1111 * At all times, the dirtiness of the buffers represents the dirtiness of
1112 * subsections of the page. If the page has buffers, the page dirty bit is
1113 * merely a hint about the true dirty state.
1114 *
1115 * When a page is set dirty in its entirety, all its buffers are marked dirty
1116 * (if the page has buffers).
1117 *
1118 * When a buffer is marked dirty, its page is dirtied, but the page's other
1119 * buffers are not.
1120 *
1121 * Also. When blockdev buffers are explicitly read with bread(), they
1122 * individually become uptodate. But their backing page remains not
1123 * uptodate - even if all of its buffers are uptodate. A subsequent
1124 * block_read_full_page() against that page will discover all the uptodate
1125 * buffers, will set the page uptodate and will perform no I/O.
1126 */
1127
1128/**
1129 * mark_buffer_dirty - mark a buffer_head as needing writeout
Martin Waitz67be2dd2005-05-01 08:59:26 -07001130 * @bh: the buffer_head to mark dirty
Linus Torvalds1da177e2005-04-16 15:20:36 -07001131 *
1132 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1133 * backing page dirty, then tag the page as dirty in its address_space's radix
1134 * tree and then attach the address_space's inode to its superblock's dirty
1135 * inode list.
1136 *
1137 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1138 * mapping->tree_lock and the global inode_lock.
1139 */
1140void fastcall mark_buffer_dirty(struct buffer_head *bh)
1141{
1142 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1143 __set_page_dirty_nobuffers(bh->b_page);
1144}
1145
1146/*
1147 * Decrement a buffer_head's reference count. If all buffers against a page
1148 * have zero reference count, are clean and unlocked, and if the page is clean
1149 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1150 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1151 * a page but it ends up not being freed, and buffers may later be reattached).
1152 */
1153void __brelse(struct buffer_head * buf)
1154{
1155 if (atomic_read(&buf->b_count)) {
1156 put_bh(buf);
1157 return;
1158 }
1159 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1160 WARN_ON(1);
1161}
1162
1163/*
1164 * bforget() is like brelse(), except it discards any
1165 * potentially dirty data.
1166 */
1167void __bforget(struct buffer_head *bh)
1168{
1169 clear_buffer_dirty(bh);
1170 if (!list_empty(&bh->b_assoc_buffers)) {
1171 struct address_space *buffer_mapping = bh->b_page->mapping;
1172
1173 spin_lock(&buffer_mapping->private_lock);
1174 list_del_init(&bh->b_assoc_buffers);
Jan Kara58ff4072006-10-17 00:10:19 -07001175 bh->b_assoc_map = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001176 spin_unlock(&buffer_mapping->private_lock);
1177 }
1178 __brelse(bh);
1179}
1180
1181static struct buffer_head *__bread_slow(struct buffer_head *bh)
1182{
1183 lock_buffer(bh);
1184 if (buffer_uptodate(bh)) {
1185 unlock_buffer(bh);
1186 return bh;
1187 } else {
1188 get_bh(bh);
1189 bh->b_end_io = end_buffer_read_sync;
1190 submit_bh(READ, bh);
1191 wait_on_buffer(bh);
1192 if (buffer_uptodate(bh))
1193 return bh;
1194 }
1195 brelse(bh);
1196 return NULL;
1197}
1198
1199/*
1200 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1201 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1202 * refcount elevated by one when they're in an LRU. A buffer can only appear
1203 * once in a particular CPU's LRU. A single buffer can be present in multiple
1204 * CPU's LRUs at the same time.
1205 *
1206 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1207 * sb_find_get_block().
1208 *
1209 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1210 * a local interrupt disable for that.
1211 */
1212
1213#define BH_LRU_SIZE 8
1214
1215struct bh_lru {
1216 struct buffer_head *bhs[BH_LRU_SIZE];
1217};
1218
1219static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1220
1221#ifdef CONFIG_SMP
1222#define bh_lru_lock() local_irq_disable()
1223#define bh_lru_unlock() local_irq_enable()
1224#else
1225#define bh_lru_lock() preempt_disable()
1226#define bh_lru_unlock() preempt_enable()
1227#endif
1228
1229static inline void check_irqs_on(void)
1230{
1231#ifdef irqs_disabled
1232 BUG_ON(irqs_disabled());
1233#endif
1234}
1235
1236/*
1237 * The LRU management algorithm is dopey-but-simple. Sorry.
1238 */
1239static void bh_lru_install(struct buffer_head *bh)
1240{
1241 struct buffer_head *evictee = NULL;
1242 struct bh_lru *lru;
1243
1244 check_irqs_on();
1245 bh_lru_lock();
1246 lru = &__get_cpu_var(bh_lrus);
1247 if (lru->bhs[0] != bh) {
1248 struct buffer_head *bhs[BH_LRU_SIZE];
1249 int in;
1250 int out = 0;
1251
1252 get_bh(bh);
1253 bhs[out++] = bh;
1254 for (in = 0; in < BH_LRU_SIZE; in++) {
1255 struct buffer_head *bh2 = lru->bhs[in];
1256
1257 if (bh2 == bh) {
1258 __brelse(bh2);
1259 } else {
1260 if (out >= BH_LRU_SIZE) {
1261 BUG_ON(evictee != NULL);
1262 evictee = bh2;
1263 } else {
1264 bhs[out++] = bh2;
1265 }
1266 }
1267 }
1268 while (out < BH_LRU_SIZE)
1269 bhs[out++] = NULL;
1270 memcpy(lru->bhs, bhs, sizeof(bhs));
1271 }
1272 bh_lru_unlock();
1273
1274 if (evictee)
1275 __brelse(evictee);
1276}
1277
1278/*
1279 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1280 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08001281static struct buffer_head *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001282lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1283{
1284 struct buffer_head *ret = NULL;
1285 struct bh_lru *lru;
1286 int i;
1287
1288 check_irqs_on();
1289 bh_lru_lock();
1290 lru = &__get_cpu_var(bh_lrus);
1291 for (i = 0; i < BH_LRU_SIZE; i++) {
1292 struct buffer_head *bh = lru->bhs[i];
1293
1294 if (bh && bh->b_bdev == bdev &&
1295 bh->b_blocknr == block && bh->b_size == size) {
1296 if (i) {
1297 while (i) {
1298 lru->bhs[i] = lru->bhs[i - 1];
1299 i--;
1300 }
1301 lru->bhs[0] = bh;
1302 }
1303 get_bh(bh);
1304 ret = bh;
1305 break;
1306 }
1307 }
1308 bh_lru_unlock();
1309 return ret;
1310}
1311
1312/*
1313 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1314 * it in the LRU and mark it as accessed. If it is not present then return
1315 * NULL
1316 */
1317struct buffer_head *
1318__find_get_block(struct block_device *bdev, sector_t block, int size)
1319{
1320 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1321
1322 if (bh == NULL) {
Coywolf Qi Hunt385fd4c2005-11-07 00:59:39 -08001323 bh = __find_get_block_slow(bdev, block);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001324 if (bh)
1325 bh_lru_install(bh);
1326 }
1327 if (bh)
1328 touch_buffer(bh);
1329 return bh;
1330}
1331EXPORT_SYMBOL(__find_get_block);
1332
1333/*
1334 * __getblk will locate (and, if necessary, create) the buffer_head
1335 * which corresponds to the passed block_device, block and size. The
1336 * returned buffer has its reference count incremented.
1337 *
1338 * __getblk() cannot fail - it just keeps trying. If you pass it an
1339 * illegal block number, __getblk() will happily return a buffer_head
1340 * which represents the non-existent block. Very weird.
1341 *
1342 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1343 * attempt is failing. FIXME, perhaps?
1344 */
1345struct buffer_head *
1346__getblk(struct block_device *bdev, sector_t block, int size)
1347{
1348 struct buffer_head *bh = __find_get_block(bdev, block, size);
1349
1350 might_sleep();
1351 if (bh == NULL)
1352 bh = __getblk_slow(bdev, block, size);
1353 return bh;
1354}
1355EXPORT_SYMBOL(__getblk);
1356
1357/*
1358 * Do async read-ahead on a buffer..
1359 */
1360void __breadahead(struct block_device *bdev, sector_t block, int size)
1361{
1362 struct buffer_head *bh = __getblk(bdev, block, size);
Andrew Mortona3e713b2005-10-30 15:03:15 -08001363 if (likely(bh)) {
1364 ll_rw_block(READA, 1, &bh);
1365 brelse(bh);
1366 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001367}
1368EXPORT_SYMBOL(__breadahead);
1369
1370/**
1371 * __bread() - reads a specified block and returns the bh
Martin Waitz67be2dd2005-05-01 08:59:26 -07001372 * @bdev: the block_device to read from
Linus Torvalds1da177e2005-04-16 15:20:36 -07001373 * @block: number of block
1374 * @size: size (in bytes) to read
1375 *
1376 * Reads a specified block, and returns buffer head that contains it.
1377 * It returns NULL if the block was unreadable.
1378 */
1379struct buffer_head *
1380__bread(struct block_device *bdev, sector_t block, int size)
1381{
1382 struct buffer_head *bh = __getblk(bdev, block, size);
1383
Andrew Mortona3e713b2005-10-30 15:03:15 -08001384 if (likely(bh) && !buffer_uptodate(bh))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001385 bh = __bread_slow(bh);
1386 return bh;
1387}
1388EXPORT_SYMBOL(__bread);
1389
1390/*
1391 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1392 * This doesn't race because it runs in each cpu either in irq
1393 * or with preempt disabled.
1394 */
1395static void invalidate_bh_lru(void *arg)
1396{
1397 struct bh_lru *b = &get_cpu_var(bh_lrus);
1398 int i;
1399
1400 for (i = 0; i < BH_LRU_SIZE; i++) {
1401 brelse(b->bhs[i]);
1402 b->bhs[i] = NULL;
1403 }
1404 put_cpu_var(bh_lrus);
1405}
1406
1407static void invalidate_bh_lrus(void)
1408{
1409 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1410}
1411
1412void set_bh_page(struct buffer_head *bh,
1413 struct page *page, unsigned long offset)
1414{
1415 bh->b_page = page;
Eric Sesterhenne827f922006-03-26 18:24:46 +02001416 BUG_ON(offset >= PAGE_SIZE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001417 if (PageHighMem(page))
1418 /*
1419 * This catches illegal uses and preserves the offset:
1420 */
1421 bh->b_data = (char *)(0 + offset);
1422 else
1423 bh->b_data = page_address(page) + offset;
1424}
1425EXPORT_SYMBOL(set_bh_page);
1426
1427/*
1428 * Called when truncating a buffer on a page completely.
1429 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08001430static void discard_buffer(struct buffer_head * bh)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001431{
1432 lock_buffer(bh);
1433 clear_buffer_dirty(bh);
1434 bh->b_bdev = NULL;
1435 clear_buffer_mapped(bh);
1436 clear_buffer_req(bh);
1437 clear_buffer_new(bh);
1438 clear_buffer_delay(bh);
1439 unlock_buffer(bh);
1440}
1441
1442/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001443 * block_invalidatepage - invalidate part of all of a buffer-backed page
1444 *
1445 * @page: the page which is affected
1446 * @offset: the index of the truncation point
1447 *
1448 * block_invalidatepage() is called when all or part of the page has become
1449 * invalidatedby a truncate operation.
1450 *
1451 * block_invalidatepage() does not have to release all buffers, but it must
1452 * ensure that no dirty buffer is left outside @offset and that no I/O
1453 * is underway against any of the blocks which are outside the truncation
1454 * point. Because the caller is about to free (and possibly reuse) those
1455 * blocks on-disk.
1456 */
NeilBrown2ff28e22006-03-26 01:37:18 -08001457void block_invalidatepage(struct page *page, unsigned long offset)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001458{
1459 struct buffer_head *head, *bh, *next;
1460 unsigned int curr_off = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001461
1462 BUG_ON(!PageLocked(page));
1463 if (!page_has_buffers(page))
1464 goto out;
1465
1466 head = page_buffers(page);
1467 bh = head;
1468 do {
1469 unsigned int next_off = curr_off + bh->b_size;
1470 next = bh->b_this_page;
1471
1472 /*
1473 * is this block fully invalidated?
1474 */
1475 if (offset <= curr_off)
1476 discard_buffer(bh);
1477 curr_off = next_off;
1478 bh = next;
1479 } while (bh != head);
1480
1481 /*
1482 * We release buffers only if the entire page is being invalidated.
1483 * The get_block cached value has been unconditionally invalidated,
1484 * so real IO is not possible anymore.
1485 */
1486 if (offset == 0)
NeilBrown2ff28e22006-03-26 01:37:18 -08001487 try_to_release_page(page, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001488out:
NeilBrown2ff28e22006-03-26 01:37:18 -08001489 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001490}
1491EXPORT_SYMBOL(block_invalidatepage);
1492
1493/*
1494 * We attach and possibly dirty the buffers atomically wrt
1495 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1496 * is already excluded via the page lock.
1497 */
1498void create_empty_buffers(struct page *page,
1499 unsigned long blocksize, unsigned long b_state)
1500{
1501 struct buffer_head *bh, *head, *tail;
1502
1503 head = alloc_page_buffers(page, blocksize, 1);
1504 bh = head;
1505 do {
1506 bh->b_state |= b_state;
1507 tail = bh;
1508 bh = bh->b_this_page;
1509 } while (bh);
1510 tail->b_this_page = head;
1511
1512 spin_lock(&page->mapping->private_lock);
1513 if (PageUptodate(page) || PageDirty(page)) {
1514 bh = head;
1515 do {
1516 if (PageDirty(page))
1517 set_buffer_dirty(bh);
1518 if (PageUptodate(page))
1519 set_buffer_uptodate(bh);
1520 bh = bh->b_this_page;
1521 } while (bh != head);
1522 }
1523 attach_page_buffers(page, head);
1524 spin_unlock(&page->mapping->private_lock);
1525}
1526EXPORT_SYMBOL(create_empty_buffers);
1527
1528/*
1529 * We are taking a block for data and we don't want any output from any
1530 * buffer-cache aliases starting from return from that function and
1531 * until the moment when something will explicitly mark the buffer
1532 * dirty (hopefully that will not happen until we will free that block ;-)
1533 * We don't even need to mark it not-uptodate - nobody can expect
1534 * anything from a newly allocated buffer anyway. We used to used
1535 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1536 * don't want to mark the alias unmapped, for example - it would confuse
1537 * anyone who might pick it with bread() afterwards...
1538 *
1539 * Also.. Note that bforget() doesn't lock the buffer. So there can
1540 * be writeout I/O going on against recently-freed buffers. We don't
1541 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1542 * only if we really need to. That happens here.
1543 */
1544void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1545{
1546 struct buffer_head *old_bh;
1547
1548 might_sleep();
1549
Coywolf Qi Hunt385fd4c2005-11-07 00:59:39 -08001550 old_bh = __find_get_block_slow(bdev, block);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001551 if (old_bh) {
1552 clear_buffer_dirty(old_bh);
1553 wait_on_buffer(old_bh);
1554 clear_buffer_req(old_bh);
1555 __brelse(old_bh);
1556 }
1557}
1558EXPORT_SYMBOL(unmap_underlying_metadata);
1559
1560/*
1561 * NOTE! All mapped/uptodate combinations are valid:
1562 *
1563 * Mapped Uptodate Meaning
1564 *
1565 * No No "unknown" - must do get_block()
1566 * No Yes "hole" - zero-filled
1567 * Yes No "allocated" - allocated on disk, not read in
1568 * Yes Yes "valid" - allocated and up-to-date in memory.
1569 *
1570 * "Dirty" is valid only with the last case (mapped+uptodate).
1571 */
1572
1573/*
1574 * While block_write_full_page is writing back the dirty buffers under
1575 * the page lock, whoever dirtied the buffers may decide to clean them
1576 * again at any time. We handle that by only looking at the buffer
1577 * state inside lock_buffer().
1578 *
1579 * If block_write_full_page() is called for regular writeback
1580 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1581 * locked buffer. This only can happen if someone has written the buffer
1582 * directly, with submit_bh(). At the address_space level PageWriteback
1583 * prevents this contention from occurring.
1584 */
1585static int __block_write_full_page(struct inode *inode, struct page *page,
1586 get_block_t *get_block, struct writeback_control *wbc)
1587{
1588 int err;
1589 sector_t block;
1590 sector_t last_block;
Andrew Mortonf0fbd5f2005-05-05 16:15:48 -07001591 struct buffer_head *bh, *head;
Badari Pulavartyb0cf2322006-03-26 01:38:00 -08001592 const unsigned blocksize = 1 << inode->i_blkbits;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001593 int nr_underway = 0;
1594
1595 BUG_ON(!PageLocked(page));
1596
1597 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1598
1599 if (!page_has_buffers(page)) {
Badari Pulavartyb0cf2322006-03-26 01:38:00 -08001600 create_empty_buffers(page, blocksize,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001601 (1 << BH_Dirty)|(1 << BH_Uptodate));
1602 }
1603
1604 /*
1605 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1606 * here, and the (potentially unmapped) buffers may become dirty at
1607 * any time. If a buffer becomes dirty here after we've inspected it
1608 * then we just miss that fact, and the page stays dirty.
1609 *
1610 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1611 * handle that here by just cleaning them.
1612 */
1613
Andrew Morton54b21a72006-01-08 01:03:05 -08001614 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001615 head = page_buffers(page);
1616 bh = head;
1617
1618 /*
1619 * Get all the dirty buffers mapped to disk addresses and
1620 * handle any aliases from the underlying blockdev's mapping.
1621 */
1622 do {
1623 if (block > last_block) {
1624 /*
1625 * mapped buffers outside i_size will occur, because
1626 * this page can be outside i_size when there is a
1627 * truncate in progress.
1628 */
1629 /*
1630 * The buffer was zeroed by block_write_full_page()
1631 */
1632 clear_buffer_dirty(bh);
1633 set_buffer_uptodate(bh);
1634 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
Badari Pulavartyb0cf2322006-03-26 01:38:00 -08001635 WARN_ON(bh->b_size != blocksize);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001636 err = get_block(inode, block, bh, 1);
1637 if (err)
1638 goto recover;
1639 if (buffer_new(bh)) {
1640 /* blockdev mappings never come here */
1641 clear_buffer_new(bh);
1642 unmap_underlying_metadata(bh->b_bdev,
1643 bh->b_blocknr);
1644 }
1645 }
1646 bh = bh->b_this_page;
1647 block++;
1648 } while (bh != head);
1649
1650 do {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001651 if (!buffer_mapped(bh))
1652 continue;
1653 /*
1654 * If it's a fully non-blocking write attempt and we cannot
1655 * lock the buffer then redirty the page. Note that this can
1656 * potentially cause a busy-wait loop from pdflush and kswapd
1657 * activity, but those code paths have their own higher-level
1658 * throttling.
1659 */
1660 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1661 lock_buffer(bh);
1662 } else if (test_set_buffer_locked(bh)) {
1663 redirty_page_for_writepage(wbc, page);
1664 continue;
1665 }
1666 if (test_clear_buffer_dirty(bh)) {
1667 mark_buffer_async_write(bh);
1668 } else {
1669 unlock_buffer(bh);
1670 }
1671 } while ((bh = bh->b_this_page) != head);
1672
1673 /*
1674 * The page and its buffers are protected by PageWriteback(), so we can
1675 * drop the bh refcounts early.
1676 */
1677 BUG_ON(PageWriteback(page));
1678 set_page_writeback(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001679
1680 do {
1681 struct buffer_head *next = bh->b_this_page;
1682 if (buffer_async_write(bh)) {
1683 submit_bh(WRITE, bh);
1684 nr_underway++;
1685 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001686 bh = next;
1687 } while (bh != head);
Andrew Morton05937ba2005-05-05 16:15:47 -07001688 unlock_page(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001689
1690 err = 0;
1691done:
1692 if (nr_underway == 0) {
1693 /*
1694 * The page was marked dirty, but the buffers were
1695 * clean. Someone wrote them back by hand with
1696 * ll_rw_block/submit_bh. A rare case.
1697 */
1698 int uptodate = 1;
1699 do {
1700 if (!buffer_uptodate(bh)) {
1701 uptodate = 0;
1702 break;
1703 }
1704 bh = bh->b_this_page;
1705 } while (bh != head);
1706 if (uptodate)
1707 SetPageUptodate(page);
1708 end_page_writeback(page);
1709 /*
1710 * The page and buffer_heads can be released at any time from
1711 * here on.
1712 */
1713 wbc->pages_skipped++; /* We didn't write this page */
1714 }
1715 return err;
1716
1717recover:
1718 /*
1719 * ENOSPC, or some other error. We may already have added some
1720 * blocks to the file, so we need to write these out to avoid
1721 * exposing stale data.
1722 * The page is currently locked and not marked for writeback
1723 */
1724 bh = head;
1725 /* Recovery: lock and submit the mapped buffers */
1726 do {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001727 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1728 lock_buffer(bh);
1729 mark_buffer_async_write(bh);
1730 } else {
1731 /*
1732 * The buffer may have been set dirty during
1733 * attachment to a dirty page.
1734 */
1735 clear_buffer_dirty(bh);
1736 }
1737 } while ((bh = bh->b_this_page) != head);
1738 SetPageError(page);
1739 BUG_ON(PageWriteback(page));
1740 set_page_writeback(page);
1741 unlock_page(page);
1742 do {
1743 struct buffer_head *next = bh->b_this_page;
1744 if (buffer_async_write(bh)) {
1745 clear_buffer_dirty(bh);
1746 submit_bh(WRITE, bh);
1747 nr_underway++;
1748 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001749 bh = next;
1750 } while (bh != head);
1751 goto done;
1752}
1753
1754static int __block_prepare_write(struct inode *inode, struct page *page,
1755 unsigned from, unsigned to, get_block_t *get_block)
1756{
1757 unsigned block_start, block_end;
1758 sector_t block;
1759 int err = 0;
1760 unsigned blocksize, bbits;
1761 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1762
1763 BUG_ON(!PageLocked(page));
1764 BUG_ON(from > PAGE_CACHE_SIZE);
1765 BUG_ON(to > PAGE_CACHE_SIZE);
1766 BUG_ON(from > to);
1767
1768 blocksize = 1 << inode->i_blkbits;
1769 if (!page_has_buffers(page))
1770 create_empty_buffers(page, blocksize, 0);
1771 head = page_buffers(page);
1772
1773 bbits = inode->i_blkbits;
1774 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1775
1776 for(bh = head, block_start = 0; bh != head || !block_start;
1777 block++, block_start=block_end, bh = bh->b_this_page) {
1778 block_end = block_start + blocksize;
1779 if (block_end <= from || block_start >= to) {
1780 if (PageUptodate(page)) {
1781 if (!buffer_uptodate(bh))
1782 set_buffer_uptodate(bh);
1783 }
1784 continue;
1785 }
1786 if (buffer_new(bh))
1787 clear_buffer_new(bh);
1788 if (!buffer_mapped(bh)) {
Badari Pulavartyb0cf2322006-03-26 01:38:00 -08001789 WARN_ON(bh->b_size != blocksize);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001790 err = get_block(inode, block, bh, 1);
1791 if (err)
Nick Pigginf3ddbdc2005-05-05 16:15:45 -07001792 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001793 if (buffer_new(bh)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001794 unmap_underlying_metadata(bh->b_bdev,
1795 bh->b_blocknr);
1796 if (PageUptodate(page)) {
1797 set_buffer_uptodate(bh);
1798 continue;
1799 }
1800 if (block_end > to || block_start < from) {
1801 void *kaddr;
1802
1803 kaddr = kmap_atomic(page, KM_USER0);
1804 if (block_end > to)
1805 memset(kaddr+to, 0,
1806 block_end-to);
1807 if (block_start < from)
1808 memset(kaddr+block_start,
1809 0, from-block_start);
1810 flush_dcache_page(page);
1811 kunmap_atomic(kaddr, KM_USER0);
1812 }
1813 continue;
1814 }
1815 }
1816 if (PageUptodate(page)) {
1817 if (!buffer_uptodate(bh))
1818 set_buffer_uptodate(bh);
1819 continue;
1820 }
1821 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1822 (block_start < from || block_end > to)) {
1823 ll_rw_block(READ, 1, &bh);
1824 *wait_bh++=bh;
1825 }
1826 }
1827 /*
1828 * If we issued read requests - let them complete.
1829 */
1830 while(wait_bh > wait) {
1831 wait_on_buffer(*--wait_bh);
1832 if (!buffer_uptodate(*wait_bh))
Nick Pigginf3ddbdc2005-05-05 16:15:45 -07001833 err = -EIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001834 }
Anton Altaparmakov152becd2005-06-23 00:10:21 -07001835 if (!err) {
1836 bh = head;
1837 do {
1838 if (buffer_new(bh))
1839 clear_buffer_new(bh);
1840 } while ((bh = bh->b_this_page) != head);
1841 return 0;
1842 }
Nick Pigginf3ddbdc2005-05-05 16:15:45 -07001843 /* Error case: */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001844 /*
1845 * Zero out any newly allocated blocks to avoid exposing stale
1846 * data. If BH_New is set, we know that the block was newly
1847 * allocated in the above loop.
1848 */
1849 bh = head;
1850 block_start = 0;
1851 do {
1852 block_end = block_start+blocksize;
1853 if (block_end <= from)
1854 goto next_bh;
1855 if (block_start >= to)
1856 break;
1857 if (buffer_new(bh)) {
1858 void *kaddr;
1859
1860 clear_buffer_new(bh);
1861 kaddr = kmap_atomic(page, KM_USER0);
1862 memset(kaddr+block_start, 0, bh->b_size);
Monakhov Dmitriy8c581652006-10-11 01:22:00 -07001863 flush_dcache_page(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001864 kunmap_atomic(kaddr, KM_USER0);
1865 set_buffer_uptodate(bh);
1866 mark_buffer_dirty(bh);
1867 }
1868next_bh:
1869 block_start = block_end;
1870 bh = bh->b_this_page;
1871 } while (bh != head);
1872 return err;
1873}
1874
1875static int __block_commit_write(struct inode *inode, struct page *page,
1876 unsigned from, unsigned to)
1877{
1878 unsigned block_start, block_end;
1879 int partial = 0;
1880 unsigned blocksize;
1881 struct buffer_head *bh, *head;
1882
1883 blocksize = 1 << inode->i_blkbits;
1884
1885 for(bh = head = page_buffers(page), block_start = 0;
1886 bh != head || !block_start;
1887 block_start=block_end, bh = bh->b_this_page) {
1888 block_end = block_start + blocksize;
1889 if (block_end <= from || block_start >= to) {
1890 if (!buffer_uptodate(bh))
1891 partial = 1;
1892 } else {
1893 set_buffer_uptodate(bh);
1894 mark_buffer_dirty(bh);
1895 }
1896 }
1897
1898 /*
1899 * If this is a partial write which happened to make all buffers
1900 * uptodate then we can optimize away a bogus readpage() for
1901 * the next read(). Here we 'discover' whether the page went
1902 * uptodate as a result of this (potentially partial) write.
1903 */
1904 if (!partial)
1905 SetPageUptodate(page);
1906 return 0;
1907}
1908
1909/*
1910 * Generic "read page" function for block devices that have the normal
1911 * get_block functionality. This is most of the block device filesystems.
1912 * Reads the page asynchronously --- the unlock_buffer() and
1913 * set/clear_buffer_uptodate() functions propagate buffer state into the
1914 * page struct once IO has completed.
1915 */
1916int block_read_full_page(struct page *page, get_block_t *get_block)
1917{
1918 struct inode *inode = page->mapping->host;
1919 sector_t iblock, lblock;
1920 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
1921 unsigned int blocksize;
1922 int nr, i;
1923 int fully_mapped = 1;
1924
Matt Mackallcd7619d2005-05-01 08:59:01 -07001925 BUG_ON(!PageLocked(page));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001926 blocksize = 1 << inode->i_blkbits;
1927 if (!page_has_buffers(page))
1928 create_empty_buffers(page, blocksize, 0);
1929 head = page_buffers(page);
1930
1931 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1932 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
1933 bh = head;
1934 nr = 0;
1935 i = 0;
1936
1937 do {
1938 if (buffer_uptodate(bh))
1939 continue;
1940
1941 if (!buffer_mapped(bh)) {
Andrew Mortonc64610b2005-05-16 21:53:49 -07001942 int err = 0;
1943
Linus Torvalds1da177e2005-04-16 15:20:36 -07001944 fully_mapped = 0;
1945 if (iblock < lblock) {
Badari Pulavartyb0cf2322006-03-26 01:38:00 -08001946 WARN_ON(bh->b_size != blocksize);
Andrew Mortonc64610b2005-05-16 21:53:49 -07001947 err = get_block(inode, iblock, bh, 0);
1948 if (err)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001949 SetPageError(page);
1950 }
1951 if (!buffer_mapped(bh)) {
1952 void *kaddr = kmap_atomic(page, KM_USER0);
1953 memset(kaddr + i * blocksize, 0, blocksize);
1954 flush_dcache_page(page);
1955 kunmap_atomic(kaddr, KM_USER0);
Andrew Mortonc64610b2005-05-16 21:53:49 -07001956 if (!err)
1957 set_buffer_uptodate(bh);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001958 continue;
1959 }
1960 /*
1961 * get_block() might have updated the buffer
1962 * synchronously
1963 */
1964 if (buffer_uptodate(bh))
1965 continue;
1966 }
1967 arr[nr++] = bh;
1968 } while (i++, iblock++, (bh = bh->b_this_page) != head);
1969
1970 if (fully_mapped)
1971 SetPageMappedToDisk(page);
1972
1973 if (!nr) {
1974 /*
1975 * All buffers are uptodate - we can set the page uptodate
1976 * as well. But not if get_block() returned an error.
1977 */
1978 if (!PageError(page))
1979 SetPageUptodate(page);
1980 unlock_page(page);
1981 return 0;
1982 }
1983
1984 /* Stage two: lock the buffers */
1985 for (i = 0; i < nr; i++) {
1986 bh = arr[i];
1987 lock_buffer(bh);
1988 mark_buffer_async_read(bh);
1989 }
1990
1991 /*
1992 * Stage 3: start the IO. Check for uptodateness
1993 * inside the buffer lock in case another process reading
1994 * the underlying blockdev brought it uptodate (the sct fix).
1995 */
1996 for (i = 0; i < nr; i++) {
1997 bh = arr[i];
1998 if (buffer_uptodate(bh))
1999 end_buffer_async_read(bh, 1);
2000 else
2001 submit_bh(READ, bh);
2002 }
2003 return 0;
2004}
2005
2006/* utility function for filesystems that need to do work on expanding
2007 * truncates. Uses prepare/commit_write to allow the filesystem to
2008 * deal with the hole.
2009 */
OGAWA Hirofumi05eb0b52006-01-08 01:02:13 -08002010static int __generic_cont_expand(struct inode *inode, loff_t size,
2011 pgoff_t index, unsigned int offset)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002012{
2013 struct address_space *mapping = inode->i_mapping;
2014 struct page *page;
OGAWA Hirofumi05eb0b52006-01-08 01:02:13 -08002015 unsigned long limit;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002016 int err;
2017
2018 err = -EFBIG;
2019 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2020 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2021 send_sig(SIGXFSZ, current, 0);
2022 goto out;
2023 }
2024 if (size > inode->i_sb->s_maxbytes)
2025 goto out;
2026
Linus Torvalds1da177e2005-04-16 15:20:36 -07002027 err = -ENOMEM;
2028 page = grab_cache_page(mapping, index);
2029 if (!page)
2030 goto out;
2031 err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
OGAWA Hirofumi05eb0b52006-01-08 01:02:13 -08002032 if (err) {
2033 /*
2034 * ->prepare_write() may have instantiated a few blocks
2035 * outside i_size. Trim these off again.
2036 */
2037 unlock_page(page);
2038 page_cache_release(page);
2039 vmtruncate(inode, inode->i_size);
2040 goto out;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002041 }
OGAWA Hirofumi05eb0b52006-01-08 01:02:13 -08002042
2043 err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2044
Linus Torvalds1da177e2005-04-16 15:20:36 -07002045 unlock_page(page);
2046 page_cache_release(page);
2047 if (err > 0)
2048 err = 0;
2049out:
2050 return err;
2051}
2052
OGAWA Hirofumi05eb0b52006-01-08 01:02:13 -08002053int generic_cont_expand(struct inode *inode, loff_t size)
2054{
2055 pgoff_t index;
2056 unsigned int offset;
2057
2058 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2059
2060 /* ugh. in prepare/commit_write, if from==to==start of block, we
2061 ** skip the prepare. make sure we never send an offset for the start
2062 ** of a block
2063 */
2064 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2065 /* caller must handle this extra byte. */
2066 offset++;
2067 }
2068 index = size >> PAGE_CACHE_SHIFT;
2069
2070 return __generic_cont_expand(inode, size, index, offset);
2071}
2072
2073int generic_cont_expand_simple(struct inode *inode, loff_t size)
2074{
2075 loff_t pos = size - 1;
2076 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2077 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2078
2079 /* prepare/commit_write can handle even if from==to==start of block. */
2080 return __generic_cont_expand(inode, size, index, offset);
2081}
2082
Linus Torvalds1da177e2005-04-16 15:20:36 -07002083/*
2084 * For moronic filesystems that do not allow holes in file.
2085 * We may have to extend the file.
2086 */
2087
2088int cont_prepare_write(struct page *page, unsigned offset,
2089 unsigned to, get_block_t *get_block, loff_t *bytes)
2090{
2091 struct address_space *mapping = page->mapping;
2092 struct inode *inode = mapping->host;
2093 struct page *new_page;
2094 pgoff_t pgpos;
2095 long status;
2096 unsigned zerofrom;
2097 unsigned blocksize = 1 << inode->i_blkbits;
2098 void *kaddr;
2099
2100 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2101 status = -ENOMEM;
2102 new_page = grab_cache_page(mapping, pgpos);
2103 if (!new_page)
2104 goto out;
2105 /* we might sleep */
2106 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2107 unlock_page(new_page);
2108 page_cache_release(new_page);
2109 continue;
2110 }
2111 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2112 if (zerofrom & (blocksize-1)) {
2113 *bytes |= (blocksize-1);
2114 (*bytes)++;
2115 }
2116 status = __block_prepare_write(inode, new_page, zerofrom,
2117 PAGE_CACHE_SIZE, get_block);
2118 if (status)
2119 goto out_unmap;
2120 kaddr = kmap_atomic(new_page, KM_USER0);
2121 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2122 flush_dcache_page(new_page);
2123 kunmap_atomic(kaddr, KM_USER0);
2124 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2125 unlock_page(new_page);
2126 page_cache_release(new_page);
2127 }
2128
2129 if (page->index < pgpos) {
2130 /* completely inside the area */
2131 zerofrom = offset;
2132 } else {
2133 /* page covers the boundary, find the boundary offset */
2134 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2135
2136 /* if we will expand the thing last block will be filled */
2137 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2138 *bytes |= (blocksize-1);
2139 (*bytes)++;
2140 }
2141
2142 /* starting below the boundary? Nothing to zero out */
2143 if (offset <= zerofrom)
2144 zerofrom = offset;
2145 }
2146 status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2147 if (status)
2148 goto out1;
2149 if (zerofrom < offset) {
2150 kaddr = kmap_atomic(page, KM_USER0);
2151 memset(kaddr+zerofrom, 0, offset-zerofrom);
2152 flush_dcache_page(page);
2153 kunmap_atomic(kaddr, KM_USER0);
2154 __block_commit_write(inode, page, zerofrom, offset);
2155 }
2156 return 0;
2157out1:
2158 ClearPageUptodate(page);
2159 return status;
2160
2161out_unmap:
2162 ClearPageUptodate(new_page);
2163 unlock_page(new_page);
2164 page_cache_release(new_page);
2165out:
2166 return status;
2167}
2168
2169int block_prepare_write(struct page *page, unsigned from, unsigned to,
2170 get_block_t *get_block)
2171{
2172 struct inode *inode = page->mapping->host;
2173 int err = __block_prepare_write(inode, page, from, to, get_block);
2174 if (err)
2175 ClearPageUptodate(page);
2176 return err;
2177}
2178
2179int block_commit_write(struct page *page, unsigned from, unsigned to)
2180{
2181 struct inode *inode = page->mapping->host;
2182 __block_commit_write(inode,page,from,to);
2183 return 0;
2184}
2185
2186int generic_commit_write(struct file *file, struct page *page,
2187 unsigned from, unsigned to)
2188{
2189 struct inode *inode = page->mapping->host;
2190 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2191 __block_commit_write(inode,page,from,to);
2192 /*
2193 * No need to use i_size_read() here, the i_size
Jes Sorensen1b1dcc12006-01-09 15:59:24 -08002194 * cannot change under us because we hold i_mutex.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002195 */
2196 if (pos > inode->i_size) {
2197 i_size_write(inode, pos);
2198 mark_inode_dirty(inode);
2199 }
2200 return 0;
2201}
2202
2203
2204/*
2205 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2206 * immediately, while under the page lock. So it needs a special end_io
2207 * handler which does not touch the bh after unlocking it.
2208 *
2209 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2210 * a race there is benign: unlock_buffer() only use the bh's address for
2211 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2212 * itself.
2213 */
2214static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2215{
2216 if (uptodate) {
2217 set_buffer_uptodate(bh);
2218 } else {
2219 /* This happens, due to failed READA attempts. */
2220 clear_buffer_uptodate(bh);
2221 }
2222 unlock_buffer(bh);
2223}
2224
2225/*
2226 * On entry, the page is fully not uptodate.
2227 * On exit the page is fully uptodate in the areas outside (from,to)
2228 */
2229int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2230 get_block_t *get_block)
2231{
2232 struct inode *inode = page->mapping->host;
2233 const unsigned blkbits = inode->i_blkbits;
2234 const unsigned blocksize = 1 << blkbits;
2235 struct buffer_head map_bh;
2236 struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2237 unsigned block_in_page;
2238 unsigned block_start;
2239 sector_t block_in_file;
2240 char *kaddr;
2241 int nr_reads = 0;
2242 int i;
2243 int ret = 0;
2244 int is_mapped_to_disk = 1;
2245 int dirtied_it = 0;
2246
2247 if (PageMappedToDisk(page))
2248 return 0;
2249
2250 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2251 map_bh.b_page = page;
2252
2253 /*
2254 * We loop across all blocks in the page, whether or not they are
2255 * part of the affected region. This is so we can discover if the
2256 * page is fully mapped-to-disk.
2257 */
2258 for (block_start = 0, block_in_page = 0;
2259 block_start < PAGE_CACHE_SIZE;
2260 block_in_page++, block_start += blocksize) {
2261 unsigned block_end = block_start + blocksize;
2262 int create;
2263
2264 map_bh.b_state = 0;
2265 create = 1;
2266 if (block_start >= to)
2267 create = 0;
Badari Pulavartyb0cf2322006-03-26 01:38:00 -08002268 map_bh.b_size = blocksize;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002269 ret = get_block(inode, block_in_file + block_in_page,
2270 &map_bh, create);
2271 if (ret)
2272 goto failed;
2273 if (!buffer_mapped(&map_bh))
2274 is_mapped_to_disk = 0;
2275 if (buffer_new(&map_bh))
2276 unmap_underlying_metadata(map_bh.b_bdev,
2277 map_bh.b_blocknr);
2278 if (PageUptodate(page))
2279 continue;
2280 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2281 kaddr = kmap_atomic(page, KM_USER0);
2282 if (block_start < from) {
2283 memset(kaddr+block_start, 0, from-block_start);
2284 dirtied_it = 1;
2285 }
2286 if (block_end > to) {
2287 memset(kaddr + to, 0, block_end - to);
2288 dirtied_it = 1;
2289 }
2290 flush_dcache_page(page);
2291 kunmap_atomic(kaddr, KM_USER0);
2292 continue;
2293 }
2294 if (buffer_uptodate(&map_bh))
2295 continue; /* reiserfs does this */
2296 if (block_start < from || block_end > to) {
2297 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2298
2299 if (!bh) {
2300 ret = -ENOMEM;
2301 goto failed;
2302 }
2303 bh->b_state = map_bh.b_state;
2304 atomic_set(&bh->b_count, 0);
2305 bh->b_this_page = NULL;
2306 bh->b_page = page;
2307 bh->b_blocknr = map_bh.b_blocknr;
2308 bh->b_size = blocksize;
2309 bh->b_data = (char *)(long)block_start;
2310 bh->b_bdev = map_bh.b_bdev;
2311 bh->b_private = NULL;
2312 read_bh[nr_reads++] = bh;
2313 }
2314 }
2315
2316 if (nr_reads) {
2317 struct buffer_head *bh;
2318
2319 /*
2320 * The page is locked, so these buffers are protected from
2321 * any VM or truncate activity. Hence we don't need to care
2322 * for the buffer_head refcounts.
2323 */
2324 for (i = 0; i < nr_reads; i++) {
2325 bh = read_bh[i];
2326 lock_buffer(bh);
2327 bh->b_end_io = end_buffer_read_nobh;
2328 submit_bh(READ, bh);
2329 }
2330 for (i = 0; i < nr_reads; i++) {
2331 bh = read_bh[i];
2332 wait_on_buffer(bh);
2333 if (!buffer_uptodate(bh))
2334 ret = -EIO;
2335 free_buffer_head(bh);
2336 read_bh[i] = NULL;
2337 }
2338 if (ret)
2339 goto failed;
2340 }
2341
2342 if (is_mapped_to_disk)
2343 SetPageMappedToDisk(page);
2344 SetPageUptodate(page);
2345
2346 /*
2347 * Setting the page dirty here isn't necessary for the prepare_write
2348 * function - commit_write will do that. But if/when this function is
2349 * used within the pagefault handler to ensure that all mmapped pages
2350 * have backing space in the filesystem, we will need to dirty the page
2351 * if its contents were altered.
2352 */
2353 if (dirtied_it)
2354 set_page_dirty(page);
2355
2356 return 0;
2357
2358failed:
2359 for (i = 0; i < nr_reads; i++) {
2360 if (read_bh[i])
2361 free_buffer_head(read_bh[i]);
2362 }
2363
2364 /*
2365 * Error recovery is pretty slack. Clear the page and mark it dirty
2366 * so we'll later zero out any blocks which _were_ allocated.
2367 */
2368 kaddr = kmap_atomic(page, KM_USER0);
2369 memset(kaddr, 0, PAGE_CACHE_SIZE);
Monakhov Dmitriy8c581652006-10-11 01:22:00 -07002370 flush_dcache_page(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002371 kunmap_atomic(kaddr, KM_USER0);
2372 SetPageUptodate(page);
2373 set_page_dirty(page);
2374 return ret;
2375}
2376EXPORT_SYMBOL(nobh_prepare_write);
2377
2378int nobh_commit_write(struct file *file, struct page *page,
2379 unsigned from, unsigned to)
2380{
2381 struct inode *inode = page->mapping->host;
2382 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2383
2384 set_page_dirty(page);
2385 if (pos > inode->i_size) {
2386 i_size_write(inode, pos);
2387 mark_inode_dirty(inode);
2388 }
2389 return 0;
2390}
2391EXPORT_SYMBOL(nobh_commit_write);
2392
2393/*
2394 * nobh_writepage() - based on block_full_write_page() except
2395 * that it tries to operate without attaching bufferheads to
2396 * the page.
2397 */
2398int nobh_writepage(struct page *page, get_block_t *get_block,
2399 struct writeback_control *wbc)
2400{
2401 struct inode * const inode = page->mapping->host;
2402 loff_t i_size = i_size_read(inode);
2403 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2404 unsigned offset;
2405 void *kaddr;
2406 int ret;
2407
2408 /* Is the page fully inside i_size? */
2409 if (page->index < end_index)
2410 goto out;
2411
2412 /* Is the page fully outside i_size? (truncate in progress) */
2413 offset = i_size & (PAGE_CACHE_SIZE-1);
2414 if (page->index >= end_index+1 || !offset) {
2415 /*
2416 * The page may have dirty, unmapped buffers. For example,
2417 * they may have been added in ext3_writepage(). Make them
2418 * freeable here, so the page does not leak.
2419 */
2420#if 0
2421 /* Not really sure about this - do we need this ? */
2422 if (page->mapping->a_ops->invalidatepage)
2423 page->mapping->a_ops->invalidatepage(page, offset);
2424#endif
2425 unlock_page(page);
2426 return 0; /* don't care */
2427 }
2428
2429 /*
2430 * The page straddles i_size. It must be zeroed out on each and every
2431 * writepage invocation because it may be mmapped. "A file is mapped
2432 * in multiples of the page size. For a file that is not a multiple of
2433 * the page size, the remaining memory is zeroed when mapped, and
2434 * writes to that region are not written out to the file."
2435 */
2436 kaddr = kmap_atomic(page, KM_USER0);
2437 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2438 flush_dcache_page(page);
2439 kunmap_atomic(kaddr, KM_USER0);
2440out:
2441 ret = mpage_writepage(page, get_block, wbc);
2442 if (ret == -EAGAIN)
2443 ret = __block_write_full_page(inode, page, get_block, wbc);
2444 return ret;
2445}
2446EXPORT_SYMBOL(nobh_writepage);
2447
2448/*
2449 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2450 */
2451int nobh_truncate_page(struct address_space *mapping, loff_t from)
2452{
2453 struct inode *inode = mapping->host;
2454 unsigned blocksize = 1 << inode->i_blkbits;
2455 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2456 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2457 unsigned to;
2458 struct page *page;
Christoph Hellwigf5e54d62006-06-28 04:26:44 -07002459 const struct address_space_operations *a_ops = mapping->a_ops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002460 char *kaddr;
2461 int ret = 0;
2462
2463 if ((offset & (blocksize - 1)) == 0)
2464 goto out;
2465
2466 ret = -ENOMEM;
2467 page = grab_cache_page(mapping, index);
2468 if (!page)
2469 goto out;
2470
2471 to = (offset + blocksize) & ~(blocksize - 1);
2472 ret = a_ops->prepare_write(NULL, page, offset, to);
2473 if (ret == 0) {
2474 kaddr = kmap_atomic(page, KM_USER0);
2475 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2476 flush_dcache_page(page);
2477 kunmap_atomic(kaddr, KM_USER0);
2478 set_page_dirty(page);
2479 }
2480 unlock_page(page);
2481 page_cache_release(page);
2482out:
2483 return ret;
2484}
2485EXPORT_SYMBOL(nobh_truncate_page);
2486
2487int block_truncate_page(struct address_space *mapping,
2488 loff_t from, get_block_t *get_block)
2489{
2490 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2491 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2492 unsigned blocksize;
Andrew Morton54b21a72006-01-08 01:03:05 -08002493 sector_t iblock;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002494 unsigned length, pos;
2495 struct inode *inode = mapping->host;
2496 struct page *page;
2497 struct buffer_head *bh;
2498 void *kaddr;
2499 int err;
2500
2501 blocksize = 1 << inode->i_blkbits;
2502 length = offset & (blocksize - 1);
2503
2504 /* Block boundary? Nothing to do */
2505 if (!length)
2506 return 0;
2507
2508 length = blocksize - length;
Andrew Morton54b21a72006-01-08 01:03:05 -08002509 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002510
2511 page = grab_cache_page(mapping, index);
2512 err = -ENOMEM;
2513 if (!page)
2514 goto out;
2515
2516 if (!page_has_buffers(page))
2517 create_empty_buffers(page, blocksize, 0);
2518
2519 /* Find the buffer that contains "offset" */
2520 bh = page_buffers(page);
2521 pos = blocksize;
2522 while (offset >= pos) {
2523 bh = bh->b_this_page;
2524 iblock++;
2525 pos += blocksize;
2526 }
2527
2528 err = 0;
2529 if (!buffer_mapped(bh)) {
Badari Pulavartyb0cf2322006-03-26 01:38:00 -08002530 WARN_ON(bh->b_size != blocksize);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002531 err = get_block(inode, iblock, bh, 0);
2532 if (err)
2533 goto unlock;
2534 /* unmapped? It's a hole - nothing to do */
2535 if (!buffer_mapped(bh))
2536 goto unlock;
2537 }
2538
2539 /* Ok, it's mapped. Make sure it's up-to-date */
2540 if (PageUptodate(page))
2541 set_buffer_uptodate(bh);
2542
2543 if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2544 err = -EIO;
2545 ll_rw_block(READ, 1, &bh);
2546 wait_on_buffer(bh);
2547 /* Uhhuh. Read error. Complain and punt. */
2548 if (!buffer_uptodate(bh))
2549 goto unlock;
2550 }
2551
2552 kaddr = kmap_atomic(page, KM_USER0);
2553 memset(kaddr + offset, 0, length);
2554 flush_dcache_page(page);
2555 kunmap_atomic(kaddr, KM_USER0);
2556
2557 mark_buffer_dirty(bh);
2558 err = 0;
2559
2560unlock:
2561 unlock_page(page);
2562 page_cache_release(page);
2563out:
2564 return err;
2565}
2566
2567/*
2568 * The generic ->writepage function for buffer-backed address_spaces
2569 */
2570int block_write_full_page(struct page *page, get_block_t *get_block,
2571 struct writeback_control *wbc)
2572{
2573 struct inode * const inode = page->mapping->host;
2574 loff_t i_size = i_size_read(inode);
2575 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2576 unsigned offset;
2577 void *kaddr;
2578
2579 /* Is the page fully inside i_size? */
2580 if (page->index < end_index)
2581 return __block_write_full_page(inode, page, get_block, wbc);
2582
2583 /* Is the page fully outside i_size? (truncate in progress) */
2584 offset = i_size & (PAGE_CACHE_SIZE-1);
2585 if (page->index >= end_index+1 || !offset) {
2586 /*
2587 * The page may have dirty, unmapped buffers. For example,
2588 * they may have been added in ext3_writepage(). Make them
2589 * freeable here, so the page does not leak.
2590 */
Jan Karaaaa40592005-10-30 15:00:16 -08002591 do_invalidatepage(page, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002592 unlock_page(page);
2593 return 0; /* don't care */
2594 }
2595
2596 /*
2597 * The page straddles i_size. It must be zeroed out on each and every
2598 * writepage invokation because it may be mmapped. "A file is mapped
2599 * in multiples of the page size. For a file that is not a multiple of
2600 * the page size, the remaining memory is zeroed when mapped, and
2601 * writes to that region are not written out to the file."
2602 */
2603 kaddr = kmap_atomic(page, KM_USER0);
2604 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2605 flush_dcache_page(page);
2606 kunmap_atomic(kaddr, KM_USER0);
2607 return __block_write_full_page(inode, page, get_block, wbc);
2608}
2609
2610sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2611 get_block_t *get_block)
2612{
2613 struct buffer_head tmp;
2614 struct inode *inode = mapping->host;
2615 tmp.b_state = 0;
2616 tmp.b_blocknr = 0;
Badari Pulavartyb0cf2322006-03-26 01:38:00 -08002617 tmp.b_size = 1 << inode->i_blkbits;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002618 get_block(inode, block, &tmp, 0);
2619 return tmp.b_blocknr;
2620}
2621
2622static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2623{
2624 struct buffer_head *bh = bio->bi_private;
2625
2626 if (bio->bi_size)
2627 return 1;
2628
2629 if (err == -EOPNOTSUPP) {
2630 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2631 set_bit(BH_Eopnotsupp, &bh->b_state);
2632 }
2633
2634 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2635 bio_put(bio);
2636 return 0;
2637}
2638
2639int submit_bh(int rw, struct buffer_head * bh)
2640{
2641 struct bio *bio;
2642 int ret = 0;
2643
2644 BUG_ON(!buffer_locked(bh));
2645 BUG_ON(!buffer_mapped(bh));
2646 BUG_ON(!bh->b_end_io);
2647
2648 if (buffer_ordered(bh) && (rw == WRITE))
2649 rw = WRITE_BARRIER;
2650
2651 /*
2652 * Only clear out a write error when rewriting, should this
2653 * include WRITE_SYNC as well?
2654 */
2655 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2656 clear_buffer_write_io_error(bh);
2657
2658 /*
2659 * from here on down, it's all bio -- do the initial mapping,
2660 * submit_bio -> generic_make_request may further map this bio around
2661 */
2662 bio = bio_alloc(GFP_NOIO, 1);
2663
2664 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2665 bio->bi_bdev = bh->b_bdev;
2666 bio->bi_io_vec[0].bv_page = bh->b_page;
2667 bio->bi_io_vec[0].bv_len = bh->b_size;
2668 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2669
2670 bio->bi_vcnt = 1;
2671 bio->bi_idx = 0;
2672 bio->bi_size = bh->b_size;
2673
2674 bio->bi_end_io = end_bio_bh_io_sync;
2675 bio->bi_private = bh;
2676
2677 bio_get(bio);
2678 submit_bio(rw, bio);
2679
2680 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2681 ret = -EOPNOTSUPP;
2682
2683 bio_put(bio);
2684 return ret;
2685}
2686
2687/**
2688 * ll_rw_block: low-level access to block devices (DEPRECATED)
Jan Karaa7662232005-09-06 15:19:10 -07002689 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002690 * @nr: number of &struct buffer_heads in the array
2691 * @bhs: array of pointers to &struct buffer_head
2692 *
Jan Karaa7662232005-09-06 15:19:10 -07002693 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2694 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2695 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2696 * are sent to disk. The fourth %READA option is described in the documentation
2697 * for generic_make_request() which ll_rw_block() calls.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002698 *
2699 * This function drops any buffer that it cannot get a lock on (with the
Jan Karaa7662232005-09-06 15:19:10 -07002700 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2701 * clean when doing a write request, and any buffer that appears to be
2702 * up-to-date when doing read request. Further it marks as clean buffers that
2703 * are processed for writing (the buffer cache won't assume that they are
2704 * actually clean until the buffer gets unlocked).
Linus Torvalds1da177e2005-04-16 15:20:36 -07002705 *
2706 * ll_rw_block sets b_end_io to simple completion handler that marks
2707 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2708 * any waiters.
2709 *
2710 * All of the buffers must be for the same device, and must also be a
2711 * multiple of the current approved size for the device.
2712 */
2713void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2714{
2715 int i;
2716
2717 for (i = 0; i < nr; i++) {
2718 struct buffer_head *bh = bhs[i];
2719
Jan Karaa7662232005-09-06 15:19:10 -07002720 if (rw == SWRITE)
2721 lock_buffer(bh);
2722 else if (test_set_buffer_locked(bh))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002723 continue;
2724
Jan Karaa7662232005-09-06 15:19:10 -07002725 if (rw == WRITE || rw == SWRITE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002726 if (test_clear_buffer_dirty(bh)) {
akpm@osdl.org76c30732005-04-16 15:24:07 -07002727 bh->b_end_io = end_buffer_write_sync;
OGAWA Hirofumie60e5c52006-02-03 03:04:43 -08002728 get_bh(bh);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002729 submit_bh(WRITE, bh);
2730 continue;
2731 }
2732 } else {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002733 if (!buffer_uptodate(bh)) {
akpm@osdl.org76c30732005-04-16 15:24:07 -07002734 bh->b_end_io = end_buffer_read_sync;
OGAWA Hirofumie60e5c52006-02-03 03:04:43 -08002735 get_bh(bh);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002736 submit_bh(rw, bh);
2737 continue;
2738 }
2739 }
2740 unlock_buffer(bh);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002741 }
2742}
2743
2744/*
2745 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2746 * and then start new I/O and then wait upon it. The caller must have a ref on
2747 * the buffer_head.
2748 */
2749int sync_dirty_buffer(struct buffer_head *bh)
2750{
2751 int ret = 0;
2752
2753 WARN_ON(atomic_read(&bh->b_count) < 1);
2754 lock_buffer(bh);
2755 if (test_clear_buffer_dirty(bh)) {
2756 get_bh(bh);
2757 bh->b_end_io = end_buffer_write_sync;
2758 ret = submit_bh(WRITE, bh);
2759 wait_on_buffer(bh);
2760 if (buffer_eopnotsupp(bh)) {
2761 clear_buffer_eopnotsupp(bh);
2762 ret = -EOPNOTSUPP;
2763 }
2764 if (!ret && !buffer_uptodate(bh))
2765 ret = -EIO;
2766 } else {
2767 unlock_buffer(bh);
2768 }
2769 return ret;
2770}
2771
2772/*
2773 * try_to_free_buffers() checks if all the buffers on this particular page
2774 * are unused, and releases them if so.
2775 *
2776 * Exclusion against try_to_free_buffers may be obtained by either
2777 * locking the page or by holding its mapping's private_lock.
2778 *
2779 * If the page is dirty but all the buffers are clean then we need to
2780 * be sure to mark the page clean as well. This is because the page
2781 * may be against a block device, and a later reattachment of buffers
2782 * to a dirty page will set *all* buffers dirty. Which would corrupt
2783 * filesystem data on the same device.
2784 *
2785 * The same applies to regular filesystem pages: if all the buffers are
2786 * clean then we set the page clean and proceed. To do that, we require
2787 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2788 * private_lock.
2789 *
2790 * try_to_free_buffers() is non-blocking.
2791 */
2792static inline int buffer_busy(struct buffer_head *bh)
2793{
2794 return atomic_read(&bh->b_count) |
2795 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2796}
2797
2798static int
2799drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2800{
2801 struct buffer_head *head = page_buffers(page);
2802 struct buffer_head *bh;
2803
2804 bh = head;
2805 do {
akpm@osdl.orgde7d5a32005-05-01 08:58:39 -07002806 if (buffer_write_io_error(bh) && page->mapping)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002807 set_bit(AS_EIO, &page->mapping->flags);
2808 if (buffer_busy(bh))
2809 goto failed;
2810 bh = bh->b_this_page;
2811 } while (bh != head);
2812
2813 do {
2814 struct buffer_head *next = bh->b_this_page;
2815
2816 if (!list_empty(&bh->b_assoc_buffers))
2817 __remove_assoc_queue(bh);
2818 bh = next;
2819 } while (bh != head);
2820 *buffers_to_free = head;
2821 __clear_page_buffers(page);
2822 return 1;
2823failed:
2824 return 0;
2825}
2826
2827int try_to_free_buffers(struct page *page)
2828{
2829 struct address_space * const mapping = page->mapping;
2830 struct buffer_head *buffers_to_free = NULL;
2831 int ret = 0;
2832
2833 BUG_ON(!PageLocked(page));
2834 if (PageWriteback(page))
2835 return 0;
2836
2837 if (mapping == NULL) { /* can this still happen? */
2838 ret = drop_buffers(page, &buffers_to_free);
2839 goto out;
2840 }
2841
2842 spin_lock(&mapping->private_lock);
2843 ret = drop_buffers(page, &buffers_to_free);
Peter Zijlstrad08b3852006-09-25 23:30:57 -07002844 spin_unlock(&mapping->private_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002845 if (ret) {
2846 /*
2847 * If the filesystem writes its buffers by hand (eg ext3)
2848 * then we can have clean buffers against a dirty page. We
2849 * clean the page here; otherwise later reattachment of buffers
2850 * could encounter a non-uptodate page, which is unresolvable.
2851 * This only applies in the rare case where try_to_free_buffers
2852 * succeeds but the page is not freed.
2853 */
2854 clear_page_dirty(page);
2855 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002856out:
2857 if (buffers_to_free) {
2858 struct buffer_head *bh = buffers_to_free;
2859
2860 do {
2861 struct buffer_head *next = bh->b_this_page;
2862 free_buffer_head(bh);
2863 bh = next;
2864 } while (bh != buffers_to_free);
2865 }
2866 return ret;
2867}
2868EXPORT_SYMBOL(try_to_free_buffers);
2869
NeilBrown3978d712006-03-26 01:37:17 -08002870void block_sync_page(struct page *page)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002871{
2872 struct address_space *mapping;
2873
2874 smp_mb();
2875 mapping = page_mapping(page);
2876 if (mapping)
2877 blk_run_backing_dev(mapping->backing_dev_info, page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002878}
2879
2880/*
2881 * There are no bdflush tunables left. But distributions are
2882 * still running obsolete flush daemons, so we terminate them here.
2883 *
2884 * Use of bdflush() is deprecated and will be removed in a future kernel.
2885 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2886 */
2887asmlinkage long sys_bdflush(int func, long data)
2888{
2889 static int msg_count;
2890
2891 if (!capable(CAP_SYS_ADMIN))
2892 return -EPERM;
2893
2894 if (msg_count < 5) {
2895 msg_count++;
2896 printk(KERN_INFO
2897 "warning: process `%s' used the obsolete bdflush"
2898 " system call\n", current->comm);
2899 printk(KERN_INFO "Fix your initscripts?\n");
2900 }
2901
2902 if (func == 1)
2903 do_exit(0);
2904 return 0;
2905}
2906
2907/*
2908 * Buffer-head allocation
2909 */
Christoph Lametere18b8902006-12-06 20:33:20 -08002910static struct kmem_cache *bh_cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002911
2912/*
2913 * Once the number of bh's in the machine exceeds this level, we start
2914 * stripping them in writeback.
2915 */
2916static int max_buffer_heads;
2917
2918int buffer_heads_over_limit;
2919
2920struct bh_accounting {
2921 int nr; /* Number of live bh's */
2922 int ratelimit; /* Limit cacheline bouncing */
2923};
2924
2925static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2926
2927static void recalc_bh_state(void)
2928{
2929 int i;
2930 int tot = 0;
2931
2932 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
2933 return;
2934 __get_cpu_var(bh_accounting).ratelimit = 0;
Eric Dumazet8a143422006-03-24 03:18:10 -08002935 for_each_online_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002936 tot += per_cpu(bh_accounting, i).nr;
2937 buffer_heads_over_limit = (tot > max_buffer_heads);
2938}
2939
Al Virodd0fc662005-10-07 07:46:04 +01002940struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002941{
2942 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
2943 if (ret) {
Coywolf Qi Hunt736c7b82005-09-06 15:18:17 -07002944 get_cpu_var(bh_accounting).nr++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002945 recalc_bh_state();
Coywolf Qi Hunt736c7b82005-09-06 15:18:17 -07002946 put_cpu_var(bh_accounting);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002947 }
2948 return ret;
2949}
2950EXPORT_SYMBOL(alloc_buffer_head);
2951
2952void free_buffer_head(struct buffer_head *bh)
2953{
2954 BUG_ON(!list_empty(&bh->b_assoc_buffers));
2955 kmem_cache_free(bh_cachep, bh);
Coywolf Qi Hunt736c7b82005-09-06 15:18:17 -07002956 get_cpu_var(bh_accounting).nr--;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002957 recalc_bh_state();
Coywolf Qi Hunt736c7b82005-09-06 15:18:17 -07002958 put_cpu_var(bh_accounting);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002959}
2960EXPORT_SYMBOL(free_buffer_head);
2961
2962static void
Christoph Lametere18b8902006-12-06 20:33:20 -08002963init_buffer_head(void *data, struct kmem_cache *cachep, unsigned long flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002964{
2965 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2966 SLAB_CTOR_CONSTRUCTOR) {
2967 struct buffer_head * bh = (struct buffer_head *)data;
2968
2969 memset(bh, 0, sizeof(*bh));
2970 INIT_LIST_HEAD(&bh->b_assoc_buffers);
2971 }
2972}
2973
Linus Torvalds1da177e2005-04-16 15:20:36 -07002974static void buffer_exit_cpu(int cpu)
2975{
2976 int i;
2977 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2978
2979 for (i = 0; i < BH_LRU_SIZE; i++) {
2980 brelse(b->bhs[i]);
2981 b->bhs[i] = NULL;
2982 }
Eric Dumazet8a143422006-03-24 03:18:10 -08002983 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
2984 per_cpu(bh_accounting, cpu).nr = 0;
2985 put_cpu_var(bh_accounting);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002986}
2987
2988static int buffer_cpu_notify(struct notifier_block *self,
2989 unsigned long action, void *hcpu)
2990{
2991 if (action == CPU_DEAD)
2992 buffer_exit_cpu((unsigned long)hcpu);
2993 return NOTIFY_OK;
2994}
Linus Torvalds1da177e2005-04-16 15:20:36 -07002995
2996void __init buffer_init(void)
2997{
2998 int nrpages;
2999
3000 bh_cachep = kmem_cache_create("buffer_head",
Paul Jacksonb0196002006-03-24 03:16:09 -08003001 sizeof(struct buffer_head), 0,
3002 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3003 SLAB_MEM_SPREAD),
3004 init_buffer_head,
3005 NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003006
3007 /*
3008 * Limit the bh occupancy to 10% of ZONE_NORMAL
3009 */
3010 nrpages = (nr_free_buffer_pages() * 10) / 100;
3011 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3012 hotcpu_notifier(buffer_cpu_notify, 0);
3013}
3014
3015EXPORT_SYMBOL(__bforget);
3016EXPORT_SYMBOL(__brelse);
3017EXPORT_SYMBOL(__wait_on_buffer);
3018EXPORT_SYMBOL(block_commit_write);
3019EXPORT_SYMBOL(block_prepare_write);
3020EXPORT_SYMBOL(block_read_full_page);
3021EXPORT_SYMBOL(block_sync_page);
3022EXPORT_SYMBOL(block_truncate_page);
3023EXPORT_SYMBOL(block_write_full_page);
3024EXPORT_SYMBOL(cont_prepare_write);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003025EXPORT_SYMBOL(end_buffer_read_sync);
3026EXPORT_SYMBOL(end_buffer_write_sync);
3027EXPORT_SYMBOL(file_fsync);
3028EXPORT_SYMBOL(fsync_bdev);
3029EXPORT_SYMBOL(generic_block_bmap);
3030EXPORT_SYMBOL(generic_commit_write);
3031EXPORT_SYMBOL(generic_cont_expand);
OGAWA Hirofumi05eb0b52006-01-08 01:02:13 -08003032EXPORT_SYMBOL(generic_cont_expand_simple);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003033EXPORT_SYMBOL(init_buffer);
3034EXPORT_SYMBOL(invalidate_bdev);
3035EXPORT_SYMBOL(ll_rw_block);
3036EXPORT_SYMBOL(mark_buffer_dirty);
3037EXPORT_SYMBOL(submit_bh);
3038EXPORT_SYMBOL(sync_dirty_buffer);
3039EXPORT_SYMBOL(unlock_buffer);