blob: 8546865a9104b3b09f821b351c8cae9c6631236c [file] [log] [blame]
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23/*
24 * This file implements commit-related functionality of the LEB properties
25 * subsystem.
26 */
27
28#include <linux/crc16.h>
29#include "ubifs.h"
30
31/**
32 * first_dirty_cnode - find first dirty cnode.
33 * @c: UBIFS file-system description object
34 * @nnode: nnode at which to start
35 *
36 * This function returns the first dirty cnode or %NULL if there is not one.
37 */
38static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
39{
40 ubifs_assert(nnode);
41 while (1) {
42 int i, cont = 0;
43
44 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
45 struct ubifs_cnode *cnode;
46
47 cnode = nnode->nbranch[i].cnode;
48 if (cnode &&
49 test_bit(DIRTY_CNODE, &cnode->flags)) {
50 if (cnode->level == 0)
51 return cnode;
52 nnode = (struct ubifs_nnode *)cnode;
53 cont = 1;
54 break;
55 }
56 }
57 if (!cont)
58 return (struct ubifs_cnode *)nnode;
59 }
60}
61
62/**
63 * next_dirty_cnode - find next dirty cnode.
64 * @cnode: cnode from which to begin searching
65 *
66 * This function returns the next dirty cnode or %NULL if there is not one.
67 */
68static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
69{
70 struct ubifs_nnode *nnode;
71 int i;
72
73 ubifs_assert(cnode);
74 nnode = cnode->parent;
75 if (!nnode)
76 return NULL;
77 for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
78 cnode = nnode->nbranch[i].cnode;
79 if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
80 if (cnode->level == 0)
81 return cnode; /* cnode is a pnode */
82 /* cnode is a nnode */
83 return first_dirty_cnode((struct ubifs_nnode *)cnode);
84 }
85 }
86 return (struct ubifs_cnode *)nnode;
87}
88
89/**
90 * get_cnodes_to_commit - create list of dirty cnodes to commit.
91 * @c: UBIFS file-system description object
92 *
93 * This function returns the number of cnodes to commit.
94 */
95static int get_cnodes_to_commit(struct ubifs_info *c)
96{
97 struct ubifs_cnode *cnode, *cnext;
98 int cnt = 0;
99
100 if (!c->nroot)
101 return 0;
102
103 if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
104 return 0;
105
106 c->lpt_cnext = first_dirty_cnode(c->nroot);
107 cnode = c->lpt_cnext;
108 if (!cnode)
109 return 0;
110 cnt += 1;
111 while (1) {
112 ubifs_assert(!test_bit(COW_ZNODE, &cnode->flags));
113 __set_bit(COW_ZNODE, &cnode->flags);
114 cnext = next_dirty_cnode(cnode);
115 if (!cnext) {
116 cnode->cnext = c->lpt_cnext;
117 break;
118 }
119 cnode->cnext = cnext;
120 cnode = cnext;
121 cnt += 1;
122 }
123 dbg_cmt("committing %d cnodes", cnt);
124 dbg_lp("committing %d cnodes", cnt);
125 ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
126 return cnt;
127}
128
129/**
130 * upd_ltab - update LPT LEB properties.
131 * @c: UBIFS file-system description object
132 * @lnum: LEB number
133 * @free: amount of free space
134 * @dirty: amount of dirty space to add
135 */
136static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
137{
138 dbg_lp("LEB %d free %d dirty %d to %d +%d",
139 lnum, c->ltab[lnum - c->lpt_first].free,
140 c->ltab[lnum - c->lpt_first].dirty, free, dirty);
141 ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
142 c->ltab[lnum - c->lpt_first].free = free;
143 c->ltab[lnum - c->lpt_first].dirty += dirty;
144}
145
146/**
147 * alloc_lpt_leb - allocate an LPT LEB that is empty.
148 * @c: UBIFS file-system description object
149 * @lnum: LEB number is passed and returned here
150 *
151 * This function finds the next empty LEB in the ltab starting from @lnum. If a
152 * an empty LEB is found it is returned in @lnum and the function returns %0.
153 * Otherwise the function returns -ENOSPC. Note however, that LPT is designed
154 * never to run out of space.
155 */
156static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
157{
158 int i, n;
159
160 n = *lnum - c->lpt_first + 1;
161 for (i = n; i < c->lpt_lebs; i++) {
162 if (c->ltab[i].tgc || c->ltab[i].cmt)
163 continue;
164 if (c->ltab[i].free == c->leb_size) {
165 c->ltab[i].cmt = 1;
166 *lnum = i + c->lpt_first;
167 return 0;
168 }
169 }
170
171 for (i = 0; i < n; i++) {
172 if (c->ltab[i].tgc || c->ltab[i].cmt)
173 continue;
174 if (c->ltab[i].free == c->leb_size) {
175 c->ltab[i].cmt = 1;
176 *lnum = i + c->lpt_first;
177 return 0;
178 }
179 }
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300180 return -ENOSPC;
181}
182
183/**
184 * layout_cnodes - layout cnodes for commit.
185 * @c: UBIFS file-system description object
186 *
187 * This function returns %0 on success and a negative error code on failure.
188 */
189static int layout_cnodes(struct ubifs_info *c)
190{
191 int lnum, offs, len, alen, done_lsave, done_ltab, err;
192 struct ubifs_cnode *cnode;
193
Adrian Hunter73944a62008-09-12 18:13:31 +0300194 err = dbg_chk_lpt_sz(c, 0, 0);
195 if (err)
196 return err;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300197 cnode = c->lpt_cnext;
198 if (!cnode)
199 return 0;
200 lnum = c->nhead_lnum;
201 offs = c->nhead_offs;
202 /* Try to place lsave and ltab nicely */
203 done_lsave = !c->big_lpt;
204 done_ltab = 0;
205 if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
206 done_lsave = 1;
207 c->lsave_lnum = lnum;
208 c->lsave_offs = offs;
209 offs += c->lsave_sz;
Adrian Hunter73944a62008-09-12 18:13:31 +0300210 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300211 }
212
213 if (offs + c->ltab_sz <= c->leb_size) {
214 done_ltab = 1;
215 c->ltab_lnum = lnum;
216 c->ltab_offs = offs;
217 offs += c->ltab_sz;
Adrian Hunter73944a62008-09-12 18:13:31 +0300218 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300219 }
220
221 do {
222 if (cnode->level) {
223 len = c->nnode_sz;
224 c->dirty_nn_cnt -= 1;
225 } else {
226 len = c->pnode_sz;
227 c->dirty_pn_cnt -= 1;
228 }
229 while (offs + len > c->leb_size) {
230 alen = ALIGN(offs, c->min_io_size);
231 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
Adrian Hunter73944a62008-09-12 18:13:31 +0300232 dbg_chk_lpt_sz(c, 2, alen - offs);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300233 err = alloc_lpt_leb(c, &lnum);
234 if (err)
Adrian Hunter73944a62008-09-12 18:13:31 +0300235 goto no_space;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300236 offs = 0;
237 ubifs_assert(lnum >= c->lpt_first &&
238 lnum <= c->lpt_last);
239 /* Try to place lsave and ltab nicely */
240 if (!done_lsave) {
241 done_lsave = 1;
242 c->lsave_lnum = lnum;
243 c->lsave_offs = offs;
244 offs += c->lsave_sz;
Adrian Hunter73944a62008-09-12 18:13:31 +0300245 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300246 continue;
247 }
248 if (!done_ltab) {
249 done_ltab = 1;
250 c->ltab_lnum = lnum;
251 c->ltab_offs = offs;
252 offs += c->ltab_sz;
Adrian Hunter73944a62008-09-12 18:13:31 +0300253 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300254 continue;
255 }
256 break;
257 }
258 if (cnode->parent) {
259 cnode->parent->nbranch[cnode->iip].lnum = lnum;
260 cnode->parent->nbranch[cnode->iip].offs = offs;
261 } else {
262 c->lpt_lnum = lnum;
263 c->lpt_offs = offs;
264 }
265 offs += len;
Adrian Hunter73944a62008-09-12 18:13:31 +0300266 dbg_chk_lpt_sz(c, 1, len);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300267 cnode = cnode->cnext;
268 } while (cnode && cnode != c->lpt_cnext);
269
270 /* Make sure to place LPT's save table */
271 if (!done_lsave) {
272 if (offs + c->lsave_sz > c->leb_size) {
273 alen = ALIGN(offs, c->min_io_size);
274 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
Adrian Hunter73944a62008-09-12 18:13:31 +0300275 dbg_chk_lpt_sz(c, 2, alen - offs);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300276 err = alloc_lpt_leb(c, &lnum);
277 if (err)
Adrian Hunter73944a62008-09-12 18:13:31 +0300278 goto no_space;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300279 offs = 0;
280 ubifs_assert(lnum >= c->lpt_first &&
281 lnum <= c->lpt_last);
282 }
283 done_lsave = 1;
284 c->lsave_lnum = lnum;
285 c->lsave_offs = offs;
286 offs += c->lsave_sz;
Adrian Hunter73944a62008-09-12 18:13:31 +0300287 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300288 }
289
290 /* Make sure to place LPT's own lprops table */
291 if (!done_ltab) {
292 if (offs + c->ltab_sz > c->leb_size) {
293 alen = ALIGN(offs, c->min_io_size);
294 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
Adrian Hunter73944a62008-09-12 18:13:31 +0300295 dbg_chk_lpt_sz(c, 2, alen - offs);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300296 err = alloc_lpt_leb(c, &lnum);
297 if (err)
Adrian Hunter73944a62008-09-12 18:13:31 +0300298 goto no_space;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300299 offs = 0;
300 ubifs_assert(lnum >= c->lpt_first &&
301 lnum <= c->lpt_last);
302 }
303 done_ltab = 1;
304 c->ltab_lnum = lnum;
305 c->ltab_offs = offs;
306 offs += c->ltab_sz;
Adrian Hunter73944a62008-09-12 18:13:31 +0300307 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300308 }
309
310 alen = ALIGN(offs, c->min_io_size);
311 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
Adrian Hunter73944a62008-09-12 18:13:31 +0300312 dbg_chk_lpt_sz(c, 4, alen - offs);
313 err = dbg_chk_lpt_sz(c, 3, alen);
314 if (err)
315 return err;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300316 return 0;
Adrian Hunter73944a62008-09-12 18:13:31 +0300317
318no_space:
319 ubifs_err("LPT out of space");
320 dbg_err("LPT out of space at LEB %d:%d needing %d, done_ltab %d, "
321 "done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
322 dbg_dump_lpt_info(c);
323 return err;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300324}
325
326/**
327 * realloc_lpt_leb - allocate an LPT LEB that is empty.
328 * @c: UBIFS file-system description object
329 * @lnum: LEB number is passed and returned here
330 *
331 * This function duplicates exactly the results of the function alloc_lpt_leb.
332 * It is used during end commit to reallocate the same LEB numbers that were
333 * allocated by alloc_lpt_leb during start commit.
334 *
335 * This function finds the next LEB that was allocated by the alloc_lpt_leb
336 * function starting from @lnum. If a LEB is found it is returned in @lnum and
337 * the function returns %0. Otherwise the function returns -ENOSPC.
338 * Note however, that LPT is designed never to run out of space.
339 */
340static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
341{
342 int i, n;
343
344 n = *lnum - c->lpt_first + 1;
345 for (i = n; i < c->lpt_lebs; i++)
346 if (c->ltab[i].cmt) {
347 c->ltab[i].cmt = 0;
348 *lnum = i + c->lpt_first;
349 return 0;
350 }
351
352 for (i = 0; i < n; i++)
353 if (c->ltab[i].cmt) {
354 c->ltab[i].cmt = 0;
355 *lnum = i + c->lpt_first;
356 return 0;
357 }
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300358 return -ENOSPC;
359}
360
361/**
362 * write_cnodes - write cnodes for commit.
363 * @c: UBIFS file-system description object
364 *
365 * This function returns %0 on success and a negative error code on failure.
366 */
367static int write_cnodes(struct ubifs_info *c)
368{
369 int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
370 struct ubifs_cnode *cnode;
371 void *buf = c->lpt_buf;
372
373 cnode = c->lpt_cnext;
374 if (!cnode)
375 return 0;
376 lnum = c->nhead_lnum;
377 offs = c->nhead_offs;
378 from = offs;
379 /* Ensure empty LEB is unmapped */
380 if (offs == 0) {
381 err = ubifs_leb_unmap(c, lnum);
382 if (err)
383 return err;
384 }
385 /* Try to place lsave and ltab nicely */
386 done_lsave = !c->big_lpt;
387 done_ltab = 0;
388 if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
389 done_lsave = 1;
390 ubifs_pack_lsave(c, buf + offs, c->lsave);
391 offs += c->lsave_sz;
Adrian Hunter73944a62008-09-12 18:13:31 +0300392 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300393 }
394
395 if (offs + c->ltab_sz <= c->leb_size) {
396 done_ltab = 1;
397 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
398 offs += c->ltab_sz;
Adrian Hunter73944a62008-09-12 18:13:31 +0300399 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300400 }
401
402 /* Loop for each cnode */
403 do {
404 if (cnode->level)
405 len = c->nnode_sz;
406 else
407 len = c->pnode_sz;
408 while (offs + len > c->leb_size) {
409 wlen = offs - from;
410 if (wlen) {
411 alen = ALIGN(wlen, c->min_io_size);
412 memset(buf + offs, 0xff, alen - wlen);
413 err = ubifs_leb_write(c, lnum, buf + from, from,
414 alen, UBI_SHORTTERM);
415 if (err)
416 return err;
Adrian Hunter73944a62008-09-12 18:13:31 +0300417 dbg_chk_lpt_sz(c, 4, alen - wlen);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300418 }
Adrian Hunter73944a62008-09-12 18:13:31 +0300419 dbg_chk_lpt_sz(c, 2, 0);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300420 err = realloc_lpt_leb(c, &lnum);
421 if (err)
Adrian Hunter73944a62008-09-12 18:13:31 +0300422 goto no_space;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300423 offs = 0;
424 from = 0;
425 ubifs_assert(lnum >= c->lpt_first &&
426 lnum <= c->lpt_last);
427 err = ubifs_leb_unmap(c, lnum);
428 if (err)
429 return err;
430 /* Try to place lsave and ltab nicely */
431 if (!done_lsave) {
432 done_lsave = 1;
433 ubifs_pack_lsave(c, buf + offs, c->lsave);
434 offs += c->lsave_sz;
Adrian Hunter73944a62008-09-12 18:13:31 +0300435 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300436 continue;
437 }
438 if (!done_ltab) {
439 done_ltab = 1;
440 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
441 offs += c->ltab_sz;
Adrian Hunter73944a62008-09-12 18:13:31 +0300442 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300443 continue;
444 }
445 break;
446 }
447 if (cnode->level)
448 ubifs_pack_nnode(c, buf + offs,
449 (struct ubifs_nnode *)cnode);
450 else
451 ubifs_pack_pnode(c, buf + offs,
452 (struct ubifs_pnode *)cnode);
453 /*
454 * The reason for the barriers is the same as in case of TNC.
455 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
456 * 'dirty_cow_pnode()' are the functions for which this is
457 * important.
458 */
459 clear_bit(DIRTY_CNODE, &cnode->flags);
460 smp_mb__before_clear_bit();
461 clear_bit(COW_ZNODE, &cnode->flags);
462 smp_mb__after_clear_bit();
463 offs += len;
Adrian Hunter73944a62008-09-12 18:13:31 +0300464 dbg_chk_lpt_sz(c, 1, len);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300465 cnode = cnode->cnext;
466 } while (cnode && cnode != c->lpt_cnext);
467
468 /* Make sure to place LPT's save table */
469 if (!done_lsave) {
470 if (offs + c->lsave_sz > c->leb_size) {
471 wlen = offs - from;
472 alen = ALIGN(wlen, c->min_io_size);
473 memset(buf + offs, 0xff, alen - wlen);
474 err = ubifs_leb_write(c, lnum, buf + from, from, alen,
475 UBI_SHORTTERM);
476 if (err)
477 return err;
Adrian Hunter73944a62008-09-12 18:13:31 +0300478 dbg_chk_lpt_sz(c, 2, alen - wlen);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300479 err = realloc_lpt_leb(c, &lnum);
480 if (err)
Adrian Hunter73944a62008-09-12 18:13:31 +0300481 goto no_space;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300482 offs = 0;
483 ubifs_assert(lnum >= c->lpt_first &&
484 lnum <= c->lpt_last);
485 err = ubifs_leb_unmap(c, lnum);
486 if (err)
487 return err;
488 }
489 done_lsave = 1;
490 ubifs_pack_lsave(c, buf + offs, c->lsave);
491 offs += c->lsave_sz;
Adrian Hunter73944a62008-09-12 18:13:31 +0300492 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300493 }
494
495 /* Make sure to place LPT's own lprops table */
496 if (!done_ltab) {
497 if (offs + c->ltab_sz > c->leb_size) {
498 wlen = offs - from;
499 alen = ALIGN(wlen, c->min_io_size);
500 memset(buf + offs, 0xff, alen - wlen);
501 err = ubifs_leb_write(c, lnum, buf + from, from, alen,
502 UBI_SHORTTERM);
503 if (err)
504 return err;
Adrian Hunter73944a62008-09-12 18:13:31 +0300505 dbg_chk_lpt_sz(c, 2, alen - wlen);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300506 err = realloc_lpt_leb(c, &lnum);
507 if (err)
Adrian Hunter73944a62008-09-12 18:13:31 +0300508 goto no_space;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300509 offs = 0;
510 ubifs_assert(lnum >= c->lpt_first &&
511 lnum <= c->lpt_last);
512 err = ubifs_leb_unmap(c, lnum);
513 if (err)
514 return err;
515 }
516 done_ltab = 1;
517 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
518 offs += c->ltab_sz;
Adrian Hunter73944a62008-09-12 18:13:31 +0300519 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300520 }
521
522 /* Write remaining data in buffer */
523 wlen = offs - from;
524 alen = ALIGN(wlen, c->min_io_size);
525 memset(buf + offs, 0xff, alen - wlen);
526 err = ubifs_leb_write(c, lnum, buf + from, from, alen, UBI_SHORTTERM);
527 if (err)
528 return err;
Adrian Hunter73944a62008-09-12 18:13:31 +0300529
530 dbg_chk_lpt_sz(c, 4, alen - wlen);
531 err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
532 if (err)
533 return err;
534
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300535 c->nhead_lnum = lnum;
536 c->nhead_offs = ALIGN(offs, c->min_io_size);
537
538 dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
539 dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
540 dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
541 if (c->big_lpt)
542 dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
Adrian Hunter73944a62008-09-12 18:13:31 +0300543
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300544 return 0;
Adrian Hunter73944a62008-09-12 18:13:31 +0300545
546no_space:
547 ubifs_err("LPT out of space mismatch");
548 dbg_err("LPT out of space mismatch at LEB %d:%d needing %d, done_ltab "
549 "%d, done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
550 dbg_dump_lpt_info(c);
551 return err;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300552}
553
554/**
555 * next_pnode - find next pnode.
556 * @c: UBIFS file-system description object
557 * @pnode: pnode
558 *
559 * This function returns the next pnode or %NULL if there are no more pnodes.
560 */
561static struct ubifs_pnode *next_pnode(struct ubifs_info *c,
562 struct ubifs_pnode *pnode)
563{
564 struct ubifs_nnode *nnode;
565 int iip;
566
567 /* Try to go right */
568 nnode = pnode->parent;
569 iip = pnode->iip + 1;
570 if (iip < UBIFS_LPT_FANOUT) {
571 /* We assume here that LEB zero is never an LPT LEB */
572 if (nnode->nbranch[iip].lnum)
573 return ubifs_get_pnode(c, nnode, iip);
574 else
575 return NULL;
576 }
577
578 /* Go up while can't go right */
579 do {
580 iip = nnode->iip + 1;
581 nnode = nnode->parent;
582 if (!nnode)
583 return NULL;
584 /* We assume here that LEB zero is never an LPT LEB */
585 } while (iip >= UBIFS_LPT_FANOUT || !nnode->nbranch[iip].lnum);
586
587 /* Go right */
588 nnode = ubifs_get_nnode(c, nnode, iip);
589 if (IS_ERR(nnode))
590 return (void *)nnode;
591
592 /* Go down to level 1 */
593 while (nnode->level > 1) {
594 nnode = ubifs_get_nnode(c, nnode, 0);
595 if (IS_ERR(nnode))
596 return (void *)nnode;
597 }
598
599 return ubifs_get_pnode(c, nnode, 0);
600}
601
602/**
603 * pnode_lookup - lookup a pnode in the LPT.
604 * @c: UBIFS file-system description object
605 * @i: pnode number (0 to main_lebs - 1)
606 *
607 * This function returns a pointer to the pnode on success or a negative
608 * error code on failure.
609 */
610static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
611{
612 int err, h, iip, shft;
613 struct ubifs_nnode *nnode;
614
615 if (!c->nroot) {
616 err = ubifs_read_nnode(c, NULL, 0);
617 if (err)
618 return ERR_PTR(err);
619 }
620 i <<= UBIFS_LPT_FANOUT_SHIFT;
621 nnode = c->nroot;
622 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
623 for (h = 1; h < c->lpt_hght; h++) {
624 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
625 shft -= UBIFS_LPT_FANOUT_SHIFT;
626 nnode = ubifs_get_nnode(c, nnode, iip);
627 if (IS_ERR(nnode))
628 return ERR_PTR(PTR_ERR(nnode));
629 }
630 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
631 return ubifs_get_pnode(c, nnode, iip);
632}
633
634/**
635 * add_pnode_dirt - add dirty space to LPT LEB properties.
636 * @c: UBIFS file-system description object
637 * @pnode: pnode for which to add dirt
638 */
639static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
640{
641 ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
642 c->pnode_sz);
643}
644
645/**
646 * do_make_pnode_dirty - mark a pnode dirty.
647 * @c: UBIFS file-system description object
648 * @pnode: pnode to mark dirty
649 */
650static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
651{
652 /* Assumes cnext list is empty i.e. not called during commit */
653 if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
654 struct ubifs_nnode *nnode;
655
656 c->dirty_pn_cnt += 1;
657 add_pnode_dirt(c, pnode);
658 /* Mark parent and ancestors dirty too */
659 nnode = pnode->parent;
660 while (nnode) {
661 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
662 c->dirty_nn_cnt += 1;
663 ubifs_add_nnode_dirt(c, nnode);
664 nnode = nnode->parent;
665 } else
666 break;
667 }
668 }
669}
670
671/**
672 * make_tree_dirty - mark the entire LEB properties tree dirty.
673 * @c: UBIFS file-system description object
674 *
675 * This function is used by the "small" LPT model to cause the entire LEB
676 * properties tree to be written. The "small" LPT model does not use LPT
677 * garbage collection because it is more efficient to write the entire tree
678 * (because it is small).
679 *
680 * This function returns %0 on success and a negative error code on failure.
681 */
682static int make_tree_dirty(struct ubifs_info *c)
683{
684 struct ubifs_pnode *pnode;
685
686 pnode = pnode_lookup(c, 0);
687 while (pnode) {
688 do_make_pnode_dirty(c, pnode);
689 pnode = next_pnode(c, pnode);
690 if (IS_ERR(pnode))
691 return PTR_ERR(pnode);
692 }
693 return 0;
694}
695
696/**
697 * need_write_all - determine if the LPT area is running out of free space.
698 * @c: UBIFS file-system description object
699 *
700 * This function returns %1 if the LPT area is running out of free space and %0
701 * if it is not.
702 */
703static int need_write_all(struct ubifs_info *c)
704{
705 long long free = 0;
706 int i;
707
708 for (i = 0; i < c->lpt_lebs; i++) {
709 if (i + c->lpt_first == c->nhead_lnum)
710 free += c->leb_size - c->nhead_offs;
711 else if (c->ltab[i].free == c->leb_size)
712 free += c->leb_size;
713 else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
714 free += c->leb_size;
715 }
716 /* Less than twice the size left */
717 if (free <= c->lpt_sz * 2)
718 return 1;
719 return 0;
720}
721
722/**
723 * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
724 * @c: UBIFS file-system description object
725 *
726 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
727 * free space and so may be reused as soon as the next commit is completed.
728 * This function is called during start commit to mark LPT LEBs for trivial GC.
729 */
730static void lpt_tgc_start(struct ubifs_info *c)
731{
732 int i;
733
734 for (i = 0; i < c->lpt_lebs; i++) {
735 if (i + c->lpt_first == c->nhead_lnum)
736 continue;
737 if (c->ltab[i].dirty > 0 &&
738 c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
739 c->ltab[i].tgc = 1;
740 c->ltab[i].free = c->leb_size;
741 c->ltab[i].dirty = 0;
742 dbg_lp("LEB %d", i + c->lpt_first);
743 }
744 }
745}
746
747/**
748 * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
749 * @c: UBIFS file-system description object
750 *
751 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
752 * free space and so may be reused as soon as the next commit is completed.
753 * This function is called after the commit is completed (master node has been
754 * written) and unmaps LPT LEBs that were marked for trivial GC.
755 */
756static int lpt_tgc_end(struct ubifs_info *c)
757{
758 int i, err;
759
760 for (i = 0; i < c->lpt_lebs; i++)
761 if (c->ltab[i].tgc) {
762 err = ubifs_leb_unmap(c, i + c->lpt_first);
763 if (err)
764 return err;
765 c->ltab[i].tgc = 0;
766 dbg_lp("LEB %d", i + c->lpt_first);
767 }
768 return 0;
769}
770
771/**
772 * populate_lsave - fill the lsave array with important LEB numbers.
773 * @c: the UBIFS file-system description object
774 *
775 * This function is only called for the "big" model. It records a small number
776 * of LEB numbers of important LEBs. Important LEBs are ones that are (from
777 * most important to least important): empty, freeable, freeable index, dirty
778 * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
779 * their pnodes into memory. That will stop us from having to scan the LPT
780 * straight away. For the "small" model we assume that scanning the LPT is no
781 * big deal.
782 */
783static void populate_lsave(struct ubifs_info *c)
784{
785 struct ubifs_lprops *lprops;
786 struct ubifs_lpt_heap *heap;
787 int i, cnt = 0;
788
789 ubifs_assert(c->big_lpt);
790 if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
791 c->lpt_drty_flgs |= LSAVE_DIRTY;
792 ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
793 }
794 list_for_each_entry(lprops, &c->empty_list, list) {
795 c->lsave[cnt++] = lprops->lnum;
796 if (cnt >= c->lsave_cnt)
797 return;
798 }
799 list_for_each_entry(lprops, &c->freeable_list, list) {
800 c->lsave[cnt++] = lprops->lnum;
801 if (cnt >= c->lsave_cnt)
802 return;
803 }
804 list_for_each_entry(lprops, &c->frdi_idx_list, list) {
805 c->lsave[cnt++] = lprops->lnum;
806 if (cnt >= c->lsave_cnt)
807 return;
808 }
809 heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
810 for (i = 0; i < heap->cnt; i++) {
811 c->lsave[cnt++] = heap->arr[i]->lnum;
812 if (cnt >= c->lsave_cnt)
813 return;
814 }
815 heap = &c->lpt_heap[LPROPS_DIRTY - 1];
816 for (i = 0; i < heap->cnt; i++) {
817 c->lsave[cnt++] = heap->arr[i]->lnum;
818 if (cnt >= c->lsave_cnt)
819 return;
820 }
821 heap = &c->lpt_heap[LPROPS_FREE - 1];
822 for (i = 0; i < heap->cnt; i++) {
823 c->lsave[cnt++] = heap->arr[i]->lnum;
824 if (cnt >= c->lsave_cnt)
825 return;
826 }
827 /* Fill it up completely */
828 while (cnt < c->lsave_cnt)
829 c->lsave[cnt++] = c->main_first;
830}
831
832/**
833 * nnode_lookup - lookup a nnode in the LPT.
834 * @c: UBIFS file-system description object
835 * @i: nnode number
836 *
837 * This function returns a pointer to the nnode on success or a negative
838 * error code on failure.
839 */
840static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
841{
842 int err, iip;
843 struct ubifs_nnode *nnode;
844
845 if (!c->nroot) {
846 err = ubifs_read_nnode(c, NULL, 0);
847 if (err)
848 return ERR_PTR(err);
849 }
850 nnode = c->nroot;
851 while (1) {
852 iip = i & (UBIFS_LPT_FANOUT - 1);
853 i >>= UBIFS_LPT_FANOUT_SHIFT;
854 if (!i)
855 break;
856 nnode = ubifs_get_nnode(c, nnode, iip);
857 if (IS_ERR(nnode))
858 return nnode;
859 }
860 return nnode;
861}
862
863/**
864 * make_nnode_dirty - find a nnode and, if found, make it dirty.
865 * @c: UBIFS file-system description object
866 * @node_num: nnode number of nnode to make dirty
867 * @lnum: LEB number where nnode was written
868 * @offs: offset where nnode was written
869 *
870 * This function is used by LPT garbage collection. LPT garbage collection is
871 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
872 * simply involves marking all the nodes in the LEB being garbage-collected as
873 * dirty. The dirty nodes are written next commit, after which the LEB is free
874 * to be reused.
875 *
876 * This function returns %0 on success and a negative error code on failure.
877 */
878static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
879 int offs)
880{
881 struct ubifs_nnode *nnode;
882
883 nnode = nnode_lookup(c, node_num);
884 if (IS_ERR(nnode))
885 return PTR_ERR(nnode);
886 if (nnode->parent) {
887 struct ubifs_nbranch *branch;
888
889 branch = &nnode->parent->nbranch[nnode->iip];
890 if (branch->lnum != lnum || branch->offs != offs)
891 return 0; /* nnode is obsolete */
892 } else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
893 return 0; /* nnode is obsolete */
894 /* Assumes cnext list is empty i.e. not called during commit */
895 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
896 c->dirty_nn_cnt += 1;
897 ubifs_add_nnode_dirt(c, nnode);
898 /* Mark parent and ancestors dirty too */
899 nnode = nnode->parent;
900 while (nnode) {
901 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
902 c->dirty_nn_cnt += 1;
903 ubifs_add_nnode_dirt(c, nnode);
904 nnode = nnode->parent;
905 } else
906 break;
907 }
908 }
909 return 0;
910}
911
912/**
913 * make_pnode_dirty - find a pnode and, if found, make it dirty.
914 * @c: UBIFS file-system description object
915 * @node_num: pnode number of pnode to make dirty
916 * @lnum: LEB number where pnode was written
917 * @offs: offset where pnode was written
918 *
919 * This function is used by LPT garbage collection. LPT garbage collection is
920 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
921 * simply involves marking all the nodes in the LEB being garbage-collected as
922 * dirty. The dirty nodes are written next commit, after which the LEB is free
923 * to be reused.
924 *
925 * This function returns %0 on success and a negative error code on failure.
926 */
927static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
928 int offs)
929{
930 struct ubifs_pnode *pnode;
931 struct ubifs_nbranch *branch;
932
933 pnode = pnode_lookup(c, node_num);
934 if (IS_ERR(pnode))
935 return PTR_ERR(pnode);
936 branch = &pnode->parent->nbranch[pnode->iip];
937 if (branch->lnum != lnum || branch->offs != offs)
938 return 0;
939 do_make_pnode_dirty(c, pnode);
940 return 0;
941}
942
943/**
944 * make_ltab_dirty - make ltab node dirty.
945 * @c: UBIFS file-system description object
946 * @lnum: LEB number where ltab was written
947 * @offs: offset where ltab was written
948 *
949 * This function is used by LPT garbage collection. LPT garbage collection is
950 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
951 * simply involves marking all the nodes in the LEB being garbage-collected as
952 * dirty. The dirty nodes are written next commit, after which the LEB is free
953 * to be reused.
954 *
955 * This function returns %0 on success and a negative error code on failure.
956 */
957static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
958{
959 if (lnum != c->ltab_lnum || offs != c->ltab_offs)
960 return 0; /* This ltab node is obsolete */
961 if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
962 c->lpt_drty_flgs |= LTAB_DIRTY;
963 ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
964 }
965 return 0;
966}
967
968/**
969 * make_lsave_dirty - make lsave node dirty.
970 * @c: UBIFS file-system description object
971 * @lnum: LEB number where lsave was written
972 * @offs: offset where lsave was written
973 *
974 * This function is used by LPT garbage collection. LPT garbage collection is
975 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
976 * simply involves marking all the nodes in the LEB being garbage-collected as
977 * dirty. The dirty nodes are written next commit, after which the LEB is free
978 * to be reused.
979 *
980 * This function returns %0 on success and a negative error code on failure.
981 */
982static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
983{
984 if (lnum != c->lsave_lnum || offs != c->lsave_offs)
985 return 0; /* This lsave node is obsolete */
986 if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
987 c->lpt_drty_flgs |= LSAVE_DIRTY;
988 ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
989 }
990 return 0;
991}
992
993/**
994 * make_node_dirty - make node dirty.
995 * @c: UBIFS file-system description object
996 * @node_type: LPT node type
997 * @node_num: node number
998 * @lnum: LEB number where node was written
999 * @offs: offset where node was written
1000 *
1001 * This function is used by LPT garbage collection. LPT garbage collection is
1002 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
1003 * simply involves marking all the nodes in the LEB being garbage-collected as
1004 * dirty. The dirty nodes are written next commit, after which the LEB is free
1005 * to be reused.
1006 *
1007 * This function returns %0 on success and a negative error code on failure.
1008 */
1009static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1010 int lnum, int offs)
1011{
1012 switch (node_type) {
1013 case UBIFS_LPT_NNODE:
1014 return make_nnode_dirty(c, node_num, lnum, offs);
1015 case UBIFS_LPT_PNODE:
1016 return make_pnode_dirty(c, node_num, lnum, offs);
1017 case UBIFS_LPT_LTAB:
1018 return make_ltab_dirty(c, lnum, offs);
1019 case UBIFS_LPT_LSAVE:
1020 return make_lsave_dirty(c, lnum, offs);
1021 }
1022 return -EINVAL;
1023}
1024
1025/**
1026 * get_lpt_node_len - return the length of a node based on its type.
1027 * @c: UBIFS file-system description object
1028 * @node_type: LPT node type
1029 */
1030static int get_lpt_node_len(struct ubifs_info *c, int node_type)
1031{
1032 switch (node_type) {
1033 case UBIFS_LPT_NNODE:
1034 return c->nnode_sz;
1035 case UBIFS_LPT_PNODE:
1036 return c->pnode_sz;
1037 case UBIFS_LPT_LTAB:
1038 return c->ltab_sz;
1039 case UBIFS_LPT_LSAVE:
1040 return c->lsave_sz;
1041 }
1042 return 0;
1043}
1044
1045/**
1046 * get_pad_len - return the length of padding in a buffer.
1047 * @c: UBIFS file-system description object
1048 * @buf: buffer
1049 * @len: length of buffer
1050 */
1051static int get_pad_len(struct ubifs_info *c, uint8_t *buf, int len)
1052{
1053 int offs, pad_len;
1054
1055 if (c->min_io_size == 1)
1056 return 0;
1057 offs = c->leb_size - len;
1058 pad_len = ALIGN(offs, c->min_io_size) - offs;
1059 return pad_len;
1060}
1061
1062/**
1063 * get_lpt_node_type - return type (and node number) of a node in a buffer.
1064 * @c: UBIFS file-system description object
1065 * @buf: buffer
1066 * @node_num: node number is returned here
1067 */
1068static int get_lpt_node_type(struct ubifs_info *c, uint8_t *buf, int *node_num)
1069{
1070 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1071 int pos = 0, node_type;
1072
1073 node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1074 *node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1075 return node_type;
1076}
1077
1078/**
1079 * is_a_node - determine if a buffer contains a node.
1080 * @c: UBIFS file-system description object
1081 * @buf: buffer
1082 * @len: length of buffer
1083 *
1084 * This function returns %1 if the buffer contains a node or %0 if it does not.
1085 */
1086static int is_a_node(struct ubifs_info *c, uint8_t *buf, int len)
1087{
1088 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1089 int pos = 0, node_type, node_len;
1090 uint16_t crc, calc_crc;
1091
1092 node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1093 if (node_type == UBIFS_LPT_NOT_A_NODE)
1094 return 0;
1095 node_len = get_lpt_node_len(c, node_type);
1096 if (!node_len || node_len > len)
1097 return 0;
1098 pos = 0;
1099 addr = buf;
1100 crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
1101 calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1102 node_len - UBIFS_LPT_CRC_BYTES);
1103 if (crc != calc_crc)
1104 return 0;
1105 return 1;
1106}
1107
1108
1109/**
1110 * lpt_gc_lnum - garbage collect a LPT LEB.
1111 * @c: UBIFS file-system description object
1112 * @lnum: LEB number to garbage collect
1113 *
1114 * LPT garbage collection is used only for the "big" LPT model
1115 * (c->big_lpt == 1). Garbage collection simply involves marking all the nodes
1116 * in the LEB being garbage-collected as dirty. The dirty nodes are written
1117 * next commit, after which the LEB is free to be reused.
1118 *
1119 * This function returns %0 on success and a negative error code on failure.
1120 */
1121static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1122{
1123 int err, len = c->leb_size, node_type, node_num, node_len, offs;
1124 void *buf = c->lpt_buf;
1125
1126 dbg_lp("LEB %d", lnum);
1127 err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1128 if (err) {
1129 ubifs_err("cannot read LEB %d, error %d", lnum, err);
1130 return err;
1131 }
1132 while (1) {
1133 if (!is_a_node(c, buf, len)) {
1134 int pad_len;
1135
1136 pad_len = get_pad_len(c, buf, len);
1137 if (pad_len) {
1138 buf += pad_len;
1139 len -= pad_len;
1140 continue;
1141 }
1142 return 0;
1143 }
1144 node_type = get_lpt_node_type(c, buf, &node_num);
1145 node_len = get_lpt_node_len(c, node_type);
1146 offs = c->leb_size - len;
1147 ubifs_assert(node_len != 0);
1148 mutex_lock(&c->lp_mutex);
1149 err = make_node_dirty(c, node_type, node_num, lnum, offs);
1150 mutex_unlock(&c->lp_mutex);
1151 if (err)
1152 return err;
1153 buf += node_len;
1154 len -= node_len;
1155 }
1156 return 0;
1157}
1158
1159/**
1160 * lpt_gc - LPT garbage collection.
1161 * @c: UBIFS file-system description object
1162 *
1163 * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1164 * Returns %0 on success and a negative error code on failure.
1165 */
1166static int lpt_gc(struct ubifs_info *c)
1167{
1168 int i, lnum = -1, dirty = 0;
1169
1170 mutex_lock(&c->lp_mutex);
1171 for (i = 0; i < c->lpt_lebs; i++) {
1172 ubifs_assert(!c->ltab[i].tgc);
1173 if (i + c->lpt_first == c->nhead_lnum ||
1174 c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1175 continue;
1176 if (c->ltab[i].dirty > dirty) {
1177 dirty = c->ltab[i].dirty;
1178 lnum = i + c->lpt_first;
1179 }
1180 }
1181 mutex_unlock(&c->lp_mutex);
1182 if (lnum == -1)
1183 return -ENOSPC;
1184 return lpt_gc_lnum(c, lnum);
1185}
1186
1187/**
1188 * ubifs_lpt_start_commit - UBIFS commit starts.
1189 * @c: the UBIFS file-system description object
1190 *
1191 * This function has to be called when UBIFS starts the commit operation.
1192 * This function "freezes" all currently dirty LEB properties and does not
1193 * change them anymore. Further changes are saved and tracked separately
1194 * because they are not part of this commit. This function returns zero in case
1195 * of success and a negative error code in case of failure.
1196 */
1197int ubifs_lpt_start_commit(struct ubifs_info *c)
1198{
1199 int err, cnt;
1200
1201 dbg_lp("");
1202
1203 mutex_lock(&c->lp_mutex);
Adrian Hunter73944a62008-09-12 18:13:31 +03001204 err = dbg_chk_lpt_free_spc(c);
1205 if (err)
1206 goto out;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001207 err = dbg_check_ltab(c);
1208 if (err)
1209 goto out;
1210
1211 if (c->check_lpt_free) {
1212 /*
1213 * We ensure there is enough free space in
1214 * ubifs_lpt_post_commit() by marking nodes dirty. That
1215 * information is lost when we unmount, so we also need
1216 * to check free space once after mounting also.
1217 */
1218 c->check_lpt_free = 0;
1219 while (need_write_all(c)) {
1220 mutex_unlock(&c->lp_mutex);
1221 err = lpt_gc(c);
1222 if (err)
1223 return err;
1224 mutex_lock(&c->lp_mutex);
1225 }
1226 }
1227
1228 lpt_tgc_start(c);
1229
1230 if (!c->dirty_pn_cnt) {
1231 dbg_cmt("no cnodes to commit");
1232 err = 0;
1233 goto out;
1234 }
1235
1236 if (!c->big_lpt && need_write_all(c)) {
1237 /* If needed, write everything */
1238 err = make_tree_dirty(c);
1239 if (err)
1240 goto out;
1241 lpt_tgc_start(c);
1242 }
1243
1244 if (c->big_lpt)
1245 populate_lsave(c);
1246
1247 cnt = get_cnodes_to_commit(c);
1248 ubifs_assert(cnt != 0);
1249
1250 err = layout_cnodes(c);
1251 if (err)
1252 goto out;
1253
1254 /* Copy the LPT's own lprops for end commit to write */
1255 memcpy(c->ltab_cmt, c->ltab,
1256 sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1257 c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1258
1259out:
1260 mutex_unlock(&c->lp_mutex);
1261 return err;
1262}
1263
1264/**
1265 * free_obsolete_cnodes - free obsolete cnodes for commit end.
1266 * @c: UBIFS file-system description object
1267 */
1268static void free_obsolete_cnodes(struct ubifs_info *c)
1269{
1270 struct ubifs_cnode *cnode, *cnext;
1271
1272 cnext = c->lpt_cnext;
1273 if (!cnext)
1274 return;
1275 do {
1276 cnode = cnext;
1277 cnext = cnode->cnext;
1278 if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1279 kfree(cnode);
1280 else
1281 cnode->cnext = NULL;
1282 } while (cnext != c->lpt_cnext);
1283 c->lpt_cnext = NULL;
1284}
1285
1286/**
1287 * ubifs_lpt_end_commit - finish the commit operation.
1288 * @c: the UBIFS file-system description object
1289 *
1290 * This function has to be called when the commit operation finishes. It
1291 * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1292 * the media. Returns zero in case of success and a negative error code in case
1293 * of failure.
1294 */
1295int ubifs_lpt_end_commit(struct ubifs_info *c)
1296{
1297 int err;
1298
1299 dbg_lp("");
1300
1301 if (!c->lpt_cnext)
1302 return 0;
1303
1304 err = write_cnodes(c);
1305 if (err)
1306 return err;
1307
1308 mutex_lock(&c->lp_mutex);
1309 free_obsolete_cnodes(c);
1310 mutex_unlock(&c->lp_mutex);
1311
1312 return 0;
1313}
1314
1315/**
1316 * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1317 * @c: UBIFS file-system description object
1318 *
1319 * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1320 * commit for the "big" LPT model.
1321 */
1322int ubifs_lpt_post_commit(struct ubifs_info *c)
1323{
1324 int err;
1325
1326 mutex_lock(&c->lp_mutex);
1327 err = lpt_tgc_end(c);
1328 if (err)
1329 goto out;
1330 if (c->big_lpt)
1331 while (need_write_all(c)) {
1332 mutex_unlock(&c->lp_mutex);
1333 err = lpt_gc(c);
1334 if (err)
1335 return err;
1336 mutex_lock(&c->lp_mutex);
1337 }
1338out:
1339 mutex_unlock(&c->lp_mutex);
1340 return err;
1341}
1342
1343/**
1344 * first_nnode - find the first nnode in memory.
1345 * @c: UBIFS file-system description object
1346 * @hght: height of tree where nnode found is returned here
1347 *
1348 * This function returns a pointer to the nnode found or %NULL if no nnode is
1349 * found. This function is a helper to 'ubifs_lpt_free()'.
1350 */
1351static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1352{
1353 struct ubifs_nnode *nnode;
1354 int h, i, found;
1355
1356 nnode = c->nroot;
1357 *hght = 0;
1358 if (!nnode)
1359 return NULL;
1360 for (h = 1; h < c->lpt_hght; h++) {
1361 found = 0;
1362 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1363 if (nnode->nbranch[i].nnode) {
1364 found = 1;
1365 nnode = nnode->nbranch[i].nnode;
1366 *hght = h;
1367 break;
1368 }
1369 }
1370 if (!found)
1371 break;
1372 }
1373 return nnode;
1374}
1375
1376/**
1377 * next_nnode - find the next nnode in memory.
1378 * @c: UBIFS file-system description object
1379 * @nnode: nnode from which to start.
1380 * @hght: height of tree where nnode is, is passed and returned here
1381 *
1382 * This function returns a pointer to the nnode found or %NULL if no nnode is
1383 * found. This function is a helper to 'ubifs_lpt_free()'.
1384 */
1385static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1386 struct ubifs_nnode *nnode, int *hght)
1387{
1388 struct ubifs_nnode *parent;
1389 int iip, h, i, found;
1390
1391 parent = nnode->parent;
1392 if (!parent)
1393 return NULL;
1394 if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1395 *hght -= 1;
1396 return parent;
1397 }
1398 for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1399 nnode = parent->nbranch[iip].nnode;
1400 if (nnode)
1401 break;
1402 }
1403 if (!nnode) {
1404 *hght -= 1;
1405 return parent;
1406 }
1407 for (h = *hght + 1; h < c->lpt_hght; h++) {
1408 found = 0;
1409 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1410 if (nnode->nbranch[i].nnode) {
1411 found = 1;
1412 nnode = nnode->nbranch[i].nnode;
1413 *hght = h;
1414 break;
1415 }
1416 }
1417 if (!found)
1418 break;
1419 }
1420 return nnode;
1421}
1422
1423/**
1424 * ubifs_lpt_free - free resources owned by the LPT.
1425 * @c: UBIFS file-system description object
1426 * @wr_only: free only resources used for writing
1427 */
1428void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1429{
1430 struct ubifs_nnode *nnode;
1431 int i, hght;
1432
1433 /* Free write-only things first */
1434
1435 free_obsolete_cnodes(c); /* Leftover from a failed commit */
1436
1437 vfree(c->ltab_cmt);
1438 c->ltab_cmt = NULL;
1439 vfree(c->lpt_buf);
1440 c->lpt_buf = NULL;
1441 kfree(c->lsave);
1442 c->lsave = NULL;
1443
1444 if (wr_only)
1445 return;
1446
1447 /* Now free the rest */
1448
1449 nnode = first_nnode(c, &hght);
1450 while (nnode) {
1451 for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1452 kfree(nnode->nbranch[i].nnode);
1453 nnode = next_nnode(c, nnode, &hght);
1454 }
1455 for (i = 0; i < LPROPS_HEAP_CNT; i++)
1456 kfree(c->lpt_heap[i].arr);
1457 kfree(c->dirty_idx.arr);
1458 kfree(c->nroot);
1459 vfree(c->ltab);
1460 kfree(c->lpt_nod_buf);
1461}
1462
1463#ifdef CONFIG_UBIFS_FS_DEBUG
1464
1465/**
1466 * dbg_is_all_ff - determine if a buffer contains only 0xff bytes.
1467 * @buf: buffer
1468 * @len: buffer length
1469 */
1470static int dbg_is_all_ff(uint8_t *buf, int len)
1471{
1472 int i;
1473
1474 for (i = 0; i < len; i++)
1475 if (buf[i] != 0xff)
1476 return 0;
1477 return 1;
1478}
1479
1480/**
1481 * dbg_is_nnode_dirty - determine if a nnode is dirty.
1482 * @c: the UBIFS file-system description object
1483 * @lnum: LEB number where nnode was written
1484 * @offs: offset where nnode was written
1485 */
1486static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1487{
1488 struct ubifs_nnode *nnode;
1489 int hght;
1490
1491 /* Entire tree is in memory so first_nnode / next_nnode are ok */
1492 nnode = first_nnode(c, &hght);
1493 for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1494 struct ubifs_nbranch *branch;
1495
1496 cond_resched();
1497 if (nnode->parent) {
1498 branch = &nnode->parent->nbranch[nnode->iip];
1499 if (branch->lnum != lnum || branch->offs != offs)
1500 continue;
1501 if (test_bit(DIRTY_CNODE, &nnode->flags))
1502 return 1;
1503 return 0;
1504 } else {
1505 if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1506 continue;
1507 if (test_bit(DIRTY_CNODE, &nnode->flags))
1508 return 1;
1509 return 0;
1510 }
1511 }
1512 return 1;
1513}
1514
1515/**
1516 * dbg_is_pnode_dirty - determine if a pnode is dirty.
1517 * @c: the UBIFS file-system description object
1518 * @lnum: LEB number where pnode was written
1519 * @offs: offset where pnode was written
1520 */
1521static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1522{
1523 int i, cnt;
1524
1525 cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1526 for (i = 0; i < cnt; i++) {
1527 struct ubifs_pnode *pnode;
1528 struct ubifs_nbranch *branch;
1529
1530 cond_resched();
1531 pnode = pnode_lookup(c, i);
1532 if (IS_ERR(pnode))
1533 return PTR_ERR(pnode);
1534 branch = &pnode->parent->nbranch[pnode->iip];
1535 if (branch->lnum != lnum || branch->offs != offs)
1536 continue;
1537 if (test_bit(DIRTY_CNODE, &pnode->flags))
1538 return 1;
1539 return 0;
1540 }
1541 return 1;
1542}
1543
1544/**
1545 * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1546 * @c: the UBIFS file-system description object
1547 * @lnum: LEB number where ltab node was written
1548 * @offs: offset where ltab node was written
1549 */
1550static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1551{
1552 if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1553 return 1;
1554 return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1555}
1556
1557/**
1558 * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1559 * @c: the UBIFS file-system description object
1560 * @lnum: LEB number where lsave node was written
1561 * @offs: offset where lsave node was written
1562 */
1563static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1564{
1565 if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1566 return 1;
1567 return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1568}
1569
1570/**
1571 * dbg_is_node_dirty - determine if a node is dirty.
1572 * @c: the UBIFS file-system description object
1573 * @node_type: node type
1574 * @lnum: LEB number where node was written
1575 * @offs: offset where node was written
1576 */
1577static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1578 int offs)
1579{
1580 switch (node_type) {
1581 case UBIFS_LPT_NNODE:
1582 return dbg_is_nnode_dirty(c, lnum, offs);
1583 case UBIFS_LPT_PNODE:
1584 return dbg_is_pnode_dirty(c, lnum, offs);
1585 case UBIFS_LPT_LTAB:
1586 return dbg_is_ltab_dirty(c, lnum, offs);
1587 case UBIFS_LPT_LSAVE:
1588 return dbg_is_lsave_dirty(c, lnum, offs);
1589 }
1590 return 1;
1591}
1592
1593/**
1594 * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1595 * @c: the UBIFS file-system description object
1596 * @lnum: LEB number where node was written
1597 * @offs: offset where node was written
1598 *
1599 * This function returns %0 on success and a negative error code on failure.
1600 */
1601static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1602{
1603 int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1604 int ret;
1605 void *buf = c->dbg_buf;
1606
1607 dbg_lp("LEB %d", lnum);
1608 err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1609 if (err) {
1610 dbg_msg("ubi_read failed, LEB %d, error %d", lnum, err);
1611 return err;
1612 }
1613 while (1) {
1614 if (!is_a_node(c, buf, len)) {
1615 int i, pad_len;
1616
1617 pad_len = get_pad_len(c, buf, len);
1618 if (pad_len) {
1619 buf += pad_len;
1620 len -= pad_len;
1621 dirty += pad_len;
1622 continue;
1623 }
1624 if (!dbg_is_all_ff(buf, len)) {
1625 dbg_msg("invalid empty space in LEB %d at %d",
1626 lnum, c->leb_size - len);
1627 err = -EINVAL;
1628 }
1629 i = lnum - c->lpt_first;
1630 if (len != c->ltab[i].free) {
1631 dbg_msg("invalid free space in LEB %d "
1632 "(free %d, expected %d)",
1633 lnum, len, c->ltab[i].free);
1634 err = -EINVAL;
1635 }
1636 if (dirty != c->ltab[i].dirty) {
1637 dbg_msg("invalid dirty space in LEB %d "
1638 "(dirty %d, expected %d)",
1639 lnum, dirty, c->ltab[i].dirty);
1640 err = -EINVAL;
1641 }
1642 return err;
1643 }
1644 node_type = get_lpt_node_type(c, buf, &node_num);
1645 node_len = get_lpt_node_len(c, node_type);
1646 ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1647 if (ret == 1)
1648 dirty += node_len;
1649 buf += node_len;
1650 len -= node_len;
1651 }
1652}
1653
1654/**
1655 * dbg_check_ltab - check the free and dirty space in the ltab.
1656 * @c: the UBIFS file-system description object
1657 *
1658 * This function returns %0 on success and a negative error code on failure.
1659 */
1660int dbg_check_ltab(struct ubifs_info *c)
1661{
1662 int lnum, err, i, cnt;
1663
1664 if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1665 return 0;
1666
1667 /* Bring the entire tree into memory */
1668 cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1669 for (i = 0; i < cnt; i++) {
1670 struct ubifs_pnode *pnode;
1671
1672 pnode = pnode_lookup(c, i);
1673 if (IS_ERR(pnode))
1674 return PTR_ERR(pnode);
1675 cond_resched();
1676 }
1677
1678 /* Check nodes */
1679 err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1680 if (err)
1681 return err;
1682
1683 /* Check each LEB */
1684 for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1685 err = dbg_check_ltab_lnum(c, lnum);
1686 if (err) {
1687 dbg_err("failed at LEB %d", lnum);
1688 return err;
1689 }
1690 }
1691
1692 dbg_lp("succeeded");
1693 return 0;
1694}
1695
Adrian Hunter73944a62008-09-12 18:13:31 +03001696/**
1697 * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1698 * @c: the UBIFS file-system description object
1699 *
1700 * This function returns %0 on success and a negative error code on failure.
1701 */
1702int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1703{
1704 long long free = 0;
1705 int i;
1706
1707 for (i = 0; i < c->lpt_lebs; i++) {
1708 if (c->ltab[i].tgc || c->ltab[i].cmt)
1709 continue;
1710 if (i + c->lpt_first == c->nhead_lnum)
1711 free += c->leb_size - c->nhead_offs;
1712 else if (c->ltab[i].free == c->leb_size)
1713 free += c->leb_size;
1714 }
1715 if (free < c->lpt_sz) {
1716 dbg_err("LPT space error: free %lld lpt_sz %lld",
1717 free, c->lpt_sz);
1718 dbg_dump_lpt_info(c);
1719 return -EINVAL;
1720 }
1721 return 0;
1722}
1723
1724/**
1725 * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1726 * @c: the UBIFS file-system description object
1727 * @action: action
1728 * @len: length written
1729 *
1730 * This function returns %0 on success and a negative error code on failure.
1731 */
1732int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1733{
1734 long long chk_lpt_sz, lpt_sz;
1735 int err = 0;
1736
1737 switch (action) {
1738 case 0:
1739 c->chk_lpt_sz = 0;
1740 c->chk_lpt_sz2 = 0;
1741 c->chk_lpt_lebs = 0;
1742 c->chk_lpt_wastage = 0;
1743 if (c->dirty_pn_cnt > c->pnode_cnt) {
1744 dbg_err("dirty pnodes %d exceed max %d",
1745 c->dirty_pn_cnt, c->pnode_cnt);
1746 err = -EINVAL;
1747 }
1748 if (c->dirty_nn_cnt > c->nnode_cnt) {
1749 dbg_err("dirty nnodes %d exceed max %d",
1750 c->dirty_nn_cnt, c->nnode_cnt);
1751 err = -EINVAL;
1752 }
1753 return err;
1754 case 1:
1755 c->chk_lpt_sz += len;
1756 return 0;
1757 case 2:
1758 c->chk_lpt_sz += len;
1759 c->chk_lpt_wastage += len;
1760 c->chk_lpt_lebs += 1;
1761 return 0;
1762 case 3:
1763 chk_lpt_sz = c->leb_size;
1764 chk_lpt_sz *= c->chk_lpt_lebs;
1765 chk_lpt_sz += len - c->nhead_offs;
1766 if (c->chk_lpt_sz != chk_lpt_sz) {
1767 dbg_err("LPT wrote %lld but space used was %lld",
1768 c->chk_lpt_sz, chk_lpt_sz);
1769 err = -EINVAL;
1770 }
1771 if (c->chk_lpt_sz > c->lpt_sz) {
1772 dbg_err("LPT wrote %lld but lpt_sz is %lld",
1773 c->chk_lpt_sz, c->lpt_sz);
1774 err = -EINVAL;
1775 }
1776 if (c->chk_lpt_sz2 && c->chk_lpt_sz != c->chk_lpt_sz2) {
1777 dbg_err("LPT layout size %lld but wrote %lld",
1778 c->chk_lpt_sz, c->chk_lpt_sz2);
1779 err = -EINVAL;
1780 }
1781 if (c->chk_lpt_sz2 && c->new_nhead_offs != len) {
1782 dbg_err("LPT new nhead offs: expected %d was %d",
1783 c->new_nhead_offs, len);
1784 err = -EINVAL;
1785 }
1786 lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1787 lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1788 lpt_sz += c->ltab_sz;
1789 if (c->big_lpt)
1790 lpt_sz += c->lsave_sz;
1791 if (c->chk_lpt_sz - c->chk_lpt_wastage > lpt_sz) {
1792 dbg_err("LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1793 c->chk_lpt_sz, c->chk_lpt_wastage, lpt_sz);
1794 err = -EINVAL;
1795 }
1796 if (err)
1797 dbg_dump_lpt_info(c);
1798 c->chk_lpt_sz2 = c->chk_lpt_sz;
1799 c->chk_lpt_sz = 0;
1800 c->chk_lpt_wastage = 0;
1801 c->chk_lpt_lebs = 0;
1802 c->new_nhead_offs = len;
1803 return err;
1804 case 4:
1805 c->chk_lpt_sz += len;
1806 c->chk_lpt_wastage += len;
1807 return 0;
1808 default:
1809 return -EINVAL;
1810 }
1811}
1812
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001813#endif /* CONFIG_UBIFS_FS_DEBUG */