Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 1 | /******************************************************************************* |
| 2 | |
| 3 | Intel PRO/1000 Linux driver |
| 4 | Copyright(c) 1999 - 2007 Intel Corporation. |
| 5 | |
| 6 | This program is free software; you can redistribute it and/or modify it |
| 7 | under the terms and conditions of the GNU General Public License, |
| 8 | version 2, as published by the Free Software Foundation. |
| 9 | |
| 10 | This program is distributed in the hope it will be useful, but WITHOUT |
| 11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 13 | more details. |
| 14 | |
| 15 | You should have received a copy of the GNU General Public License along with |
| 16 | this program; if not, write to the Free Software Foundation, Inc., |
| 17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | |
| 19 | The full GNU General Public License is included in this distribution in |
| 20 | the file called "COPYING". |
| 21 | |
| 22 | Contact Information: |
| 23 | Linux NICS <linux.nics@intel.com> |
| 24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| 25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| 26 | |
| 27 | *******************************************************************************/ |
| 28 | |
| 29 | /* |
| 30 | * 80003ES2LAN Gigabit Ethernet Controller (Copper) |
| 31 | * 80003ES2LAN Gigabit Ethernet Controller (Serdes) |
| 32 | */ |
| 33 | |
| 34 | #include <linux/netdevice.h> |
| 35 | #include <linux/ethtool.h> |
| 36 | #include <linux/delay.h> |
| 37 | #include <linux/pci.h> |
| 38 | |
| 39 | #include "e1000.h" |
| 40 | |
| 41 | #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00 |
| 42 | #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02 |
| 43 | #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10 |
| 44 | |
| 45 | #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008 |
| 46 | #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800 |
| 47 | #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010 |
| 48 | |
| 49 | #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004 |
| 50 | #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000 |
| 51 | |
| 52 | #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */ |
| 53 | #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000 |
| 54 | |
| 55 | #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8 |
| 56 | #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9 |
| 57 | |
| 58 | /* GG82563 PHY Specific Status Register (Page 0, Register 16 */ |
| 59 | #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disab. */ |
| 60 | #define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060 |
| 61 | #define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */ |
| 62 | #define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */ |
| 63 | #define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */ |
| 64 | |
| 65 | /* PHY Specific Control Register 2 (Page 0, Register 26) */ |
| 66 | #define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000 |
| 67 | /* 1=Reverse Auto-Negotiation */ |
| 68 | |
| 69 | /* MAC Specific Control Register (Page 2, Register 21) */ |
| 70 | /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */ |
| 71 | #define GG82563_MSCR_TX_CLK_MASK 0x0007 |
| 72 | #define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004 |
| 73 | #define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005 |
| 74 | #define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007 |
| 75 | |
| 76 | #define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */ |
| 77 | |
| 78 | /* DSP Distance Register (Page 5, Register 26) */ |
| 79 | #define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M |
| 80 | 1 = 50-80M |
| 81 | 2 = 80-110M |
| 82 | 3 = 110-140M |
| 83 | 4 = >140M */ |
| 84 | |
| 85 | /* Kumeran Mode Control Register (Page 193, Register 16) */ |
| 86 | #define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800 |
| 87 | |
| 88 | /* Power Management Control Register (Page 193, Register 20) */ |
| 89 | #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001 |
| 90 | /* 1=Enable SERDES Electrical Idle */ |
| 91 | |
| 92 | /* In-Band Control Register (Page 194, Register 18) */ |
| 93 | #define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */ |
| 94 | |
| 95 | /* A table for the GG82563 cable length where the range is defined |
| 96 | * with a lower bound at "index" and the upper bound at |
| 97 | * "index + 5". |
| 98 | */ |
| 99 | static const u16 e1000_gg82563_cable_length_table[] = |
| 100 | { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF }; |
| 101 | |
| 102 | static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw); |
| 103 | static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); |
| 104 | static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); |
| 105 | static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw); |
| 106 | static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw); |
| 107 | static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw); |
| 108 | static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex); |
| 109 | |
| 110 | /** |
| 111 | * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs. |
| 112 | * @hw: pointer to the HW structure |
| 113 | * |
| 114 | * This is a function pointer entry point called by the api module. |
| 115 | **/ |
| 116 | static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw) |
| 117 | { |
| 118 | struct e1000_phy_info *phy = &hw->phy; |
| 119 | s32 ret_val; |
| 120 | |
| 121 | if (hw->media_type != e1000_media_type_copper) { |
| 122 | phy->type = e1000_phy_none; |
| 123 | return 0; |
| 124 | } |
| 125 | |
| 126 | phy->addr = 1; |
| 127 | phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| 128 | phy->reset_delay_us = 100; |
| 129 | phy->type = e1000_phy_gg82563; |
| 130 | |
| 131 | /* This can only be done after all function pointers are setup. */ |
| 132 | ret_val = e1000e_get_phy_id(hw); |
| 133 | |
| 134 | /* Verify phy id */ |
| 135 | if (phy->id != GG82563_E_PHY_ID) |
| 136 | return -E1000_ERR_PHY; |
| 137 | |
| 138 | return ret_val; |
| 139 | } |
| 140 | |
| 141 | /** |
| 142 | * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs. |
| 143 | * @hw: pointer to the HW structure |
| 144 | * |
| 145 | * This is a function pointer entry point called by the api module. |
| 146 | **/ |
| 147 | static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw) |
| 148 | { |
| 149 | struct e1000_nvm_info *nvm = &hw->nvm; |
| 150 | u32 eecd = er32(EECD); |
| 151 | u16 size; |
| 152 | |
| 153 | nvm->opcode_bits = 8; |
| 154 | nvm->delay_usec = 1; |
| 155 | switch (nvm->override) { |
| 156 | case e1000_nvm_override_spi_large: |
| 157 | nvm->page_size = 32; |
| 158 | nvm->address_bits = 16; |
| 159 | break; |
| 160 | case e1000_nvm_override_spi_small: |
| 161 | nvm->page_size = 8; |
| 162 | nvm->address_bits = 8; |
| 163 | break; |
| 164 | default: |
| 165 | nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; |
| 166 | nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; |
| 167 | break; |
| 168 | } |
| 169 | |
| 170 | nvm->type = e1000_nvm_eeprom_spi; |
| 171 | |
| 172 | size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> |
| 173 | E1000_EECD_SIZE_EX_SHIFT); |
| 174 | |
| 175 | /* Added to a constant, "size" becomes the left-shift value |
| 176 | * for setting word_size. |
| 177 | */ |
| 178 | size += NVM_WORD_SIZE_BASE_SHIFT; |
| 179 | nvm->word_size = 1 << size; |
| 180 | |
| 181 | return 0; |
| 182 | } |
| 183 | |
| 184 | /** |
| 185 | * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs. |
| 186 | * @hw: pointer to the HW structure |
| 187 | * |
| 188 | * This is a function pointer entry point called by the api module. |
| 189 | **/ |
| 190 | static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter) |
| 191 | { |
| 192 | struct e1000_hw *hw = &adapter->hw; |
| 193 | struct e1000_mac_info *mac = &hw->mac; |
| 194 | struct e1000_mac_operations *func = &mac->ops; |
| 195 | |
| 196 | /* Set media type */ |
| 197 | switch (adapter->pdev->device) { |
| 198 | case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: |
| 199 | hw->media_type = e1000_media_type_internal_serdes; |
| 200 | break; |
| 201 | default: |
| 202 | hw->media_type = e1000_media_type_copper; |
| 203 | break; |
| 204 | } |
| 205 | |
| 206 | /* Set mta register count */ |
| 207 | mac->mta_reg_count = 128; |
| 208 | /* Set rar entry count */ |
| 209 | mac->rar_entry_count = E1000_RAR_ENTRIES; |
| 210 | /* Set if manageability features are enabled. */ |
| 211 | mac->arc_subsystem_valid = |
| 212 | (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0; |
| 213 | |
| 214 | /* check for link */ |
| 215 | switch (hw->media_type) { |
| 216 | case e1000_media_type_copper: |
| 217 | func->setup_physical_interface = e1000_setup_copper_link_80003es2lan; |
| 218 | func->check_for_link = e1000e_check_for_copper_link; |
| 219 | break; |
| 220 | case e1000_media_type_fiber: |
| 221 | func->setup_physical_interface = e1000e_setup_fiber_serdes_link; |
| 222 | func->check_for_link = e1000e_check_for_fiber_link; |
| 223 | break; |
| 224 | case e1000_media_type_internal_serdes: |
| 225 | func->setup_physical_interface = e1000e_setup_fiber_serdes_link; |
| 226 | func->check_for_link = e1000e_check_for_serdes_link; |
| 227 | break; |
| 228 | default: |
| 229 | return -E1000_ERR_CONFIG; |
| 230 | break; |
| 231 | } |
| 232 | |
| 233 | return 0; |
| 234 | } |
| 235 | |
| 236 | static s32 e1000_get_invariants_80003es2lan(struct e1000_adapter *adapter) |
| 237 | { |
| 238 | struct e1000_hw *hw = &adapter->hw; |
| 239 | s32 rc; |
| 240 | |
| 241 | rc = e1000_init_mac_params_80003es2lan(adapter); |
| 242 | if (rc) |
| 243 | return rc; |
| 244 | |
| 245 | rc = e1000_init_nvm_params_80003es2lan(hw); |
| 246 | if (rc) |
| 247 | return rc; |
| 248 | |
| 249 | rc = e1000_init_phy_params_80003es2lan(hw); |
| 250 | if (rc) |
| 251 | return rc; |
| 252 | |
| 253 | return 0; |
| 254 | } |
| 255 | |
| 256 | /** |
| 257 | * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY |
| 258 | * @hw: pointer to the HW structure |
| 259 | * |
| 260 | * A wrapper to acquire access rights to the correct PHY. This is a |
| 261 | * function pointer entry point called by the api module. |
| 262 | **/ |
| 263 | static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw) |
| 264 | { |
| 265 | u16 mask; |
| 266 | |
| 267 | mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; |
| 268 | |
| 269 | return e1000_acquire_swfw_sync_80003es2lan(hw, mask); |
| 270 | } |
| 271 | |
| 272 | /** |
| 273 | * e1000_release_phy_80003es2lan - Release rights to access PHY |
| 274 | * @hw: pointer to the HW structure |
| 275 | * |
| 276 | * A wrapper to release access rights to the correct PHY. This is a |
| 277 | * function pointer entry point called by the api module. |
| 278 | **/ |
| 279 | static void e1000_release_phy_80003es2lan(struct e1000_hw *hw) |
| 280 | { |
| 281 | u16 mask; |
| 282 | |
| 283 | mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; |
| 284 | e1000_release_swfw_sync_80003es2lan(hw, mask); |
| 285 | } |
| 286 | |
| 287 | /** |
| 288 | * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM |
| 289 | * @hw: pointer to the HW structure |
| 290 | * |
| 291 | * Acquire the semaphore to access the EEPROM. This is a function |
| 292 | * pointer entry point called by the api module. |
| 293 | **/ |
| 294 | static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw) |
| 295 | { |
| 296 | s32 ret_val; |
| 297 | |
| 298 | ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); |
| 299 | if (ret_val) |
| 300 | return ret_val; |
| 301 | |
| 302 | ret_val = e1000e_acquire_nvm(hw); |
| 303 | |
| 304 | if (ret_val) |
| 305 | e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); |
| 306 | |
| 307 | return ret_val; |
| 308 | } |
| 309 | |
| 310 | /** |
| 311 | * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM |
| 312 | * @hw: pointer to the HW structure |
| 313 | * |
| 314 | * Release the semaphore used to access the EEPROM. This is a |
| 315 | * function pointer entry point called by the api module. |
| 316 | **/ |
| 317 | static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw) |
| 318 | { |
| 319 | e1000e_release_nvm(hw); |
| 320 | e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); |
| 321 | } |
| 322 | |
| 323 | /** |
| 324 | * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore |
| 325 | * @hw: pointer to the HW structure |
| 326 | * @mask: specifies which semaphore to acquire |
| 327 | * |
| 328 | * Acquire the SW/FW semaphore to access the PHY or NVM. The mask |
| 329 | * will also specify which port we're acquiring the lock for. |
| 330 | **/ |
| 331 | static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) |
| 332 | { |
| 333 | u32 swfw_sync; |
| 334 | u32 swmask = mask; |
| 335 | u32 fwmask = mask << 16; |
| 336 | s32 i = 0; |
| 337 | s32 timeout = 200; |
| 338 | |
| 339 | while (i < timeout) { |
| 340 | if (e1000e_get_hw_semaphore(hw)) |
| 341 | return -E1000_ERR_SWFW_SYNC; |
| 342 | |
| 343 | swfw_sync = er32(SW_FW_SYNC); |
| 344 | if (!(swfw_sync & (fwmask | swmask))) |
| 345 | break; |
| 346 | |
| 347 | /* Firmware currently using resource (fwmask) |
| 348 | * or other software thread using resource (swmask) */ |
| 349 | e1000e_put_hw_semaphore(hw); |
| 350 | mdelay(5); |
| 351 | i++; |
| 352 | } |
| 353 | |
| 354 | if (i == timeout) { |
| 355 | hw_dbg(hw, |
| 356 | "Driver can't access resource, SW_FW_SYNC timeout.\n"); |
| 357 | return -E1000_ERR_SWFW_SYNC; |
| 358 | } |
| 359 | |
| 360 | swfw_sync |= swmask; |
| 361 | ew32(SW_FW_SYNC, swfw_sync); |
| 362 | |
| 363 | e1000e_put_hw_semaphore(hw); |
| 364 | |
| 365 | return 0; |
| 366 | } |
| 367 | |
| 368 | /** |
| 369 | * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore |
| 370 | * @hw: pointer to the HW structure |
| 371 | * @mask: specifies which semaphore to acquire |
| 372 | * |
| 373 | * Release the SW/FW semaphore used to access the PHY or NVM. The mask |
| 374 | * will also specify which port we're releasing the lock for. |
| 375 | **/ |
| 376 | static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) |
| 377 | { |
| 378 | u32 swfw_sync; |
| 379 | |
| 380 | while (e1000e_get_hw_semaphore(hw) != 0); |
| 381 | /* Empty */ |
| 382 | |
| 383 | swfw_sync = er32(SW_FW_SYNC); |
| 384 | swfw_sync &= ~mask; |
| 385 | ew32(SW_FW_SYNC, swfw_sync); |
| 386 | |
| 387 | e1000e_put_hw_semaphore(hw); |
| 388 | } |
| 389 | |
| 390 | /** |
| 391 | * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register |
| 392 | * @hw: pointer to the HW structure |
| 393 | * @offset: offset of the register to read |
| 394 | * @data: pointer to the data returned from the operation |
| 395 | * |
| 396 | * Read the GG82563 PHY register. This is a function pointer entry |
| 397 | * point called by the api module. |
| 398 | **/ |
| 399 | static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, |
| 400 | u32 offset, u16 *data) |
| 401 | { |
| 402 | s32 ret_val; |
| 403 | u32 page_select; |
| 404 | u16 temp; |
| 405 | |
| 406 | /* Select Configuration Page */ |
| 407 | if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) |
| 408 | page_select = GG82563_PHY_PAGE_SELECT; |
| 409 | else |
| 410 | /* Use Alternative Page Select register to access |
| 411 | * registers 30 and 31 |
| 412 | */ |
| 413 | page_select = GG82563_PHY_PAGE_SELECT_ALT; |
| 414 | |
| 415 | temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); |
| 416 | ret_val = e1000e_write_phy_reg_m88(hw, page_select, temp); |
| 417 | if (ret_val) |
| 418 | return ret_val; |
| 419 | |
| 420 | /* The "ready" bit in the MDIC register may be incorrectly set |
| 421 | * before the device has completed the "Page Select" MDI |
| 422 | * transaction. So we wait 200us after each MDI command... |
| 423 | */ |
| 424 | udelay(200); |
| 425 | |
| 426 | /* ...and verify the command was successful. */ |
| 427 | ret_val = e1000e_read_phy_reg_m88(hw, page_select, &temp); |
| 428 | |
| 429 | if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { |
| 430 | ret_val = -E1000_ERR_PHY; |
| 431 | return ret_val; |
| 432 | } |
| 433 | |
| 434 | udelay(200); |
| 435 | |
| 436 | ret_val = e1000e_read_phy_reg_m88(hw, |
| 437 | MAX_PHY_REG_ADDRESS & offset, |
| 438 | data); |
| 439 | |
| 440 | udelay(200); |
| 441 | |
| 442 | return ret_val; |
| 443 | } |
| 444 | |
| 445 | /** |
| 446 | * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register |
| 447 | * @hw: pointer to the HW structure |
| 448 | * @offset: offset of the register to read |
| 449 | * @data: value to write to the register |
| 450 | * |
| 451 | * Write to the GG82563 PHY register. This is a function pointer entry |
| 452 | * point called by the api module. |
| 453 | **/ |
| 454 | static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, |
| 455 | u32 offset, u16 data) |
| 456 | { |
| 457 | s32 ret_val; |
| 458 | u32 page_select; |
| 459 | u16 temp; |
| 460 | |
| 461 | /* Select Configuration Page */ |
| 462 | if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) |
| 463 | page_select = GG82563_PHY_PAGE_SELECT; |
| 464 | else |
| 465 | /* Use Alternative Page Select register to access |
| 466 | * registers 30 and 31 |
| 467 | */ |
| 468 | page_select = GG82563_PHY_PAGE_SELECT_ALT; |
| 469 | |
| 470 | temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); |
| 471 | ret_val = e1000e_write_phy_reg_m88(hw, page_select, temp); |
| 472 | if (ret_val) |
| 473 | return ret_val; |
| 474 | |
| 475 | |
| 476 | /* The "ready" bit in the MDIC register may be incorrectly set |
| 477 | * before the device has completed the "Page Select" MDI |
| 478 | * transaction. So we wait 200us after each MDI command... |
| 479 | */ |
| 480 | udelay(200); |
| 481 | |
| 482 | /* ...and verify the command was successful. */ |
| 483 | ret_val = e1000e_read_phy_reg_m88(hw, page_select, &temp); |
| 484 | |
| 485 | if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) |
| 486 | return -E1000_ERR_PHY; |
| 487 | |
| 488 | udelay(200); |
| 489 | |
| 490 | ret_val = e1000e_write_phy_reg_m88(hw, |
| 491 | MAX_PHY_REG_ADDRESS & offset, |
| 492 | data); |
| 493 | |
| 494 | udelay(200); |
| 495 | |
| 496 | return ret_val; |
| 497 | } |
| 498 | |
| 499 | /** |
| 500 | * e1000_write_nvm_80003es2lan - Write to ESB2 NVM |
| 501 | * @hw: pointer to the HW structure |
| 502 | * @offset: offset of the register to read |
| 503 | * @words: number of words to write |
| 504 | * @data: buffer of data to write to the NVM |
| 505 | * |
| 506 | * Write "words" of data to the ESB2 NVM. This is a function |
| 507 | * pointer entry point called by the api module. |
| 508 | **/ |
| 509 | static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset, |
| 510 | u16 words, u16 *data) |
| 511 | { |
| 512 | return e1000e_write_nvm_spi(hw, offset, words, data); |
| 513 | } |
| 514 | |
| 515 | /** |
| 516 | * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete |
| 517 | * @hw: pointer to the HW structure |
| 518 | * |
| 519 | * Wait a specific amount of time for manageability processes to complete. |
| 520 | * This is a function pointer entry point called by the phy module. |
| 521 | **/ |
| 522 | static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw) |
| 523 | { |
| 524 | s32 timeout = PHY_CFG_TIMEOUT; |
| 525 | u32 mask = E1000_NVM_CFG_DONE_PORT_0; |
| 526 | |
| 527 | if (hw->bus.func == 1) |
| 528 | mask = E1000_NVM_CFG_DONE_PORT_1; |
| 529 | |
| 530 | while (timeout) { |
| 531 | if (er32(EEMNGCTL) & mask) |
| 532 | break; |
| 533 | msleep(1); |
| 534 | timeout--; |
| 535 | } |
| 536 | if (!timeout) { |
| 537 | hw_dbg(hw, "MNG configuration cycle has not completed.\n"); |
| 538 | return -E1000_ERR_RESET; |
| 539 | } |
| 540 | |
| 541 | return 0; |
| 542 | } |
| 543 | |
| 544 | /** |
| 545 | * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex |
| 546 | * @hw: pointer to the HW structure |
| 547 | * |
| 548 | * Force the speed and duplex settings onto the PHY. This is a |
| 549 | * function pointer entry point called by the phy module. |
| 550 | **/ |
| 551 | static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw) |
| 552 | { |
| 553 | s32 ret_val; |
| 554 | u16 phy_data; |
| 555 | bool link; |
| 556 | |
| 557 | /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI |
| 558 | * forced whenever speed and duplex are forced. |
| 559 | */ |
| 560 | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| 561 | if (ret_val) |
| 562 | return ret_val; |
| 563 | |
| 564 | phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO; |
| 565 | ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data); |
| 566 | if (ret_val) |
| 567 | return ret_val; |
| 568 | |
| 569 | hw_dbg(hw, "GG82563 PSCR: %X\n", phy_data); |
| 570 | |
| 571 | ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); |
| 572 | if (ret_val) |
| 573 | return ret_val; |
| 574 | |
| 575 | e1000e_phy_force_speed_duplex_setup(hw, &phy_data); |
| 576 | |
| 577 | /* Reset the phy to commit changes. */ |
| 578 | phy_data |= MII_CR_RESET; |
| 579 | |
| 580 | ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); |
| 581 | if (ret_val) |
| 582 | return ret_val; |
| 583 | |
| 584 | udelay(1); |
| 585 | |
| 586 | if (hw->phy.wait_for_link) { |
| 587 | hw_dbg(hw, "Waiting for forced speed/duplex link " |
| 588 | "on GG82563 phy.\n"); |
| 589 | |
| 590 | ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, |
| 591 | 100000, &link); |
| 592 | if (ret_val) |
| 593 | return ret_val; |
| 594 | |
| 595 | if (!link) { |
| 596 | /* We didn't get link. |
| 597 | * Reset the DSP and cross our fingers. |
| 598 | */ |
| 599 | ret_val = e1000e_phy_reset_dsp(hw); |
| 600 | if (ret_val) |
| 601 | return ret_val; |
| 602 | } |
| 603 | |
| 604 | /* Try once more */ |
| 605 | ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, |
| 606 | 100000, &link); |
| 607 | if (ret_val) |
| 608 | return ret_val; |
| 609 | } |
| 610 | |
| 611 | ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data); |
| 612 | if (ret_val) |
| 613 | return ret_val; |
| 614 | |
| 615 | /* Resetting the phy means we need to verify the TX_CLK corresponds |
| 616 | * to the link speed. 10Mbps -> 2.5MHz, else 25MHz. |
| 617 | */ |
| 618 | phy_data &= ~GG82563_MSCR_TX_CLK_MASK; |
| 619 | if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED) |
| 620 | phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5; |
| 621 | else |
| 622 | phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25; |
| 623 | |
| 624 | /* In addition, we must re-enable CRS on Tx for both half and full |
| 625 | * duplex. |
| 626 | */ |
| 627 | phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; |
| 628 | ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data); |
| 629 | |
| 630 | return ret_val; |
| 631 | } |
| 632 | |
| 633 | /** |
| 634 | * e1000_get_cable_length_80003es2lan - Set approximate cable length |
| 635 | * @hw: pointer to the HW structure |
| 636 | * |
| 637 | * Find the approximate cable length as measured by the GG82563 PHY. |
| 638 | * This is a function pointer entry point called by the phy module. |
| 639 | **/ |
| 640 | static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw) |
| 641 | { |
| 642 | struct e1000_phy_info *phy = &hw->phy; |
| 643 | s32 ret_val; |
| 644 | u16 phy_data; |
| 645 | u16 index; |
| 646 | |
| 647 | ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data); |
| 648 | if (ret_val) |
| 649 | return ret_val; |
| 650 | |
| 651 | index = phy_data & GG82563_DSPD_CABLE_LENGTH; |
| 652 | phy->min_cable_length = e1000_gg82563_cable_length_table[index]; |
| 653 | phy->max_cable_length = e1000_gg82563_cable_length_table[index+5]; |
| 654 | |
| 655 | phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; |
| 656 | |
| 657 | return 0; |
| 658 | } |
| 659 | |
| 660 | /** |
| 661 | * e1000_get_link_up_info_80003es2lan - Report speed and duplex |
| 662 | * @hw: pointer to the HW structure |
| 663 | * @speed: pointer to speed buffer |
| 664 | * @duplex: pointer to duplex buffer |
| 665 | * |
| 666 | * Retrieve the current speed and duplex configuration. |
| 667 | * This is a function pointer entry point called by the api module. |
| 668 | **/ |
| 669 | static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, |
| 670 | u16 *duplex) |
| 671 | { |
| 672 | s32 ret_val; |
| 673 | |
| 674 | if (hw->media_type == e1000_media_type_copper) { |
| 675 | ret_val = e1000e_get_speed_and_duplex_copper(hw, |
| 676 | speed, |
| 677 | duplex); |
| 678 | if (ret_val) |
| 679 | return ret_val; |
| 680 | if (*speed == SPEED_1000) |
| 681 | ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw); |
| 682 | else |
| 683 | ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, |
| 684 | *duplex); |
| 685 | } else { |
| 686 | ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw, |
| 687 | speed, |
| 688 | duplex); |
| 689 | } |
| 690 | |
| 691 | return ret_val; |
| 692 | } |
| 693 | |
| 694 | /** |
| 695 | * e1000_reset_hw_80003es2lan - Reset the ESB2 controller |
| 696 | * @hw: pointer to the HW structure |
| 697 | * |
| 698 | * Perform a global reset to the ESB2 controller. |
| 699 | * This is a function pointer entry point called by the api module. |
| 700 | **/ |
| 701 | static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw) |
| 702 | { |
| 703 | u32 ctrl; |
| 704 | u32 icr; |
| 705 | s32 ret_val; |
| 706 | |
| 707 | /* Prevent the PCI-E bus from sticking if there is no TLP connection |
| 708 | * on the last TLP read/write transaction when MAC is reset. |
| 709 | */ |
| 710 | ret_val = e1000e_disable_pcie_master(hw); |
| 711 | if (ret_val) |
| 712 | hw_dbg(hw, "PCI-E Master disable polling has failed.\n"); |
| 713 | |
| 714 | hw_dbg(hw, "Masking off all interrupts\n"); |
| 715 | ew32(IMC, 0xffffffff); |
| 716 | |
| 717 | ew32(RCTL, 0); |
| 718 | ew32(TCTL, E1000_TCTL_PSP); |
| 719 | e1e_flush(); |
| 720 | |
| 721 | msleep(10); |
| 722 | |
| 723 | ctrl = er32(CTRL); |
| 724 | |
| 725 | hw_dbg(hw, "Issuing a global reset to MAC\n"); |
| 726 | ew32(CTRL, ctrl | E1000_CTRL_RST); |
| 727 | |
| 728 | ret_val = e1000e_get_auto_rd_done(hw); |
| 729 | if (ret_val) |
| 730 | /* We don't want to continue accessing MAC registers. */ |
| 731 | return ret_val; |
| 732 | |
| 733 | /* Clear any pending interrupt events. */ |
| 734 | ew32(IMC, 0xffffffff); |
| 735 | icr = er32(ICR); |
| 736 | |
| 737 | return 0; |
| 738 | } |
| 739 | |
| 740 | /** |
| 741 | * e1000_init_hw_80003es2lan - Initialize the ESB2 controller |
| 742 | * @hw: pointer to the HW structure |
| 743 | * |
| 744 | * Initialize the hw bits, LED, VFTA, MTA, link and hw counters. |
| 745 | * This is a function pointer entry point called by the api module. |
| 746 | **/ |
| 747 | static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw) |
| 748 | { |
| 749 | struct e1000_mac_info *mac = &hw->mac; |
| 750 | u32 reg_data; |
| 751 | s32 ret_val; |
| 752 | u16 i; |
| 753 | |
| 754 | e1000_initialize_hw_bits_80003es2lan(hw); |
| 755 | |
| 756 | /* Initialize identification LED */ |
| 757 | ret_val = e1000e_id_led_init(hw); |
| 758 | if (ret_val) { |
| 759 | hw_dbg(hw, "Error initializing identification LED\n"); |
| 760 | return ret_val; |
| 761 | } |
| 762 | |
| 763 | /* Disabling VLAN filtering */ |
| 764 | hw_dbg(hw, "Initializing the IEEE VLAN\n"); |
| 765 | e1000e_clear_vfta(hw); |
| 766 | |
| 767 | /* Setup the receive address. */ |
| 768 | e1000e_init_rx_addrs(hw, mac->rar_entry_count); |
| 769 | |
| 770 | /* Zero out the Multicast HASH table */ |
| 771 | hw_dbg(hw, "Zeroing the MTA\n"); |
| 772 | for (i = 0; i < mac->mta_reg_count; i++) |
| 773 | E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); |
| 774 | |
| 775 | /* Setup link and flow control */ |
| 776 | ret_val = e1000e_setup_link(hw); |
| 777 | |
| 778 | /* Set the transmit descriptor write-back policy */ |
| 779 | reg_data = er32(TXDCTL); |
| 780 | reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | |
| 781 | E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; |
| 782 | ew32(TXDCTL, reg_data); |
| 783 | |
| 784 | /* ...for both queues. */ |
| 785 | reg_data = er32(TXDCTL1); |
| 786 | reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | |
| 787 | E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; |
| 788 | ew32(TXDCTL1, reg_data); |
| 789 | |
| 790 | /* Enable retransmit on late collisions */ |
| 791 | reg_data = er32(TCTL); |
| 792 | reg_data |= E1000_TCTL_RTLC; |
| 793 | ew32(TCTL, reg_data); |
| 794 | |
| 795 | /* Configure Gigabit Carry Extend Padding */ |
| 796 | reg_data = er32(TCTL_EXT); |
| 797 | reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; |
| 798 | reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN; |
| 799 | ew32(TCTL_EXT, reg_data); |
| 800 | |
| 801 | /* Configure Transmit Inter-Packet Gap */ |
| 802 | reg_data = er32(TIPG); |
| 803 | reg_data &= ~E1000_TIPG_IPGT_MASK; |
| 804 | reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; |
| 805 | ew32(TIPG, reg_data); |
| 806 | |
| 807 | reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001); |
| 808 | reg_data &= ~0x00100000; |
| 809 | E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data); |
| 810 | |
| 811 | /* Clear all of the statistics registers (clear on read). It is |
| 812 | * important that we do this after we have tried to establish link |
| 813 | * because the symbol error count will increment wildly if there |
| 814 | * is no link. |
| 815 | */ |
| 816 | e1000_clear_hw_cntrs_80003es2lan(hw); |
| 817 | |
| 818 | return ret_val; |
| 819 | } |
| 820 | |
| 821 | /** |
| 822 | * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2 |
| 823 | * @hw: pointer to the HW structure |
| 824 | * |
| 825 | * Initializes required hardware-dependent bits needed for normal operation. |
| 826 | **/ |
| 827 | static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw) |
| 828 | { |
| 829 | u32 reg; |
| 830 | |
| 831 | /* Transmit Descriptor Control 0 */ |
| 832 | reg = er32(TXDCTL); |
| 833 | reg |= (1 << 22); |
| 834 | ew32(TXDCTL, reg); |
| 835 | |
| 836 | /* Transmit Descriptor Control 1 */ |
| 837 | reg = er32(TXDCTL1); |
| 838 | reg |= (1 << 22); |
| 839 | ew32(TXDCTL1, reg); |
| 840 | |
| 841 | /* Transmit Arbitration Control 0 */ |
| 842 | reg = er32(TARC0); |
| 843 | reg &= ~(0xF << 27); /* 30:27 */ |
| 844 | if (hw->media_type != e1000_media_type_copper) |
| 845 | reg &= ~(1 << 20); |
| 846 | ew32(TARC0, reg); |
| 847 | |
| 848 | /* Transmit Arbitration Control 1 */ |
| 849 | reg = er32(TARC1); |
| 850 | if (er32(TCTL) & E1000_TCTL_MULR) |
| 851 | reg &= ~(1 << 28); |
| 852 | else |
| 853 | reg |= (1 << 28); |
| 854 | ew32(TARC1, reg); |
| 855 | } |
| 856 | |
| 857 | /** |
| 858 | * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link |
| 859 | * @hw: pointer to the HW structure |
| 860 | * |
| 861 | * Setup some GG82563 PHY registers for obtaining link |
| 862 | **/ |
| 863 | static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw) |
| 864 | { |
| 865 | struct e1000_phy_info *phy = &hw->phy; |
| 866 | s32 ret_val; |
| 867 | u32 ctrl_ext; |
| 868 | u16 data; |
| 869 | |
| 870 | ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, |
| 871 | &data); |
| 872 | if (ret_val) |
| 873 | return ret_val; |
| 874 | |
| 875 | data |= GG82563_MSCR_ASSERT_CRS_ON_TX; |
| 876 | /* Use 25MHz for both link down and 1000Base-T for Tx clock. */ |
| 877 | data |= GG82563_MSCR_TX_CLK_1000MBPS_25; |
| 878 | |
| 879 | ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, |
| 880 | data); |
| 881 | if (ret_val) |
| 882 | return ret_val; |
| 883 | |
| 884 | /* Options: |
| 885 | * MDI/MDI-X = 0 (default) |
| 886 | * 0 - Auto for all speeds |
| 887 | * 1 - MDI mode |
| 888 | * 2 - MDI-X mode |
| 889 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
| 890 | */ |
| 891 | ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data); |
| 892 | if (ret_val) |
| 893 | return ret_val; |
| 894 | |
| 895 | data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; |
| 896 | |
| 897 | switch (phy->mdix) { |
| 898 | case 1: |
| 899 | data |= GG82563_PSCR_CROSSOVER_MODE_MDI; |
| 900 | break; |
| 901 | case 2: |
| 902 | data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; |
| 903 | break; |
| 904 | case 0: |
| 905 | default: |
| 906 | data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; |
| 907 | break; |
| 908 | } |
| 909 | |
| 910 | /* Options: |
| 911 | * disable_polarity_correction = 0 (default) |
| 912 | * Automatic Correction for Reversed Cable Polarity |
| 913 | * 0 - Disabled |
| 914 | * 1 - Enabled |
| 915 | */ |
| 916 | data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; |
| 917 | if (phy->disable_polarity_correction) |
| 918 | data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; |
| 919 | |
| 920 | ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data); |
| 921 | if (ret_val) |
| 922 | return ret_val; |
| 923 | |
| 924 | /* SW Reset the PHY so all changes take effect */ |
| 925 | ret_val = e1000e_commit_phy(hw); |
| 926 | if (ret_val) { |
| 927 | hw_dbg(hw, "Error Resetting the PHY\n"); |
| 928 | return ret_val; |
| 929 | } |
| 930 | |
| 931 | /* Bypass RX and TX FIFO's */ |
| 932 | ret_val = e1000e_write_kmrn_reg(hw, |
| 933 | E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL, |
| 934 | E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS | |
| 935 | E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS); |
| 936 | if (ret_val) |
| 937 | return ret_val; |
| 938 | |
| 939 | ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data); |
| 940 | if (ret_val) |
| 941 | return ret_val; |
| 942 | |
| 943 | data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; |
| 944 | ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data); |
| 945 | if (ret_val) |
| 946 | return ret_val; |
| 947 | |
| 948 | ctrl_ext = er32(CTRL_EXT); |
| 949 | ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); |
| 950 | ew32(CTRL_EXT, ctrl_ext); |
| 951 | |
| 952 | ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data); |
| 953 | if (ret_val) |
| 954 | return ret_val; |
| 955 | |
| 956 | /* Do not init these registers when the HW is in IAMT mode, since the |
| 957 | * firmware will have already initialized them. We only initialize |
| 958 | * them if the HW is not in IAMT mode. |
| 959 | */ |
| 960 | if (!e1000e_check_mng_mode(hw)) { |
| 961 | /* Enable Electrical Idle on the PHY */ |
| 962 | data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; |
| 963 | ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data); |
| 964 | if (ret_val) |
| 965 | return ret_val; |
| 966 | |
| 967 | ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data); |
| 968 | if (ret_val) |
| 969 | return ret_val; |
| 970 | |
| 971 | data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
| 972 | ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data); |
| 973 | if (ret_val) |
| 974 | return ret_val; |
| 975 | } |
| 976 | |
| 977 | /* Workaround: Disable padding in Kumeran interface in the MAC |
| 978 | * and in the PHY to avoid CRC errors. |
| 979 | */ |
| 980 | ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data); |
| 981 | if (ret_val) |
| 982 | return ret_val; |
| 983 | |
| 984 | data |= GG82563_ICR_DIS_PADDING; |
| 985 | ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data); |
| 986 | if (ret_val) |
| 987 | return ret_val; |
| 988 | |
| 989 | return 0; |
| 990 | } |
| 991 | |
| 992 | /** |
| 993 | * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2 |
| 994 | * @hw: pointer to the HW structure |
| 995 | * |
| 996 | * Essentially a wrapper for setting up all things "copper" related. |
| 997 | * This is a function pointer entry point called by the mac module. |
| 998 | **/ |
| 999 | static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw) |
| 1000 | { |
| 1001 | u32 ctrl; |
| 1002 | s32 ret_val; |
| 1003 | u16 reg_data; |
| 1004 | |
| 1005 | ctrl = er32(CTRL); |
| 1006 | ctrl |= E1000_CTRL_SLU; |
| 1007 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| 1008 | ew32(CTRL, ctrl); |
| 1009 | |
| 1010 | /* Set the mac to wait the maximum time between each |
| 1011 | * iteration and increase the max iterations when |
| 1012 | * polling the phy; this fixes erroneous timeouts at 10Mbps. */ |
| 1013 | ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF); |
| 1014 | if (ret_val) |
| 1015 | return ret_val; |
| 1016 | ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data); |
| 1017 | if (ret_val) |
| 1018 | return ret_val; |
| 1019 | reg_data |= 0x3F; |
| 1020 | ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data); |
| 1021 | if (ret_val) |
| 1022 | return ret_val; |
| 1023 | ret_val = e1000e_read_kmrn_reg(hw, |
| 1024 | E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, |
| 1025 | ®_data); |
| 1026 | if (ret_val) |
| 1027 | return ret_val; |
| 1028 | reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING; |
| 1029 | ret_val = e1000e_write_kmrn_reg(hw, |
| 1030 | E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, |
| 1031 | reg_data); |
| 1032 | if (ret_val) |
| 1033 | return ret_val; |
| 1034 | |
| 1035 | ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw); |
| 1036 | if (ret_val) |
| 1037 | return ret_val; |
| 1038 | |
| 1039 | ret_val = e1000e_setup_copper_link(hw); |
| 1040 | |
| 1041 | return 0; |
| 1042 | } |
| 1043 | |
| 1044 | /** |
| 1045 | * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation |
| 1046 | * @hw: pointer to the HW structure |
| 1047 | * @duplex: current duplex setting |
| 1048 | * |
| 1049 | * Configure the KMRN interface by applying last minute quirks for |
| 1050 | * 10/100 operation. |
| 1051 | **/ |
| 1052 | static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex) |
| 1053 | { |
| 1054 | s32 ret_val; |
| 1055 | u32 tipg; |
| 1056 | u16 reg_data; |
| 1057 | |
| 1058 | reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT; |
| 1059 | ret_val = e1000e_write_kmrn_reg(hw, |
| 1060 | E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, |
| 1061 | reg_data); |
| 1062 | if (ret_val) |
| 1063 | return ret_val; |
| 1064 | |
| 1065 | /* Configure Transmit Inter-Packet Gap */ |
| 1066 | tipg = er32(TIPG); |
| 1067 | tipg &= ~E1000_TIPG_IPGT_MASK; |
| 1068 | tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN; |
| 1069 | ew32(TIPG, tipg); |
| 1070 | |
| 1071 | ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); |
| 1072 | if (ret_val) |
| 1073 | return ret_val; |
| 1074 | |
| 1075 | if (duplex == HALF_DUPLEX) |
| 1076 | reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; |
| 1077 | else |
| 1078 | reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
| 1079 | |
| 1080 | ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); |
| 1081 | |
| 1082 | return 0; |
| 1083 | } |
| 1084 | |
| 1085 | /** |
| 1086 | * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation |
| 1087 | * @hw: pointer to the HW structure |
| 1088 | * |
| 1089 | * Configure the KMRN interface by applying last minute quirks for |
| 1090 | * gigabit operation. |
| 1091 | **/ |
| 1092 | static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw) |
| 1093 | { |
| 1094 | s32 ret_val; |
| 1095 | u16 reg_data; |
| 1096 | u32 tipg; |
| 1097 | |
| 1098 | reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT; |
| 1099 | ret_val = e1000e_write_kmrn_reg(hw, |
| 1100 | E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, |
| 1101 | reg_data); |
| 1102 | if (ret_val) |
| 1103 | return ret_val; |
| 1104 | |
| 1105 | /* Configure Transmit Inter-Packet Gap */ |
| 1106 | tipg = er32(TIPG); |
| 1107 | tipg &= ~E1000_TIPG_IPGT_MASK; |
| 1108 | tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; |
| 1109 | ew32(TIPG, tipg); |
| 1110 | |
| 1111 | ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); |
| 1112 | if (ret_val) |
| 1113 | return ret_val; |
| 1114 | |
| 1115 | reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
| 1116 | ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); |
| 1117 | |
| 1118 | return ret_val; |
| 1119 | } |
| 1120 | |
| 1121 | /** |
| 1122 | * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters |
| 1123 | * @hw: pointer to the HW structure |
| 1124 | * |
| 1125 | * Clears the hardware counters by reading the counter registers. |
| 1126 | **/ |
| 1127 | static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw) |
| 1128 | { |
| 1129 | u32 temp; |
| 1130 | |
| 1131 | e1000e_clear_hw_cntrs_base(hw); |
| 1132 | |
| 1133 | temp = er32(PRC64); |
| 1134 | temp = er32(PRC127); |
| 1135 | temp = er32(PRC255); |
| 1136 | temp = er32(PRC511); |
| 1137 | temp = er32(PRC1023); |
| 1138 | temp = er32(PRC1522); |
| 1139 | temp = er32(PTC64); |
| 1140 | temp = er32(PTC127); |
| 1141 | temp = er32(PTC255); |
| 1142 | temp = er32(PTC511); |
| 1143 | temp = er32(PTC1023); |
| 1144 | temp = er32(PTC1522); |
| 1145 | |
| 1146 | temp = er32(ALGNERRC); |
| 1147 | temp = er32(RXERRC); |
| 1148 | temp = er32(TNCRS); |
| 1149 | temp = er32(CEXTERR); |
| 1150 | temp = er32(TSCTC); |
| 1151 | temp = er32(TSCTFC); |
| 1152 | |
| 1153 | temp = er32(MGTPRC); |
| 1154 | temp = er32(MGTPDC); |
| 1155 | temp = er32(MGTPTC); |
| 1156 | |
| 1157 | temp = er32(IAC); |
| 1158 | temp = er32(ICRXOC); |
| 1159 | |
| 1160 | temp = er32(ICRXPTC); |
| 1161 | temp = er32(ICRXATC); |
| 1162 | temp = er32(ICTXPTC); |
| 1163 | temp = er32(ICTXATC); |
| 1164 | temp = er32(ICTXQEC); |
| 1165 | temp = er32(ICTXQMTC); |
| 1166 | temp = er32(ICRXDMTC); |
| 1167 | } |
| 1168 | |
| 1169 | static struct e1000_mac_operations es2_mac_ops = { |
| 1170 | .mng_mode_enab = E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT, |
| 1171 | /* check_for_link dependent on media type */ |
| 1172 | .cleanup_led = e1000e_cleanup_led_generic, |
| 1173 | .clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan, |
| 1174 | .get_bus_info = e1000e_get_bus_info_pcie, |
| 1175 | .get_link_up_info = e1000_get_link_up_info_80003es2lan, |
| 1176 | .led_on = e1000e_led_on_generic, |
| 1177 | .led_off = e1000e_led_off_generic, |
| 1178 | .mc_addr_list_update = e1000e_mc_addr_list_update_generic, |
| 1179 | .reset_hw = e1000_reset_hw_80003es2lan, |
| 1180 | .init_hw = e1000_init_hw_80003es2lan, |
| 1181 | .setup_link = e1000e_setup_link, |
| 1182 | /* setup_physical_interface dependent on media type */ |
| 1183 | }; |
| 1184 | |
| 1185 | static struct e1000_phy_operations es2_phy_ops = { |
| 1186 | .acquire_phy = e1000_acquire_phy_80003es2lan, |
| 1187 | .check_reset_block = e1000e_check_reset_block_generic, |
| 1188 | .commit_phy = e1000e_phy_sw_reset, |
| 1189 | .force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan, |
| 1190 | .get_cfg_done = e1000_get_cfg_done_80003es2lan, |
| 1191 | .get_cable_length = e1000_get_cable_length_80003es2lan, |
| 1192 | .get_phy_info = e1000e_get_phy_info_m88, |
| 1193 | .read_phy_reg = e1000_read_phy_reg_gg82563_80003es2lan, |
| 1194 | .release_phy = e1000_release_phy_80003es2lan, |
| 1195 | .reset_phy = e1000e_phy_hw_reset_generic, |
| 1196 | .set_d0_lplu_state = NULL, |
| 1197 | .set_d3_lplu_state = e1000e_set_d3_lplu_state, |
| 1198 | .write_phy_reg = e1000_write_phy_reg_gg82563_80003es2lan, |
| 1199 | }; |
| 1200 | |
| 1201 | static struct e1000_nvm_operations es2_nvm_ops = { |
| 1202 | .acquire_nvm = e1000_acquire_nvm_80003es2lan, |
| 1203 | .read_nvm = e1000e_read_nvm_eerd, |
| 1204 | .release_nvm = e1000_release_nvm_80003es2lan, |
| 1205 | .update_nvm = e1000e_update_nvm_checksum_generic, |
| 1206 | .valid_led_default = e1000e_valid_led_default, |
| 1207 | .validate_nvm = e1000e_validate_nvm_checksum_generic, |
| 1208 | .write_nvm = e1000_write_nvm_80003es2lan, |
| 1209 | }; |
| 1210 | |
| 1211 | struct e1000_info e1000_es2_info = { |
| 1212 | .mac = e1000_80003es2lan, |
| 1213 | .flags = FLAG_HAS_HW_VLAN_FILTER |
| 1214 | | FLAG_HAS_JUMBO_FRAMES |
| 1215 | | FLAG_HAS_STATS_PTC_PRC |
| 1216 | | FLAG_HAS_WOL |
| 1217 | | FLAG_APME_IN_CTRL3 |
| 1218 | | FLAG_RX_CSUM_ENABLED |
| 1219 | | FLAG_HAS_CTRLEXT_ON_LOAD |
| 1220 | | FLAG_HAS_STATS_ICR_ICT |
| 1221 | | FLAG_RX_NEEDS_RESTART /* errata */ |
| 1222 | | FLAG_TARC_SET_BIT_ZERO /* errata */ |
| 1223 | | FLAG_APME_CHECK_PORT_B |
| 1224 | | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ |
| 1225 | | FLAG_TIPG_MEDIUM_FOR_80003ESLAN, |
| 1226 | .pba = 38, |
| 1227 | .get_invariants = e1000_get_invariants_80003es2lan, |
| 1228 | .mac_ops = &es2_mac_ops, |
| 1229 | .phy_ops = &es2_phy_ops, |
| 1230 | .nvm_ops = &es2_nvm_ops, |
| 1231 | }; |
| 1232 | |