blob: 47a4ad40bf4e4dae6aa5daa13fd98b92b857f905 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/completion.h>
13#include <linux/kernel.h>
14#include <linux/mempool.h>
15#include <linux/slab.h>
16#include <linux/init.h>
17#include <linux/pci.h>
18#include <linux/delay.h>
19
20#include <scsi/scsi.h>
21#include <scsi/scsi_dbg.h>
22#include <scsi/scsi_device.h>
23#include <scsi/scsi_driver.h>
24#include <scsi/scsi_eh.h>
25#include <scsi/scsi_host.h>
26#include <scsi/scsi_request.h>
27
28#include "scsi_priv.h"
29#include "scsi_logging.h"
30
31
32#define SG_MEMPOOL_NR (sizeof(scsi_sg_pools)/sizeof(struct scsi_host_sg_pool))
33#define SG_MEMPOOL_SIZE 32
34
35struct scsi_host_sg_pool {
36 size_t size;
37 char *name;
38 kmem_cache_t *slab;
39 mempool_t *pool;
40};
41
42#if (SCSI_MAX_PHYS_SEGMENTS < 32)
43#error SCSI_MAX_PHYS_SEGMENTS is too small
44#endif
45
46#define SP(x) { x, "sgpool-" #x }
47struct scsi_host_sg_pool scsi_sg_pools[] = {
48 SP(8),
49 SP(16),
50 SP(32),
51#if (SCSI_MAX_PHYS_SEGMENTS > 32)
52 SP(64),
53#if (SCSI_MAX_PHYS_SEGMENTS > 64)
54 SP(128),
55#if (SCSI_MAX_PHYS_SEGMENTS > 128)
56 SP(256),
57#if (SCSI_MAX_PHYS_SEGMENTS > 256)
58#error SCSI_MAX_PHYS_SEGMENTS is too large
59#endif
60#endif
61#endif
62#endif
63};
64#undef SP
65
66
67/*
68 * Function: scsi_insert_special_req()
69 *
70 * Purpose: Insert pre-formed request into request queue.
71 *
72 * Arguments: sreq - request that is ready to be queued.
73 * at_head - boolean. True if we should insert at head
74 * of queue, false if we should insert at tail.
75 *
76 * Lock status: Assumed that lock is not held upon entry.
77 *
78 * Returns: Nothing
79 *
80 * Notes: This function is called from character device and from
81 * ioctl types of functions where the caller knows exactly
82 * what SCSI command needs to be issued. The idea is that
83 * we merely inject the command into the queue (at the head
84 * for now), and then call the queue request function to actually
85 * process it.
86 */
87int scsi_insert_special_req(struct scsi_request *sreq, int at_head)
88{
89 /*
90 * Because users of this function are apt to reuse requests with no
91 * modification, we have to sanitise the request flags here
92 */
93 sreq->sr_request->flags &= ~REQ_DONTPREP;
94 blk_insert_request(sreq->sr_device->request_queue, sreq->sr_request,
Tejun Heo 867d1192005-04-24 02:06:05 -050095 at_head, sreq);
Linus Torvalds1da177e2005-04-16 15:20:36 -070096 return 0;
97}
98
99/*
100 * Function: scsi_queue_insert()
101 *
102 * Purpose: Insert a command in the midlevel queue.
103 *
104 * Arguments: cmd - command that we are adding to queue.
105 * reason - why we are inserting command to queue.
106 *
107 * Lock status: Assumed that lock is not held upon entry.
108 *
109 * Returns: Nothing.
110 *
111 * Notes: We do this for one of two cases. Either the host is busy
112 * and it cannot accept any more commands for the time being,
113 * or the device returned QUEUE_FULL and can accept no more
114 * commands.
115 * Notes: This could be called either from an interrupt context or a
116 * normal process context.
117 */
118int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
119{
120 struct Scsi_Host *host = cmd->device->host;
121 struct scsi_device *device = cmd->device;
122
123 SCSI_LOG_MLQUEUE(1,
124 printk("Inserting command %p into mlqueue\n", cmd));
125
126 /*
127 * We are inserting the command into the ml queue. First, we
128 * cancel the timer, so it doesn't time out.
129 */
130 scsi_delete_timer(cmd);
131
132 /*
133 * Next, set the appropriate busy bit for the device/host.
134 *
135 * If the host/device isn't busy, assume that something actually
136 * completed, and that we should be able to queue a command now.
137 *
138 * Note that the prior mid-layer assumption that any host could
139 * always queue at least one command is now broken. The mid-layer
140 * will implement a user specifiable stall (see
141 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
142 * if a command is requeued with no other commands outstanding
143 * either for the device or for the host.
144 */
145 if (reason == SCSI_MLQUEUE_HOST_BUSY)
146 host->host_blocked = host->max_host_blocked;
147 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
148 device->device_blocked = device->max_device_blocked;
149
150 /*
151 * Register the fact that we own the thing for now.
152 */
153 cmd->state = SCSI_STATE_MLQUEUE;
154 cmd->owner = SCSI_OWNER_MIDLEVEL;
155
156 /*
157 * Decrement the counters, since these commands are no longer
158 * active on the host/device.
159 */
160 scsi_device_unbusy(device);
161
162 /*
163 * Insert this command at the head of the queue for it's device.
164 * It will go before all other commands that are already in the queue.
165 *
166 * NOTE: there is magic here about the way the queue is plugged if
167 * we have no outstanding commands.
168 *
169 * Although this *doesn't* plug the queue, it does call the request
170 * function. The SCSI request function detects the blocked condition
171 * and plugs the queue appropriately.
172 */
173 blk_insert_request(device->request_queue, cmd->request, 1, cmd, 1);
174 return 0;
175}
176
177/*
178 * Function: scsi_do_req
179 *
180 * Purpose: Queue a SCSI request
181 *
182 * Arguments: sreq - command descriptor.
183 * cmnd - actual SCSI command to be performed.
184 * buffer - data buffer.
185 * bufflen - size of data buffer.
186 * done - completion function to be run.
187 * timeout - how long to let it run before timeout.
188 * retries - number of retries we allow.
189 *
190 * Lock status: No locks held upon entry.
191 *
192 * Returns: Nothing.
193 *
194 * Notes: This function is only used for queueing requests for things
195 * like ioctls and character device requests - this is because
196 * we essentially just inject a request into the queue for the
197 * device.
198 *
199 * In order to support the scsi_device_quiesce function, we
200 * now inject requests on the *head* of the device queue
201 * rather than the tail.
202 */
203void scsi_do_req(struct scsi_request *sreq, const void *cmnd,
204 void *buffer, unsigned bufflen,
205 void (*done)(struct scsi_cmnd *),
206 int timeout, int retries)
207{
208 /*
209 * If the upper level driver is reusing these things, then
210 * we should release the low-level block now. Another one will
211 * be allocated later when this request is getting queued.
212 */
213 __scsi_release_request(sreq);
214
215 /*
216 * Our own function scsi_done (which marks the host as not busy,
217 * disables the timeout counter, etc) will be called by us or by the
218 * scsi_hosts[host].queuecommand() function needs to also call
219 * the completion function for the high level driver.
220 */
221 memcpy(sreq->sr_cmnd, cmnd, sizeof(sreq->sr_cmnd));
222 sreq->sr_bufflen = bufflen;
223 sreq->sr_buffer = buffer;
224 sreq->sr_allowed = retries;
225 sreq->sr_done = done;
226 sreq->sr_timeout_per_command = timeout;
227
228 if (sreq->sr_cmd_len == 0)
229 sreq->sr_cmd_len = COMMAND_SIZE(sreq->sr_cmnd[0]);
230
231 /*
232 * head injection *required* here otherwise quiesce won't work
233 */
234 scsi_insert_special_req(sreq, 1);
235}
236EXPORT_SYMBOL(scsi_do_req);
237
238static void scsi_wait_done(struct scsi_cmnd *cmd)
239{
240 struct request *req = cmd->request;
241 struct request_queue *q = cmd->device->request_queue;
242 unsigned long flags;
243
244 req->rq_status = RQ_SCSI_DONE; /* Busy, but indicate request done */
245
246 spin_lock_irqsave(q->queue_lock, flags);
247 if (blk_rq_tagged(req))
248 blk_queue_end_tag(q, req);
249 spin_unlock_irqrestore(q->queue_lock, flags);
250
251 if (req->waiting)
252 complete(req->waiting);
253}
254
255/* This is the end routine we get to if a command was never attached
256 * to the request. Simply complete the request without changing
257 * rq_status; this will cause a DRIVER_ERROR. */
258static void scsi_wait_req_end_io(struct request *req)
259{
260 BUG_ON(!req->waiting);
261
262 complete(req->waiting);
263}
264
265void scsi_wait_req(struct scsi_request *sreq, const void *cmnd, void *buffer,
266 unsigned bufflen, int timeout, int retries)
267{
268 DECLARE_COMPLETION(wait);
269
270 sreq->sr_request->waiting = &wait;
271 sreq->sr_request->rq_status = RQ_SCSI_BUSY;
272 sreq->sr_request->end_io = scsi_wait_req_end_io;
273 scsi_do_req(sreq, cmnd, buffer, bufflen, scsi_wait_done,
274 timeout, retries);
275 wait_for_completion(&wait);
276 sreq->sr_request->waiting = NULL;
277 if (sreq->sr_request->rq_status != RQ_SCSI_DONE)
278 sreq->sr_result |= (DRIVER_ERROR << 24);
279
280 __scsi_release_request(sreq);
281}
282EXPORT_SYMBOL(scsi_wait_req);
283
284/*
285 * Function: scsi_init_cmd_errh()
286 *
287 * Purpose: Initialize cmd fields related to error handling.
288 *
289 * Arguments: cmd - command that is ready to be queued.
290 *
291 * Returns: Nothing
292 *
293 * Notes: This function has the job of initializing a number of
294 * fields related to error handling. Typically this will
295 * be called once for each command, as required.
296 */
297static int scsi_init_cmd_errh(struct scsi_cmnd *cmd)
298{
299 cmd->owner = SCSI_OWNER_MIDLEVEL;
300 cmd->serial_number = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700301 cmd->abort_reason = 0;
302
303 memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
304
305 if (cmd->cmd_len == 0)
306 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
307
308 /*
309 * We need saved copies of a number of fields - this is because
310 * error handling may need to overwrite these with different values
311 * to run different commands, and once error handling is complete,
312 * we will need to restore these values prior to running the actual
313 * command.
314 */
315 cmd->old_use_sg = cmd->use_sg;
316 cmd->old_cmd_len = cmd->cmd_len;
317 cmd->sc_old_data_direction = cmd->sc_data_direction;
318 cmd->old_underflow = cmd->underflow;
319 memcpy(cmd->data_cmnd, cmd->cmnd, sizeof(cmd->cmnd));
320 cmd->buffer = cmd->request_buffer;
321 cmd->bufflen = cmd->request_bufflen;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700322 cmd->abort_reason = 0;
323
324 return 1;
325}
326
327/*
328 * Function: scsi_setup_cmd_retry()
329 *
330 * Purpose: Restore the command state for a retry
331 *
332 * Arguments: cmd - command to be restored
333 *
334 * Returns: Nothing
335 *
336 * Notes: Immediately prior to retrying a command, we need
337 * to restore certain fields that we saved above.
338 */
339void scsi_setup_cmd_retry(struct scsi_cmnd *cmd)
340{
341 memcpy(cmd->cmnd, cmd->data_cmnd, sizeof(cmd->data_cmnd));
342 cmd->request_buffer = cmd->buffer;
343 cmd->request_bufflen = cmd->bufflen;
344 cmd->use_sg = cmd->old_use_sg;
345 cmd->cmd_len = cmd->old_cmd_len;
346 cmd->sc_data_direction = cmd->sc_old_data_direction;
347 cmd->underflow = cmd->old_underflow;
348}
349
350void scsi_device_unbusy(struct scsi_device *sdev)
351{
352 struct Scsi_Host *shost = sdev->host;
353 unsigned long flags;
354
355 spin_lock_irqsave(shost->host_lock, flags);
356 shost->host_busy--;
357 if (unlikely(test_bit(SHOST_RECOVERY, &shost->shost_state) &&
358 shost->host_failed))
359 scsi_eh_wakeup(shost);
360 spin_unlock(shost->host_lock);
152587d2005-04-12 16:22:06 -0500361 spin_lock(sdev->request_queue->queue_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700362 sdev->device_busy--;
152587d2005-04-12 16:22:06 -0500363 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700364}
365
366/*
367 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
368 * and call blk_run_queue for all the scsi_devices on the target -
369 * including current_sdev first.
370 *
371 * Called with *no* scsi locks held.
372 */
373static void scsi_single_lun_run(struct scsi_device *current_sdev)
374{
375 struct Scsi_Host *shost = current_sdev->host;
376 struct scsi_device *sdev, *tmp;
377 struct scsi_target *starget = scsi_target(current_sdev);
378 unsigned long flags;
379
380 spin_lock_irqsave(shost->host_lock, flags);
381 starget->starget_sdev_user = NULL;
382 spin_unlock_irqrestore(shost->host_lock, flags);
383
384 /*
385 * Call blk_run_queue for all LUNs on the target, starting with
386 * current_sdev. We race with others (to set starget_sdev_user),
387 * but in most cases, we will be first. Ideally, each LU on the
388 * target would get some limited time or requests on the target.
389 */
390 blk_run_queue(current_sdev->request_queue);
391
392 spin_lock_irqsave(shost->host_lock, flags);
393 if (starget->starget_sdev_user)
394 goto out;
395 list_for_each_entry_safe(sdev, tmp, &starget->devices,
396 same_target_siblings) {
397 if (sdev == current_sdev)
398 continue;
399 if (scsi_device_get(sdev))
400 continue;
401
402 spin_unlock_irqrestore(shost->host_lock, flags);
403 blk_run_queue(sdev->request_queue);
404 spin_lock_irqsave(shost->host_lock, flags);
405
406 scsi_device_put(sdev);
407 }
408 out:
409 spin_unlock_irqrestore(shost->host_lock, flags);
410}
411
412/*
413 * Function: scsi_run_queue()
414 *
415 * Purpose: Select a proper request queue to serve next
416 *
417 * Arguments: q - last request's queue
418 *
419 * Returns: Nothing
420 *
421 * Notes: The previous command was completely finished, start
422 * a new one if possible.
423 */
424static void scsi_run_queue(struct request_queue *q)
425{
426 struct scsi_device *sdev = q->queuedata;
427 struct Scsi_Host *shost = sdev->host;
428 unsigned long flags;
429
430 if (sdev->single_lun)
431 scsi_single_lun_run(sdev);
432
433 spin_lock_irqsave(shost->host_lock, flags);
434 while (!list_empty(&shost->starved_list) &&
435 !shost->host_blocked && !shost->host_self_blocked &&
436 !((shost->can_queue > 0) &&
437 (shost->host_busy >= shost->can_queue))) {
438 /*
439 * As long as shost is accepting commands and we have
440 * starved queues, call blk_run_queue. scsi_request_fn
441 * drops the queue_lock and can add us back to the
442 * starved_list.
443 *
444 * host_lock protects the starved_list and starved_entry.
445 * scsi_request_fn must get the host_lock before checking
446 * or modifying starved_list or starved_entry.
447 */
448 sdev = list_entry(shost->starved_list.next,
449 struct scsi_device, starved_entry);
450 list_del_init(&sdev->starved_entry);
451 spin_unlock_irqrestore(shost->host_lock, flags);
452
453 blk_run_queue(sdev->request_queue);
454
455 spin_lock_irqsave(shost->host_lock, flags);
456 if (unlikely(!list_empty(&sdev->starved_entry)))
457 /*
458 * sdev lost a race, and was put back on the
459 * starved list. This is unlikely but without this
460 * in theory we could loop forever.
461 */
462 break;
463 }
464 spin_unlock_irqrestore(shost->host_lock, flags);
465
466 blk_run_queue(q);
467}
468
469/*
470 * Function: scsi_requeue_command()
471 *
472 * Purpose: Handle post-processing of completed commands.
473 *
474 * Arguments: q - queue to operate on
475 * cmd - command that may need to be requeued.
476 *
477 * Returns: Nothing
478 *
479 * Notes: After command completion, there may be blocks left
480 * over which weren't finished by the previous command
481 * this can be for a number of reasons - the main one is
482 * I/O errors in the middle of the request, in which case
483 * we need to request the blocks that come after the bad
484 * sector.
485 */
486static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
487{
488 cmd->request->flags &= ~REQ_DONTPREP;
489 blk_insert_request(q, cmd->request, 1, cmd, 1);
490
491 scsi_run_queue(q);
492}
493
494void scsi_next_command(struct scsi_cmnd *cmd)
495{
496 struct request_queue *q = cmd->device->request_queue;
497
498 scsi_put_command(cmd);
499 scsi_run_queue(q);
500}
501
502void scsi_run_host_queues(struct Scsi_Host *shost)
503{
504 struct scsi_device *sdev;
505
506 shost_for_each_device(sdev, shost)
507 scsi_run_queue(sdev->request_queue);
508}
509
510/*
511 * Function: scsi_end_request()
512 *
513 * Purpose: Post-processing of completed commands (usually invoked at end
514 * of upper level post-processing and scsi_io_completion).
515 *
516 * Arguments: cmd - command that is complete.
517 * uptodate - 1 if I/O indicates success, <= 0 for I/O error.
518 * bytes - number of bytes of completed I/O
519 * requeue - indicates whether we should requeue leftovers.
520 *
521 * Lock status: Assumed that lock is not held upon entry.
522 *
523 * Returns: cmd if requeue done or required, NULL otherwise
524 *
525 * Notes: This is called for block device requests in order to
526 * mark some number of sectors as complete.
527 *
528 * We are guaranteeing that the request queue will be goosed
529 * at some point during this call.
530 */
531static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
532 int bytes, int requeue)
533{
534 request_queue_t *q = cmd->device->request_queue;
535 struct request *req = cmd->request;
536 unsigned long flags;
537
538 /*
539 * If there are blocks left over at the end, set up the command
540 * to queue the remainder of them.
541 */
542 if (end_that_request_chunk(req, uptodate, bytes)) {
543 int leftover = (req->hard_nr_sectors << 9);
544
545 if (blk_pc_request(req))
546 leftover = req->data_len;
547
548 /* kill remainder if no retrys */
549 if (!uptodate && blk_noretry_request(req))
550 end_that_request_chunk(req, 0, leftover);
551 else {
552 if (requeue)
553 /*
554 * Bleah. Leftovers again. Stick the
555 * leftovers in the front of the
556 * queue, and goose the queue again.
557 */
558 scsi_requeue_command(q, cmd);
559
560 return cmd;
561 }
562 }
563
564 add_disk_randomness(req->rq_disk);
565
566 spin_lock_irqsave(q->queue_lock, flags);
567 if (blk_rq_tagged(req))
568 blk_queue_end_tag(q, req);
569 end_that_request_last(req);
570 spin_unlock_irqrestore(q->queue_lock, flags);
571
572 /*
573 * This will goose the queue request function at the end, so we don't
574 * need to worry about launching another command.
575 */
576 scsi_next_command(cmd);
577 return NULL;
578}
579
580static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, int gfp_mask)
581{
582 struct scsi_host_sg_pool *sgp;
583 struct scatterlist *sgl;
584
585 BUG_ON(!cmd->use_sg);
586
587 switch (cmd->use_sg) {
588 case 1 ... 8:
589 cmd->sglist_len = 0;
590 break;
591 case 9 ... 16:
592 cmd->sglist_len = 1;
593 break;
594 case 17 ... 32:
595 cmd->sglist_len = 2;
596 break;
597#if (SCSI_MAX_PHYS_SEGMENTS > 32)
598 case 33 ... 64:
599 cmd->sglist_len = 3;
600 break;
601#if (SCSI_MAX_PHYS_SEGMENTS > 64)
602 case 65 ... 128:
603 cmd->sglist_len = 4;
604 break;
605#if (SCSI_MAX_PHYS_SEGMENTS > 128)
606 case 129 ... 256:
607 cmd->sglist_len = 5;
608 break;
609#endif
610#endif
611#endif
612 default:
613 return NULL;
614 }
615
616 sgp = scsi_sg_pools + cmd->sglist_len;
617 sgl = mempool_alloc(sgp->pool, gfp_mask);
618 if (sgl)
619 memset(sgl, 0, sgp->size);
620 return sgl;
621}
622
623static void scsi_free_sgtable(struct scatterlist *sgl, int index)
624{
625 struct scsi_host_sg_pool *sgp;
626
627 BUG_ON(index > SG_MEMPOOL_NR);
628
629 sgp = scsi_sg_pools + index;
630 mempool_free(sgl, sgp->pool);
631}
632
633/*
634 * Function: scsi_release_buffers()
635 *
636 * Purpose: Completion processing for block device I/O requests.
637 *
638 * Arguments: cmd - command that we are bailing.
639 *
640 * Lock status: Assumed that no lock is held upon entry.
641 *
642 * Returns: Nothing
643 *
644 * Notes: In the event that an upper level driver rejects a
645 * command, we must release resources allocated during
646 * the __init_io() function. Primarily this would involve
647 * the scatter-gather table, and potentially any bounce
648 * buffers.
649 */
650static void scsi_release_buffers(struct scsi_cmnd *cmd)
651{
652 struct request *req = cmd->request;
653
654 /*
655 * Free up any indirection buffers we allocated for DMA purposes.
656 */
657 if (cmd->use_sg)
658 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
659 else if (cmd->request_buffer != req->buffer)
660 kfree(cmd->request_buffer);
661
662 /*
663 * Zero these out. They now point to freed memory, and it is
664 * dangerous to hang onto the pointers.
665 */
666 cmd->buffer = NULL;
667 cmd->bufflen = 0;
668 cmd->request_buffer = NULL;
669 cmd->request_bufflen = 0;
670}
671
672/*
673 * Function: scsi_io_completion()
674 *
675 * Purpose: Completion processing for block device I/O requests.
676 *
677 * Arguments: cmd - command that is finished.
678 *
679 * Lock status: Assumed that no lock is held upon entry.
680 *
681 * Returns: Nothing
682 *
683 * Notes: This function is matched in terms of capabilities to
684 * the function that created the scatter-gather list.
685 * In other words, if there are no bounce buffers
686 * (the normal case for most drivers), we don't need
687 * the logic to deal with cleaning up afterwards.
688 *
689 * We must do one of several things here:
690 *
691 * a) Call scsi_end_request. This will finish off the
692 * specified number of sectors. If we are done, the
693 * command block will be released, and the queue
694 * function will be goosed. If we are not done, then
695 * scsi_end_request will directly goose the queue.
696 *
697 * b) We can just use scsi_requeue_command() here. This would
698 * be used if we just wanted to retry, for example.
699 */
700void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
701 unsigned int block_bytes)
702{
703 int result = cmd->result;
704 int this_count = cmd->bufflen;
705 request_queue_t *q = cmd->device->request_queue;
706 struct request *req = cmd->request;
707 int clear_errors = 1;
708 struct scsi_sense_hdr sshdr;
709 int sense_valid = 0;
710 int sense_deferred = 0;
711
712 if (blk_complete_barrier_rq(q, req, good_bytes >> 9))
713 return;
714
715 /*
716 * Free up any indirection buffers we allocated for DMA purposes.
717 * For the case of a READ, we need to copy the data out of the
718 * bounce buffer and into the real buffer.
719 */
720 if (cmd->use_sg)
721 scsi_free_sgtable(cmd->buffer, cmd->sglist_len);
722 else if (cmd->buffer != req->buffer) {
723 if (rq_data_dir(req) == READ) {
724 unsigned long flags;
725 char *to = bio_kmap_irq(req->bio, &flags);
726 memcpy(to, cmd->buffer, cmd->bufflen);
727 bio_kunmap_irq(to, &flags);
728 }
729 kfree(cmd->buffer);
730 }
731
732 if (result) {
733 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
734 if (sense_valid)
735 sense_deferred = scsi_sense_is_deferred(&sshdr);
736 }
737 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
738 req->errors = result;
739 if (result) {
740 clear_errors = 0;
741 if (sense_valid && req->sense) {
742 /*
743 * SG_IO wants current and deferred errors
744 */
745 int len = 8 + cmd->sense_buffer[7];
746
747 if (len > SCSI_SENSE_BUFFERSIZE)
748 len = SCSI_SENSE_BUFFERSIZE;
749 memcpy(req->sense, cmd->sense_buffer, len);
750 req->sense_len = len;
751 }
752 } else
753 req->data_len = cmd->resid;
754 }
755
756 /*
757 * Zero these out. They now point to freed memory, and it is
758 * dangerous to hang onto the pointers.
759 */
760 cmd->buffer = NULL;
761 cmd->bufflen = 0;
762 cmd->request_buffer = NULL;
763 cmd->request_bufflen = 0;
764
765 /*
766 * Next deal with any sectors which we were able to correctly
767 * handle.
768 */
769 if (good_bytes >= 0) {
770 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, %d bytes done.\n",
771 req->nr_sectors, good_bytes));
772 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
773
774 if (clear_errors)
775 req->errors = 0;
776 /*
777 * If multiple sectors are requested in one buffer, then
778 * they will have been finished off by the first command.
779 * If not, then we have a multi-buffer command.
780 *
781 * If block_bytes != 0, it means we had a medium error
782 * of some sort, and that we want to mark some number of
783 * sectors as not uptodate. Thus we want to inhibit
784 * requeueing right here - we will requeue down below
785 * when we handle the bad sectors.
786 */
787 cmd = scsi_end_request(cmd, 1, good_bytes, result == 0);
788
789 /*
790 * If the command completed without error, then either finish off the
791 * rest of the command, or start a new one.
792 */
793 if (result == 0 || cmd == NULL ) {
794 return;
795 }
796 }
797 /*
798 * Now, if we were good little boys and girls, Santa left us a request
799 * sense buffer. We can extract information from this, so we
800 * can choose a block to remap, etc.
801 */
802 if (sense_valid && !sense_deferred) {
803 switch (sshdr.sense_key) {
804 case UNIT_ATTENTION:
805 if (cmd->device->removable) {
806 /* detected disc change. set a bit
807 * and quietly refuse further access.
808 */
809 cmd->device->changed = 1;
810 cmd = scsi_end_request(cmd, 0,
811 this_count, 1);
812 return;
813 } else {
814 /*
815 * Must have been a power glitch, or a
816 * bus reset. Could not have been a
817 * media change, so we just retry the
818 * request and see what happens.
819 */
820 scsi_requeue_command(q, cmd);
821 return;
822 }
823 break;
824 case ILLEGAL_REQUEST:
825 /*
826 * If we had an ILLEGAL REQUEST returned, then we may
827 * have performed an unsupported command. The only
828 * thing this should be would be a ten byte read where
829 * only a six byte read was supported. Also, on a
830 * system where READ CAPACITY failed, we may have read
831 * past the end of the disk.
832 */
833 if (cmd->device->use_10_for_rw &&
834 (cmd->cmnd[0] == READ_10 ||
835 cmd->cmnd[0] == WRITE_10)) {
836 cmd->device->use_10_for_rw = 0;
837 /*
838 * This will cause a retry with a 6-byte
839 * command.
840 */
841 scsi_requeue_command(q, cmd);
842 result = 0;
843 } else {
844 cmd = scsi_end_request(cmd, 0, this_count, 1);
845 return;
846 }
847 break;
848 case NOT_READY:
849 /*
850 * If the device is in the process of becoming ready,
851 * retry.
852 */
853 if (sshdr.asc == 0x04 && sshdr.ascq == 0x01) {
854 scsi_requeue_command(q, cmd);
855 return;
856 }
857 printk(KERN_INFO "Device %s not ready.\n",
858 req->rq_disk ? req->rq_disk->disk_name : "");
859 cmd = scsi_end_request(cmd, 0, this_count, 1);
860 return;
861 case VOLUME_OVERFLOW:
862 printk(KERN_INFO "Volume overflow <%d %d %d %d> CDB: ",
863 cmd->device->host->host_no,
864 (int)cmd->device->channel,
865 (int)cmd->device->id, (int)cmd->device->lun);
866 __scsi_print_command(cmd->data_cmnd);
867 scsi_print_sense("", cmd);
868 cmd = scsi_end_request(cmd, 0, block_bytes, 1);
869 return;
870 default:
871 break;
872 }
873 } /* driver byte != 0 */
874 if (host_byte(result) == DID_RESET) {
875 /*
876 * Third party bus reset or reset for error
877 * recovery reasons. Just retry the request
878 * and see what happens.
879 */
880 scsi_requeue_command(q, cmd);
881 return;
882 }
883 if (result) {
884 printk(KERN_INFO "SCSI error : <%d %d %d %d> return code "
885 "= 0x%x\n", cmd->device->host->host_no,
886 cmd->device->channel,
887 cmd->device->id,
888 cmd->device->lun, result);
889
890 if (driver_byte(result) & DRIVER_SENSE)
891 scsi_print_sense("", cmd);
892 /*
893 * Mark a single buffer as not uptodate. Queue the remainder.
894 * We sometimes get this cruft in the event that a medium error
895 * isn't properly reported.
896 */
897 block_bytes = req->hard_cur_sectors << 9;
898 if (!block_bytes)
899 block_bytes = req->data_len;
900 cmd = scsi_end_request(cmd, 0, block_bytes, 1);
901 }
902}
903EXPORT_SYMBOL(scsi_io_completion);
904
905/*
906 * Function: scsi_init_io()
907 *
908 * Purpose: SCSI I/O initialize function.
909 *
910 * Arguments: cmd - Command descriptor we wish to initialize
911 *
912 * Returns: 0 on success
913 * BLKPREP_DEFER if the failure is retryable
914 * BLKPREP_KILL if the failure is fatal
915 */
916static int scsi_init_io(struct scsi_cmnd *cmd)
917{
918 struct request *req = cmd->request;
919 struct scatterlist *sgpnt;
920 int count;
921
922 /*
923 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
924 */
925 if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
926 cmd->request_bufflen = req->data_len;
927 cmd->request_buffer = req->data;
928 req->buffer = req->data;
929 cmd->use_sg = 0;
930 return 0;
931 }
932
933 /*
934 * we used to not use scatter-gather for single segment request,
935 * but now we do (it makes highmem I/O easier to support without
936 * kmapping pages)
937 */
938 cmd->use_sg = req->nr_phys_segments;
939
940 /*
941 * if sg table allocation fails, requeue request later.
942 */
943 sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
Tejun Heo beb66172005-04-24 02:04:53 -0500944 if (unlikely(!sgpnt))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700945 return BLKPREP_DEFER;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700946
947 cmd->request_buffer = (char *) sgpnt;
948 cmd->request_bufflen = req->nr_sectors << 9;
949 if (blk_pc_request(req))
950 cmd->request_bufflen = req->data_len;
951 req->buffer = NULL;
952
953 /*
954 * Next, walk the list, and fill in the addresses and sizes of
955 * each segment.
956 */
957 count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
958
959 /*
960 * mapped well, send it off
961 */
962 if (likely(count <= cmd->use_sg)) {
963 cmd->use_sg = count;
964 return 0;
965 }
966
967 printk(KERN_ERR "Incorrect number of segments after building list\n");
968 printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
969 printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
970 req->current_nr_sectors);
971
972 /* release the command and kill it */
973 scsi_release_buffers(cmd);
974 scsi_put_command(cmd);
975 return BLKPREP_KILL;
976}
977
978static int scsi_prepare_flush_fn(request_queue_t *q, struct request *rq)
979{
980 struct scsi_device *sdev = q->queuedata;
981 struct scsi_driver *drv;
982
983 if (sdev->sdev_state == SDEV_RUNNING) {
984 drv = *(struct scsi_driver **) rq->rq_disk->private_data;
985
986 if (drv->prepare_flush)
987 return drv->prepare_flush(q, rq);
988 }
989
990 return 0;
991}
992
993static void scsi_end_flush_fn(request_queue_t *q, struct request *rq)
994{
995 struct scsi_device *sdev = q->queuedata;
996 struct request *flush_rq = rq->end_io_data;
997 struct scsi_driver *drv;
998
999 if (flush_rq->errors) {
1000 printk("scsi: barrier error, disabling flush support\n");
1001 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1002 }
1003
1004 if (sdev->sdev_state == SDEV_RUNNING) {
1005 drv = *(struct scsi_driver **) rq->rq_disk->private_data;
1006 drv->end_flush(q, rq);
1007 }
1008}
1009
1010static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1011 sector_t *error_sector)
1012{
1013 struct scsi_device *sdev = q->queuedata;
1014 struct scsi_driver *drv;
1015
1016 if (sdev->sdev_state != SDEV_RUNNING)
1017 return -ENXIO;
1018
1019 drv = *(struct scsi_driver **) disk->private_data;
1020 if (drv->issue_flush)
1021 return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1022
1023 return -EOPNOTSUPP;
1024}
1025
1026static int scsi_prep_fn(struct request_queue *q, struct request *req)
1027{
1028 struct scsi_device *sdev = q->queuedata;
1029 struct scsi_cmnd *cmd;
1030 int specials_only = 0;
1031
1032 /*
1033 * Just check to see if the device is online. If it isn't, we
1034 * refuse to process any commands. The device must be brought
1035 * online before trying any recovery commands
1036 */
1037 if (unlikely(!scsi_device_online(sdev))) {
1038 printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to offline device\n",
1039 sdev->host->host_no, sdev->id, sdev->lun);
1040 return BLKPREP_KILL;
1041 }
1042 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1043 /* OK, we're not in a running state don't prep
1044 * user commands */
1045 if (sdev->sdev_state == SDEV_DEL) {
1046 /* Device is fully deleted, no commands
1047 * at all allowed down */
1048 printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to dead device\n",
1049 sdev->host->host_no, sdev->id, sdev->lun);
1050 return BLKPREP_KILL;
1051 }
1052 /* OK, we only allow special commands (i.e. not
1053 * user initiated ones */
1054 specials_only = sdev->sdev_state;
1055 }
1056
1057 /*
1058 * Find the actual device driver associated with this command.
1059 * The SPECIAL requests are things like character device or
1060 * ioctls, which did not originate from ll_rw_blk. Note that
1061 * the special field is also used to indicate the cmd for
1062 * the remainder of a partially fulfilled request that can
1063 * come up when there is a medium error. We have to treat
1064 * these two cases differently. We differentiate by looking
1065 * at request->cmd, as this tells us the real story.
1066 */
1067 if (req->flags & REQ_SPECIAL) {
1068 struct scsi_request *sreq = req->special;
1069
1070 if (sreq->sr_magic == SCSI_REQ_MAGIC) {
1071 cmd = scsi_get_command(sreq->sr_device, GFP_ATOMIC);
1072 if (unlikely(!cmd))
1073 goto defer;
1074 scsi_init_cmd_from_req(cmd, sreq);
1075 } else
1076 cmd = req->special;
1077 } else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1078
1079 if(unlikely(specials_only)) {
1080 if(specials_only == SDEV_QUIESCE ||
1081 specials_only == SDEV_BLOCK)
1082 return BLKPREP_DEFER;
1083
1084 printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to device being removed\n",
1085 sdev->host->host_no, sdev->id, sdev->lun);
1086 return BLKPREP_KILL;
1087 }
1088
1089
1090 /*
1091 * Now try and find a command block that we can use.
1092 */
1093 if (!req->special) {
1094 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1095 if (unlikely(!cmd))
1096 goto defer;
1097 } else
1098 cmd = req->special;
1099
1100 /* pull a tag out of the request if we have one */
1101 cmd->tag = req->tag;
1102 } else {
1103 blk_dump_rq_flags(req, "SCSI bad req");
1104 return BLKPREP_KILL;
1105 }
1106
1107 /* note the overloading of req->special. When the tag
1108 * is active it always means cmd. If the tag goes
1109 * back for re-queueing, it may be reset */
1110 req->special = cmd;
1111 cmd->request = req;
1112
1113 /*
1114 * FIXME: drop the lock here because the functions below
1115 * expect to be called without the queue lock held. Also,
1116 * previously, we dequeued the request before dropping the
1117 * lock. We hope REQ_STARTED prevents anything untoward from
1118 * happening now.
1119 */
1120 if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1121 struct scsi_driver *drv;
1122 int ret;
1123
1124 /*
1125 * This will do a couple of things:
1126 * 1) Fill in the actual SCSI command.
1127 * 2) Fill in any other upper-level specific fields
1128 * (timeout).
1129 *
1130 * If this returns 0, it means that the request failed
1131 * (reading past end of disk, reading offline device,
1132 * etc). This won't actually talk to the device, but
1133 * some kinds of consistency checking may cause the
1134 * request to be rejected immediately.
1135 */
1136
1137 /*
1138 * This sets up the scatter-gather table (allocating if
1139 * required).
1140 */
1141 ret = scsi_init_io(cmd);
1142 if (ret) /* BLKPREP_KILL return also releases the command */
1143 return ret;
1144
1145 /*
1146 * Initialize the actual SCSI command for this request.
1147 */
1148 drv = *(struct scsi_driver **)req->rq_disk->private_data;
1149 if (unlikely(!drv->init_command(cmd))) {
1150 scsi_release_buffers(cmd);
1151 scsi_put_command(cmd);
1152 return BLKPREP_KILL;
1153 }
1154 }
1155
1156 /*
1157 * The request is now prepped, no need to come back here
1158 */
1159 req->flags |= REQ_DONTPREP;
1160 return BLKPREP_OK;
1161
1162 defer:
1163 /* If we defer, the elv_next_request() returns NULL, but the
1164 * queue must be restarted, so we plug here if no returning
1165 * command will automatically do that. */
1166 if (sdev->device_busy == 0)
1167 blk_plug_device(q);
1168 return BLKPREP_DEFER;
1169}
1170
1171/*
1172 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1173 * return 0.
1174 *
1175 * Called with the queue_lock held.
1176 */
1177static inline int scsi_dev_queue_ready(struct request_queue *q,
1178 struct scsi_device *sdev)
1179{
1180 if (sdev->device_busy >= sdev->queue_depth)
1181 return 0;
1182 if (sdev->device_busy == 0 && sdev->device_blocked) {
1183 /*
1184 * unblock after device_blocked iterates to zero
1185 */
1186 if (--sdev->device_blocked == 0) {
1187 SCSI_LOG_MLQUEUE(3,
1188 printk("scsi%d (%d:%d) unblocking device at"
1189 " zero depth\n", sdev->host->host_no,
1190 sdev->id, sdev->lun));
1191 } else {
1192 blk_plug_device(q);
1193 return 0;
1194 }
1195 }
1196 if (sdev->device_blocked)
1197 return 0;
1198
1199 return 1;
1200}
1201
1202/*
1203 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1204 * return 0. We must end up running the queue again whenever 0 is
1205 * returned, else IO can hang.
1206 *
1207 * Called with host_lock held.
1208 */
1209static inline int scsi_host_queue_ready(struct request_queue *q,
1210 struct Scsi_Host *shost,
1211 struct scsi_device *sdev)
1212{
1213 if (test_bit(SHOST_RECOVERY, &shost->shost_state))
1214 return 0;
1215 if (shost->host_busy == 0 && shost->host_blocked) {
1216 /*
1217 * unblock after host_blocked iterates to zero
1218 */
1219 if (--shost->host_blocked == 0) {
1220 SCSI_LOG_MLQUEUE(3,
1221 printk("scsi%d unblocking host at zero depth\n",
1222 shost->host_no));
1223 } else {
1224 blk_plug_device(q);
1225 return 0;
1226 }
1227 }
1228 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1229 shost->host_blocked || shost->host_self_blocked) {
1230 if (list_empty(&sdev->starved_entry))
1231 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1232 return 0;
1233 }
1234
1235 /* We're OK to process the command, so we can't be starved */
1236 if (!list_empty(&sdev->starved_entry))
1237 list_del_init(&sdev->starved_entry);
1238
1239 return 1;
1240}
1241
1242/*
1243 * Kill requests for a dead device
1244 */
1245static void scsi_kill_requests(request_queue_t *q)
1246{
1247 struct request *req;
1248
1249 while ((req = elv_next_request(q)) != NULL) {
1250 blkdev_dequeue_request(req);
1251 req->flags |= REQ_QUIET;
1252 while (end_that_request_first(req, 0, req->nr_sectors))
1253 ;
1254 end_that_request_last(req);
1255 }
1256}
1257
1258/*
1259 * Function: scsi_request_fn()
1260 *
1261 * Purpose: Main strategy routine for SCSI.
1262 *
1263 * Arguments: q - Pointer to actual queue.
1264 *
1265 * Returns: Nothing
1266 *
1267 * Lock status: IO request lock assumed to be held when called.
1268 */
1269static void scsi_request_fn(struct request_queue *q)
1270{
1271 struct scsi_device *sdev = q->queuedata;
1272 struct Scsi_Host *shost;
1273 struct scsi_cmnd *cmd;
1274 struct request *req;
1275
1276 if (!sdev) {
1277 printk("scsi: killing requests for dead queue\n");
1278 scsi_kill_requests(q);
1279 return;
1280 }
1281
1282 if(!get_device(&sdev->sdev_gendev))
1283 /* We must be tearing the block queue down already */
1284 return;
1285
1286 /*
1287 * To start with, we keep looping until the queue is empty, or until
1288 * the host is no longer able to accept any more requests.
1289 */
1290 shost = sdev->host;
1291 while (!blk_queue_plugged(q)) {
1292 int rtn;
1293 /*
1294 * get next queueable request. We do this early to make sure
1295 * that the request is fully prepared even if we cannot
1296 * accept it.
1297 */
1298 req = elv_next_request(q);
1299 if (!req || !scsi_dev_queue_ready(q, sdev))
1300 break;
1301
1302 if (unlikely(!scsi_device_online(sdev))) {
1303 printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to offline device\n",
1304 sdev->host->host_no, sdev->id, sdev->lun);
1305 blkdev_dequeue_request(req);
1306 req->flags |= REQ_QUIET;
1307 while (end_that_request_first(req, 0, req->nr_sectors))
1308 ;
1309 end_that_request_last(req);
1310 continue;
1311 }
1312
1313
1314 /*
1315 * Remove the request from the request list.
1316 */
1317 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1318 blkdev_dequeue_request(req);
1319 sdev->device_busy++;
1320
1321 spin_unlock(q->queue_lock);
1322 spin_lock(shost->host_lock);
1323
1324 if (!scsi_host_queue_ready(q, shost, sdev))
1325 goto not_ready;
1326 if (sdev->single_lun) {
1327 if (scsi_target(sdev)->starget_sdev_user &&
1328 scsi_target(sdev)->starget_sdev_user != sdev)
1329 goto not_ready;
1330 scsi_target(sdev)->starget_sdev_user = sdev;
1331 }
1332 shost->host_busy++;
1333
1334 /*
1335 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1336 * take the lock again.
1337 */
1338 spin_unlock_irq(shost->host_lock);
1339
1340 cmd = req->special;
1341 if (unlikely(cmd == NULL)) {
1342 printk(KERN_CRIT "impossible request in %s.\n"
1343 "please mail a stack trace to "
1344 "linux-scsi@vger.kernel.org",
1345 __FUNCTION__);
1346 BUG();
1347 }
1348
1349 /*
1350 * Finally, initialize any error handling parameters, and set up
1351 * the timers for timeouts.
1352 */
1353 scsi_init_cmd_errh(cmd);
1354
1355 /*
1356 * Dispatch the command to the low-level driver.
1357 */
1358 rtn = scsi_dispatch_cmd(cmd);
1359 spin_lock_irq(q->queue_lock);
1360 if(rtn) {
1361 /* we're refusing the command; because of
1362 * the way locks get dropped, we need to
1363 * check here if plugging is required */
1364 if(sdev->device_busy == 0)
1365 blk_plug_device(q);
1366
1367 break;
1368 }
1369 }
1370
1371 goto out;
1372
1373 not_ready:
1374 spin_unlock_irq(shost->host_lock);
1375
1376 /*
1377 * lock q, handle tag, requeue req, and decrement device_busy. We
1378 * must return with queue_lock held.
1379 *
1380 * Decrementing device_busy without checking it is OK, as all such
1381 * cases (host limits or settings) should run the queue at some
1382 * later time.
1383 */
1384 spin_lock_irq(q->queue_lock);
1385 blk_requeue_request(q, req);
1386 sdev->device_busy--;
1387 if(sdev->device_busy == 0)
1388 blk_plug_device(q);
1389 out:
1390 /* must be careful here...if we trigger the ->remove() function
1391 * we cannot be holding the q lock */
1392 spin_unlock_irq(q->queue_lock);
1393 put_device(&sdev->sdev_gendev);
1394 spin_lock_irq(q->queue_lock);
1395}
1396
1397u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1398{
1399 struct device *host_dev;
1400 u64 bounce_limit = 0xffffffff;
1401
1402 if (shost->unchecked_isa_dma)
1403 return BLK_BOUNCE_ISA;
1404 /*
1405 * Platforms with virtual-DMA translation
1406 * hardware have no practical limit.
1407 */
1408 if (!PCI_DMA_BUS_IS_PHYS)
1409 return BLK_BOUNCE_ANY;
1410
1411 host_dev = scsi_get_device(shost);
1412 if (host_dev && host_dev->dma_mask)
1413 bounce_limit = *host_dev->dma_mask;
1414
1415 return bounce_limit;
1416}
1417EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1418
1419struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1420{
1421 struct Scsi_Host *shost = sdev->host;
1422 struct request_queue *q;
1423
152587d2005-04-12 16:22:06 -05001424 q = blk_init_queue(scsi_request_fn, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001425 if (!q)
1426 return NULL;
1427
1428 blk_queue_prep_rq(q, scsi_prep_fn);
1429
1430 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1431 blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1432 blk_queue_max_sectors(q, shost->max_sectors);
1433 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1434 blk_queue_segment_boundary(q, shost->dma_boundary);
1435 blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1436
1437 /*
1438 * ordered tags are superior to flush ordering
1439 */
1440 if (shost->ordered_tag)
1441 blk_queue_ordered(q, QUEUE_ORDERED_TAG);
1442 else if (shost->ordered_flush) {
1443 blk_queue_ordered(q, QUEUE_ORDERED_FLUSH);
1444 q->prepare_flush_fn = scsi_prepare_flush_fn;
1445 q->end_flush_fn = scsi_end_flush_fn;
1446 }
1447
1448 if (!shost->use_clustering)
1449 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1450 return q;
1451}
1452
1453void scsi_free_queue(struct request_queue *q)
1454{
1455 blk_cleanup_queue(q);
1456}
1457
1458/*
1459 * Function: scsi_block_requests()
1460 *
1461 * Purpose: Utility function used by low-level drivers to prevent further
1462 * commands from being queued to the device.
1463 *
1464 * Arguments: shost - Host in question
1465 *
1466 * Returns: Nothing
1467 *
1468 * Lock status: No locks are assumed held.
1469 *
1470 * Notes: There is no timer nor any other means by which the requests
1471 * get unblocked other than the low-level driver calling
1472 * scsi_unblock_requests().
1473 */
1474void scsi_block_requests(struct Scsi_Host *shost)
1475{
1476 shost->host_self_blocked = 1;
1477}
1478EXPORT_SYMBOL(scsi_block_requests);
1479
1480/*
1481 * Function: scsi_unblock_requests()
1482 *
1483 * Purpose: Utility function used by low-level drivers to allow further
1484 * commands from being queued to the device.
1485 *
1486 * Arguments: shost - Host in question
1487 *
1488 * Returns: Nothing
1489 *
1490 * Lock status: No locks are assumed held.
1491 *
1492 * Notes: There is no timer nor any other means by which the requests
1493 * get unblocked other than the low-level driver calling
1494 * scsi_unblock_requests().
1495 *
1496 * This is done as an API function so that changes to the
1497 * internals of the scsi mid-layer won't require wholesale
1498 * changes to drivers that use this feature.
1499 */
1500void scsi_unblock_requests(struct Scsi_Host *shost)
1501{
1502 shost->host_self_blocked = 0;
1503 scsi_run_host_queues(shost);
1504}
1505EXPORT_SYMBOL(scsi_unblock_requests);
1506
1507int __init scsi_init_queue(void)
1508{
1509 int i;
1510
1511 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1512 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1513 int size = sgp->size * sizeof(struct scatterlist);
1514
1515 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1516 SLAB_HWCACHE_ALIGN, NULL, NULL);
1517 if (!sgp->slab) {
1518 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1519 sgp->name);
1520 }
1521
1522 sgp->pool = mempool_create(SG_MEMPOOL_SIZE,
1523 mempool_alloc_slab, mempool_free_slab,
1524 sgp->slab);
1525 if (!sgp->pool) {
1526 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1527 sgp->name);
1528 }
1529 }
1530
1531 return 0;
1532}
1533
1534void scsi_exit_queue(void)
1535{
1536 int i;
1537
1538 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1539 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1540 mempool_destroy(sgp->pool);
1541 kmem_cache_destroy(sgp->slab);
1542 }
1543}
1544/**
1545 * __scsi_mode_sense - issue a mode sense, falling back from 10 to
1546 * six bytes if necessary.
1547 * @sreq: SCSI request to fill in with the MODE_SENSE
1548 * @dbd: set if mode sense will allow block descriptors to be returned
1549 * @modepage: mode page being requested
1550 * @buffer: request buffer (may not be smaller than eight bytes)
1551 * @len: length of request buffer.
1552 * @timeout: command timeout
1553 * @retries: number of retries before failing
1554 * @data: returns a structure abstracting the mode header data
1555 *
1556 * Returns zero if unsuccessful, or the header offset (either 4
1557 * or 8 depending on whether a six or ten byte command was
1558 * issued) if successful.
1559 **/
1560int
1561__scsi_mode_sense(struct scsi_request *sreq, int dbd, int modepage,
1562 unsigned char *buffer, int len, int timeout, int retries,
1563 struct scsi_mode_data *data) {
1564 unsigned char cmd[12];
1565 int use_10_for_ms;
1566 int header_length;
1567
1568 memset(data, 0, sizeof(*data));
1569 memset(&cmd[0], 0, 12);
1570 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1571 cmd[2] = modepage;
1572
1573 retry:
1574 use_10_for_ms = sreq->sr_device->use_10_for_ms;
1575
1576 if (use_10_for_ms) {
1577 if (len < 8)
1578 len = 8;
1579
1580 cmd[0] = MODE_SENSE_10;
1581 cmd[8] = len;
1582 header_length = 8;
1583 } else {
1584 if (len < 4)
1585 len = 4;
1586
1587 cmd[0] = MODE_SENSE;
1588 cmd[4] = len;
1589 header_length = 4;
1590 }
1591
1592 sreq->sr_cmd_len = 0;
1593 memset(sreq->sr_sense_buffer, 0, sizeof(sreq->sr_sense_buffer));
1594 sreq->sr_data_direction = DMA_FROM_DEVICE;
1595
1596 memset(buffer, 0, len);
1597
1598 scsi_wait_req(sreq, cmd, buffer, len, timeout, retries);
1599
1600 /* This code looks awful: what it's doing is making sure an
1601 * ILLEGAL REQUEST sense return identifies the actual command
1602 * byte as the problem. MODE_SENSE commands can return
1603 * ILLEGAL REQUEST if the code page isn't supported */
1604
1605 if (use_10_for_ms && !scsi_status_is_good(sreq->sr_result) &&
1606 (driver_byte(sreq->sr_result) & DRIVER_SENSE)) {
1607 struct scsi_sense_hdr sshdr;
1608
1609 if (scsi_request_normalize_sense(sreq, &sshdr)) {
1610 if ((sshdr.sense_key == ILLEGAL_REQUEST) &&
1611 (sshdr.asc == 0x20) && (sshdr.ascq == 0)) {
1612 /*
1613 * Invalid command operation code
1614 */
1615 sreq->sr_device->use_10_for_ms = 0;
1616 goto retry;
1617 }
1618 }
1619 }
1620
1621 if(scsi_status_is_good(sreq->sr_result)) {
1622 data->header_length = header_length;
1623 if(use_10_for_ms) {
1624 data->length = buffer[0]*256 + buffer[1] + 2;
1625 data->medium_type = buffer[2];
1626 data->device_specific = buffer[3];
1627 data->longlba = buffer[4] & 0x01;
1628 data->block_descriptor_length = buffer[6]*256
1629 + buffer[7];
1630 } else {
1631 data->length = buffer[0] + 1;
1632 data->medium_type = buffer[1];
1633 data->device_specific = buffer[2];
1634 data->block_descriptor_length = buffer[3];
1635 }
1636 }
1637
1638 return sreq->sr_result;
1639}
1640EXPORT_SYMBOL(__scsi_mode_sense);
1641
1642/**
1643 * scsi_mode_sense - issue a mode sense, falling back from 10 to
1644 * six bytes if necessary.
1645 * @sdev: scsi device to send command to.
1646 * @dbd: set if mode sense will disable block descriptors in the return
1647 * @modepage: mode page being requested
1648 * @buffer: request buffer (may not be smaller than eight bytes)
1649 * @len: length of request buffer.
1650 * @timeout: command timeout
1651 * @retries: number of retries before failing
1652 *
1653 * Returns zero if unsuccessful, or the header offset (either 4
1654 * or 8 depending on whether a six or ten byte command was
1655 * issued) if successful.
1656 **/
1657int
1658scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1659 unsigned char *buffer, int len, int timeout, int retries,
1660 struct scsi_mode_data *data)
1661{
1662 struct scsi_request *sreq = scsi_allocate_request(sdev, GFP_KERNEL);
1663 int ret;
1664
1665 if (!sreq)
1666 return -1;
1667
1668 ret = __scsi_mode_sense(sreq, dbd, modepage, buffer, len,
1669 timeout, retries, data);
1670
1671 scsi_release_request(sreq);
1672
1673 return ret;
1674}
1675EXPORT_SYMBOL(scsi_mode_sense);
1676
1677int
1678scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1679{
1680 struct scsi_request *sreq;
1681 char cmd[] = {
1682 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1683 };
1684 int result;
1685
1686 sreq = scsi_allocate_request(sdev, GFP_KERNEL);
1687 if (!sreq)
1688 return -ENOMEM;
1689
1690 sreq->sr_data_direction = DMA_NONE;
1691 scsi_wait_req(sreq, cmd, NULL, 0, timeout, retries);
1692
1693 if ((driver_byte(sreq->sr_result) & DRIVER_SENSE) && sdev->removable) {
1694 struct scsi_sense_hdr sshdr;
1695
1696 if ((scsi_request_normalize_sense(sreq, &sshdr)) &&
1697 ((sshdr.sense_key == UNIT_ATTENTION) ||
1698 (sshdr.sense_key == NOT_READY))) {
1699 sdev->changed = 1;
1700 sreq->sr_result = 0;
1701 }
1702 }
1703 result = sreq->sr_result;
1704 scsi_release_request(sreq);
1705 return result;
1706}
1707EXPORT_SYMBOL(scsi_test_unit_ready);
1708
1709/**
1710 * scsi_device_set_state - Take the given device through the device
1711 * state model.
1712 * @sdev: scsi device to change the state of.
1713 * @state: state to change to.
1714 *
1715 * Returns zero if unsuccessful or an error if the requested
1716 * transition is illegal.
1717 **/
1718int
1719scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1720{
1721 enum scsi_device_state oldstate = sdev->sdev_state;
1722
1723 if (state == oldstate)
1724 return 0;
1725
1726 switch (state) {
1727 case SDEV_CREATED:
1728 /* There are no legal states that come back to
1729 * created. This is the manually initialised start
1730 * state */
1731 goto illegal;
1732
1733 case SDEV_RUNNING:
1734 switch (oldstate) {
1735 case SDEV_CREATED:
1736 case SDEV_OFFLINE:
1737 case SDEV_QUIESCE:
1738 case SDEV_BLOCK:
1739 break;
1740 default:
1741 goto illegal;
1742 }
1743 break;
1744
1745 case SDEV_QUIESCE:
1746 switch (oldstate) {
1747 case SDEV_RUNNING:
1748 case SDEV_OFFLINE:
1749 break;
1750 default:
1751 goto illegal;
1752 }
1753 break;
1754
1755 case SDEV_OFFLINE:
1756 switch (oldstate) {
1757 case SDEV_CREATED:
1758 case SDEV_RUNNING:
1759 case SDEV_QUIESCE:
1760 case SDEV_BLOCK:
1761 break;
1762 default:
1763 goto illegal;
1764 }
1765 break;
1766
1767 case SDEV_BLOCK:
1768 switch (oldstate) {
1769 case SDEV_CREATED:
1770 case SDEV_RUNNING:
1771 break;
1772 default:
1773 goto illegal;
1774 }
1775 break;
1776
1777 case SDEV_CANCEL:
1778 switch (oldstate) {
1779 case SDEV_CREATED:
1780 case SDEV_RUNNING:
1781 case SDEV_OFFLINE:
1782 case SDEV_BLOCK:
1783 break;
1784 default:
1785 goto illegal;
1786 }
1787 break;
1788
1789 case SDEV_DEL:
1790 switch (oldstate) {
1791 case SDEV_CANCEL:
1792 break;
1793 default:
1794 goto illegal;
1795 }
1796 break;
1797
1798 }
1799 sdev->sdev_state = state;
1800 return 0;
1801
1802 illegal:
1803 SCSI_LOG_ERROR_RECOVERY(1,
1804 dev_printk(KERN_ERR, &sdev->sdev_gendev,
1805 "Illegal state transition %s->%s\n",
1806 scsi_device_state_name(oldstate),
1807 scsi_device_state_name(state))
1808 );
1809 return -EINVAL;
1810}
1811EXPORT_SYMBOL(scsi_device_set_state);
1812
1813/**
1814 * scsi_device_quiesce - Block user issued commands.
1815 * @sdev: scsi device to quiesce.
1816 *
1817 * This works by trying to transition to the SDEV_QUIESCE state
1818 * (which must be a legal transition). When the device is in this
1819 * state, only special requests will be accepted, all others will
1820 * be deferred. Since special requests may also be requeued requests,
1821 * a successful return doesn't guarantee the device will be
1822 * totally quiescent.
1823 *
1824 * Must be called with user context, may sleep.
1825 *
1826 * Returns zero if unsuccessful or an error if not.
1827 **/
1828int
1829scsi_device_quiesce(struct scsi_device *sdev)
1830{
1831 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
1832 if (err)
1833 return err;
1834
1835 scsi_run_queue(sdev->request_queue);
1836 while (sdev->device_busy) {
1837 msleep_interruptible(200);
1838 scsi_run_queue(sdev->request_queue);
1839 }
1840 return 0;
1841}
1842EXPORT_SYMBOL(scsi_device_quiesce);
1843
1844/**
1845 * scsi_device_resume - Restart user issued commands to a quiesced device.
1846 * @sdev: scsi device to resume.
1847 *
1848 * Moves the device from quiesced back to running and restarts the
1849 * queues.
1850 *
1851 * Must be called with user context, may sleep.
1852 **/
1853void
1854scsi_device_resume(struct scsi_device *sdev)
1855{
1856 if(scsi_device_set_state(sdev, SDEV_RUNNING))
1857 return;
1858 scsi_run_queue(sdev->request_queue);
1859}
1860EXPORT_SYMBOL(scsi_device_resume);
1861
1862static void
1863device_quiesce_fn(struct scsi_device *sdev, void *data)
1864{
1865 scsi_device_quiesce(sdev);
1866}
1867
1868void
1869scsi_target_quiesce(struct scsi_target *starget)
1870{
1871 starget_for_each_device(starget, NULL, device_quiesce_fn);
1872}
1873EXPORT_SYMBOL(scsi_target_quiesce);
1874
1875static void
1876device_resume_fn(struct scsi_device *sdev, void *data)
1877{
1878 scsi_device_resume(sdev);
1879}
1880
1881void
1882scsi_target_resume(struct scsi_target *starget)
1883{
1884 starget_for_each_device(starget, NULL, device_resume_fn);
1885}
1886EXPORT_SYMBOL(scsi_target_resume);
1887
1888/**
1889 * scsi_internal_device_block - internal function to put a device
1890 * temporarily into the SDEV_BLOCK state
1891 * @sdev: device to block
1892 *
1893 * Block request made by scsi lld's to temporarily stop all
1894 * scsi commands on the specified device. Called from interrupt
1895 * or normal process context.
1896 *
1897 * Returns zero if successful or error if not
1898 *
1899 * Notes:
1900 * This routine transitions the device to the SDEV_BLOCK state
1901 * (which must be a legal transition). When the device is in this
1902 * state, all commands are deferred until the scsi lld reenables
1903 * the device with scsi_device_unblock or device_block_tmo fires.
1904 * This routine assumes the host_lock is held on entry.
1905 **/
1906int
1907scsi_internal_device_block(struct scsi_device *sdev)
1908{
1909 request_queue_t *q = sdev->request_queue;
1910 unsigned long flags;
1911 int err = 0;
1912
1913 err = scsi_device_set_state(sdev, SDEV_BLOCK);
1914 if (err)
1915 return err;
1916
1917 /*
1918 * The device has transitioned to SDEV_BLOCK. Stop the
1919 * block layer from calling the midlayer with this device's
1920 * request queue.
1921 */
1922 spin_lock_irqsave(q->queue_lock, flags);
1923 blk_stop_queue(q);
1924 spin_unlock_irqrestore(q->queue_lock, flags);
1925
1926 return 0;
1927}
1928EXPORT_SYMBOL_GPL(scsi_internal_device_block);
1929
1930/**
1931 * scsi_internal_device_unblock - resume a device after a block request
1932 * @sdev: device to resume
1933 *
1934 * Called by scsi lld's or the midlayer to restart the device queue
1935 * for the previously suspended scsi device. Called from interrupt or
1936 * normal process context.
1937 *
1938 * Returns zero if successful or error if not.
1939 *
1940 * Notes:
1941 * This routine transitions the device to the SDEV_RUNNING state
1942 * (which must be a legal transition) allowing the midlayer to
1943 * goose the queue for this device. This routine assumes the
1944 * host_lock is held upon entry.
1945 **/
1946int
1947scsi_internal_device_unblock(struct scsi_device *sdev)
1948{
1949 request_queue_t *q = sdev->request_queue;
1950 int err;
1951 unsigned long flags;
1952
1953 /*
1954 * Try to transition the scsi device to SDEV_RUNNING
1955 * and goose the device queue if successful.
1956 */
1957 err = scsi_device_set_state(sdev, SDEV_RUNNING);
1958 if (err)
1959 return err;
1960
1961 spin_lock_irqsave(q->queue_lock, flags);
1962 blk_start_queue(q);
1963 spin_unlock_irqrestore(q->queue_lock, flags);
1964
1965 return 0;
1966}
1967EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
1968
1969static void
1970device_block(struct scsi_device *sdev, void *data)
1971{
1972 scsi_internal_device_block(sdev);
1973}
1974
1975static int
1976target_block(struct device *dev, void *data)
1977{
1978 if (scsi_is_target_device(dev))
1979 starget_for_each_device(to_scsi_target(dev), NULL,
1980 device_block);
1981 return 0;
1982}
1983
1984void
1985scsi_target_block(struct device *dev)
1986{
1987 if (scsi_is_target_device(dev))
1988 starget_for_each_device(to_scsi_target(dev), NULL,
1989 device_block);
1990 else
1991 device_for_each_child(dev, NULL, target_block);
1992}
1993EXPORT_SYMBOL_GPL(scsi_target_block);
1994
1995static void
1996device_unblock(struct scsi_device *sdev, void *data)
1997{
1998 scsi_internal_device_unblock(sdev);
1999}
2000
2001static int
2002target_unblock(struct device *dev, void *data)
2003{
2004 if (scsi_is_target_device(dev))
2005 starget_for_each_device(to_scsi_target(dev), NULL,
2006 device_unblock);
2007 return 0;
2008}
2009
2010void
2011scsi_target_unblock(struct device *dev)
2012{
2013 if (scsi_is_target_device(dev))
2014 starget_for_each_device(to_scsi_target(dev), NULL,
2015 device_unblock);
2016 else
2017 device_for_each_child(dev, NULL, target_unblock);
2018}
2019EXPORT_SYMBOL_GPL(scsi_target_unblock);