Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2000-2001 Silicon Graphics, Inc. All Rights Reserved. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify it |
| 5 | * under the terms of version 2 of the GNU General Public License as |
| 6 | * published by the Free Software Foundation. |
| 7 | * |
| 8 | * This program is distributed in the hope that it would be useful, but |
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
| 11 | * |
| 12 | * Further, this software is distributed without any warranty that it is |
| 13 | * free of the rightful claim of any third person regarding infringement |
| 14 | * or the like. Any license provided herein, whether implied or |
| 15 | * otherwise, applies only to this software file. Patent licenses, if |
| 16 | * any, provided herein do not apply to combinations of this program with |
| 17 | * other software, or any other product whatsoever. |
| 18 | * |
| 19 | * You should have received a copy of the GNU General Public License along |
| 20 | * with this program; if not, write the Free Software Foundation, Inc., 59 |
| 21 | * Temple Place - Suite 330, Boston MA 02111-1307, USA. |
| 22 | * |
| 23 | * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, |
| 24 | * Mountain View, CA 94043, or: |
| 25 | * |
| 26 | * http://www.sgi.com |
| 27 | * |
| 28 | * For further information regarding this notice, see: |
| 29 | * |
| 30 | * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ |
| 31 | */ |
| 32 | |
| 33 | /* |
| 34 | * This file contains the implementation of the xfs_efi_log_item |
| 35 | * and xfs_efd_log_item items. |
| 36 | */ |
| 37 | |
| 38 | #include "xfs.h" |
| 39 | |
| 40 | #include "xfs_macros.h" |
| 41 | #include "xfs_types.h" |
| 42 | #include "xfs_inum.h" |
| 43 | #include "xfs_log.h" |
| 44 | #include "xfs_trans.h" |
| 45 | #include "xfs_buf_item.h" |
| 46 | #include "xfs_sb.h" |
| 47 | #include "xfs_dir.h" |
| 48 | #include "xfs_dmapi.h" |
| 49 | #include "xfs_mount.h" |
| 50 | #include "xfs_trans_priv.h" |
| 51 | #include "xfs_extfree_item.h" |
| 52 | |
| 53 | |
| 54 | kmem_zone_t *xfs_efi_zone; |
| 55 | kmem_zone_t *xfs_efd_zone; |
| 56 | |
| 57 | STATIC void xfs_efi_item_unlock(xfs_efi_log_item_t *); |
| 58 | STATIC void xfs_efi_item_abort(xfs_efi_log_item_t *); |
| 59 | STATIC void xfs_efd_item_abort(xfs_efd_log_item_t *); |
| 60 | |
| 61 | |
Christoph Hellwig | 7d795ca | 2005-06-21 15:41:19 +1000 | [diff] [blame^] | 62 | void |
| 63 | xfs_efi_item_free(xfs_efi_log_item_t *efip) |
| 64 | { |
| 65 | int nexts = efip->efi_format.efi_nextents; |
| 66 | |
| 67 | if (nexts > XFS_EFI_MAX_FAST_EXTENTS) { |
| 68 | kmem_free(efip, sizeof(xfs_efi_log_item_t) + |
| 69 | (nexts - 1) * sizeof(xfs_extent_t)); |
| 70 | } else { |
| 71 | kmem_zone_free(xfs_efi_zone, efip); |
| 72 | } |
| 73 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 74 | |
| 75 | /* |
| 76 | * This returns the number of iovecs needed to log the given efi item. |
| 77 | * We only need 1 iovec for an efi item. It just logs the efi_log_format |
| 78 | * structure. |
| 79 | */ |
| 80 | /*ARGSUSED*/ |
| 81 | STATIC uint |
| 82 | xfs_efi_item_size(xfs_efi_log_item_t *efip) |
| 83 | { |
| 84 | return 1; |
| 85 | } |
| 86 | |
| 87 | /* |
| 88 | * This is called to fill in the vector of log iovecs for the |
| 89 | * given efi log item. We use only 1 iovec, and we point that |
| 90 | * at the efi_log_format structure embedded in the efi item. |
| 91 | * It is at this point that we assert that all of the extent |
| 92 | * slots in the efi item have been filled. |
| 93 | */ |
| 94 | STATIC void |
| 95 | xfs_efi_item_format(xfs_efi_log_item_t *efip, |
| 96 | xfs_log_iovec_t *log_vector) |
| 97 | { |
| 98 | uint size; |
| 99 | |
| 100 | ASSERT(efip->efi_next_extent == efip->efi_format.efi_nextents); |
| 101 | |
| 102 | efip->efi_format.efi_type = XFS_LI_EFI; |
| 103 | |
| 104 | size = sizeof(xfs_efi_log_format_t); |
| 105 | size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t); |
| 106 | efip->efi_format.efi_size = 1; |
| 107 | |
| 108 | log_vector->i_addr = (xfs_caddr_t)&(efip->efi_format); |
| 109 | log_vector->i_len = size; |
| 110 | ASSERT(size >= sizeof(xfs_efi_log_format_t)); |
| 111 | } |
| 112 | |
| 113 | |
| 114 | /* |
| 115 | * Pinning has no meaning for an efi item, so just return. |
| 116 | */ |
| 117 | /*ARGSUSED*/ |
| 118 | STATIC void |
| 119 | xfs_efi_item_pin(xfs_efi_log_item_t *efip) |
| 120 | { |
| 121 | return; |
| 122 | } |
| 123 | |
| 124 | |
| 125 | /* |
| 126 | * While EFIs cannot really be pinned, the unpin operation is the |
| 127 | * last place at which the EFI is manipulated during a transaction. |
| 128 | * Here we coordinate with xfs_efi_cancel() to determine who gets to |
| 129 | * free the EFI. |
| 130 | */ |
| 131 | /*ARGSUSED*/ |
| 132 | STATIC void |
| 133 | xfs_efi_item_unpin(xfs_efi_log_item_t *efip, int stale) |
| 134 | { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 135 | xfs_mount_t *mp; |
| 136 | SPLDECL(s); |
| 137 | |
| 138 | mp = efip->efi_item.li_mountp; |
| 139 | AIL_LOCK(mp, s); |
| 140 | if (efip->efi_flags & XFS_EFI_CANCELED) { |
| 141 | /* |
| 142 | * xfs_trans_delete_ail() drops the AIL lock. |
| 143 | */ |
| 144 | xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s); |
Christoph Hellwig | 7d795ca | 2005-06-21 15:41:19 +1000 | [diff] [blame^] | 145 | xfs_efi_item_free(efip); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 146 | } else { |
| 147 | efip->efi_flags |= XFS_EFI_COMMITTED; |
| 148 | AIL_UNLOCK(mp, s); |
| 149 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 150 | } |
| 151 | |
| 152 | /* |
| 153 | * like unpin only we have to also clear the xaction descriptor |
| 154 | * pointing the log item if we free the item. This routine duplicates |
| 155 | * unpin because efi_flags is protected by the AIL lock. Freeing |
| 156 | * the descriptor and then calling unpin would force us to drop the AIL |
| 157 | * lock which would open up a race condition. |
| 158 | */ |
| 159 | STATIC void |
| 160 | xfs_efi_item_unpin_remove(xfs_efi_log_item_t *efip, xfs_trans_t *tp) |
| 161 | { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 162 | xfs_mount_t *mp; |
| 163 | xfs_log_item_desc_t *lidp; |
| 164 | SPLDECL(s); |
| 165 | |
| 166 | mp = efip->efi_item.li_mountp; |
| 167 | AIL_LOCK(mp, s); |
| 168 | if (efip->efi_flags & XFS_EFI_CANCELED) { |
| 169 | /* |
| 170 | * free the xaction descriptor pointing to this item |
| 171 | */ |
| 172 | lidp = xfs_trans_find_item(tp, (xfs_log_item_t *) efip); |
| 173 | xfs_trans_free_item(tp, lidp); |
| 174 | /* |
| 175 | * pull the item off the AIL. |
| 176 | * xfs_trans_delete_ail() drops the AIL lock. |
| 177 | */ |
| 178 | xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s); |
Christoph Hellwig | 7d795ca | 2005-06-21 15:41:19 +1000 | [diff] [blame^] | 179 | xfs_efi_item_free(efip); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 180 | } else { |
| 181 | efip->efi_flags |= XFS_EFI_COMMITTED; |
| 182 | AIL_UNLOCK(mp, s); |
| 183 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 184 | } |
| 185 | |
| 186 | /* |
| 187 | * Efi items have no locking or pushing. However, since EFIs are |
| 188 | * pulled from the AIL when their corresponding EFDs are committed |
| 189 | * to disk, their situation is very similar to being pinned. Return |
| 190 | * XFS_ITEM_PINNED so that the caller will eventually flush the log. |
| 191 | * This should help in getting the EFI out of the AIL. |
| 192 | */ |
| 193 | /*ARGSUSED*/ |
| 194 | STATIC uint |
| 195 | xfs_efi_item_trylock(xfs_efi_log_item_t *efip) |
| 196 | { |
| 197 | return XFS_ITEM_PINNED; |
| 198 | } |
| 199 | |
| 200 | /* |
| 201 | * Efi items have no locking, so just return. |
| 202 | */ |
| 203 | /*ARGSUSED*/ |
| 204 | STATIC void |
| 205 | xfs_efi_item_unlock(xfs_efi_log_item_t *efip) |
| 206 | { |
| 207 | if (efip->efi_item.li_flags & XFS_LI_ABORTED) |
| 208 | xfs_efi_item_abort(efip); |
| 209 | return; |
| 210 | } |
| 211 | |
| 212 | /* |
| 213 | * The EFI is logged only once and cannot be moved in the log, so |
| 214 | * simply return the lsn at which it's been logged. The canceled |
| 215 | * flag is not paid any attention here. Checking for that is delayed |
| 216 | * until the EFI is unpinned. |
| 217 | */ |
| 218 | /*ARGSUSED*/ |
| 219 | STATIC xfs_lsn_t |
| 220 | xfs_efi_item_committed(xfs_efi_log_item_t *efip, xfs_lsn_t lsn) |
| 221 | { |
| 222 | return lsn; |
| 223 | } |
| 224 | |
| 225 | /* |
| 226 | * This is called when the transaction logging the EFI is aborted. |
| 227 | * Free up the EFI and return. No need to clean up the slot for |
| 228 | * the item in the transaction. That was done by the unpin code |
| 229 | * which is called prior to this routine in the abort/fs-shutdown path. |
| 230 | */ |
| 231 | STATIC void |
| 232 | xfs_efi_item_abort(xfs_efi_log_item_t *efip) |
| 233 | { |
Christoph Hellwig | 7d795ca | 2005-06-21 15:41:19 +1000 | [diff] [blame^] | 234 | xfs_efi_item_free(efip); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 235 | } |
| 236 | |
| 237 | /* |
| 238 | * There isn't much you can do to push on an efi item. It is simply |
| 239 | * stuck waiting for all of its corresponding efd items to be |
| 240 | * committed to disk. |
| 241 | */ |
| 242 | /*ARGSUSED*/ |
| 243 | STATIC void |
| 244 | xfs_efi_item_push(xfs_efi_log_item_t *efip) |
| 245 | { |
| 246 | return; |
| 247 | } |
| 248 | |
| 249 | /* |
| 250 | * The EFI dependency tracking op doesn't do squat. It can't because |
| 251 | * it doesn't know where the free extent is coming from. The dependency |
| 252 | * tracking has to be handled by the "enclosing" metadata object. For |
| 253 | * example, for inodes, the inode is locked throughout the extent freeing |
| 254 | * so the dependency should be recorded there. |
| 255 | */ |
| 256 | /*ARGSUSED*/ |
| 257 | STATIC void |
| 258 | xfs_efi_item_committing(xfs_efi_log_item_t *efip, xfs_lsn_t lsn) |
| 259 | { |
| 260 | return; |
| 261 | } |
| 262 | |
| 263 | /* |
| 264 | * This is the ops vector shared by all efi log items. |
| 265 | */ |
Christoph Hellwig | ba0f32d | 2005-06-21 15:36:52 +1000 | [diff] [blame] | 266 | STATIC struct xfs_item_ops xfs_efi_item_ops = { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 267 | .iop_size = (uint(*)(xfs_log_item_t*))xfs_efi_item_size, |
| 268 | .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) |
| 269 | xfs_efi_item_format, |
| 270 | .iop_pin = (void(*)(xfs_log_item_t*))xfs_efi_item_pin, |
| 271 | .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efi_item_unpin, |
| 272 | .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t *)) |
| 273 | xfs_efi_item_unpin_remove, |
| 274 | .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efi_item_trylock, |
| 275 | .iop_unlock = (void(*)(xfs_log_item_t*))xfs_efi_item_unlock, |
| 276 | .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t)) |
| 277 | xfs_efi_item_committed, |
| 278 | .iop_push = (void(*)(xfs_log_item_t*))xfs_efi_item_push, |
| 279 | .iop_abort = (void(*)(xfs_log_item_t*))xfs_efi_item_abort, |
| 280 | .iop_pushbuf = NULL, |
| 281 | .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t)) |
| 282 | xfs_efi_item_committing |
| 283 | }; |
| 284 | |
| 285 | |
| 286 | /* |
| 287 | * Allocate and initialize an efi item with the given number of extents. |
| 288 | */ |
| 289 | xfs_efi_log_item_t * |
| 290 | xfs_efi_init(xfs_mount_t *mp, |
| 291 | uint nextents) |
| 292 | |
| 293 | { |
| 294 | xfs_efi_log_item_t *efip; |
| 295 | uint size; |
| 296 | |
| 297 | ASSERT(nextents > 0); |
| 298 | if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { |
| 299 | size = (uint)(sizeof(xfs_efi_log_item_t) + |
| 300 | ((nextents - 1) * sizeof(xfs_extent_t))); |
| 301 | efip = (xfs_efi_log_item_t*)kmem_zalloc(size, KM_SLEEP); |
| 302 | } else { |
| 303 | efip = (xfs_efi_log_item_t*)kmem_zone_zalloc(xfs_efi_zone, |
| 304 | KM_SLEEP); |
| 305 | } |
| 306 | |
| 307 | efip->efi_item.li_type = XFS_LI_EFI; |
| 308 | efip->efi_item.li_ops = &xfs_efi_item_ops; |
| 309 | efip->efi_item.li_mountp = mp; |
| 310 | efip->efi_format.efi_nextents = nextents; |
| 311 | efip->efi_format.efi_id = (__psint_t)(void*)efip; |
| 312 | |
| 313 | return (efip); |
| 314 | } |
| 315 | |
| 316 | /* |
| 317 | * This is called by the efd item code below to release references to |
| 318 | * the given efi item. Each efd calls this with the number of |
| 319 | * extents that it has logged, and when the sum of these reaches |
| 320 | * the total number of extents logged by this efi item we can free |
| 321 | * the efi item. |
| 322 | * |
| 323 | * Freeing the efi item requires that we remove it from the AIL. |
| 324 | * We'll use the AIL lock to protect our counters as well as |
| 325 | * the removal from the AIL. |
| 326 | */ |
| 327 | void |
| 328 | xfs_efi_release(xfs_efi_log_item_t *efip, |
| 329 | uint nextents) |
| 330 | { |
| 331 | xfs_mount_t *mp; |
| 332 | int extents_left; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 333 | SPLDECL(s); |
| 334 | |
| 335 | mp = efip->efi_item.li_mountp; |
| 336 | ASSERT(efip->efi_next_extent > 0); |
| 337 | ASSERT(efip->efi_flags & XFS_EFI_COMMITTED); |
| 338 | |
| 339 | AIL_LOCK(mp, s); |
| 340 | ASSERT(efip->efi_next_extent >= nextents); |
| 341 | efip->efi_next_extent -= nextents; |
| 342 | extents_left = efip->efi_next_extent; |
| 343 | if (extents_left == 0) { |
| 344 | /* |
| 345 | * xfs_trans_delete_ail() drops the AIL lock. |
| 346 | */ |
| 347 | xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s); |
Christoph Hellwig | 7d795ca | 2005-06-21 15:41:19 +1000 | [diff] [blame^] | 348 | xfs_efi_item_free(efip); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 349 | } else { |
| 350 | AIL_UNLOCK(mp, s); |
| 351 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 352 | } |
| 353 | |
| 354 | /* |
| 355 | * This is called when the transaction that should be committing the |
| 356 | * EFD corresponding to the given EFI is aborted. The committed and |
| 357 | * canceled flags are used to coordinate the freeing of the EFI and |
| 358 | * the references by the transaction that committed it. |
| 359 | */ |
| 360 | STATIC void |
| 361 | xfs_efi_cancel( |
| 362 | xfs_efi_log_item_t *efip) |
| 363 | { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 364 | xfs_mount_t *mp; |
| 365 | SPLDECL(s); |
| 366 | |
| 367 | mp = efip->efi_item.li_mountp; |
| 368 | AIL_LOCK(mp, s); |
| 369 | if (efip->efi_flags & XFS_EFI_COMMITTED) { |
| 370 | /* |
| 371 | * xfs_trans_delete_ail() drops the AIL lock. |
| 372 | */ |
| 373 | xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s); |
Christoph Hellwig | 7d795ca | 2005-06-21 15:41:19 +1000 | [diff] [blame^] | 374 | xfs_efi_item_free(efip); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 375 | } else { |
| 376 | efip->efi_flags |= XFS_EFI_CANCELED; |
| 377 | AIL_UNLOCK(mp, s); |
| 378 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 379 | } |
| 380 | |
Christoph Hellwig | 7d795ca | 2005-06-21 15:41:19 +1000 | [diff] [blame^] | 381 | STATIC void |
| 382 | xfs_efd_item_free(xfs_efd_log_item_t *efdp) |
| 383 | { |
| 384 | int nexts = efdp->efd_format.efd_nextents; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 385 | |
Christoph Hellwig | 7d795ca | 2005-06-21 15:41:19 +1000 | [diff] [blame^] | 386 | if (nexts > XFS_EFD_MAX_FAST_EXTENTS) { |
| 387 | kmem_free(efdp, sizeof(xfs_efd_log_item_t) + |
| 388 | (nexts - 1) * sizeof(xfs_extent_t)); |
| 389 | } else { |
| 390 | kmem_zone_free(xfs_efd_zone, efdp); |
| 391 | } |
| 392 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 393 | |
| 394 | /* |
| 395 | * This returns the number of iovecs needed to log the given efd item. |
| 396 | * We only need 1 iovec for an efd item. It just logs the efd_log_format |
| 397 | * structure. |
| 398 | */ |
| 399 | /*ARGSUSED*/ |
| 400 | STATIC uint |
| 401 | xfs_efd_item_size(xfs_efd_log_item_t *efdp) |
| 402 | { |
| 403 | return 1; |
| 404 | } |
| 405 | |
| 406 | /* |
| 407 | * This is called to fill in the vector of log iovecs for the |
| 408 | * given efd log item. We use only 1 iovec, and we point that |
| 409 | * at the efd_log_format structure embedded in the efd item. |
| 410 | * It is at this point that we assert that all of the extent |
| 411 | * slots in the efd item have been filled. |
| 412 | */ |
| 413 | STATIC void |
| 414 | xfs_efd_item_format(xfs_efd_log_item_t *efdp, |
| 415 | xfs_log_iovec_t *log_vector) |
| 416 | { |
| 417 | uint size; |
| 418 | |
| 419 | ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); |
| 420 | |
| 421 | efdp->efd_format.efd_type = XFS_LI_EFD; |
| 422 | |
| 423 | size = sizeof(xfs_efd_log_format_t); |
| 424 | size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t); |
| 425 | efdp->efd_format.efd_size = 1; |
| 426 | |
| 427 | log_vector->i_addr = (xfs_caddr_t)&(efdp->efd_format); |
| 428 | log_vector->i_len = size; |
| 429 | ASSERT(size >= sizeof(xfs_efd_log_format_t)); |
| 430 | } |
| 431 | |
| 432 | |
| 433 | /* |
| 434 | * Pinning has no meaning for an efd item, so just return. |
| 435 | */ |
| 436 | /*ARGSUSED*/ |
| 437 | STATIC void |
| 438 | xfs_efd_item_pin(xfs_efd_log_item_t *efdp) |
| 439 | { |
| 440 | return; |
| 441 | } |
| 442 | |
| 443 | |
| 444 | /* |
| 445 | * Since pinning has no meaning for an efd item, unpinning does |
| 446 | * not either. |
| 447 | */ |
| 448 | /*ARGSUSED*/ |
| 449 | STATIC void |
| 450 | xfs_efd_item_unpin(xfs_efd_log_item_t *efdp, int stale) |
| 451 | { |
| 452 | return; |
| 453 | } |
| 454 | |
| 455 | /*ARGSUSED*/ |
| 456 | STATIC void |
| 457 | xfs_efd_item_unpin_remove(xfs_efd_log_item_t *efdp, xfs_trans_t *tp) |
| 458 | { |
| 459 | return; |
| 460 | } |
| 461 | |
| 462 | /* |
| 463 | * Efd items have no locking, so just return success. |
| 464 | */ |
| 465 | /*ARGSUSED*/ |
| 466 | STATIC uint |
| 467 | xfs_efd_item_trylock(xfs_efd_log_item_t *efdp) |
| 468 | { |
| 469 | return XFS_ITEM_LOCKED; |
| 470 | } |
| 471 | |
| 472 | /* |
| 473 | * Efd items have no locking or pushing, so return failure |
| 474 | * so that the caller doesn't bother with us. |
| 475 | */ |
| 476 | /*ARGSUSED*/ |
| 477 | STATIC void |
| 478 | xfs_efd_item_unlock(xfs_efd_log_item_t *efdp) |
| 479 | { |
| 480 | if (efdp->efd_item.li_flags & XFS_LI_ABORTED) |
| 481 | xfs_efd_item_abort(efdp); |
| 482 | return; |
| 483 | } |
| 484 | |
| 485 | /* |
| 486 | * When the efd item is committed to disk, all we need to do |
| 487 | * is delete our reference to our partner efi item and then |
| 488 | * free ourselves. Since we're freeing ourselves we must |
| 489 | * return -1 to keep the transaction code from further referencing |
| 490 | * this item. |
| 491 | */ |
| 492 | /*ARGSUSED*/ |
| 493 | STATIC xfs_lsn_t |
| 494 | xfs_efd_item_committed(xfs_efd_log_item_t *efdp, xfs_lsn_t lsn) |
| 495 | { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 496 | /* |
| 497 | * If we got a log I/O error, it's always the case that the LR with the |
| 498 | * EFI got unpinned and freed before the EFD got aborted. |
| 499 | */ |
| 500 | if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0) |
| 501 | xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents); |
| 502 | |
Christoph Hellwig | 7d795ca | 2005-06-21 15:41:19 +1000 | [diff] [blame^] | 503 | xfs_efd_item_free(efdp); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 504 | return (xfs_lsn_t)-1; |
| 505 | } |
| 506 | |
| 507 | /* |
| 508 | * The transaction of which this EFD is a part has been aborted. |
| 509 | * Inform its companion EFI of this fact and then clean up after |
| 510 | * ourselves. No need to clean up the slot for the item in the |
| 511 | * transaction. That was done by the unpin code which is called |
| 512 | * prior to this routine in the abort/fs-shutdown path. |
| 513 | */ |
| 514 | STATIC void |
| 515 | xfs_efd_item_abort(xfs_efd_log_item_t *efdp) |
| 516 | { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 517 | /* |
| 518 | * If we got a log I/O error, it's always the case that the LR with the |
| 519 | * EFI got unpinned and freed before the EFD got aborted. So don't |
| 520 | * reference the EFI at all in that case. |
| 521 | */ |
| 522 | if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0) |
| 523 | xfs_efi_cancel(efdp->efd_efip); |
| 524 | |
Christoph Hellwig | 7d795ca | 2005-06-21 15:41:19 +1000 | [diff] [blame^] | 525 | xfs_efd_item_free(efdp); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 526 | } |
| 527 | |
| 528 | /* |
| 529 | * There isn't much you can do to push on an efd item. It is simply |
| 530 | * stuck waiting for the log to be flushed to disk. |
| 531 | */ |
| 532 | /*ARGSUSED*/ |
| 533 | STATIC void |
| 534 | xfs_efd_item_push(xfs_efd_log_item_t *efdp) |
| 535 | { |
| 536 | return; |
| 537 | } |
| 538 | |
| 539 | /* |
| 540 | * The EFD dependency tracking op doesn't do squat. It can't because |
| 541 | * it doesn't know where the free extent is coming from. The dependency |
| 542 | * tracking has to be handled by the "enclosing" metadata object. For |
| 543 | * example, for inodes, the inode is locked throughout the extent freeing |
| 544 | * so the dependency should be recorded there. |
| 545 | */ |
| 546 | /*ARGSUSED*/ |
| 547 | STATIC void |
| 548 | xfs_efd_item_committing(xfs_efd_log_item_t *efip, xfs_lsn_t lsn) |
| 549 | { |
| 550 | return; |
| 551 | } |
| 552 | |
| 553 | /* |
| 554 | * This is the ops vector shared by all efd log items. |
| 555 | */ |
Christoph Hellwig | ba0f32d | 2005-06-21 15:36:52 +1000 | [diff] [blame] | 556 | STATIC struct xfs_item_ops xfs_efd_item_ops = { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 557 | .iop_size = (uint(*)(xfs_log_item_t*))xfs_efd_item_size, |
| 558 | .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) |
| 559 | xfs_efd_item_format, |
| 560 | .iop_pin = (void(*)(xfs_log_item_t*))xfs_efd_item_pin, |
| 561 | .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efd_item_unpin, |
| 562 | .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*)) |
| 563 | xfs_efd_item_unpin_remove, |
| 564 | .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efd_item_trylock, |
| 565 | .iop_unlock = (void(*)(xfs_log_item_t*))xfs_efd_item_unlock, |
| 566 | .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t)) |
| 567 | xfs_efd_item_committed, |
| 568 | .iop_push = (void(*)(xfs_log_item_t*))xfs_efd_item_push, |
| 569 | .iop_abort = (void(*)(xfs_log_item_t*))xfs_efd_item_abort, |
| 570 | .iop_pushbuf = NULL, |
| 571 | .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t)) |
| 572 | xfs_efd_item_committing |
| 573 | }; |
| 574 | |
| 575 | |
| 576 | /* |
| 577 | * Allocate and initialize an efd item with the given number of extents. |
| 578 | */ |
| 579 | xfs_efd_log_item_t * |
| 580 | xfs_efd_init(xfs_mount_t *mp, |
| 581 | xfs_efi_log_item_t *efip, |
| 582 | uint nextents) |
| 583 | |
| 584 | { |
| 585 | xfs_efd_log_item_t *efdp; |
| 586 | uint size; |
| 587 | |
| 588 | ASSERT(nextents > 0); |
| 589 | if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { |
| 590 | size = (uint)(sizeof(xfs_efd_log_item_t) + |
| 591 | ((nextents - 1) * sizeof(xfs_extent_t))); |
| 592 | efdp = (xfs_efd_log_item_t*)kmem_zalloc(size, KM_SLEEP); |
| 593 | } else { |
| 594 | efdp = (xfs_efd_log_item_t*)kmem_zone_zalloc(xfs_efd_zone, |
| 595 | KM_SLEEP); |
| 596 | } |
| 597 | |
| 598 | efdp->efd_item.li_type = XFS_LI_EFD; |
| 599 | efdp->efd_item.li_ops = &xfs_efd_item_ops; |
| 600 | efdp->efd_item.li_mountp = mp; |
| 601 | efdp->efd_efip = efip; |
| 602 | efdp->efd_format.efd_nextents = nextents; |
| 603 | efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; |
| 604 | |
| 605 | return (efdp); |
| 606 | } |