Artem B. Bityutskiy | 801c135 | 2006-06-27 12:22:22 +0400 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) International Business Machines Corp., 2006 |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License as published by |
| 6 | * the Free Software Foundation; either version 2 of the License, or |
| 7 | * (at your option) any later version. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See |
| 12 | * the GNU General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program; if not, write to the Free Software |
| 16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 17 | * |
| 18 | * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner |
| 19 | */ |
| 20 | |
| 21 | /* |
| 22 | * UBI wear-leveling unit. |
| 23 | * |
| 24 | * This unit is responsible for wear-leveling. It works in terms of physical |
| 25 | * eraseblocks and erase counters and knows nothing about logical eraseblocks, |
| 26 | * volumes, etc. From this unit's perspective all physical eraseblocks are of |
| 27 | * two types - used and free. Used physical eraseblocks are those that were |
| 28 | * "get" by the 'ubi_wl_get_peb()' function, and free physical eraseblocks are |
| 29 | * those that were put by the 'ubi_wl_put_peb()' function. |
| 30 | * |
| 31 | * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter |
| 32 | * header. The rest of the physical eraseblock contains only 0xFF bytes. |
| 33 | * |
| 34 | * When physical eraseblocks are returned to the WL unit by means of the |
| 35 | * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is |
| 36 | * done asynchronously in context of the per-UBI device background thread, |
| 37 | * which is also managed by the WL unit. |
| 38 | * |
| 39 | * The wear-leveling is ensured by means of moving the contents of used |
| 40 | * physical eraseblocks with low erase counter to free physical eraseblocks |
| 41 | * with high erase counter. |
| 42 | * |
| 43 | * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick |
| 44 | * an "optimal" physical eraseblock. For example, when it is known that the |
| 45 | * physical eraseblock will be "put" soon because it contains short-term data, |
| 46 | * the WL unit may pick a free physical eraseblock with low erase counter, and |
| 47 | * so forth. |
| 48 | * |
| 49 | * If the WL unit fails to erase a physical eraseblock, it marks it as bad. |
| 50 | * |
| 51 | * This unit is also responsible for scrubbing. If a bit-flip is detected in a |
| 52 | * physical eraseblock, it has to be moved. Technically this is the same as |
| 53 | * moving it for wear-leveling reasons. |
| 54 | * |
| 55 | * As it was said, for the UBI unit all physical eraseblocks are either "free" |
| 56 | * or "used". Free eraseblock are kept in the @wl->free RB-tree, while used |
| 57 | * eraseblocks are kept in a set of different RB-trees: @wl->used, |
| 58 | * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub. |
| 59 | * |
| 60 | * Note, in this implementation, we keep a small in-RAM object for each physical |
| 61 | * eraseblock. This is surely not a scalable solution. But it appears to be good |
| 62 | * enough for moderately large flashes and it is simple. In future, one may |
| 63 | * re-work this unit and make it more scalable. |
| 64 | * |
| 65 | * At the moment this unit does not utilize the sequence number, which was |
| 66 | * introduced relatively recently. But it would be wise to do this because the |
| 67 | * sequence number of a logical eraseblock characterizes how old is it. For |
| 68 | * example, when we move a PEB with low erase counter, and we need to pick the |
| 69 | * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we |
| 70 | * pick target PEB with an average EC if our PEB is not very "old". This is a |
| 71 | * room for future re-works of the WL unit. |
| 72 | * |
| 73 | * FIXME: looks too complex, should be simplified (later). |
| 74 | */ |
| 75 | |
| 76 | #include <linux/slab.h> |
| 77 | #include <linux/crc32.h> |
| 78 | #include <linux/freezer.h> |
| 79 | #include <linux/kthread.h> |
| 80 | #include "ubi.h" |
| 81 | |
| 82 | /* Number of physical eraseblocks reserved for wear-leveling purposes */ |
| 83 | #define WL_RESERVED_PEBS 1 |
| 84 | |
| 85 | /* |
| 86 | * How many erase cycles are short term, unknown, and long term physical |
| 87 | * eraseblocks protected. |
| 88 | */ |
| 89 | #define ST_PROTECTION 16 |
| 90 | #define U_PROTECTION 10 |
| 91 | #define LT_PROTECTION 4 |
| 92 | |
| 93 | /* |
| 94 | * Maximum difference between two erase counters. If this threshold is |
| 95 | * exceeded, the WL unit starts moving data from used physical eraseblocks with |
| 96 | * low erase counter to free physical eraseblocks with high erase counter. |
| 97 | */ |
| 98 | #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD |
| 99 | |
| 100 | /* |
| 101 | * When a physical eraseblock is moved, the WL unit has to pick the target |
| 102 | * physical eraseblock to move to. The simplest way would be just to pick the |
| 103 | * one with the highest erase counter. But in certain workloads this could lead |
| 104 | * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a |
| 105 | * situation when the picked physical eraseblock is constantly erased after the |
| 106 | * data is written to it. So, we have a constant which limits the highest erase |
| 107 | * counter of the free physical eraseblock to pick. Namely, the WL unit does |
| 108 | * not pick eraseblocks with erase counter greater then the lowest erase |
| 109 | * counter plus %WL_FREE_MAX_DIFF. |
| 110 | */ |
| 111 | #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) |
| 112 | |
| 113 | /* |
| 114 | * Maximum number of consecutive background thread failures which is enough to |
| 115 | * switch to read-only mode. |
| 116 | */ |
| 117 | #define WL_MAX_FAILURES 32 |
| 118 | |
| 119 | /** |
| 120 | * struct ubi_wl_entry - wear-leveling entry. |
| 121 | * @rb: link in the corresponding RB-tree |
| 122 | * @ec: erase counter |
| 123 | * @pnum: physical eraseblock number |
| 124 | * |
| 125 | * Each physical eraseblock has a corresponding &struct wl_entry object which |
| 126 | * may be kept in different RB-trees. |
| 127 | */ |
| 128 | struct ubi_wl_entry { |
| 129 | struct rb_node rb; |
| 130 | int ec; |
| 131 | int pnum; |
| 132 | }; |
| 133 | |
| 134 | /** |
| 135 | * struct ubi_wl_prot_entry - PEB protection entry. |
| 136 | * @rb_pnum: link in the @wl->prot.pnum RB-tree |
| 137 | * @rb_aec: link in the @wl->prot.aec RB-tree |
| 138 | * @abs_ec: the absolute erase counter value when the protection ends |
| 139 | * @e: the wear-leveling entry of the physical eraseblock under protection |
| 140 | * |
| 141 | * When the WL unit returns a physical eraseblock, the physical eraseblock is |
| 142 | * protected from being moved for some "time". For this reason, the physical |
| 143 | * eraseblock is not directly moved from the @wl->free tree to the @wl->used |
| 144 | * tree. There is one more tree in between where this physical eraseblock is |
| 145 | * temporarily stored (@wl->prot). |
| 146 | * |
| 147 | * All this protection stuff is needed because: |
| 148 | * o we don't want to move physical eraseblocks just after we have given them |
| 149 | * to the user; instead, we first want to let users fill them up with data; |
| 150 | * |
| 151 | * o there is a chance that the user will put the physical eraseblock very |
| 152 | * soon, so it makes sense not to move it for some time, but wait; this is |
| 153 | * especially important in case of "short term" physical eraseblocks. |
| 154 | * |
| 155 | * Physical eraseblocks stay protected only for limited time. But the "time" is |
| 156 | * measured in erase cycles in this case. This is implemented with help of the |
| 157 | * absolute erase counter (@wl->abs_ec). When it reaches certain value, the |
| 158 | * physical eraseblocks are moved from the protection trees (@wl->prot.*) to |
| 159 | * the @wl->used tree. |
| 160 | * |
| 161 | * Protected physical eraseblocks are searched by physical eraseblock number |
| 162 | * (when they are put) and by the absolute erase counter (to check if it is |
| 163 | * time to move them to the @wl->used tree). So there are actually 2 RB-trees |
| 164 | * storing the protected physical eraseblocks: @wl->prot.pnum and |
| 165 | * @wl->prot.aec. They are referred to as the "protection" trees. The |
| 166 | * first one is indexed by the physical eraseblock number. The second one is |
| 167 | * indexed by the absolute erase counter. Both trees store |
| 168 | * &struct ubi_wl_prot_entry objects. |
| 169 | * |
| 170 | * Each physical eraseblock has 2 main states: free and used. The former state |
| 171 | * corresponds to the @wl->free tree. The latter state is split up on several |
| 172 | * sub-states: |
| 173 | * o the WL movement is allowed (@wl->used tree); |
| 174 | * o the WL movement is temporarily prohibited (@wl->prot.pnum and |
| 175 | * @wl->prot.aec trees); |
| 176 | * o scrubbing is needed (@wl->scrub tree). |
| 177 | * |
| 178 | * Depending on the sub-state, wear-leveling entries of the used physical |
| 179 | * eraseblocks may be kept in one of those trees. |
| 180 | */ |
| 181 | struct ubi_wl_prot_entry { |
| 182 | struct rb_node rb_pnum; |
| 183 | struct rb_node rb_aec; |
| 184 | unsigned long long abs_ec; |
| 185 | struct ubi_wl_entry *e; |
| 186 | }; |
| 187 | |
| 188 | /** |
| 189 | * struct ubi_work - UBI work description data structure. |
| 190 | * @list: a link in the list of pending works |
| 191 | * @func: worker function |
| 192 | * @priv: private data of the worker function |
| 193 | * |
| 194 | * @e: physical eraseblock to erase |
| 195 | * @torture: if the physical eraseblock has to be tortured |
| 196 | * |
| 197 | * The @func pointer points to the worker function. If the @cancel argument is |
| 198 | * not zero, the worker has to free the resources and exit immediately. The |
| 199 | * worker has to return zero in case of success and a negative error code in |
| 200 | * case of failure. |
| 201 | */ |
| 202 | struct ubi_work { |
| 203 | struct list_head list; |
| 204 | int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel); |
| 205 | /* The below fields are only relevant to erasure works */ |
| 206 | struct ubi_wl_entry *e; |
| 207 | int torture; |
| 208 | }; |
| 209 | |
| 210 | #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID |
| 211 | static int paranoid_check_ec(const struct ubi_device *ubi, int pnum, int ec); |
| 212 | static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e, |
| 213 | struct rb_root *root); |
| 214 | #else |
| 215 | #define paranoid_check_ec(ubi, pnum, ec) 0 |
| 216 | #define paranoid_check_in_wl_tree(e, root) |
| 217 | #endif |
| 218 | |
| 219 | /* Slab cache for wear-leveling entries */ |
| 220 | static struct kmem_cache *wl_entries_slab; |
| 221 | |
| 222 | /** |
| 223 | * tree_empty - a helper function to check if an RB-tree is empty. |
| 224 | * @root: the root of the tree |
| 225 | * |
| 226 | * This function returns non-zero if the RB-tree is empty and zero if not. |
| 227 | */ |
| 228 | static inline int tree_empty(struct rb_root *root) |
| 229 | { |
| 230 | return root->rb_node == NULL; |
| 231 | } |
| 232 | |
| 233 | /** |
| 234 | * wl_tree_add - add a wear-leveling entry to a WL RB-tree. |
| 235 | * @e: the wear-leveling entry to add |
| 236 | * @root: the root of the tree |
| 237 | * |
| 238 | * Note, we use (erase counter, physical eraseblock number) pairs as keys in |
| 239 | * the @ubi->used and @ubi->free RB-trees. |
| 240 | */ |
| 241 | static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) |
| 242 | { |
| 243 | struct rb_node **p, *parent = NULL; |
| 244 | |
| 245 | p = &root->rb_node; |
| 246 | while (*p) { |
| 247 | struct ubi_wl_entry *e1; |
| 248 | |
| 249 | parent = *p; |
| 250 | e1 = rb_entry(parent, struct ubi_wl_entry, rb); |
| 251 | |
| 252 | if (e->ec < e1->ec) |
| 253 | p = &(*p)->rb_left; |
| 254 | else if (e->ec > e1->ec) |
| 255 | p = &(*p)->rb_right; |
| 256 | else { |
| 257 | ubi_assert(e->pnum != e1->pnum); |
| 258 | if (e->pnum < e1->pnum) |
| 259 | p = &(*p)->rb_left; |
| 260 | else |
| 261 | p = &(*p)->rb_right; |
| 262 | } |
| 263 | } |
| 264 | |
| 265 | rb_link_node(&e->rb, parent, p); |
| 266 | rb_insert_color(&e->rb, root); |
| 267 | } |
| 268 | |
| 269 | |
| 270 | /* |
| 271 | * Helper functions to add and delete wear-leveling entries from different |
| 272 | * trees. |
| 273 | */ |
| 274 | |
| 275 | static void free_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e) |
| 276 | { |
| 277 | wl_tree_add(e, &ubi->free); |
| 278 | } |
| 279 | static inline void used_tree_add(struct ubi_device *ubi, |
| 280 | struct ubi_wl_entry *e) |
| 281 | { |
| 282 | wl_tree_add(e, &ubi->used); |
| 283 | } |
| 284 | static inline void scrub_tree_add(struct ubi_device *ubi, |
| 285 | struct ubi_wl_entry *e) |
| 286 | { |
| 287 | wl_tree_add(e, &ubi->scrub); |
| 288 | } |
| 289 | static inline void free_tree_del(struct ubi_device *ubi, |
| 290 | struct ubi_wl_entry *e) |
| 291 | { |
| 292 | paranoid_check_in_wl_tree(e, &ubi->free); |
| 293 | rb_erase(&e->rb, &ubi->free); |
| 294 | } |
| 295 | static inline void used_tree_del(struct ubi_device *ubi, |
| 296 | struct ubi_wl_entry *e) |
| 297 | { |
| 298 | paranoid_check_in_wl_tree(e, &ubi->used); |
| 299 | rb_erase(&e->rb, &ubi->used); |
| 300 | } |
| 301 | static inline void scrub_tree_del(struct ubi_device *ubi, |
| 302 | struct ubi_wl_entry *e) |
| 303 | { |
| 304 | paranoid_check_in_wl_tree(e, &ubi->scrub); |
| 305 | rb_erase(&e->rb, &ubi->scrub); |
| 306 | } |
| 307 | |
| 308 | /** |
| 309 | * do_work - do one pending work. |
| 310 | * @ubi: UBI device description object |
| 311 | * |
| 312 | * This function returns zero in case of success and a negative error code in |
| 313 | * case of failure. |
| 314 | */ |
| 315 | static int do_work(struct ubi_device *ubi) |
| 316 | { |
| 317 | int err; |
| 318 | struct ubi_work *wrk; |
| 319 | |
| 320 | spin_lock(&ubi->wl_lock); |
| 321 | |
| 322 | if (list_empty(&ubi->works)) { |
| 323 | spin_unlock(&ubi->wl_lock); |
| 324 | return 0; |
| 325 | } |
| 326 | |
| 327 | wrk = list_entry(ubi->works.next, struct ubi_work, list); |
| 328 | list_del(&wrk->list); |
| 329 | spin_unlock(&ubi->wl_lock); |
| 330 | |
| 331 | /* |
| 332 | * Call the worker function. Do not touch the work structure |
| 333 | * after this call as it will have been freed or reused by that |
| 334 | * time by the worker function. |
| 335 | */ |
| 336 | err = wrk->func(ubi, wrk, 0); |
| 337 | if (err) |
| 338 | ubi_err("work failed with error code %d", err); |
| 339 | |
| 340 | spin_lock(&ubi->wl_lock); |
| 341 | ubi->works_count -= 1; |
| 342 | ubi_assert(ubi->works_count >= 0); |
| 343 | spin_unlock(&ubi->wl_lock); |
| 344 | return err; |
| 345 | } |
| 346 | |
| 347 | /** |
| 348 | * produce_free_peb - produce a free physical eraseblock. |
| 349 | * @ubi: UBI device description object |
| 350 | * |
| 351 | * This function tries to make a free PEB by means of synchronous execution of |
| 352 | * pending works. This may be needed if, for example the background thread is |
| 353 | * disabled. Returns zero in case of success and a negative error code in case |
| 354 | * of failure. |
| 355 | */ |
| 356 | static int produce_free_peb(struct ubi_device *ubi) |
| 357 | { |
| 358 | int err; |
| 359 | |
| 360 | spin_lock(&ubi->wl_lock); |
| 361 | while (tree_empty(&ubi->free)) { |
| 362 | spin_unlock(&ubi->wl_lock); |
| 363 | |
| 364 | dbg_wl("do one work synchronously"); |
| 365 | err = do_work(ubi); |
| 366 | if (err) |
| 367 | return err; |
| 368 | |
| 369 | spin_lock(&ubi->wl_lock); |
| 370 | } |
| 371 | spin_unlock(&ubi->wl_lock); |
| 372 | |
| 373 | return 0; |
| 374 | } |
| 375 | |
| 376 | /** |
| 377 | * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. |
| 378 | * @e: the wear-leveling entry to check |
| 379 | * @root: the root of the tree |
| 380 | * |
| 381 | * This function returns non-zero if @e is in the @root RB-tree and zero if it |
| 382 | * is not. |
| 383 | */ |
| 384 | static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) |
| 385 | { |
| 386 | struct rb_node *p; |
| 387 | |
| 388 | p = root->rb_node; |
| 389 | while (p) { |
| 390 | struct ubi_wl_entry *e1; |
| 391 | |
| 392 | e1 = rb_entry(p, struct ubi_wl_entry, rb); |
| 393 | |
| 394 | if (e->pnum == e1->pnum) { |
| 395 | ubi_assert(e == e1); |
| 396 | return 1; |
| 397 | } |
| 398 | |
| 399 | if (e->ec < e1->ec) |
| 400 | p = p->rb_left; |
| 401 | else if (e->ec > e1->ec) |
| 402 | p = p->rb_right; |
| 403 | else { |
| 404 | ubi_assert(e->pnum != e1->pnum); |
| 405 | if (e->pnum < e1->pnum) |
| 406 | p = p->rb_left; |
| 407 | else |
| 408 | p = p->rb_right; |
| 409 | } |
| 410 | } |
| 411 | |
| 412 | return 0; |
| 413 | } |
| 414 | |
| 415 | /** |
| 416 | * prot_tree_add - add physical eraseblock to protection trees. |
| 417 | * @ubi: UBI device description object |
| 418 | * @e: the physical eraseblock to add |
| 419 | * @pe: protection entry object to use |
| 420 | * @abs_ec: absolute erase counter value when this physical eraseblock has |
| 421 | * to be removed from the protection trees. |
| 422 | * |
| 423 | * @wl->lock has to be locked. |
| 424 | */ |
| 425 | static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e, |
| 426 | struct ubi_wl_prot_entry *pe, int abs_ec) |
| 427 | { |
| 428 | struct rb_node **p, *parent = NULL; |
| 429 | struct ubi_wl_prot_entry *pe1; |
| 430 | |
| 431 | pe->e = e; |
| 432 | pe->abs_ec = ubi->abs_ec + abs_ec; |
| 433 | |
| 434 | p = &ubi->prot.pnum.rb_node; |
| 435 | while (*p) { |
| 436 | parent = *p; |
| 437 | pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum); |
| 438 | |
| 439 | if (e->pnum < pe1->e->pnum) |
| 440 | p = &(*p)->rb_left; |
| 441 | else |
| 442 | p = &(*p)->rb_right; |
| 443 | } |
| 444 | rb_link_node(&pe->rb_pnum, parent, p); |
| 445 | rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum); |
| 446 | |
| 447 | p = &ubi->prot.aec.rb_node; |
| 448 | parent = NULL; |
| 449 | while (*p) { |
| 450 | parent = *p; |
| 451 | pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec); |
| 452 | |
| 453 | if (pe->abs_ec < pe1->abs_ec) |
| 454 | p = &(*p)->rb_left; |
| 455 | else |
| 456 | p = &(*p)->rb_right; |
| 457 | } |
| 458 | rb_link_node(&pe->rb_aec, parent, p); |
| 459 | rb_insert_color(&pe->rb_aec, &ubi->prot.aec); |
| 460 | } |
| 461 | |
| 462 | /** |
| 463 | * find_wl_entry - find wear-leveling entry closest to certain erase counter. |
| 464 | * @root: the RB-tree where to look for |
| 465 | * @max: highest possible erase counter |
| 466 | * |
| 467 | * This function looks for a wear leveling entry with erase counter closest to |
| 468 | * @max and less then @max. |
| 469 | */ |
| 470 | static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max) |
| 471 | { |
| 472 | struct rb_node *p; |
| 473 | struct ubi_wl_entry *e; |
| 474 | |
| 475 | e = rb_entry(rb_first(root), struct ubi_wl_entry, rb); |
| 476 | max += e->ec; |
| 477 | |
| 478 | p = root->rb_node; |
| 479 | while (p) { |
| 480 | struct ubi_wl_entry *e1; |
| 481 | |
| 482 | e1 = rb_entry(p, struct ubi_wl_entry, rb); |
| 483 | if (e1->ec >= max) |
| 484 | p = p->rb_left; |
| 485 | else { |
| 486 | p = p->rb_right; |
| 487 | e = e1; |
| 488 | } |
| 489 | } |
| 490 | |
| 491 | return e; |
| 492 | } |
| 493 | |
| 494 | /** |
| 495 | * ubi_wl_get_peb - get a physical eraseblock. |
| 496 | * @ubi: UBI device description object |
| 497 | * @dtype: type of data which will be stored in this physical eraseblock |
| 498 | * |
| 499 | * This function returns a physical eraseblock in case of success and a |
| 500 | * negative error code in case of failure. Might sleep. |
| 501 | */ |
| 502 | int ubi_wl_get_peb(struct ubi_device *ubi, int dtype) |
| 503 | { |
| 504 | int err, protect, medium_ec; |
| 505 | struct ubi_wl_entry *e, *first, *last; |
| 506 | struct ubi_wl_prot_entry *pe; |
| 507 | |
| 508 | ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM || |
| 509 | dtype == UBI_UNKNOWN); |
| 510 | |
| 511 | pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_KERNEL); |
| 512 | if (!pe) |
| 513 | return -ENOMEM; |
| 514 | |
| 515 | retry: |
| 516 | spin_lock(&ubi->wl_lock); |
| 517 | if (tree_empty(&ubi->free)) { |
| 518 | if (ubi->works_count == 0) { |
| 519 | ubi_assert(list_empty(&ubi->works)); |
| 520 | ubi_err("no free eraseblocks"); |
| 521 | spin_unlock(&ubi->wl_lock); |
| 522 | kfree(pe); |
| 523 | return -ENOSPC; |
| 524 | } |
| 525 | spin_unlock(&ubi->wl_lock); |
| 526 | |
| 527 | err = produce_free_peb(ubi); |
| 528 | if (err < 0) { |
| 529 | kfree(pe); |
| 530 | return err; |
| 531 | } |
| 532 | goto retry; |
| 533 | } |
| 534 | |
| 535 | switch (dtype) { |
| 536 | case UBI_LONGTERM: |
| 537 | /* |
| 538 | * For long term data we pick a physical eraseblock |
| 539 | * with high erase counter. But the highest erase |
| 540 | * counter we can pick is bounded by the the lowest |
| 541 | * erase counter plus %WL_FREE_MAX_DIFF. |
| 542 | */ |
| 543 | e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); |
| 544 | protect = LT_PROTECTION; |
| 545 | break; |
| 546 | case UBI_UNKNOWN: |
| 547 | /* |
| 548 | * For unknown data we pick a physical eraseblock with |
| 549 | * medium erase counter. But we by no means can pick a |
| 550 | * physical eraseblock with erase counter greater or |
| 551 | * equivalent than the lowest erase counter plus |
| 552 | * %WL_FREE_MAX_DIFF. |
| 553 | */ |
| 554 | first = rb_entry(rb_first(&ubi->free), |
| 555 | struct ubi_wl_entry, rb); |
| 556 | last = rb_entry(rb_last(&ubi->free), |
| 557 | struct ubi_wl_entry, rb); |
| 558 | |
| 559 | if (last->ec - first->ec < WL_FREE_MAX_DIFF) |
| 560 | e = rb_entry(ubi->free.rb_node, |
| 561 | struct ubi_wl_entry, rb); |
| 562 | else { |
| 563 | medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2; |
| 564 | e = find_wl_entry(&ubi->free, medium_ec); |
| 565 | } |
| 566 | protect = U_PROTECTION; |
| 567 | break; |
| 568 | case UBI_SHORTTERM: |
| 569 | /* |
| 570 | * For short term data we pick a physical eraseblock |
| 571 | * with the lowest erase counter as we expect it will |
| 572 | * be erased soon. |
| 573 | */ |
| 574 | e = rb_entry(rb_first(&ubi->free), |
| 575 | struct ubi_wl_entry, rb); |
| 576 | protect = ST_PROTECTION; |
| 577 | break; |
| 578 | default: |
| 579 | protect = 0; |
| 580 | e = NULL; |
| 581 | BUG(); |
| 582 | } |
| 583 | |
| 584 | /* |
| 585 | * Move the physical eraseblock to the protection trees where it will |
| 586 | * be protected from being moved for some time. |
| 587 | */ |
| 588 | free_tree_del(ubi, e); |
| 589 | prot_tree_add(ubi, e, pe, protect); |
| 590 | |
| 591 | dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect); |
| 592 | spin_unlock(&ubi->wl_lock); |
| 593 | |
| 594 | return e->pnum; |
| 595 | } |
| 596 | |
| 597 | /** |
| 598 | * prot_tree_del - remove a physical eraseblock from the protection trees |
| 599 | * @ubi: UBI device description object |
| 600 | * @pnum: the physical eraseblock to remove |
| 601 | */ |
| 602 | static void prot_tree_del(struct ubi_device *ubi, int pnum) |
| 603 | { |
| 604 | struct rb_node *p; |
| 605 | struct ubi_wl_prot_entry *pe = NULL; |
| 606 | |
| 607 | p = ubi->prot.pnum.rb_node; |
| 608 | while (p) { |
| 609 | |
| 610 | pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum); |
| 611 | |
| 612 | if (pnum == pe->e->pnum) |
| 613 | break; |
| 614 | |
| 615 | if (pnum < pe->e->pnum) |
| 616 | p = p->rb_left; |
| 617 | else |
| 618 | p = p->rb_right; |
| 619 | } |
| 620 | |
| 621 | ubi_assert(pe->e->pnum == pnum); |
| 622 | rb_erase(&pe->rb_aec, &ubi->prot.aec); |
| 623 | rb_erase(&pe->rb_pnum, &ubi->prot.pnum); |
| 624 | kfree(pe); |
| 625 | } |
| 626 | |
| 627 | /** |
| 628 | * sync_erase - synchronously erase a physical eraseblock. |
| 629 | * @ubi: UBI device description object |
| 630 | * @e: the the physical eraseblock to erase |
| 631 | * @torture: if the physical eraseblock has to be tortured |
| 632 | * |
| 633 | * This function returns zero in case of success and a negative error code in |
| 634 | * case of failure. |
| 635 | */ |
| 636 | static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture) |
| 637 | { |
| 638 | int err; |
| 639 | struct ubi_ec_hdr *ec_hdr; |
| 640 | unsigned long long ec = e->ec; |
| 641 | |
| 642 | dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); |
| 643 | |
| 644 | err = paranoid_check_ec(ubi, e->pnum, e->ec); |
| 645 | if (err > 0) |
| 646 | return -EINVAL; |
| 647 | |
| 648 | ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); |
| 649 | if (!ec_hdr) |
| 650 | return -ENOMEM; |
| 651 | |
| 652 | err = ubi_io_sync_erase(ubi, e->pnum, torture); |
| 653 | if (err < 0) |
| 654 | goto out_free; |
| 655 | |
| 656 | ec += err; |
| 657 | if (ec > UBI_MAX_ERASECOUNTER) { |
| 658 | /* |
| 659 | * Erase counter overflow. Upgrade UBI and use 64-bit |
| 660 | * erase counters internally. |
| 661 | */ |
| 662 | ubi_err("erase counter overflow at PEB %d, EC %llu", |
| 663 | e->pnum, ec); |
| 664 | err = -EINVAL; |
| 665 | goto out_free; |
| 666 | } |
| 667 | |
| 668 | dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); |
| 669 | |
| 670 | ec_hdr->ec = cpu_to_ubi64(ec); |
| 671 | |
| 672 | err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); |
| 673 | if (err) |
| 674 | goto out_free; |
| 675 | |
| 676 | e->ec = ec; |
| 677 | spin_lock(&ubi->wl_lock); |
| 678 | if (e->ec > ubi->max_ec) |
| 679 | ubi->max_ec = e->ec; |
| 680 | spin_unlock(&ubi->wl_lock); |
| 681 | |
| 682 | out_free: |
| 683 | kfree(ec_hdr); |
| 684 | return err; |
| 685 | } |
| 686 | |
| 687 | /** |
| 688 | * check_protection_over - check if it is time to stop protecting some |
| 689 | * physical eraseblocks. |
| 690 | * @ubi: UBI device description object |
| 691 | * |
| 692 | * This function is called after each erase operation, when the absolute erase |
| 693 | * counter is incremented, to check if some physical eraseblock have not to be |
| 694 | * protected any longer. These physical eraseblocks are moved from the |
| 695 | * protection trees to the used tree. |
| 696 | */ |
| 697 | static void check_protection_over(struct ubi_device *ubi) |
| 698 | { |
| 699 | struct ubi_wl_prot_entry *pe; |
| 700 | |
| 701 | /* |
| 702 | * There may be several protected physical eraseblock to remove, |
| 703 | * process them all. |
| 704 | */ |
| 705 | while (1) { |
| 706 | spin_lock(&ubi->wl_lock); |
| 707 | if (tree_empty(&ubi->prot.aec)) { |
| 708 | spin_unlock(&ubi->wl_lock); |
| 709 | break; |
| 710 | } |
| 711 | |
| 712 | pe = rb_entry(rb_first(&ubi->prot.aec), |
| 713 | struct ubi_wl_prot_entry, rb_aec); |
| 714 | |
| 715 | if (pe->abs_ec > ubi->abs_ec) { |
| 716 | spin_unlock(&ubi->wl_lock); |
| 717 | break; |
| 718 | } |
| 719 | |
| 720 | dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu", |
| 721 | pe->e->pnum, ubi->abs_ec, pe->abs_ec); |
| 722 | rb_erase(&pe->rb_aec, &ubi->prot.aec); |
| 723 | rb_erase(&pe->rb_pnum, &ubi->prot.pnum); |
| 724 | used_tree_add(ubi, pe->e); |
| 725 | spin_unlock(&ubi->wl_lock); |
| 726 | |
| 727 | kfree(pe); |
| 728 | cond_resched(); |
| 729 | } |
| 730 | } |
| 731 | |
| 732 | /** |
| 733 | * schedule_ubi_work - schedule a work. |
| 734 | * @ubi: UBI device description object |
| 735 | * @wrk: the work to schedule |
| 736 | * |
| 737 | * This function enqueues a work defined by @wrk to the tail of the pending |
| 738 | * works list. |
| 739 | */ |
| 740 | static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) |
| 741 | { |
| 742 | spin_lock(&ubi->wl_lock); |
| 743 | list_add_tail(&wrk->list, &ubi->works); |
| 744 | ubi_assert(ubi->works_count >= 0); |
| 745 | ubi->works_count += 1; |
| 746 | if (ubi->thread_enabled) |
| 747 | wake_up_process(ubi->bgt_thread); |
| 748 | spin_unlock(&ubi->wl_lock); |
| 749 | } |
| 750 | |
| 751 | static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, |
| 752 | int cancel); |
| 753 | |
| 754 | /** |
| 755 | * schedule_erase - schedule an erase work. |
| 756 | * @ubi: UBI device description object |
| 757 | * @e: the WL entry of the physical eraseblock to erase |
| 758 | * @torture: if the physical eraseblock has to be tortured |
| 759 | * |
| 760 | * This function returns zero in case of success and a %-ENOMEM in case of |
| 761 | * failure. |
| 762 | */ |
| 763 | static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, |
| 764 | int torture) |
| 765 | { |
| 766 | struct ubi_work *wl_wrk; |
| 767 | |
| 768 | dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", |
| 769 | e->pnum, e->ec, torture); |
| 770 | |
| 771 | wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_KERNEL); |
| 772 | if (!wl_wrk) |
| 773 | return -ENOMEM; |
| 774 | |
| 775 | wl_wrk->func = &erase_worker; |
| 776 | wl_wrk->e = e; |
| 777 | wl_wrk->torture = torture; |
| 778 | |
| 779 | schedule_ubi_work(ubi, wl_wrk); |
| 780 | return 0; |
| 781 | } |
| 782 | |
| 783 | /** |
| 784 | * wear_leveling_worker - wear-leveling worker function. |
| 785 | * @ubi: UBI device description object |
| 786 | * @wrk: the work object |
| 787 | * @cancel: non-zero if the worker has to free memory and exit |
| 788 | * |
| 789 | * This function copies a more worn out physical eraseblock to a less worn out |
| 790 | * one. Returns zero in case of success and a negative error code in case of |
| 791 | * failure. |
| 792 | */ |
| 793 | static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, |
| 794 | int cancel) |
| 795 | { |
| 796 | int err, put = 0; |
| 797 | struct ubi_wl_entry *e1, *e2; |
| 798 | struct ubi_vid_hdr *vid_hdr; |
| 799 | |
| 800 | kfree(wrk); |
| 801 | |
| 802 | if (cancel) |
| 803 | return 0; |
| 804 | |
| 805 | vid_hdr = ubi_zalloc_vid_hdr(ubi); |
| 806 | if (!vid_hdr) |
| 807 | return -ENOMEM; |
| 808 | |
| 809 | spin_lock(&ubi->wl_lock); |
| 810 | |
| 811 | /* |
| 812 | * Only one WL worker at a time is supported at this implementation, so |
| 813 | * make sure a PEB is not being moved already. |
| 814 | */ |
| 815 | if (ubi->move_to || tree_empty(&ubi->free) || |
| 816 | (tree_empty(&ubi->used) && tree_empty(&ubi->scrub))) { |
| 817 | /* |
| 818 | * Only one WL worker at a time is supported at this |
| 819 | * implementation, so if a LEB is already being moved, cancel. |
| 820 | * |
| 821 | * No free physical eraseblocks? Well, we cancel wear-leveling |
| 822 | * then. It will be triggered again when a free physical |
| 823 | * eraseblock appears. |
| 824 | * |
| 825 | * No used physical eraseblocks? They must be temporarily |
| 826 | * protected from being moved. They will be moved to the |
| 827 | * @ubi->used tree later and the wear-leveling will be |
| 828 | * triggered again. |
| 829 | */ |
| 830 | dbg_wl("cancel WL, a list is empty: free %d, used %d", |
| 831 | tree_empty(&ubi->free), tree_empty(&ubi->used)); |
| 832 | ubi->wl_scheduled = 0; |
| 833 | spin_unlock(&ubi->wl_lock); |
| 834 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 835 | return 0; |
| 836 | } |
| 837 | |
| 838 | if (tree_empty(&ubi->scrub)) { |
| 839 | /* |
| 840 | * Now pick the least worn-out used physical eraseblock and a |
| 841 | * highly worn-out free physical eraseblock. If the erase |
| 842 | * counters differ much enough, start wear-leveling. |
| 843 | */ |
| 844 | e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb); |
| 845 | e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); |
| 846 | |
| 847 | if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { |
| 848 | dbg_wl("no WL needed: min used EC %d, max free EC %d", |
| 849 | e1->ec, e2->ec); |
| 850 | ubi->wl_scheduled = 0; |
| 851 | spin_unlock(&ubi->wl_lock); |
| 852 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 853 | return 0; |
| 854 | } |
| 855 | used_tree_del(ubi, e1); |
| 856 | dbg_wl("move PEB %d EC %d to PEB %d EC %d", |
| 857 | e1->pnum, e1->ec, e2->pnum, e2->ec); |
| 858 | } else { |
| 859 | e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb); |
| 860 | e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); |
| 861 | scrub_tree_del(ubi, e1); |
| 862 | dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); |
| 863 | } |
| 864 | |
| 865 | free_tree_del(ubi, e2); |
| 866 | ubi_assert(!ubi->move_from && !ubi->move_to); |
| 867 | ubi_assert(!ubi->move_to_put && !ubi->move_from_put); |
| 868 | ubi->move_from = e1; |
| 869 | ubi->move_to = e2; |
| 870 | spin_unlock(&ubi->wl_lock); |
| 871 | |
| 872 | /* |
| 873 | * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. |
| 874 | * We so far do not know which logical eraseblock our physical |
| 875 | * eraseblock (@e1) belongs to. We have to read the volume identifier |
| 876 | * header first. |
| 877 | */ |
| 878 | |
| 879 | err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0); |
| 880 | if (err && err != UBI_IO_BITFLIPS) { |
| 881 | if (err == UBI_IO_PEB_FREE) { |
| 882 | /* |
| 883 | * We are trying to move PEB without a VID header. UBI |
| 884 | * always write VID headers shortly after the PEB was |
| 885 | * given, so we have a situation when it did not have |
| 886 | * chance to write it down because it was preempted. |
| 887 | * Just re-schedule the work, so that next time it will |
| 888 | * likely have the VID header in place. |
| 889 | */ |
| 890 | dbg_wl("PEB %d has no VID header", e1->pnum); |
| 891 | err = 0; |
| 892 | } else { |
| 893 | ubi_err("error %d while reading VID header from PEB %d", |
| 894 | err, e1->pnum); |
| 895 | if (err > 0) |
| 896 | err = -EIO; |
| 897 | } |
| 898 | goto error; |
| 899 | } |
| 900 | |
| 901 | err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr); |
| 902 | if (err) { |
| 903 | if (err == UBI_IO_BITFLIPS) |
| 904 | err = 0; |
| 905 | goto error; |
| 906 | } |
| 907 | |
| 908 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 909 | spin_lock(&ubi->wl_lock); |
| 910 | if (!ubi->move_to_put) |
| 911 | used_tree_add(ubi, e2); |
| 912 | else |
| 913 | put = 1; |
| 914 | ubi->move_from = ubi->move_to = NULL; |
| 915 | ubi->move_from_put = ubi->move_to_put = 0; |
| 916 | ubi->wl_scheduled = 0; |
| 917 | spin_unlock(&ubi->wl_lock); |
| 918 | |
| 919 | if (put) { |
| 920 | /* |
| 921 | * Well, the target PEB was put meanwhile, schedule it for |
| 922 | * erasure. |
| 923 | */ |
| 924 | dbg_wl("PEB %d was put meanwhile, erase", e2->pnum); |
| 925 | err = schedule_erase(ubi, e2, 0); |
| 926 | if (err) { |
| 927 | kmem_cache_free(wl_entries_slab, e2); |
| 928 | ubi_ro_mode(ubi); |
| 929 | } |
| 930 | } |
| 931 | |
| 932 | err = schedule_erase(ubi, e1, 0); |
| 933 | if (err) { |
| 934 | kmem_cache_free(wl_entries_slab, e1); |
| 935 | ubi_ro_mode(ubi); |
| 936 | } |
| 937 | |
| 938 | dbg_wl("done"); |
| 939 | return err; |
| 940 | |
| 941 | /* |
| 942 | * Some error occurred. @e1 was not changed, so return it back. @e2 |
| 943 | * might be changed, schedule it for erasure. |
| 944 | */ |
| 945 | error: |
| 946 | if (err) |
| 947 | dbg_wl("error %d occurred, cancel operation", err); |
| 948 | ubi_assert(err <= 0); |
| 949 | |
| 950 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 951 | spin_lock(&ubi->wl_lock); |
| 952 | ubi->wl_scheduled = 0; |
| 953 | if (ubi->move_from_put) |
| 954 | put = 1; |
| 955 | else |
| 956 | used_tree_add(ubi, e1); |
| 957 | ubi->move_from = ubi->move_to = NULL; |
| 958 | ubi->move_from_put = ubi->move_to_put = 0; |
| 959 | spin_unlock(&ubi->wl_lock); |
| 960 | |
| 961 | if (put) { |
| 962 | /* |
| 963 | * Well, the target PEB was put meanwhile, schedule it for |
| 964 | * erasure. |
| 965 | */ |
| 966 | dbg_wl("PEB %d was put meanwhile, erase", e1->pnum); |
| 967 | err = schedule_erase(ubi, e1, 0); |
| 968 | if (err) { |
| 969 | kmem_cache_free(wl_entries_slab, e1); |
| 970 | ubi_ro_mode(ubi); |
| 971 | } |
| 972 | } |
| 973 | |
| 974 | err = schedule_erase(ubi, e2, 0); |
| 975 | if (err) { |
| 976 | kmem_cache_free(wl_entries_slab, e2); |
| 977 | ubi_ro_mode(ubi); |
| 978 | } |
| 979 | |
| 980 | yield(); |
| 981 | return err; |
| 982 | } |
| 983 | |
| 984 | /** |
| 985 | * ensure_wear_leveling - schedule wear-leveling if it is needed. |
| 986 | * @ubi: UBI device description object |
| 987 | * |
| 988 | * This function checks if it is time to start wear-leveling and schedules it |
| 989 | * if yes. This function returns zero in case of success and a negative error |
| 990 | * code in case of failure. |
| 991 | */ |
| 992 | static int ensure_wear_leveling(struct ubi_device *ubi) |
| 993 | { |
| 994 | int err = 0; |
| 995 | struct ubi_wl_entry *e1; |
| 996 | struct ubi_wl_entry *e2; |
| 997 | struct ubi_work *wrk; |
| 998 | |
| 999 | spin_lock(&ubi->wl_lock); |
| 1000 | if (ubi->wl_scheduled) |
| 1001 | /* Wear-leveling is already in the work queue */ |
| 1002 | goto out_unlock; |
| 1003 | |
| 1004 | /* |
| 1005 | * If the ubi->scrub tree is not empty, scrubbing is needed, and the |
| 1006 | * the WL worker has to be scheduled anyway. |
| 1007 | */ |
| 1008 | if (tree_empty(&ubi->scrub)) { |
| 1009 | if (tree_empty(&ubi->used) || tree_empty(&ubi->free)) |
| 1010 | /* No physical eraseblocks - no deal */ |
| 1011 | goto out_unlock; |
| 1012 | |
| 1013 | /* |
| 1014 | * We schedule wear-leveling only if the difference between the |
| 1015 | * lowest erase counter of used physical eraseblocks and a high |
| 1016 | * erase counter of free physical eraseblocks is greater then |
| 1017 | * %UBI_WL_THRESHOLD. |
| 1018 | */ |
| 1019 | e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb); |
| 1020 | e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); |
| 1021 | |
| 1022 | if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) |
| 1023 | goto out_unlock; |
| 1024 | dbg_wl("schedule wear-leveling"); |
| 1025 | } else |
| 1026 | dbg_wl("schedule scrubbing"); |
| 1027 | |
| 1028 | ubi->wl_scheduled = 1; |
| 1029 | spin_unlock(&ubi->wl_lock); |
| 1030 | |
| 1031 | wrk = kmalloc(sizeof(struct ubi_work), GFP_KERNEL); |
| 1032 | if (!wrk) { |
| 1033 | err = -ENOMEM; |
| 1034 | goto out_cancel; |
| 1035 | } |
| 1036 | |
| 1037 | wrk->func = &wear_leveling_worker; |
| 1038 | schedule_ubi_work(ubi, wrk); |
| 1039 | return err; |
| 1040 | |
| 1041 | out_cancel: |
| 1042 | spin_lock(&ubi->wl_lock); |
| 1043 | ubi->wl_scheduled = 0; |
| 1044 | out_unlock: |
| 1045 | spin_unlock(&ubi->wl_lock); |
| 1046 | return err; |
| 1047 | } |
| 1048 | |
| 1049 | /** |
| 1050 | * erase_worker - physical eraseblock erase worker function. |
| 1051 | * @ubi: UBI device description object |
| 1052 | * @wl_wrk: the work object |
| 1053 | * @cancel: non-zero if the worker has to free memory and exit |
| 1054 | * |
| 1055 | * This function erases a physical eraseblock and perform torture testing if |
| 1056 | * needed. It also takes care about marking the physical eraseblock bad if |
| 1057 | * needed. Returns zero in case of success and a negative error code in case of |
| 1058 | * failure. |
| 1059 | */ |
| 1060 | static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, |
| 1061 | int cancel) |
| 1062 | { |
| 1063 | int err; |
| 1064 | struct ubi_wl_entry *e = wl_wrk->e; |
| 1065 | int pnum = e->pnum; |
| 1066 | |
| 1067 | if (cancel) { |
| 1068 | dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec); |
| 1069 | kfree(wl_wrk); |
| 1070 | kmem_cache_free(wl_entries_slab, e); |
| 1071 | return 0; |
| 1072 | } |
| 1073 | |
| 1074 | dbg_wl("erase PEB %d EC %d", pnum, e->ec); |
| 1075 | |
| 1076 | err = sync_erase(ubi, e, wl_wrk->torture); |
| 1077 | if (!err) { |
| 1078 | /* Fine, we've erased it successfully */ |
| 1079 | kfree(wl_wrk); |
| 1080 | |
| 1081 | spin_lock(&ubi->wl_lock); |
| 1082 | ubi->abs_ec += 1; |
| 1083 | free_tree_add(ubi, e); |
| 1084 | spin_unlock(&ubi->wl_lock); |
| 1085 | |
| 1086 | /* |
| 1087 | * One more erase operation has happened, take care about protected |
| 1088 | * physical eraseblocks. |
| 1089 | */ |
| 1090 | check_protection_over(ubi); |
| 1091 | |
| 1092 | /* And take care about wear-leveling */ |
| 1093 | err = ensure_wear_leveling(ubi); |
| 1094 | return err; |
| 1095 | } |
| 1096 | |
| 1097 | kfree(wl_wrk); |
| 1098 | kmem_cache_free(wl_entries_slab, e); |
| 1099 | |
| 1100 | if (err != -EIO) { |
| 1101 | /* |
| 1102 | * If this is not %-EIO, we have no idea what to do. Scheduling |
| 1103 | * this physical eraseblock for erasure again would cause |
| 1104 | * errors again and again. Well, lets switch to RO mode. |
| 1105 | */ |
| 1106 | ubi_ro_mode(ubi); |
| 1107 | return err; |
| 1108 | } |
| 1109 | |
| 1110 | /* It is %-EIO, the PEB went bad */ |
| 1111 | |
| 1112 | if (!ubi->bad_allowed) { |
| 1113 | ubi_err("bad physical eraseblock %d detected", pnum); |
| 1114 | ubi_ro_mode(ubi); |
| 1115 | err = -EIO; |
| 1116 | } else { |
| 1117 | int need; |
| 1118 | |
| 1119 | spin_lock(&ubi->volumes_lock); |
| 1120 | need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1; |
| 1121 | if (need > 0) { |
| 1122 | need = ubi->avail_pebs >= need ? need : ubi->avail_pebs; |
| 1123 | ubi->avail_pebs -= need; |
| 1124 | ubi->rsvd_pebs += need; |
| 1125 | ubi->beb_rsvd_pebs += need; |
| 1126 | if (need > 0) |
| 1127 | ubi_msg("reserve more %d PEBs", need); |
| 1128 | } |
| 1129 | |
| 1130 | if (ubi->beb_rsvd_pebs == 0) { |
| 1131 | spin_unlock(&ubi->volumes_lock); |
| 1132 | ubi_err("no reserved physical eraseblocks"); |
| 1133 | ubi_ro_mode(ubi); |
| 1134 | return -EIO; |
| 1135 | } |
| 1136 | |
| 1137 | spin_unlock(&ubi->volumes_lock); |
| 1138 | ubi_msg("mark PEB %d as bad", pnum); |
| 1139 | |
| 1140 | err = ubi_io_mark_bad(ubi, pnum); |
| 1141 | if (err) { |
| 1142 | ubi_ro_mode(ubi); |
| 1143 | return err; |
| 1144 | } |
| 1145 | |
| 1146 | spin_lock(&ubi->volumes_lock); |
| 1147 | ubi->beb_rsvd_pebs -= 1; |
| 1148 | ubi->bad_peb_count += 1; |
| 1149 | ubi->good_peb_count -= 1; |
| 1150 | ubi_calculate_reserved(ubi); |
| 1151 | if (ubi->beb_rsvd_pebs == 0) |
| 1152 | ubi_warn("last PEB from the reserved pool was used"); |
| 1153 | spin_unlock(&ubi->volumes_lock); |
| 1154 | } |
| 1155 | |
| 1156 | return err; |
| 1157 | } |
| 1158 | |
| 1159 | /** |
| 1160 | * ubi_wl_put_peb - return a physical eraseblock to the wear-leveling |
| 1161 | * unit. |
| 1162 | * @ubi: UBI device description object |
| 1163 | * @pnum: physical eraseblock to return |
| 1164 | * @torture: if this physical eraseblock has to be tortured |
| 1165 | * |
| 1166 | * This function is called to return physical eraseblock @pnum to the pool of |
| 1167 | * free physical eraseblocks. The @torture flag has to be set if an I/O error |
| 1168 | * occurred to this @pnum and it has to be tested. This function returns zero |
| 1169 | * in case of success and a negative error code in case of failure. |
| 1170 | */ |
| 1171 | int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture) |
| 1172 | { |
| 1173 | int err; |
| 1174 | struct ubi_wl_entry *e; |
| 1175 | |
| 1176 | dbg_wl("PEB %d", pnum); |
| 1177 | ubi_assert(pnum >= 0); |
| 1178 | ubi_assert(pnum < ubi->peb_count); |
| 1179 | |
| 1180 | spin_lock(&ubi->wl_lock); |
| 1181 | |
| 1182 | e = ubi->lookuptbl[pnum]; |
| 1183 | if (e == ubi->move_from) { |
| 1184 | /* |
| 1185 | * User is putting the physical eraseblock which was selected to |
| 1186 | * be moved. It will be scheduled for erasure in the |
| 1187 | * wear-leveling worker. |
| 1188 | */ |
| 1189 | dbg_wl("PEB %d is being moved", pnum); |
| 1190 | ubi_assert(!ubi->move_from_put); |
| 1191 | ubi->move_from_put = 1; |
| 1192 | spin_unlock(&ubi->wl_lock); |
| 1193 | return 0; |
| 1194 | } else if (e == ubi->move_to) { |
| 1195 | /* |
| 1196 | * User is putting the physical eraseblock which was selected |
| 1197 | * as the target the data is moved to. It may happen if the EBA |
| 1198 | * unit already re-mapped the LEB but the WL unit did has not |
| 1199 | * put the PEB to the "used" tree. |
| 1200 | */ |
| 1201 | dbg_wl("PEB %d is the target of data moving", pnum); |
| 1202 | ubi_assert(!ubi->move_to_put); |
| 1203 | ubi->move_to_put = 1; |
| 1204 | spin_unlock(&ubi->wl_lock); |
| 1205 | return 0; |
| 1206 | } else { |
| 1207 | if (in_wl_tree(e, &ubi->used)) |
| 1208 | used_tree_del(ubi, e); |
| 1209 | else if (in_wl_tree(e, &ubi->scrub)) |
| 1210 | scrub_tree_del(ubi, e); |
| 1211 | else |
| 1212 | prot_tree_del(ubi, e->pnum); |
| 1213 | } |
| 1214 | spin_unlock(&ubi->wl_lock); |
| 1215 | |
| 1216 | err = schedule_erase(ubi, e, torture); |
| 1217 | if (err) { |
| 1218 | spin_lock(&ubi->wl_lock); |
| 1219 | used_tree_add(ubi, e); |
| 1220 | spin_unlock(&ubi->wl_lock); |
| 1221 | } |
| 1222 | |
| 1223 | return err; |
| 1224 | } |
| 1225 | |
| 1226 | /** |
| 1227 | * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. |
| 1228 | * @ubi: UBI device description object |
| 1229 | * @pnum: the physical eraseblock to schedule |
| 1230 | * |
| 1231 | * If a bit-flip in a physical eraseblock is detected, this physical eraseblock |
| 1232 | * needs scrubbing. This function schedules a physical eraseblock for |
| 1233 | * scrubbing which is done in background. This function returns zero in case of |
| 1234 | * success and a negative error code in case of failure. |
| 1235 | */ |
| 1236 | int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) |
| 1237 | { |
| 1238 | struct ubi_wl_entry *e; |
| 1239 | |
| 1240 | ubi_msg("schedule PEB %d for scrubbing", pnum); |
| 1241 | |
| 1242 | retry: |
| 1243 | spin_lock(&ubi->wl_lock); |
| 1244 | e = ubi->lookuptbl[pnum]; |
| 1245 | if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) { |
| 1246 | spin_unlock(&ubi->wl_lock); |
| 1247 | return 0; |
| 1248 | } |
| 1249 | |
| 1250 | if (e == ubi->move_to) { |
| 1251 | /* |
| 1252 | * This physical eraseblock was used to move data to. The data |
| 1253 | * was moved but the PEB was not yet inserted to the proper |
| 1254 | * tree. We should just wait a little and let the WL worker |
| 1255 | * proceed. |
| 1256 | */ |
| 1257 | spin_unlock(&ubi->wl_lock); |
| 1258 | dbg_wl("the PEB %d is not in proper tree, retry", pnum); |
| 1259 | yield(); |
| 1260 | goto retry; |
| 1261 | } |
| 1262 | |
| 1263 | if (in_wl_tree(e, &ubi->used)) |
| 1264 | used_tree_del(ubi, e); |
| 1265 | else |
| 1266 | prot_tree_del(ubi, pnum); |
| 1267 | |
| 1268 | scrub_tree_add(ubi, e); |
| 1269 | spin_unlock(&ubi->wl_lock); |
| 1270 | |
| 1271 | /* |
| 1272 | * Technically scrubbing is the same as wear-leveling, so it is done |
| 1273 | * by the WL worker. |
| 1274 | */ |
| 1275 | return ensure_wear_leveling(ubi); |
| 1276 | } |
| 1277 | |
| 1278 | /** |
| 1279 | * ubi_wl_flush - flush all pending works. |
| 1280 | * @ubi: UBI device description object |
| 1281 | * |
| 1282 | * This function returns zero in case of success and a negative error code in |
| 1283 | * case of failure. |
| 1284 | */ |
| 1285 | int ubi_wl_flush(struct ubi_device *ubi) |
| 1286 | { |
| 1287 | int err, pending_count; |
| 1288 | |
| 1289 | pending_count = ubi->works_count; |
| 1290 | |
| 1291 | dbg_wl("flush (%d pending works)", pending_count); |
| 1292 | |
| 1293 | /* |
| 1294 | * Erase while the pending works queue is not empty, but not more then |
| 1295 | * the number of currently pending works. |
| 1296 | */ |
| 1297 | while (pending_count-- > 0) { |
| 1298 | err = do_work(ubi); |
| 1299 | if (err) |
| 1300 | return err; |
| 1301 | } |
| 1302 | |
| 1303 | return 0; |
| 1304 | } |
| 1305 | |
| 1306 | /** |
| 1307 | * tree_destroy - destroy an RB-tree. |
| 1308 | * @root: the root of the tree to destroy |
| 1309 | */ |
| 1310 | static void tree_destroy(struct rb_root *root) |
| 1311 | { |
| 1312 | struct rb_node *rb; |
| 1313 | struct ubi_wl_entry *e; |
| 1314 | |
| 1315 | rb = root->rb_node; |
| 1316 | while (rb) { |
| 1317 | if (rb->rb_left) |
| 1318 | rb = rb->rb_left; |
| 1319 | else if (rb->rb_right) |
| 1320 | rb = rb->rb_right; |
| 1321 | else { |
| 1322 | e = rb_entry(rb, struct ubi_wl_entry, rb); |
| 1323 | |
| 1324 | rb = rb_parent(rb); |
| 1325 | if (rb) { |
| 1326 | if (rb->rb_left == &e->rb) |
| 1327 | rb->rb_left = NULL; |
| 1328 | else |
| 1329 | rb->rb_right = NULL; |
| 1330 | } |
| 1331 | |
| 1332 | kmem_cache_free(wl_entries_slab, e); |
| 1333 | } |
| 1334 | } |
| 1335 | } |
| 1336 | |
| 1337 | /** |
| 1338 | * ubi_thread - UBI background thread. |
| 1339 | * @u: the UBI device description object pointer |
| 1340 | */ |
| 1341 | static int ubi_thread(void *u) |
| 1342 | { |
| 1343 | int failures = 0; |
| 1344 | struct ubi_device *ubi = u; |
| 1345 | |
| 1346 | ubi_msg("background thread \"%s\" started, PID %d", |
| 1347 | ubi->bgt_name, current->pid); |
| 1348 | |
| 1349 | for (;;) { |
| 1350 | int err; |
| 1351 | |
| 1352 | if (kthread_should_stop()) |
| 1353 | goto out; |
| 1354 | |
| 1355 | if (try_to_freeze()) |
| 1356 | continue; |
| 1357 | |
| 1358 | spin_lock(&ubi->wl_lock); |
| 1359 | if (list_empty(&ubi->works) || ubi->ro_mode || |
| 1360 | !ubi->thread_enabled) { |
| 1361 | set_current_state(TASK_INTERRUPTIBLE); |
| 1362 | spin_unlock(&ubi->wl_lock); |
| 1363 | schedule(); |
| 1364 | continue; |
| 1365 | } |
| 1366 | spin_unlock(&ubi->wl_lock); |
| 1367 | |
| 1368 | err = do_work(ubi); |
| 1369 | if (err) { |
| 1370 | ubi_err("%s: work failed with error code %d", |
| 1371 | ubi->bgt_name, err); |
| 1372 | if (failures++ > WL_MAX_FAILURES) { |
| 1373 | /* |
| 1374 | * Too many failures, disable the thread and |
| 1375 | * switch to read-only mode. |
| 1376 | */ |
| 1377 | ubi_msg("%s: %d consecutive failures", |
| 1378 | ubi->bgt_name, WL_MAX_FAILURES); |
| 1379 | ubi_ro_mode(ubi); |
| 1380 | break; |
| 1381 | } |
| 1382 | } else |
| 1383 | failures = 0; |
| 1384 | |
| 1385 | cond_resched(); |
| 1386 | } |
| 1387 | |
| 1388 | out: |
| 1389 | dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); |
| 1390 | return 0; |
| 1391 | } |
| 1392 | |
| 1393 | /** |
| 1394 | * cancel_pending - cancel all pending works. |
| 1395 | * @ubi: UBI device description object |
| 1396 | */ |
| 1397 | static void cancel_pending(struct ubi_device *ubi) |
| 1398 | { |
| 1399 | while (!list_empty(&ubi->works)) { |
| 1400 | struct ubi_work *wrk; |
| 1401 | |
| 1402 | wrk = list_entry(ubi->works.next, struct ubi_work, list); |
| 1403 | list_del(&wrk->list); |
| 1404 | wrk->func(ubi, wrk, 1); |
| 1405 | ubi->works_count -= 1; |
| 1406 | ubi_assert(ubi->works_count >= 0); |
| 1407 | } |
| 1408 | } |
| 1409 | |
| 1410 | /** |
| 1411 | * ubi_wl_init_scan - initialize the wear-leveling unit using scanning |
| 1412 | * information. |
| 1413 | * @ubi: UBI device description object |
| 1414 | * @si: scanning information |
| 1415 | * |
| 1416 | * This function returns zero in case of success, and a negative error code in |
| 1417 | * case of failure. |
| 1418 | */ |
| 1419 | int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) |
| 1420 | { |
| 1421 | int err; |
| 1422 | struct rb_node *rb1, *rb2; |
| 1423 | struct ubi_scan_volume *sv; |
| 1424 | struct ubi_scan_leb *seb, *tmp; |
| 1425 | struct ubi_wl_entry *e; |
| 1426 | |
| 1427 | |
| 1428 | ubi->used = ubi->free = ubi->scrub = RB_ROOT; |
| 1429 | ubi->prot.pnum = ubi->prot.aec = RB_ROOT; |
| 1430 | spin_lock_init(&ubi->wl_lock); |
| 1431 | ubi->max_ec = si->max_ec; |
| 1432 | INIT_LIST_HEAD(&ubi->works); |
| 1433 | |
| 1434 | sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); |
| 1435 | |
| 1436 | ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name); |
| 1437 | if (IS_ERR(ubi->bgt_thread)) { |
| 1438 | err = PTR_ERR(ubi->bgt_thread); |
| 1439 | ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name, |
| 1440 | err); |
| 1441 | return err; |
| 1442 | } |
| 1443 | |
| 1444 | if (ubi_devices_cnt == 0) { |
| 1445 | wl_entries_slab = kmem_cache_create("ubi_wl_entry_slab", |
| 1446 | sizeof(struct ubi_wl_entry), |
| 1447 | 0, 0, NULL, NULL); |
| 1448 | if (!wl_entries_slab) |
| 1449 | return -ENOMEM; |
| 1450 | } |
| 1451 | |
| 1452 | err = -ENOMEM; |
| 1453 | ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL); |
| 1454 | if (!ubi->lookuptbl) |
| 1455 | goto out_free; |
| 1456 | |
| 1457 | list_for_each_entry_safe(seb, tmp, &si->erase, u.list) { |
| 1458 | cond_resched(); |
| 1459 | |
| 1460 | e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL); |
| 1461 | if (!e) |
| 1462 | goto out_free; |
| 1463 | |
| 1464 | e->pnum = seb->pnum; |
| 1465 | e->ec = seb->ec; |
| 1466 | ubi->lookuptbl[e->pnum] = e; |
| 1467 | if (schedule_erase(ubi, e, 0)) { |
| 1468 | kmem_cache_free(wl_entries_slab, e); |
| 1469 | goto out_free; |
| 1470 | } |
| 1471 | } |
| 1472 | |
| 1473 | list_for_each_entry(seb, &si->free, u.list) { |
| 1474 | cond_resched(); |
| 1475 | |
| 1476 | e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL); |
| 1477 | if (!e) |
| 1478 | goto out_free; |
| 1479 | |
| 1480 | e->pnum = seb->pnum; |
| 1481 | e->ec = seb->ec; |
| 1482 | ubi_assert(e->ec >= 0); |
| 1483 | free_tree_add(ubi, e); |
| 1484 | ubi->lookuptbl[e->pnum] = e; |
| 1485 | } |
| 1486 | |
| 1487 | list_for_each_entry(seb, &si->corr, u.list) { |
| 1488 | cond_resched(); |
| 1489 | |
| 1490 | e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL); |
| 1491 | if (!e) |
| 1492 | goto out_free; |
| 1493 | |
| 1494 | e->pnum = seb->pnum; |
| 1495 | e->ec = seb->ec; |
| 1496 | ubi->lookuptbl[e->pnum] = e; |
| 1497 | if (schedule_erase(ubi, e, 0)) { |
| 1498 | kmem_cache_free(wl_entries_slab, e); |
| 1499 | goto out_free; |
| 1500 | } |
| 1501 | } |
| 1502 | |
| 1503 | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { |
| 1504 | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { |
| 1505 | cond_resched(); |
| 1506 | |
| 1507 | e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL); |
| 1508 | if (!e) |
| 1509 | goto out_free; |
| 1510 | |
| 1511 | e->pnum = seb->pnum; |
| 1512 | e->ec = seb->ec; |
| 1513 | ubi->lookuptbl[e->pnum] = e; |
| 1514 | if (!seb->scrub) { |
| 1515 | dbg_wl("add PEB %d EC %d to the used tree", |
| 1516 | e->pnum, e->ec); |
| 1517 | used_tree_add(ubi, e); |
| 1518 | } else { |
| 1519 | dbg_wl("add PEB %d EC %d to the scrub tree", |
| 1520 | e->pnum, e->ec); |
| 1521 | scrub_tree_add(ubi, e); |
| 1522 | } |
| 1523 | } |
| 1524 | } |
| 1525 | |
| 1526 | if (WL_RESERVED_PEBS > ubi->avail_pebs) { |
| 1527 | ubi_err("no enough physical eraseblocks (%d, need %d)", |
| 1528 | ubi->avail_pebs, WL_RESERVED_PEBS); |
| 1529 | goto out_free; |
| 1530 | } |
| 1531 | ubi->avail_pebs -= WL_RESERVED_PEBS; |
| 1532 | ubi->rsvd_pebs += WL_RESERVED_PEBS; |
| 1533 | |
| 1534 | /* Schedule wear-leveling if needed */ |
| 1535 | err = ensure_wear_leveling(ubi); |
| 1536 | if (err) |
| 1537 | goto out_free; |
| 1538 | |
| 1539 | return 0; |
| 1540 | |
| 1541 | out_free: |
| 1542 | cancel_pending(ubi); |
| 1543 | tree_destroy(&ubi->used); |
| 1544 | tree_destroy(&ubi->free); |
| 1545 | tree_destroy(&ubi->scrub); |
| 1546 | kfree(ubi->lookuptbl); |
| 1547 | if (ubi_devices_cnt == 0) |
| 1548 | kmem_cache_destroy(wl_entries_slab); |
| 1549 | return err; |
| 1550 | } |
| 1551 | |
| 1552 | /** |
| 1553 | * protection_trees_destroy - destroy the protection RB-trees. |
| 1554 | * @ubi: UBI device description object |
| 1555 | */ |
| 1556 | static void protection_trees_destroy(struct ubi_device *ubi) |
| 1557 | { |
| 1558 | struct rb_node *rb; |
| 1559 | struct ubi_wl_prot_entry *pe; |
| 1560 | |
| 1561 | rb = ubi->prot.aec.rb_node; |
| 1562 | while (rb) { |
| 1563 | if (rb->rb_left) |
| 1564 | rb = rb->rb_left; |
| 1565 | else if (rb->rb_right) |
| 1566 | rb = rb->rb_right; |
| 1567 | else { |
| 1568 | pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec); |
| 1569 | |
| 1570 | rb = rb_parent(rb); |
| 1571 | if (rb) { |
| 1572 | if (rb->rb_left == &pe->rb_aec) |
| 1573 | rb->rb_left = NULL; |
| 1574 | else |
| 1575 | rb->rb_right = NULL; |
| 1576 | } |
| 1577 | |
| 1578 | kmem_cache_free(wl_entries_slab, pe->e); |
| 1579 | kfree(pe); |
| 1580 | } |
| 1581 | } |
| 1582 | } |
| 1583 | |
| 1584 | /** |
| 1585 | * ubi_wl_close - close the wear-leveling unit. |
| 1586 | * @ubi: UBI device description object |
| 1587 | */ |
| 1588 | void ubi_wl_close(struct ubi_device *ubi) |
| 1589 | { |
| 1590 | dbg_wl("disable \"%s\"", ubi->bgt_name); |
| 1591 | if (ubi->bgt_thread) |
| 1592 | kthread_stop(ubi->bgt_thread); |
| 1593 | |
| 1594 | dbg_wl("close the UBI wear-leveling unit"); |
| 1595 | |
| 1596 | cancel_pending(ubi); |
| 1597 | protection_trees_destroy(ubi); |
| 1598 | tree_destroy(&ubi->used); |
| 1599 | tree_destroy(&ubi->free); |
| 1600 | tree_destroy(&ubi->scrub); |
| 1601 | kfree(ubi->lookuptbl); |
| 1602 | if (ubi_devices_cnt == 1) |
| 1603 | kmem_cache_destroy(wl_entries_slab); |
| 1604 | } |
| 1605 | |
| 1606 | #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID |
| 1607 | |
| 1608 | /** |
| 1609 | * paranoid_check_ec - make sure that the erase counter of a physical eraseblock |
| 1610 | * is correct. |
| 1611 | * @ubi: UBI device description object |
| 1612 | * @pnum: the physical eraseblock number to check |
| 1613 | * @ec: the erase counter to check |
| 1614 | * |
| 1615 | * This function returns zero if the erase counter of physical eraseblock @pnum |
| 1616 | * is equivalent to @ec, %1 if not, and a negative error code if an error |
| 1617 | * occurred. |
| 1618 | */ |
| 1619 | static int paranoid_check_ec(const struct ubi_device *ubi, int pnum, int ec) |
| 1620 | { |
| 1621 | int err; |
| 1622 | long long read_ec; |
| 1623 | struct ubi_ec_hdr *ec_hdr; |
| 1624 | |
| 1625 | ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); |
| 1626 | if (!ec_hdr) |
| 1627 | return -ENOMEM; |
| 1628 | |
| 1629 | err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); |
| 1630 | if (err && err != UBI_IO_BITFLIPS) { |
| 1631 | /* The header does not have to exist */ |
| 1632 | err = 0; |
| 1633 | goto out_free; |
| 1634 | } |
| 1635 | |
| 1636 | read_ec = ubi64_to_cpu(ec_hdr->ec); |
| 1637 | if (ec != read_ec) { |
| 1638 | ubi_err("paranoid check failed for PEB %d", pnum); |
| 1639 | ubi_err("read EC is %lld, should be %d", read_ec, ec); |
| 1640 | ubi_dbg_dump_stack(); |
| 1641 | err = 1; |
| 1642 | } else |
| 1643 | err = 0; |
| 1644 | |
| 1645 | out_free: |
| 1646 | kfree(ec_hdr); |
| 1647 | return err; |
| 1648 | } |
| 1649 | |
| 1650 | /** |
| 1651 | * paranoid_check_in_wl_tree - make sure that a wear-leveling entry is present |
| 1652 | * in a WL RB-tree. |
| 1653 | * @e: the wear-leveling entry to check |
| 1654 | * @root: the root of the tree |
| 1655 | * |
| 1656 | * This function returns zero if @e is in the @root RB-tree and %1 if it |
| 1657 | * is not. |
| 1658 | */ |
| 1659 | static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e, |
| 1660 | struct rb_root *root) |
| 1661 | { |
| 1662 | if (in_wl_tree(e, root)) |
| 1663 | return 0; |
| 1664 | |
| 1665 | ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ", |
| 1666 | e->pnum, e->ec, root); |
| 1667 | ubi_dbg_dump_stack(); |
| 1668 | return 1; |
| 1669 | } |
| 1670 | |
| 1671 | #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ |