blob: 13b9c1fa8961b42ca672ffcb752fb3943b2f6916 [file] [log] [blame]
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
Christoffer Dall342cd0a2013-01-20 18:28:06 -050018
19#include <linux/mman.h>
20#include <linux/kvm_host.h>
21#include <linux/io.h>
Christoffer Dallad361f02012-11-01 17:14:45 +010022#include <linux/hugetlb.h>
Christoffer Dall45e96ea2013-01-20 18:43:58 -050023#include <trace/events/kvm.h>
Christoffer Dall342cd0a2013-01-20 18:28:06 -050024#include <asm/pgalloc.h>
Christoffer Dall94f8e642013-01-20 18:28:12 -050025#include <asm/cacheflush.h>
Christoffer Dall342cd0a2013-01-20 18:28:06 -050026#include <asm/kvm_arm.h>
27#include <asm/kvm_mmu.h>
Christoffer Dall45e96ea2013-01-20 18:43:58 -050028#include <asm/kvm_mmio.h>
Christoffer Dalld5d81842013-01-20 18:28:07 -050029#include <asm/kvm_asm.h>
Christoffer Dall94f8e642013-01-20 18:28:12 -050030#include <asm/kvm_emulate.h>
Marc Zyngier1e947ba2015-01-29 11:59:54 +000031#include <asm/virt.h>
Christoffer Dalld5d81842013-01-20 18:28:07 -050032
33#include "trace.h"
Christoffer Dall342cd0a2013-01-20 18:28:06 -050034
Marc Zyngier5a677ce2013-04-12 19:12:06 +010035static pgd_t *boot_hyp_pgd;
Marc Zyngier2fb41052013-04-12 19:12:03 +010036static pgd_t *hyp_pgd;
Ard Biesheuvele4c5a682015-03-19 16:42:28 +000037static pgd_t *merged_hyp_pgd;
Christoffer Dall342cd0a2013-01-20 18:28:06 -050038static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
39
Marc Zyngier5a677ce2013-04-12 19:12:06 +010040static unsigned long hyp_idmap_start;
41static unsigned long hyp_idmap_end;
42static phys_addr_t hyp_idmap_vector;
43
Suzuki K Poulose9163ee232016-03-22 17:01:21 +000044#define S2_PGD_SIZE (PTRS_PER_S2_PGD * sizeof(pgd_t))
Christoffer Dall38f791a2014-10-10 12:14:28 +020045#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
Mark Salter5d4e08c2014-03-28 14:25:19 +000046
Mario Smarduch15a49a42015-01-15 15:58:58 -080047#define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
48#define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
49
50static bool memslot_is_logging(struct kvm_memory_slot *memslot)
51{
Mario Smarduch15a49a42015-01-15 15:58:58 -080052 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
Mario Smarduch72760302015-01-15 15:59:01 -080053}
54
55/**
56 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
57 * @kvm: pointer to kvm structure.
58 *
59 * Interface to HYP function to flush all VM TLB entries
60 */
61void kvm_flush_remote_tlbs(struct kvm *kvm)
62{
63 kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
Mario Smarduch15a49a42015-01-15 15:58:58 -080064}
Christoffer Dallad361f02012-11-01 17:14:45 +010065
Marc Zyngier48762762013-01-28 15:27:00 +000066static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
Christoffer Dalld5d81842013-01-20 18:28:07 -050067{
Suzuki K Poulose8684e702016-03-22 17:14:25 +000068 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
Christoffer Dalld5d81842013-01-20 18:28:07 -050069}
70
Marc Zyngier363ef892014-12-19 16:48:06 +000071/*
72 * D-Cache management functions. They take the page table entries by
73 * value, as they are flushing the cache using the kernel mapping (or
74 * kmap on 32bit).
75 */
76static void kvm_flush_dcache_pte(pte_t pte)
77{
78 __kvm_flush_dcache_pte(pte);
79}
80
81static void kvm_flush_dcache_pmd(pmd_t pmd)
82{
83 __kvm_flush_dcache_pmd(pmd);
84}
85
86static void kvm_flush_dcache_pud(pud_t pud)
87{
88 __kvm_flush_dcache_pud(pud);
89}
90
Ard Biesheuvele6fab542015-11-10 15:11:20 +010091static bool kvm_is_device_pfn(unsigned long pfn)
92{
93 return !pfn_valid(pfn);
94}
95
Mario Smarduch15a49a42015-01-15 15:58:58 -080096/**
97 * stage2_dissolve_pmd() - clear and flush huge PMD entry
98 * @kvm: pointer to kvm structure.
99 * @addr: IPA
100 * @pmd: pmd pointer for IPA
101 *
102 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
103 * pages in the range dirty.
104 */
105static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
106{
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +0000107 if (!pmd_thp_or_huge(*pmd))
Mario Smarduch15a49a42015-01-15 15:58:58 -0800108 return;
109
110 pmd_clear(pmd);
111 kvm_tlb_flush_vmid_ipa(kvm, addr);
112 put_page(virt_to_page(pmd));
113}
114
Christoffer Dalld5d81842013-01-20 18:28:07 -0500115static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
116 int min, int max)
117{
118 void *page;
119
120 BUG_ON(max > KVM_NR_MEM_OBJS);
121 if (cache->nobjs >= min)
122 return 0;
123 while (cache->nobjs < max) {
124 page = (void *)__get_free_page(PGALLOC_GFP);
125 if (!page)
126 return -ENOMEM;
127 cache->objects[cache->nobjs++] = page;
128 }
129 return 0;
130}
131
132static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
133{
134 while (mc->nobjs)
135 free_page((unsigned long)mc->objects[--mc->nobjs]);
136}
137
138static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
139{
140 void *p;
141
142 BUG_ON(!mc || !mc->nobjs);
143 p = mc->objects[--mc->nobjs];
144 return p;
145}
146
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000147static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
Marc Zyngier979acd52013-08-06 13:05:48 +0100148{
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000149 pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
150 stage2_pgd_clear(pgd);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200151 kvm_tlb_flush_vmid_ipa(kvm, addr);
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000152 stage2_pud_free(pud_table);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200153 put_page(virt_to_page(pgd));
Marc Zyngier979acd52013-08-06 13:05:48 +0100154}
155
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000156static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500157{
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000158 pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
159 VM_BUG_ON(stage2_pud_huge(*pud));
160 stage2_pud_clear(pud);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200161 kvm_tlb_flush_vmid_ipa(kvm, addr);
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000162 stage2_pmd_free(pmd_table);
Marc Zyngier4f728272013-04-12 19:12:05 +0100163 put_page(virt_to_page(pud));
164}
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500165
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000166static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
Marc Zyngier4f728272013-04-12 19:12:05 +0100167{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200168 pte_t *pte_table = pte_offset_kernel(pmd, 0);
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +0000169 VM_BUG_ON(pmd_thp_or_huge(*pmd));
Christoffer Dall4f853a72014-05-09 23:31:31 +0200170 pmd_clear(pmd);
171 kvm_tlb_flush_vmid_ipa(kvm, addr);
172 pte_free_kernel(NULL, pte_table);
Marc Zyngier4f728272013-04-12 19:12:05 +0100173 put_page(virt_to_page(pmd));
174}
175
Marc Zyngier363ef892014-12-19 16:48:06 +0000176/*
177 * Unmapping vs dcache management:
178 *
179 * If a guest maps certain memory pages as uncached, all writes will
180 * bypass the data cache and go directly to RAM. However, the CPUs
181 * can still speculate reads (not writes) and fill cache lines with
182 * data.
183 *
184 * Those cache lines will be *clean* cache lines though, so a
185 * clean+invalidate operation is equivalent to an invalidate
186 * operation, because no cache lines are marked dirty.
187 *
188 * Those clean cache lines could be filled prior to an uncached write
189 * by the guest, and the cache coherent IO subsystem would therefore
190 * end up writing old data to disk.
191 *
192 * This is why right after unmapping a page/section and invalidating
193 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
194 * the IO subsystem will never hit in the cache.
195 */
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000196static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
Christoffer Dall4f853a72014-05-09 23:31:31 +0200197 phys_addr_t addr, phys_addr_t end)
Marc Zyngier4f728272013-04-12 19:12:05 +0100198{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200199 phys_addr_t start_addr = addr;
200 pte_t *pte, *start_pte;
201
202 start_pte = pte = pte_offset_kernel(pmd, addr);
203 do {
204 if (!pte_none(*pte)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000205 pte_t old_pte = *pte;
206
Christoffer Dall4f853a72014-05-09 23:31:31 +0200207 kvm_set_pte(pte, __pte(0));
Christoffer Dall4f853a72014-05-09 23:31:31 +0200208 kvm_tlb_flush_vmid_ipa(kvm, addr);
Marc Zyngier363ef892014-12-19 16:48:06 +0000209
210 /* No need to invalidate the cache for device mappings */
Ard Biesheuvel0de58f82015-12-03 09:25:22 +0100211 if (!kvm_is_device_pfn(pte_pfn(old_pte)))
Marc Zyngier363ef892014-12-19 16:48:06 +0000212 kvm_flush_dcache_pte(old_pte);
213
214 put_page(virt_to_page(pte));
Christoffer Dall4f853a72014-05-09 23:31:31 +0200215 }
216 } while (pte++, addr += PAGE_SIZE, addr != end);
217
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000218 if (stage2_pte_table_empty(start_pte))
219 clear_stage2_pmd_entry(kvm, pmd, start_addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500220}
221
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000222static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
Christoffer Dall4f853a72014-05-09 23:31:31 +0200223 phys_addr_t addr, phys_addr_t end)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500224{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200225 phys_addr_t next, start_addr = addr;
226 pmd_t *pmd, *start_pmd;
Marc Zyngier000d3992013-03-05 02:43:17 +0000227
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000228 start_pmd = pmd = stage2_pmd_offset(pud, addr);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200229 do {
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000230 next = stage2_pmd_addr_end(addr, end);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200231 if (!pmd_none(*pmd)) {
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +0000232 if (pmd_thp_or_huge(*pmd)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000233 pmd_t old_pmd = *pmd;
234
Christoffer Dall4f853a72014-05-09 23:31:31 +0200235 pmd_clear(pmd);
236 kvm_tlb_flush_vmid_ipa(kvm, addr);
Marc Zyngier363ef892014-12-19 16:48:06 +0000237
238 kvm_flush_dcache_pmd(old_pmd);
239
Christoffer Dall4f853a72014-05-09 23:31:31 +0200240 put_page(virt_to_page(pmd));
241 } else {
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000242 unmap_stage2_ptes(kvm, pmd, addr, next);
Marc Zyngier4f728272013-04-12 19:12:05 +0100243 }
244 }
Christoffer Dall4f853a72014-05-09 23:31:31 +0200245 } while (pmd++, addr = next, addr != end);
Marc Zyngier4f728272013-04-12 19:12:05 +0100246
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000247 if (stage2_pmd_table_empty(start_pmd))
248 clear_stage2_pud_entry(kvm, pud, start_addr);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200249}
250
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000251static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
Christoffer Dall4f853a72014-05-09 23:31:31 +0200252 phys_addr_t addr, phys_addr_t end)
253{
254 phys_addr_t next, start_addr = addr;
255 pud_t *pud, *start_pud;
256
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000257 start_pud = pud = stage2_pud_offset(pgd, addr);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200258 do {
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000259 next = stage2_pud_addr_end(addr, end);
260 if (!stage2_pud_none(*pud)) {
261 if (stage2_pud_huge(*pud)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000262 pud_t old_pud = *pud;
263
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000264 stage2_pud_clear(pud);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200265 kvm_tlb_flush_vmid_ipa(kvm, addr);
Marc Zyngier363ef892014-12-19 16:48:06 +0000266 kvm_flush_dcache_pud(old_pud);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200267 put_page(virt_to_page(pud));
268 } else {
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000269 unmap_stage2_pmds(kvm, pud, addr, next);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200270 }
271 }
272 } while (pud++, addr = next, addr != end);
273
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000274 if (stage2_pud_table_empty(start_pud))
275 clear_stage2_pgd_entry(kvm, pgd, start_addr);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200276}
277
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000278/**
279 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
280 * @kvm: The VM pointer
281 * @start: The intermediate physical base address of the range to unmap
282 * @size: The size of the area to unmap
283 *
284 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
285 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
286 * destroying the VM), otherwise another faulting VCPU may come in and mess
287 * with things behind our backs.
288 */
289static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
Christoffer Dall4f853a72014-05-09 23:31:31 +0200290{
291 pgd_t *pgd;
292 phys_addr_t addr = start, end = start + size;
293 phys_addr_t next;
294
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000295 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200296 do {
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000297 next = stage2_pgd_addr_end(addr, end);
298 if (!stage2_pgd_none(*pgd))
299 unmap_stage2_puds(kvm, pgd, addr, next);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200300 } while (pgd++, addr = next, addr != end);
Marc Zyngier000d3992013-03-05 02:43:17 +0000301}
302
Marc Zyngier9d218a12014-01-15 12:50:23 +0000303static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
304 phys_addr_t addr, phys_addr_t end)
305{
306 pte_t *pte;
307
308 pte = pte_offset_kernel(pmd, addr);
309 do {
Ard Biesheuvel0de58f82015-12-03 09:25:22 +0100310 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
Marc Zyngier363ef892014-12-19 16:48:06 +0000311 kvm_flush_dcache_pte(*pte);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000312 } while (pte++, addr += PAGE_SIZE, addr != end);
313}
314
315static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
316 phys_addr_t addr, phys_addr_t end)
317{
318 pmd_t *pmd;
319 phys_addr_t next;
320
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000321 pmd = stage2_pmd_offset(pud, addr);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000322 do {
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000323 next = stage2_pmd_addr_end(addr, end);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000324 if (!pmd_none(*pmd)) {
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +0000325 if (pmd_thp_or_huge(*pmd))
Marc Zyngier363ef892014-12-19 16:48:06 +0000326 kvm_flush_dcache_pmd(*pmd);
327 else
Marc Zyngier9d218a12014-01-15 12:50:23 +0000328 stage2_flush_ptes(kvm, pmd, addr, next);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000329 }
330 } while (pmd++, addr = next, addr != end);
331}
332
333static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
334 phys_addr_t addr, phys_addr_t end)
335{
336 pud_t *pud;
337 phys_addr_t next;
338
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000339 pud = stage2_pud_offset(pgd, addr);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000340 do {
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000341 next = stage2_pud_addr_end(addr, end);
342 if (!stage2_pud_none(*pud)) {
343 if (stage2_pud_huge(*pud))
Marc Zyngier363ef892014-12-19 16:48:06 +0000344 kvm_flush_dcache_pud(*pud);
345 else
Marc Zyngier9d218a12014-01-15 12:50:23 +0000346 stage2_flush_pmds(kvm, pud, addr, next);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000347 }
348 } while (pud++, addr = next, addr != end);
349}
350
351static void stage2_flush_memslot(struct kvm *kvm,
352 struct kvm_memory_slot *memslot)
353{
354 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
355 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
356 phys_addr_t next;
357 pgd_t *pgd;
358
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000359 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000360 do {
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000361 next = stage2_pgd_addr_end(addr, end);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000362 stage2_flush_puds(kvm, pgd, addr, next);
363 } while (pgd++, addr = next, addr != end);
364}
365
366/**
367 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
368 * @kvm: The struct kvm pointer
369 *
370 * Go through the stage 2 page tables and invalidate any cache lines
371 * backing memory already mapped to the VM.
372 */
Marc Zyngier3c1e7162014-12-19 16:05:31 +0000373static void stage2_flush_vm(struct kvm *kvm)
Marc Zyngier9d218a12014-01-15 12:50:23 +0000374{
375 struct kvm_memslots *slots;
376 struct kvm_memory_slot *memslot;
377 int idx;
378
379 idx = srcu_read_lock(&kvm->srcu);
380 spin_lock(&kvm->mmu_lock);
381
382 slots = kvm_memslots(kvm);
383 kvm_for_each_memslot(memslot, slots)
384 stage2_flush_memslot(kvm, memslot);
385
386 spin_unlock(&kvm->mmu_lock);
387 srcu_read_unlock(&kvm->srcu, idx);
388}
389
Suzuki K Poulose64f32492016-03-22 18:56:21 +0000390static void clear_hyp_pgd_entry(pgd_t *pgd)
391{
392 pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
393 pgd_clear(pgd);
394 pud_free(NULL, pud_table);
395 put_page(virt_to_page(pgd));
396}
397
398static void clear_hyp_pud_entry(pud_t *pud)
399{
400 pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
401 VM_BUG_ON(pud_huge(*pud));
402 pud_clear(pud);
403 pmd_free(NULL, pmd_table);
404 put_page(virt_to_page(pud));
405}
406
407static void clear_hyp_pmd_entry(pmd_t *pmd)
408{
409 pte_t *pte_table = pte_offset_kernel(pmd, 0);
410 VM_BUG_ON(pmd_thp_or_huge(*pmd));
411 pmd_clear(pmd);
412 pte_free_kernel(NULL, pte_table);
413 put_page(virt_to_page(pmd));
414}
415
416static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
417{
418 pte_t *pte, *start_pte;
419
420 start_pte = pte = pte_offset_kernel(pmd, addr);
421 do {
422 if (!pte_none(*pte)) {
423 kvm_set_pte(pte, __pte(0));
424 put_page(virt_to_page(pte));
425 }
426 } while (pte++, addr += PAGE_SIZE, addr != end);
427
428 if (hyp_pte_table_empty(start_pte))
429 clear_hyp_pmd_entry(pmd);
430}
431
432static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
433{
434 phys_addr_t next;
435 pmd_t *pmd, *start_pmd;
436
437 start_pmd = pmd = pmd_offset(pud, addr);
438 do {
439 next = pmd_addr_end(addr, end);
440 /* Hyp doesn't use huge pmds */
441 if (!pmd_none(*pmd))
442 unmap_hyp_ptes(pmd, addr, next);
443 } while (pmd++, addr = next, addr != end);
444
445 if (hyp_pmd_table_empty(start_pmd))
446 clear_hyp_pud_entry(pud);
447}
448
449static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
450{
451 phys_addr_t next;
452 pud_t *pud, *start_pud;
453
454 start_pud = pud = pud_offset(pgd, addr);
455 do {
456 next = pud_addr_end(addr, end);
457 /* Hyp doesn't use huge puds */
458 if (!pud_none(*pud))
459 unmap_hyp_pmds(pud, addr, next);
460 } while (pud++, addr = next, addr != end);
461
462 if (hyp_pud_table_empty(start_pud))
463 clear_hyp_pgd_entry(pgd);
464}
465
466static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
467{
468 pgd_t *pgd;
469 phys_addr_t addr = start, end = start + size;
470 phys_addr_t next;
471
472 /*
473 * We don't unmap anything from HYP, except at the hyp tear down.
474 * Hence, we don't have to invalidate the TLBs here.
475 */
476 pgd = pgdp + pgd_index(addr);
477 do {
478 next = pgd_addr_end(addr, end);
479 if (!pgd_none(*pgd))
480 unmap_hyp_puds(pgd, addr, next);
481 } while (pgd++, addr = next, addr != end);
482}
483
Marc Zyngier000d3992013-03-05 02:43:17 +0000484/**
Marc Zyngier4f728272013-04-12 19:12:05 +0100485 * free_hyp_pgds - free Hyp-mode page tables
Marc Zyngier000d3992013-03-05 02:43:17 +0000486 *
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100487 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
488 * therefore contains either mappings in the kernel memory area (above
489 * PAGE_OFFSET), or device mappings in the vmalloc range (from
490 * VMALLOC_START to VMALLOC_END).
491 *
492 * boot_hyp_pgd should only map two pages for the init code.
Marc Zyngier000d3992013-03-05 02:43:17 +0000493 */
Marc Zyngier4f728272013-04-12 19:12:05 +0100494void free_hyp_pgds(void)
Marc Zyngier000d3992013-03-05 02:43:17 +0000495{
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500496 unsigned long addr;
497
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100498 mutex_lock(&kvm_hyp_pgd_mutex);
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100499
Marc Zyngier26781f9c2016-06-30 18:40:46 +0100500 if (boot_hyp_pgd) {
501 unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
502 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
503 boot_hyp_pgd = NULL;
504 }
505
Marc Zyngier4f728272013-04-12 19:12:05 +0100506 if (hyp_pgd) {
Marc Zyngier26781f9c2016-06-30 18:40:46 +0100507 unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE);
Marc Zyngier4f728272013-04-12 19:12:05 +0100508 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
Marc Zyngier6c41a412016-06-30 18:40:51 +0100509 unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
Marc Zyngier4f728272013-04-12 19:12:05 +0100510 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
Marc Zyngier6c41a412016-06-30 18:40:51 +0100511 unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100512
Christoffer Dall38f791a2014-10-10 12:14:28 +0200513 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100514 hyp_pgd = NULL;
Marc Zyngier4f728272013-04-12 19:12:05 +0100515 }
Ard Biesheuvele4c5a682015-03-19 16:42:28 +0000516 if (merged_hyp_pgd) {
517 clear_page(merged_hyp_pgd);
518 free_page((unsigned long)merged_hyp_pgd);
519 merged_hyp_pgd = NULL;
520 }
Marc Zyngier4f728272013-04-12 19:12:05 +0100521
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500522 mutex_unlock(&kvm_hyp_pgd_mutex);
523}
524
525static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
Marc Zyngier6060df82013-04-12 19:12:01 +0100526 unsigned long end, unsigned long pfn,
527 pgprot_t prot)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500528{
529 pte_t *pte;
530 unsigned long addr;
531
Marc Zyngier3562c762013-04-12 19:12:02 +0100532 addr = start;
533 do {
Marc Zyngier6060df82013-04-12 19:12:01 +0100534 pte = pte_offset_kernel(pmd, addr);
535 kvm_set_pte(pte, pfn_pte(pfn, prot));
Marc Zyngier4f728272013-04-12 19:12:05 +0100536 get_page(virt_to_page(pte));
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100537 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
Marc Zyngier6060df82013-04-12 19:12:01 +0100538 pfn++;
Marc Zyngier3562c762013-04-12 19:12:02 +0100539 } while (addr += PAGE_SIZE, addr != end);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500540}
541
542static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
Marc Zyngier6060df82013-04-12 19:12:01 +0100543 unsigned long end, unsigned long pfn,
544 pgprot_t prot)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500545{
546 pmd_t *pmd;
547 pte_t *pte;
548 unsigned long addr, next;
549
Marc Zyngier3562c762013-04-12 19:12:02 +0100550 addr = start;
551 do {
Marc Zyngier6060df82013-04-12 19:12:01 +0100552 pmd = pmd_offset(pud, addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500553
554 BUG_ON(pmd_sect(*pmd));
555
556 if (pmd_none(*pmd)) {
Marc Zyngier6060df82013-04-12 19:12:01 +0100557 pte = pte_alloc_one_kernel(NULL, addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500558 if (!pte) {
559 kvm_err("Cannot allocate Hyp pte\n");
560 return -ENOMEM;
561 }
562 pmd_populate_kernel(NULL, pmd, pte);
Marc Zyngier4f728272013-04-12 19:12:05 +0100563 get_page(virt_to_page(pmd));
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100564 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500565 }
566
567 next = pmd_addr_end(addr, end);
568
Marc Zyngier6060df82013-04-12 19:12:01 +0100569 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
570 pfn += (next - addr) >> PAGE_SHIFT;
Marc Zyngier3562c762013-04-12 19:12:02 +0100571 } while (addr = next, addr != end);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500572
573 return 0;
574}
575
Christoffer Dall38f791a2014-10-10 12:14:28 +0200576static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
577 unsigned long end, unsigned long pfn,
578 pgprot_t prot)
579{
580 pud_t *pud;
581 pmd_t *pmd;
582 unsigned long addr, next;
583 int ret;
584
585 addr = start;
586 do {
587 pud = pud_offset(pgd, addr);
588
589 if (pud_none_or_clear_bad(pud)) {
590 pmd = pmd_alloc_one(NULL, addr);
591 if (!pmd) {
592 kvm_err("Cannot allocate Hyp pmd\n");
593 return -ENOMEM;
594 }
595 pud_populate(NULL, pud, pmd);
596 get_page(virt_to_page(pud));
597 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
598 }
599
600 next = pud_addr_end(addr, end);
601 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
602 if (ret)
603 return ret;
604 pfn += (next - addr) >> PAGE_SHIFT;
605 } while (addr = next, addr != end);
606
607 return 0;
608}
609
Marc Zyngier6060df82013-04-12 19:12:01 +0100610static int __create_hyp_mappings(pgd_t *pgdp,
611 unsigned long start, unsigned long end,
612 unsigned long pfn, pgprot_t prot)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500613{
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500614 pgd_t *pgd;
615 pud_t *pud;
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500616 unsigned long addr, next;
617 int err = 0;
618
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500619 mutex_lock(&kvm_hyp_pgd_mutex);
Marc Zyngier3562c762013-04-12 19:12:02 +0100620 addr = start & PAGE_MASK;
621 end = PAGE_ALIGN(end);
622 do {
Marc Zyngier6060df82013-04-12 19:12:01 +0100623 pgd = pgdp + pgd_index(addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500624
Christoffer Dall38f791a2014-10-10 12:14:28 +0200625 if (pgd_none(*pgd)) {
626 pud = pud_alloc_one(NULL, addr);
627 if (!pud) {
628 kvm_err("Cannot allocate Hyp pud\n");
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500629 err = -ENOMEM;
630 goto out;
631 }
Christoffer Dall38f791a2014-10-10 12:14:28 +0200632 pgd_populate(NULL, pgd, pud);
633 get_page(virt_to_page(pgd));
634 kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500635 }
636
637 next = pgd_addr_end(addr, end);
Christoffer Dall38f791a2014-10-10 12:14:28 +0200638 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500639 if (err)
640 goto out;
Marc Zyngier6060df82013-04-12 19:12:01 +0100641 pfn += (next - addr) >> PAGE_SHIFT;
Marc Zyngier3562c762013-04-12 19:12:02 +0100642 } while (addr = next, addr != end);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500643out:
644 mutex_unlock(&kvm_hyp_pgd_mutex);
645 return err;
646}
647
Christoffer Dall40c27292013-11-15 13:14:12 -0800648static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
649{
650 if (!is_vmalloc_addr(kaddr)) {
651 BUG_ON(!virt_addr_valid(kaddr));
652 return __pa(kaddr);
653 } else {
654 return page_to_phys(vmalloc_to_page(kaddr)) +
655 offset_in_page(kaddr);
656 }
657}
658
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500659/**
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100660 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500661 * @from: The virtual kernel start address of the range
662 * @to: The virtual kernel end address of the range (exclusive)
Marc Zyngierc8dddec2016-06-13 15:00:45 +0100663 * @prot: The protection to be applied to this range
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500664 *
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100665 * The same virtual address as the kernel virtual address is also used
666 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
667 * physical pages.
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500668 */
Marc Zyngierc8dddec2016-06-13 15:00:45 +0100669int create_hyp_mappings(void *from, void *to, pgprot_t prot)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500670{
Christoffer Dall40c27292013-11-15 13:14:12 -0800671 phys_addr_t phys_addr;
672 unsigned long virt_addr;
Marc Zyngier6c41a412016-06-30 18:40:51 +0100673 unsigned long start = kern_hyp_va((unsigned long)from);
674 unsigned long end = kern_hyp_va((unsigned long)to);
Marc Zyngier6060df82013-04-12 19:12:01 +0100675
Marc Zyngier1e947ba2015-01-29 11:59:54 +0000676 if (is_kernel_in_hyp_mode())
677 return 0;
678
Christoffer Dall40c27292013-11-15 13:14:12 -0800679 start = start & PAGE_MASK;
680 end = PAGE_ALIGN(end);
Marc Zyngier6060df82013-04-12 19:12:01 +0100681
Christoffer Dall40c27292013-11-15 13:14:12 -0800682 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
683 int err;
684
685 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
686 err = __create_hyp_mappings(hyp_pgd, virt_addr,
687 virt_addr + PAGE_SIZE,
688 __phys_to_pfn(phys_addr),
Marc Zyngierc8dddec2016-06-13 15:00:45 +0100689 prot);
Christoffer Dall40c27292013-11-15 13:14:12 -0800690 if (err)
691 return err;
692 }
693
694 return 0;
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500695}
696
697/**
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100698 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
699 * @from: The kernel start VA of the range
700 * @to: The kernel end VA of the range (exclusive)
Marc Zyngier6060df82013-04-12 19:12:01 +0100701 * @phys_addr: The physical start address which gets mapped
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100702 *
703 * The resulting HYP VA is the same as the kernel VA, modulo
704 * HYP_PAGE_OFFSET.
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500705 */
Marc Zyngier6060df82013-04-12 19:12:01 +0100706int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500707{
Marc Zyngier6c41a412016-06-30 18:40:51 +0100708 unsigned long start = kern_hyp_va((unsigned long)from);
709 unsigned long end = kern_hyp_va((unsigned long)to);
Marc Zyngier6060df82013-04-12 19:12:01 +0100710
Marc Zyngier1e947ba2015-01-29 11:59:54 +0000711 if (is_kernel_in_hyp_mode())
712 return 0;
713
Marc Zyngier6060df82013-04-12 19:12:01 +0100714 /* Check for a valid kernel IO mapping */
715 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
716 return -EINVAL;
717
718 return __create_hyp_mappings(hyp_pgd, start, end,
719 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500720}
721
Christoffer Dalld5d81842013-01-20 18:28:07 -0500722/**
723 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
724 * @kvm: The KVM struct pointer for the VM.
725 *
Vladimir Murzin9d4dc6882015-11-16 11:28:16 +0000726 * Allocates only the stage-2 HW PGD level table(s) (can support either full
727 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
728 * allocated pages.
Christoffer Dalld5d81842013-01-20 18:28:07 -0500729 *
730 * Note we don't need locking here as this is only called when the VM is
731 * created, which can only be done once.
732 */
733int kvm_alloc_stage2_pgd(struct kvm *kvm)
734{
735 pgd_t *pgd;
736
737 if (kvm->arch.pgd != NULL) {
738 kvm_err("kvm_arch already initialized?\n");
739 return -EINVAL;
740 }
741
Suzuki K Poulose9163ee232016-03-22 17:01:21 +0000742 /* Allocate the HW PGD, making sure that each page gets its own refcount */
743 pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
744 if (!pgd)
Marc Zyngiera9873702015-03-10 19:06:59 +0000745 return -ENOMEM;
746
Christoffer Dalld5d81842013-01-20 18:28:07 -0500747 kvm->arch.pgd = pgd;
Christoffer Dalld5d81842013-01-20 18:28:07 -0500748 return 0;
749}
750
Christoffer Dall957db102014-11-27 10:35:03 +0100751static void stage2_unmap_memslot(struct kvm *kvm,
752 struct kvm_memory_slot *memslot)
753{
754 hva_t hva = memslot->userspace_addr;
755 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
756 phys_addr_t size = PAGE_SIZE * memslot->npages;
757 hva_t reg_end = hva + size;
758
759 /*
760 * A memory region could potentially cover multiple VMAs, and any holes
761 * between them, so iterate over all of them to find out if we should
762 * unmap any of them.
763 *
764 * +--------------------------------------------+
765 * +---------------+----------------+ +----------------+
766 * | : VMA 1 | VMA 2 | | VMA 3 : |
767 * +---------------+----------------+ +----------------+
768 * | memory region |
769 * +--------------------------------------------+
770 */
771 do {
772 struct vm_area_struct *vma = find_vma(current->mm, hva);
773 hva_t vm_start, vm_end;
774
775 if (!vma || vma->vm_start >= reg_end)
776 break;
777
778 /*
779 * Take the intersection of this VMA with the memory region
780 */
781 vm_start = max(hva, vma->vm_start);
782 vm_end = min(reg_end, vma->vm_end);
783
784 if (!(vma->vm_flags & VM_PFNMAP)) {
785 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
786 unmap_stage2_range(kvm, gpa, vm_end - vm_start);
787 }
788 hva = vm_end;
789 } while (hva < reg_end);
790}
791
792/**
793 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
794 * @kvm: The struct kvm pointer
795 *
796 * Go through the memregions and unmap any reguler RAM
797 * backing memory already mapped to the VM.
798 */
799void stage2_unmap_vm(struct kvm *kvm)
800{
801 struct kvm_memslots *slots;
802 struct kvm_memory_slot *memslot;
803 int idx;
804
805 idx = srcu_read_lock(&kvm->srcu);
Marc Zyngier90f6e152017-03-16 18:20:49 +0000806 down_read(&current->mm->mmap_sem);
Christoffer Dall957db102014-11-27 10:35:03 +0100807 spin_lock(&kvm->mmu_lock);
808
809 slots = kvm_memslots(kvm);
810 kvm_for_each_memslot(memslot, slots)
811 stage2_unmap_memslot(kvm, memslot);
812
813 spin_unlock(&kvm->mmu_lock);
Marc Zyngier90f6e152017-03-16 18:20:49 +0000814 up_read(&current->mm->mmap_sem);
Christoffer Dall957db102014-11-27 10:35:03 +0100815 srcu_read_unlock(&kvm->srcu, idx);
816}
817
Christoffer Dalld5d81842013-01-20 18:28:07 -0500818/**
819 * kvm_free_stage2_pgd - free all stage-2 tables
820 * @kvm: The KVM struct pointer for the VM.
821 *
822 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
823 * underlying level-2 and level-3 tables before freeing the actual level-1 table
824 * and setting the struct pointer to NULL.
825 *
826 * Note we don't need locking here as this is only called when the VM is
827 * destroyed, which can only be done once.
828 */
829void kvm_free_stage2_pgd(struct kvm *kvm)
830{
831 if (kvm->arch.pgd == NULL)
832 return;
833
834 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
Suzuki K Poulose9163ee232016-03-22 17:01:21 +0000835 /* Free the HW pgd, one page at a time */
836 free_pages_exact(kvm->arch.pgd, S2_PGD_SIZE);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500837 kvm->arch.pgd = NULL;
838}
839
Christoffer Dall38f791a2014-10-10 12:14:28 +0200840static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
841 phys_addr_t addr)
842{
843 pgd_t *pgd;
844 pud_t *pud;
845
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000846 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
847 if (WARN_ON(stage2_pgd_none(*pgd))) {
Christoffer Dall38f791a2014-10-10 12:14:28 +0200848 if (!cache)
849 return NULL;
850 pud = mmu_memory_cache_alloc(cache);
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000851 stage2_pgd_populate(pgd, pud);
Christoffer Dall38f791a2014-10-10 12:14:28 +0200852 get_page(virt_to_page(pgd));
853 }
854
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000855 return stage2_pud_offset(pgd, addr);
Christoffer Dall38f791a2014-10-10 12:14:28 +0200856}
857
Christoffer Dallad361f02012-11-01 17:14:45 +0100858static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
859 phys_addr_t addr)
Christoffer Dalld5d81842013-01-20 18:28:07 -0500860{
Christoffer Dalld5d81842013-01-20 18:28:07 -0500861 pud_t *pud;
862 pmd_t *pmd;
Christoffer Dalld5d81842013-01-20 18:28:07 -0500863
Christoffer Dall38f791a2014-10-10 12:14:28 +0200864 pud = stage2_get_pud(kvm, cache, addr);
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000865 if (stage2_pud_none(*pud)) {
Christoffer Dalld5d81842013-01-20 18:28:07 -0500866 if (!cache)
Christoffer Dallad361f02012-11-01 17:14:45 +0100867 return NULL;
Christoffer Dalld5d81842013-01-20 18:28:07 -0500868 pmd = mmu_memory_cache_alloc(cache);
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000869 stage2_pud_populate(pud, pmd);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500870 get_page(virt_to_page(pud));
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100871 }
872
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000873 return stage2_pmd_offset(pud, addr);
Christoffer Dallad361f02012-11-01 17:14:45 +0100874}
Christoffer Dalld5d81842013-01-20 18:28:07 -0500875
Christoffer Dallad361f02012-11-01 17:14:45 +0100876static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
877 *cache, phys_addr_t addr, const pmd_t *new_pmd)
878{
879 pmd_t *pmd, old_pmd;
880
881 pmd = stage2_get_pmd(kvm, cache, addr);
882 VM_BUG_ON(!pmd);
883
884 /*
885 * Mapping in huge pages should only happen through a fault. If a
886 * page is merged into a transparent huge page, the individual
887 * subpages of that huge page should be unmapped through MMU
888 * notifiers before we get here.
889 *
890 * Merging of CompoundPages is not supported; they should become
891 * splitting first, unmapped, merged, and mapped back in on-demand.
892 */
893 VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
894
895 old_pmd = *pmd;
Marc Zyngierd4b9e072016-04-28 16:16:31 +0100896 if (pmd_present(old_pmd)) {
897 pmd_clear(pmd);
Christoffer Dallad361f02012-11-01 17:14:45 +0100898 kvm_tlb_flush_vmid_ipa(kvm, addr);
Marc Zyngierd4b9e072016-04-28 16:16:31 +0100899 } else {
Christoffer Dallad361f02012-11-01 17:14:45 +0100900 get_page(virt_to_page(pmd));
Marc Zyngierd4b9e072016-04-28 16:16:31 +0100901 }
902
903 kvm_set_pmd(pmd, *new_pmd);
Christoffer Dallad361f02012-11-01 17:14:45 +0100904 return 0;
905}
906
907static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
Mario Smarduch15a49a42015-01-15 15:58:58 -0800908 phys_addr_t addr, const pte_t *new_pte,
909 unsigned long flags)
Christoffer Dallad361f02012-11-01 17:14:45 +0100910{
911 pmd_t *pmd;
912 pte_t *pte, old_pte;
Mario Smarduch15a49a42015-01-15 15:58:58 -0800913 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
914 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
915
916 VM_BUG_ON(logging_active && !cache);
Christoffer Dallad361f02012-11-01 17:14:45 +0100917
Christoffer Dall38f791a2014-10-10 12:14:28 +0200918 /* Create stage-2 page table mapping - Levels 0 and 1 */
Christoffer Dallad361f02012-11-01 17:14:45 +0100919 pmd = stage2_get_pmd(kvm, cache, addr);
920 if (!pmd) {
921 /*
922 * Ignore calls from kvm_set_spte_hva for unallocated
923 * address ranges.
924 */
925 return 0;
926 }
927
Mario Smarduch15a49a42015-01-15 15:58:58 -0800928 /*
929 * While dirty page logging - dissolve huge PMD, then continue on to
930 * allocate page.
931 */
932 if (logging_active)
933 stage2_dissolve_pmd(kvm, addr, pmd);
934
Christoffer Dallad361f02012-11-01 17:14:45 +0100935 /* Create stage-2 page mappings - Level 2 */
Christoffer Dalld5d81842013-01-20 18:28:07 -0500936 if (pmd_none(*pmd)) {
937 if (!cache)
938 return 0; /* ignore calls from kvm_set_spte_hva */
939 pte = mmu_memory_cache_alloc(cache);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500940 pmd_populate_kernel(NULL, pmd, pte);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500941 get_page(virt_to_page(pmd));
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100942 }
943
944 pte = pte_offset_kernel(pmd, addr);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500945
946 if (iomap && pte_present(*pte))
947 return -EFAULT;
948
949 /* Create 2nd stage page table mapping - Level 3 */
950 old_pte = *pte;
Marc Zyngierd4b9e072016-04-28 16:16:31 +0100951 if (pte_present(old_pte)) {
952 kvm_set_pte(pte, __pte(0));
Marc Zyngier48762762013-01-28 15:27:00 +0000953 kvm_tlb_flush_vmid_ipa(kvm, addr);
Marc Zyngierd4b9e072016-04-28 16:16:31 +0100954 } else {
Christoffer Dalld5d81842013-01-20 18:28:07 -0500955 get_page(virt_to_page(pte));
Marc Zyngierd4b9e072016-04-28 16:16:31 +0100956 }
Christoffer Dalld5d81842013-01-20 18:28:07 -0500957
Marc Zyngierd4b9e072016-04-28 16:16:31 +0100958 kvm_set_pte(pte, *new_pte);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500959 return 0;
960}
961
Catalin Marinas06485052016-04-13 17:57:37 +0100962#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
963static int stage2_ptep_test_and_clear_young(pte_t *pte)
964{
965 if (pte_young(*pte)) {
966 *pte = pte_mkold(*pte);
967 return 1;
968 }
969 return 0;
970}
971#else
972static int stage2_ptep_test_and_clear_young(pte_t *pte)
973{
974 return __ptep_test_and_clear_young(pte);
975}
976#endif
977
978static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
979{
980 return stage2_ptep_test_and_clear_young((pte_t *)pmd);
981}
982
Christoffer Dalld5d81842013-01-20 18:28:07 -0500983/**
984 * kvm_phys_addr_ioremap - map a device range to guest IPA
985 *
986 * @kvm: The KVM pointer
987 * @guest_ipa: The IPA at which to insert the mapping
988 * @pa: The physical address of the device
989 * @size: The size of the mapping
990 */
991int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
Ard Biesheuvelc40f2f82014-09-17 14:56:18 -0700992 phys_addr_t pa, unsigned long size, bool writable)
Christoffer Dalld5d81842013-01-20 18:28:07 -0500993{
994 phys_addr_t addr, end;
995 int ret = 0;
996 unsigned long pfn;
997 struct kvm_mmu_memory_cache cache = { 0, };
998
999 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1000 pfn = __phys_to_pfn(pa);
1001
1002 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
Marc Zyngierc62ee2b2012-10-15 11:27:37 +01001003 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
Christoffer Dalld5d81842013-01-20 18:28:07 -05001004
Ard Biesheuvelc40f2f82014-09-17 14:56:18 -07001005 if (writable)
Catalin Marinas06485052016-04-13 17:57:37 +01001006 pte = kvm_s2pte_mkwrite(pte);
Ard Biesheuvelc40f2f82014-09-17 14:56:18 -07001007
Christoffer Dall38f791a2014-10-10 12:14:28 +02001008 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1009 KVM_NR_MEM_OBJS);
Christoffer Dalld5d81842013-01-20 18:28:07 -05001010 if (ret)
1011 goto out;
1012 spin_lock(&kvm->mmu_lock);
Mario Smarduch15a49a42015-01-15 15:58:58 -08001013 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1014 KVM_S2PTE_FLAG_IS_IOMAP);
Christoffer Dalld5d81842013-01-20 18:28:07 -05001015 spin_unlock(&kvm->mmu_lock);
1016 if (ret)
1017 goto out;
1018
1019 pfn++;
1020 }
1021
1022out:
1023 mmu_free_memory_cache(&cache);
1024 return ret;
1025}
1026
Dan Williamsba049e92016-01-15 16:56:11 -08001027static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001028{
Dan Williamsba049e92016-01-15 16:56:11 -08001029 kvm_pfn_t pfn = *pfnp;
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001030 gfn_t gfn = *ipap >> PAGE_SHIFT;
1031
Andrea Arcangeli127393f2016-05-05 16:22:20 -07001032 if (PageTransCompoundMap(pfn_to_page(pfn))) {
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001033 unsigned long mask;
1034 /*
1035 * The address we faulted on is backed by a transparent huge
1036 * page. However, because we map the compound huge page and
1037 * not the individual tail page, we need to transfer the
1038 * refcount to the head page. We have to be careful that the
1039 * THP doesn't start to split while we are adjusting the
1040 * refcounts.
1041 *
1042 * We are sure this doesn't happen, because mmu_notifier_retry
1043 * was successful and we are holding the mmu_lock, so if this
1044 * THP is trying to split, it will be blocked in the mmu
1045 * notifier before touching any of the pages, specifically
1046 * before being able to call __split_huge_page_refcount().
1047 *
1048 * We can therefore safely transfer the refcount from PG_tail
1049 * to PG_head and switch the pfn from a tail page to the head
1050 * page accordingly.
1051 */
1052 mask = PTRS_PER_PMD - 1;
1053 VM_BUG_ON((gfn & mask) != (pfn & mask));
1054 if (pfn & mask) {
1055 *ipap &= PMD_MASK;
1056 kvm_release_pfn_clean(pfn);
1057 pfn &= ~mask;
1058 kvm_get_pfn(pfn);
1059 *pfnp = pfn;
1060 }
1061
1062 return true;
1063 }
1064
1065 return false;
1066}
1067
Ard Biesheuvela7d079c2014-09-09 11:27:09 +01001068static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1069{
1070 if (kvm_vcpu_trap_is_iabt(vcpu))
1071 return false;
1072
1073 return kvm_vcpu_dabt_iswrite(vcpu);
1074}
1075
Mario Smarduchc6473552015-01-15 15:58:56 -08001076/**
1077 * stage2_wp_ptes - write protect PMD range
1078 * @pmd: pointer to pmd entry
1079 * @addr: range start address
1080 * @end: range end address
1081 */
1082static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1083{
1084 pte_t *pte;
1085
1086 pte = pte_offset_kernel(pmd, addr);
1087 do {
1088 if (!pte_none(*pte)) {
1089 if (!kvm_s2pte_readonly(pte))
1090 kvm_set_s2pte_readonly(pte);
1091 }
1092 } while (pte++, addr += PAGE_SIZE, addr != end);
1093}
1094
1095/**
1096 * stage2_wp_pmds - write protect PUD range
1097 * @pud: pointer to pud entry
1098 * @addr: range start address
1099 * @end: range end address
1100 */
1101static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1102{
1103 pmd_t *pmd;
1104 phys_addr_t next;
1105
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001106 pmd = stage2_pmd_offset(pud, addr);
Mario Smarduchc6473552015-01-15 15:58:56 -08001107
1108 do {
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001109 next = stage2_pmd_addr_end(addr, end);
Mario Smarduchc6473552015-01-15 15:58:56 -08001110 if (!pmd_none(*pmd)) {
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +00001111 if (pmd_thp_or_huge(*pmd)) {
Mario Smarduchc6473552015-01-15 15:58:56 -08001112 if (!kvm_s2pmd_readonly(pmd))
1113 kvm_set_s2pmd_readonly(pmd);
1114 } else {
1115 stage2_wp_ptes(pmd, addr, next);
1116 }
1117 }
1118 } while (pmd++, addr = next, addr != end);
1119}
1120
1121/**
1122 * stage2_wp_puds - write protect PGD range
1123 * @pgd: pointer to pgd entry
1124 * @addr: range start address
1125 * @end: range end address
1126 *
1127 * Process PUD entries, for a huge PUD we cause a panic.
1128 */
1129static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1130{
1131 pud_t *pud;
1132 phys_addr_t next;
1133
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001134 pud = stage2_pud_offset(pgd, addr);
Mario Smarduchc6473552015-01-15 15:58:56 -08001135 do {
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001136 next = stage2_pud_addr_end(addr, end);
1137 if (!stage2_pud_none(*pud)) {
Mario Smarduchc6473552015-01-15 15:58:56 -08001138 /* TODO:PUD not supported, revisit later if supported */
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001139 BUG_ON(stage2_pud_huge(*pud));
Mario Smarduchc6473552015-01-15 15:58:56 -08001140 stage2_wp_pmds(pud, addr, next);
1141 }
1142 } while (pud++, addr = next, addr != end);
1143}
1144
1145/**
1146 * stage2_wp_range() - write protect stage2 memory region range
1147 * @kvm: The KVM pointer
1148 * @addr: Start address of range
1149 * @end: End address of range
1150 */
1151static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1152{
1153 pgd_t *pgd;
1154 phys_addr_t next;
1155
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001156 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
Mario Smarduchc6473552015-01-15 15:58:56 -08001157 do {
1158 /*
1159 * Release kvm_mmu_lock periodically if the memory region is
1160 * large. Otherwise, we may see kernel panics with
Christoffer Dall227ea812015-01-23 10:49:31 +01001161 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1162 * CONFIG_LOCKDEP. Additionally, holding the lock too long
Mario Smarduchc6473552015-01-15 15:58:56 -08001163 * will also starve other vCPUs.
1164 */
1165 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
1166 cond_resched_lock(&kvm->mmu_lock);
1167
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001168 next = stage2_pgd_addr_end(addr, end);
1169 if (stage2_pgd_present(*pgd))
Mario Smarduchc6473552015-01-15 15:58:56 -08001170 stage2_wp_puds(pgd, addr, next);
1171 } while (pgd++, addr = next, addr != end);
1172}
1173
1174/**
1175 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1176 * @kvm: The KVM pointer
1177 * @slot: The memory slot to write protect
1178 *
1179 * Called to start logging dirty pages after memory region
1180 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1181 * all present PMD and PTEs are write protected in the memory region.
1182 * Afterwards read of dirty page log can be called.
1183 *
1184 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1185 * serializing operations for VM memory regions.
1186 */
1187void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1188{
Paolo Bonzini9f6b8022015-05-17 16:20:07 +02001189 struct kvm_memslots *slots = kvm_memslots(kvm);
1190 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
Mario Smarduchc6473552015-01-15 15:58:56 -08001191 phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1192 phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1193
1194 spin_lock(&kvm->mmu_lock);
1195 stage2_wp_range(kvm, start, end);
1196 spin_unlock(&kvm->mmu_lock);
1197 kvm_flush_remote_tlbs(kvm);
1198}
Mario Smarduch53c810c2015-01-15 15:58:57 -08001199
1200/**
Kai Huang3b0f1d02015-01-28 10:54:23 +08001201 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
Mario Smarduch53c810c2015-01-15 15:58:57 -08001202 * @kvm: The KVM pointer
1203 * @slot: The memory slot associated with mask
1204 * @gfn_offset: The gfn offset in memory slot
1205 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1206 * slot to be write protected
1207 *
1208 * Walks bits set in mask write protects the associated pte's. Caller must
1209 * acquire kvm_mmu_lock.
1210 */
Kai Huang3b0f1d02015-01-28 10:54:23 +08001211static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
Mario Smarduch53c810c2015-01-15 15:58:57 -08001212 struct kvm_memory_slot *slot,
1213 gfn_t gfn_offset, unsigned long mask)
1214{
1215 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1216 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1217 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1218
1219 stage2_wp_range(kvm, start, end);
1220}
Mario Smarduchc6473552015-01-15 15:58:56 -08001221
Kai Huang3b0f1d02015-01-28 10:54:23 +08001222/*
1223 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1224 * dirty pages.
1225 *
1226 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1227 * enable dirty logging for them.
1228 */
1229void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1230 struct kvm_memory_slot *slot,
1231 gfn_t gfn_offset, unsigned long mask)
1232{
1233 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1234}
1235
Dan Williamsba049e92016-01-15 16:56:11 -08001236static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
Marc Zyngier13b77562017-01-25 13:33:11 +00001237 unsigned long size)
Marc Zyngier0d3e4d42015-01-05 21:13:24 +00001238{
Marc Zyngier13b77562017-01-25 13:33:11 +00001239 __coherent_cache_guest_page(vcpu, pfn, size);
Marc Zyngier0d3e4d42015-01-05 21:13:24 +00001240}
1241
Christoffer Dall94f8e642013-01-20 18:28:12 -05001242static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
Christoffer Dall98047882014-08-19 12:18:04 +02001243 struct kvm_memory_slot *memslot, unsigned long hva,
Christoffer Dall94f8e642013-01-20 18:28:12 -05001244 unsigned long fault_status)
1245{
Christoffer Dall94f8e642013-01-20 18:28:12 -05001246 int ret;
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001247 bool write_fault, writable, hugetlb = false, force_pte = false;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001248 unsigned long mmu_seq;
Christoffer Dallad361f02012-11-01 17:14:45 +01001249 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
Christoffer Dallad361f02012-11-01 17:14:45 +01001250 struct kvm *kvm = vcpu->kvm;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001251 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
Christoffer Dallad361f02012-11-01 17:14:45 +01001252 struct vm_area_struct *vma;
Dan Williamsba049e92016-01-15 16:56:11 -08001253 kvm_pfn_t pfn;
Kim Phillipsb8865762014-06-26 01:45:51 +01001254 pgprot_t mem_type = PAGE_S2;
Mario Smarduch15a49a42015-01-15 15:58:58 -08001255 bool logging_active = memslot_is_logging(memslot);
1256 unsigned long flags = 0;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001257
Ard Biesheuvela7d079c2014-09-09 11:27:09 +01001258 write_fault = kvm_is_write_fault(vcpu);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001259 if (fault_status == FSC_PERM && !write_fault) {
1260 kvm_err("Unexpected L2 read permission error\n");
1261 return -EFAULT;
1262 }
1263
Christoffer Dallad361f02012-11-01 17:14:45 +01001264 /* Let's check if we will get back a huge page backed by hugetlbfs */
1265 down_read(&current->mm->mmap_sem);
1266 vma = find_vma_intersection(current->mm, hva, hva + 1);
Ard Biesheuvel37b54402014-09-17 14:56:17 -07001267 if (unlikely(!vma)) {
1268 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1269 up_read(&current->mm->mmap_sem);
1270 return -EFAULT;
1271 }
1272
Mario Smarduch15a49a42015-01-15 15:58:58 -08001273 if (is_vm_hugetlb_page(vma) && !logging_active) {
Christoffer Dallad361f02012-11-01 17:14:45 +01001274 hugetlb = true;
1275 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001276 } else {
1277 /*
Marc Zyngier136d7372013-12-13 16:56:06 +00001278 * Pages belonging to memslots that don't have the same
1279 * alignment for userspace and IPA cannot be mapped using
1280 * block descriptors even if the pages belong to a THP for
1281 * the process, because the stage-2 block descriptor will
1282 * cover more than a single THP and we loose atomicity for
1283 * unmapping, updates, and splits of the THP or other pages
1284 * in the stage-2 block range.
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001285 */
Marc Zyngier136d7372013-12-13 16:56:06 +00001286 if ((memslot->userspace_addr & ~PMD_MASK) !=
1287 ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001288 force_pte = true;
Christoffer Dallad361f02012-11-01 17:14:45 +01001289 }
1290 up_read(&current->mm->mmap_sem);
1291
Christoffer Dall94f8e642013-01-20 18:28:12 -05001292 /* We need minimum second+third level pages */
Christoffer Dall38f791a2014-10-10 12:14:28 +02001293 ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1294 KVM_NR_MEM_OBJS);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001295 if (ret)
1296 return ret;
1297
1298 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1299 /*
1300 * Ensure the read of mmu_notifier_seq happens before we call
1301 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1302 * the page we just got a reference to gets unmapped before we have a
1303 * chance to grab the mmu_lock, which ensure that if the page gets
1304 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1305 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1306 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1307 */
1308 smp_rmb();
1309
Christoffer Dallad361f02012-11-01 17:14:45 +01001310 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
Christoffer Dall9ac71592016-08-17 10:46:10 +02001311 if (is_error_noslot_pfn(pfn))
Christoffer Dall94f8e642013-01-20 18:28:12 -05001312 return -EFAULT;
1313
Mario Smarduch15a49a42015-01-15 15:58:58 -08001314 if (kvm_is_device_pfn(pfn)) {
Kim Phillipsb8865762014-06-26 01:45:51 +01001315 mem_type = PAGE_S2_DEVICE;
Mario Smarduch15a49a42015-01-15 15:58:58 -08001316 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1317 } else if (logging_active) {
1318 /*
1319 * Faults on pages in a memslot with logging enabled
1320 * should not be mapped with huge pages (it introduces churn
1321 * and performance degradation), so force a pte mapping.
1322 */
1323 force_pte = true;
1324 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1325
1326 /*
1327 * Only actually map the page as writable if this was a write
1328 * fault.
1329 */
1330 if (!write_fault)
1331 writable = false;
1332 }
Kim Phillipsb8865762014-06-26 01:45:51 +01001333
Christoffer Dallad361f02012-11-01 17:14:45 +01001334 spin_lock(&kvm->mmu_lock);
1335 if (mmu_notifier_retry(kvm, mmu_seq))
Christoffer Dall94f8e642013-01-20 18:28:12 -05001336 goto out_unlock;
Mario Smarduch15a49a42015-01-15 15:58:58 -08001337
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001338 if (!hugetlb && !force_pte)
1339 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
Christoffer Dallad361f02012-11-01 17:14:45 +01001340
1341 if (hugetlb) {
Kim Phillipsb8865762014-06-26 01:45:51 +01001342 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
Christoffer Dallad361f02012-11-01 17:14:45 +01001343 new_pmd = pmd_mkhuge(new_pmd);
1344 if (writable) {
Catalin Marinas06485052016-04-13 17:57:37 +01001345 new_pmd = kvm_s2pmd_mkwrite(new_pmd);
Christoffer Dallad361f02012-11-01 17:14:45 +01001346 kvm_set_pfn_dirty(pfn);
1347 }
Marc Zyngier13b77562017-01-25 13:33:11 +00001348 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE);
Christoffer Dallad361f02012-11-01 17:14:45 +01001349 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1350 } else {
Kim Phillipsb8865762014-06-26 01:45:51 +01001351 pte_t new_pte = pfn_pte(pfn, mem_type);
Mario Smarduch15a49a42015-01-15 15:58:58 -08001352
Christoffer Dallad361f02012-11-01 17:14:45 +01001353 if (writable) {
Catalin Marinas06485052016-04-13 17:57:37 +01001354 new_pte = kvm_s2pte_mkwrite(new_pte);
Christoffer Dallad361f02012-11-01 17:14:45 +01001355 kvm_set_pfn_dirty(pfn);
Mario Smarduch15a49a42015-01-15 15:58:58 -08001356 mark_page_dirty(kvm, gfn);
Christoffer Dallad361f02012-11-01 17:14:45 +01001357 }
Marc Zyngier13b77562017-01-25 13:33:11 +00001358 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE);
Mario Smarduch15a49a42015-01-15 15:58:58 -08001359 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001360 }
Christoffer Dallad361f02012-11-01 17:14:45 +01001361
Christoffer Dall94f8e642013-01-20 18:28:12 -05001362out_unlock:
Christoffer Dallad361f02012-11-01 17:14:45 +01001363 spin_unlock(&kvm->mmu_lock);
Marc Zyngier35307b92015-03-12 18:16:51 +00001364 kvm_set_pfn_accessed(pfn);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001365 kvm_release_pfn_clean(pfn);
Christoffer Dallad361f02012-11-01 17:14:45 +01001366 return ret;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001367}
1368
Marc Zyngieraeda9132015-03-12 18:16:52 +00001369/*
1370 * Resolve the access fault by making the page young again.
1371 * Note that because the faulting entry is guaranteed not to be
1372 * cached in the TLB, we don't need to invalidate anything.
Catalin Marinas06485052016-04-13 17:57:37 +01001373 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1374 * so there is no need for atomic (pte|pmd)_mkyoung operations.
Marc Zyngieraeda9132015-03-12 18:16:52 +00001375 */
1376static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1377{
1378 pmd_t *pmd;
1379 pte_t *pte;
Dan Williamsba049e92016-01-15 16:56:11 -08001380 kvm_pfn_t pfn;
Marc Zyngieraeda9132015-03-12 18:16:52 +00001381 bool pfn_valid = false;
1382
1383 trace_kvm_access_fault(fault_ipa);
1384
1385 spin_lock(&vcpu->kvm->mmu_lock);
1386
1387 pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1388 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1389 goto out;
1390
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +00001391 if (pmd_thp_or_huge(*pmd)) { /* THP, HugeTLB */
Marc Zyngieraeda9132015-03-12 18:16:52 +00001392 *pmd = pmd_mkyoung(*pmd);
1393 pfn = pmd_pfn(*pmd);
1394 pfn_valid = true;
1395 goto out;
1396 }
1397
1398 pte = pte_offset_kernel(pmd, fault_ipa);
1399 if (pte_none(*pte)) /* Nothing there either */
1400 goto out;
1401
1402 *pte = pte_mkyoung(*pte); /* Just a page... */
1403 pfn = pte_pfn(*pte);
1404 pfn_valid = true;
1405out:
1406 spin_unlock(&vcpu->kvm->mmu_lock);
1407 if (pfn_valid)
1408 kvm_set_pfn_accessed(pfn);
1409}
1410
Christoffer Dall94f8e642013-01-20 18:28:12 -05001411/**
1412 * kvm_handle_guest_abort - handles all 2nd stage aborts
1413 * @vcpu: the VCPU pointer
1414 * @run: the kvm_run structure
1415 *
1416 * Any abort that gets to the host is almost guaranteed to be caused by a
1417 * missing second stage translation table entry, which can mean that either the
1418 * guest simply needs more memory and we must allocate an appropriate page or it
1419 * can mean that the guest tried to access I/O memory, which is emulated by user
1420 * space. The distinction is based on the IPA causing the fault and whether this
1421 * memory region has been registered as standard RAM by user space.
1422 */
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001423int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1424{
Christoffer Dall94f8e642013-01-20 18:28:12 -05001425 unsigned long fault_status;
1426 phys_addr_t fault_ipa;
1427 struct kvm_memory_slot *memslot;
Christoffer Dall98047882014-08-19 12:18:04 +02001428 unsigned long hva;
1429 bool is_iabt, write_fault, writable;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001430 gfn_t gfn;
1431 int ret, idx;
1432
Marc Zyngier52d1dba2012-10-15 10:33:38 +01001433 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
Marc Zyngier40557102016-09-06 14:02:15 +01001434 if (unlikely(!is_iabt && kvm_vcpu_dabt_isextabt(vcpu))) {
1435 kvm_inject_vabt(vcpu);
1436 return 1;
1437 }
1438
Marc Zyngier7393b592012-09-17 19:27:09 +01001439 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001440
Marc Zyngier7393b592012-09-17 19:27:09 +01001441 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1442 kvm_vcpu_get_hfar(vcpu), fault_ipa);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001443
1444 /* Check the stage-2 fault is trans. fault or write fault */
Christoffer Dall0496daa52014-09-26 12:29:34 +02001445 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
Marc Zyngier35307b92015-03-12 18:16:51 +00001446 if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1447 fault_status != FSC_ACCESS) {
Christoffer Dall0496daa52014-09-26 12:29:34 +02001448 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1449 kvm_vcpu_trap_get_class(vcpu),
1450 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1451 (unsigned long)kvm_vcpu_get_hsr(vcpu));
Christoffer Dall94f8e642013-01-20 18:28:12 -05001452 return -EFAULT;
1453 }
1454
1455 idx = srcu_read_lock(&vcpu->kvm->srcu);
1456
1457 gfn = fault_ipa >> PAGE_SHIFT;
Christoffer Dall98047882014-08-19 12:18:04 +02001458 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1459 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
Ard Biesheuvela7d079c2014-09-09 11:27:09 +01001460 write_fault = kvm_is_write_fault(vcpu);
Christoffer Dall98047882014-08-19 12:18:04 +02001461 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
Christoffer Dall94f8e642013-01-20 18:28:12 -05001462 if (is_iabt) {
1463 /* Prefetch Abort on I/O address */
Marc Zyngier7393b592012-09-17 19:27:09 +01001464 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
Christoffer Dall94f8e642013-01-20 18:28:12 -05001465 ret = 1;
1466 goto out_unlock;
1467 }
1468
Marc Zyngiercfe39502012-12-12 14:42:09 +00001469 /*
Marc Zyngier57c841f2016-01-29 15:01:28 +00001470 * Check for a cache maintenance operation. Since we
1471 * ended-up here, we know it is outside of any memory
1472 * slot. But we can't find out if that is for a device,
1473 * or if the guest is just being stupid. The only thing
1474 * we know for sure is that this range cannot be cached.
1475 *
1476 * So let's assume that the guest is just being
1477 * cautious, and skip the instruction.
1478 */
1479 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1480 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1481 ret = 1;
1482 goto out_unlock;
1483 }
1484
1485 /*
Marc Zyngiercfe39502012-12-12 14:42:09 +00001486 * The IPA is reported as [MAX:12], so we need to
1487 * complement it with the bottom 12 bits from the
1488 * faulting VA. This is always 12 bits, irrespective
1489 * of the page size.
1490 */
1491 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
Christoffer Dall45e96ea2013-01-20 18:43:58 -05001492 ret = io_mem_abort(vcpu, run, fault_ipa);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001493 goto out_unlock;
1494 }
1495
Christoffer Dallc3058d52014-10-10 12:14:29 +02001496 /* Userspace should not be able to register out-of-bounds IPAs */
1497 VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1498
Marc Zyngieraeda9132015-03-12 18:16:52 +00001499 if (fault_status == FSC_ACCESS) {
1500 handle_access_fault(vcpu, fault_ipa);
1501 ret = 1;
1502 goto out_unlock;
1503 }
1504
Christoffer Dall98047882014-08-19 12:18:04 +02001505 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001506 if (ret == 0)
1507 ret = 1;
1508out_unlock:
1509 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1510 return ret;
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001511}
1512
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001513static int handle_hva_to_gpa(struct kvm *kvm,
1514 unsigned long start,
1515 unsigned long end,
1516 int (*handler)(struct kvm *kvm,
1517 gpa_t gpa, void *data),
1518 void *data)
Christoffer Dalld5d81842013-01-20 18:28:07 -05001519{
1520 struct kvm_memslots *slots;
1521 struct kvm_memory_slot *memslot;
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001522 int ret = 0;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001523
1524 slots = kvm_memslots(kvm);
1525
1526 /* we only care about the pages that the guest sees */
1527 kvm_for_each_memslot(memslot, slots) {
1528 unsigned long hva_start, hva_end;
1529 gfn_t gfn, gfn_end;
1530
1531 hva_start = max(start, memslot->userspace_addr);
1532 hva_end = min(end, memslot->userspace_addr +
1533 (memslot->npages << PAGE_SHIFT));
1534 if (hva_start >= hva_end)
1535 continue;
1536
1537 /*
1538 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1539 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1540 */
1541 gfn = hva_to_gfn_memslot(hva_start, memslot);
1542 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1543
1544 for (; gfn < gfn_end; ++gfn) {
1545 gpa_t gpa = gfn << PAGE_SHIFT;
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001546 ret |= handler(kvm, gpa, data);
Christoffer Dalld5d81842013-01-20 18:28:07 -05001547 }
1548 }
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001549
1550 return ret;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001551}
1552
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001553static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
Christoffer Dalld5d81842013-01-20 18:28:07 -05001554{
1555 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001556 return 0;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001557}
1558
1559int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1560{
1561 unsigned long end = hva + PAGE_SIZE;
1562
1563 if (!kvm->arch.pgd)
1564 return 0;
1565
1566 trace_kvm_unmap_hva(hva);
1567 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1568 return 0;
1569}
1570
1571int kvm_unmap_hva_range(struct kvm *kvm,
1572 unsigned long start, unsigned long end)
1573{
1574 if (!kvm->arch.pgd)
1575 return 0;
1576
1577 trace_kvm_unmap_hva_range(start, end);
1578 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1579 return 0;
1580}
1581
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001582static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
Christoffer Dalld5d81842013-01-20 18:28:07 -05001583{
1584 pte_t *pte = (pte_t *)data;
1585
Mario Smarduch15a49a42015-01-15 15:58:58 -08001586 /*
1587 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1588 * flag clear because MMU notifiers will have unmapped a huge PMD before
1589 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1590 * therefore stage2_set_pte() never needs to clear out a huge PMD
1591 * through this calling path.
1592 */
1593 stage2_set_pte(kvm, NULL, gpa, pte, 0);
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001594 return 0;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001595}
1596
1597
1598void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1599{
1600 unsigned long end = hva + PAGE_SIZE;
1601 pte_t stage2_pte;
1602
1603 if (!kvm->arch.pgd)
1604 return;
1605
1606 trace_kvm_set_spte_hva(hva);
1607 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1608 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1609}
1610
Marc Zyngier35307b92015-03-12 18:16:51 +00001611static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1612{
1613 pmd_t *pmd;
1614 pte_t *pte;
1615
1616 pmd = stage2_get_pmd(kvm, NULL, gpa);
1617 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1618 return 0;
1619
Catalin Marinas06485052016-04-13 17:57:37 +01001620 if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */
1621 return stage2_pmdp_test_and_clear_young(pmd);
Marc Zyngier35307b92015-03-12 18:16:51 +00001622
1623 pte = pte_offset_kernel(pmd, gpa);
1624 if (pte_none(*pte))
1625 return 0;
1626
Catalin Marinas06485052016-04-13 17:57:37 +01001627 return stage2_ptep_test_and_clear_young(pte);
Marc Zyngier35307b92015-03-12 18:16:51 +00001628}
1629
1630static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1631{
1632 pmd_t *pmd;
1633 pte_t *pte;
1634
1635 pmd = stage2_get_pmd(kvm, NULL, gpa);
1636 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1637 return 0;
1638
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +00001639 if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */
Marc Zyngier35307b92015-03-12 18:16:51 +00001640 return pmd_young(*pmd);
1641
1642 pte = pte_offset_kernel(pmd, gpa);
1643 if (!pte_none(*pte)) /* Just a page... */
1644 return pte_young(*pte);
1645
1646 return 0;
1647}
1648
1649int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1650{
1651 trace_kvm_age_hva(start, end);
1652 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1653}
1654
1655int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1656{
1657 trace_kvm_test_age_hva(hva);
1658 return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1659}
1660
Christoffer Dalld5d81842013-01-20 18:28:07 -05001661void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1662{
1663 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1664}
1665
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001666phys_addr_t kvm_mmu_get_httbr(void)
1667{
Ard Biesheuvele4c5a682015-03-19 16:42:28 +00001668 if (__kvm_cpu_uses_extended_idmap())
1669 return virt_to_phys(merged_hyp_pgd);
1670 else
1671 return virt_to_phys(hyp_pgd);
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001672}
1673
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001674phys_addr_t kvm_get_idmap_vector(void)
1675{
1676 return hyp_idmap_vector;
1677}
1678
AKASHI Takahiro67f69192016-04-27 17:47:05 +01001679phys_addr_t kvm_get_idmap_start(void)
1680{
1681 return hyp_idmap_start;
1682}
1683
Marc Zyngier0535a3e2016-06-30 18:40:43 +01001684static int kvm_map_idmap_text(pgd_t *pgd)
1685{
1686 int err;
1687
1688 /* Create the idmap in the boot page tables */
1689 err = __create_hyp_mappings(pgd,
1690 hyp_idmap_start, hyp_idmap_end,
1691 __phys_to_pfn(hyp_idmap_start),
1692 PAGE_HYP_EXEC);
1693 if (err)
1694 kvm_err("Failed to idmap %lx-%lx\n",
1695 hyp_idmap_start, hyp_idmap_end);
1696
1697 return err;
1698}
1699
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001700int kvm_mmu_init(void)
1701{
Marc Zyngier2fb41052013-04-12 19:12:03 +01001702 int err;
1703
Santosh Shilimkar4fda3422013-11-19 14:59:12 -05001704 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1705 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1706 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001707
Ard Biesheuvel06f75a12015-03-19 16:42:26 +00001708 /*
1709 * We rely on the linker script to ensure at build time that the HYP
1710 * init code does not cross a page boundary.
1711 */
1712 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001713
Marc Zyngiereac378a2016-06-30 18:40:50 +01001714 kvm_info("IDMAP page: %lx\n", hyp_idmap_start);
1715 kvm_info("HYP VA range: %lx:%lx\n",
Marc Zyngier6c41a412016-06-30 18:40:51 +01001716 kern_hyp_va(PAGE_OFFSET), kern_hyp_va(~0UL));
Marc Zyngiereac378a2016-06-30 18:40:50 +01001717
Marc Zyngier6c41a412016-06-30 18:40:51 +01001718 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
Marc Zyngierd2896d42016-08-22 09:01:17 +01001719 hyp_idmap_start < kern_hyp_va(~0UL) &&
1720 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
Marc Zyngiereac378a2016-06-30 18:40:50 +01001721 /*
1722 * The idmap page is intersecting with the VA space,
1723 * it is not safe to continue further.
1724 */
1725 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1726 err = -EINVAL;
1727 goto out;
1728 }
1729
Christoffer Dall38f791a2014-10-10 12:14:28 +02001730 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
Marc Zyngier0535a3e2016-06-30 18:40:43 +01001731 if (!hyp_pgd) {
Christoffer Dalld5d81842013-01-20 18:28:07 -05001732 kvm_err("Hyp mode PGD not allocated\n");
Marc Zyngier2fb41052013-04-12 19:12:03 +01001733 err = -ENOMEM;
1734 goto out;
1735 }
1736
Ard Biesheuvele4c5a682015-03-19 16:42:28 +00001737 if (__kvm_cpu_uses_extended_idmap()) {
Marc Zyngier0535a3e2016-06-30 18:40:43 +01001738 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1739 hyp_pgd_order);
1740 if (!boot_hyp_pgd) {
1741 kvm_err("Hyp boot PGD not allocated\n");
1742 err = -ENOMEM;
1743 goto out;
1744 }
1745
1746 err = kvm_map_idmap_text(boot_hyp_pgd);
1747 if (err)
1748 goto out;
1749
Ard Biesheuvele4c5a682015-03-19 16:42:28 +00001750 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1751 if (!merged_hyp_pgd) {
1752 kvm_err("Failed to allocate extra HYP pgd\n");
1753 goto out;
1754 }
1755 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1756 hyp_idmap_start);
Marc Zyngier0535a3e2016-06-30 18:40:43 +01001757 } else {
1758 err = kvm_map_idmap_text(hyp_pgd);
1759 if (err)
1760 goto out;
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001761 }
1762
Christoffer Dalld5d81842013-01-20 18:28:07 -05001763 return 0;
Marc Zyngier2fb41052013-04-12 19:12:03 +01001764out:
Marc Zyngier4f728272013-04-12 19:12:05 +01001765 free_hyp_pgds();
Marc Zyngier2fb41052013-04-12 19:12:03 +01001766 return err;
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001767}
Eric Augerdf6ce242014-06-06 11:10:23 +02001768
1769void kvm_arch_commit_memory_region(struct kvm *kvm,
Paolo Bonzini09170a42015-05-18 13:59:39 +02001770 const struct kvm_userspace_memory_region *mem,
Eric Augerdf6ce242014-06-06 11:10:23 +02001771 const struct kvm_memory_slot *old,
Paolo Bonzinif36f3f22015-05-18 13:20:23 +02001772 const struct kvm_memory_slot *new,
Eric Augerdf6ce242014-06-06 11:10:23 +02001773 enum kvm_mr_change change)
1774{
Mario Smarduchc6473552015-01-15 15:58:56 -08001775 /*
1776 * At this point memslot has been committed and there is an
1777 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1778 * memory slot is write protected.
1779 */
1780 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1781 kvm_mmu_wp_memory_region(kvm, mem->slot);
Eric Augerdf6ce242014-06-06 11:10:23 +02001782}
1783
1784int kvm_arch_prepare_memory_region(struct kvm *kvm,
1785 struct kvm_memory_slot *memslot,
Paolo Bonzini09170a42015-05-18 13:59:39 +02001786 const struct kvm_userspace_memory_region *mem,
Eric Augerdf6ce242014-06-06 11:10:23 +02001787 enum kvm_mr_change change)
1788{
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001789 hva_t hva = mem->userspace_addr;
1790 hva_t reg_end = hva + mem->memory_size;
1791 bool writable = !(mem->flags & KVM_MEM_READONLY);
1792 int ret = 0;
1793
Mario Smarduch15a49a42015-01-15 15:58:58 -08001794 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1795 change != KVM_MR_FLAGS_ONLY)
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001796 return 0;
1797
1798 /*
Christoffer Dallc3058d52014-10-10 12:14:29 +02001799 * Prevent userspace from creating a memory region outside of the IPA
1800 * space addressable by the KVM guest IPA space.
1801 */
1802 if (memslot->base_gfn + memslot->npages >=
1803 (KVM_PHYS_SIZE >> PAGE_SHIFT))
1804 return -EFAULT;
1805
Marc Zyngier72f31042017-03-16 18:20:50 +00001806 down_read(&current->mm->mmap_sem);
Christoffer Dallc3058d52014-10-10 12:14:29 +02001807 /*
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001808 * A memory region could potentially cover multiple VMAs, and any holes
1809 * between them, so iterate over all of them to find out if we can map
1810 * any of them right now.
1811 *
1812 * +--------------------------------------------+
1813 * +---------------+----------------+ +----------------+
1814 * | : VMA 1 | VMA 2 | | VMA 3 : |
1815 * +---------------+----------------+ +----------------+
1816 * | memory region |
1817 * +--------------------------------------------+
1818 */
1819 do {
1820 struct vm_area_struct *vma = find_vma(current->mm, hva);
1821 hva_t vm_start, vm_end;
1822
1823 if (!vma || vma->vm_start >= reg_end)
1824 break;
1825
1826 /*
1827 * Mapping a read-only VMA is only allowed if the
1828 * memory region is configured as read-only.
1829 */
1830 if (writable && !(vma->vm_flags & VM_WRITE)) {
1831 ret = -EPERM;
1832 break;
1833 }
1834
1835 /*
1836 * Take the intersection of this VMA with the memory region
1837 */
1838 vm_start = max(hva, vma->vm_start);
1839 vm_end = min(reg_end, vma->vm_end);
1840
1841 if (vma->vm_flags & VM_PFNMAP) {
1842 gpa_t gpa = mem->guest_phys_addr +
1843 (vm_start - mem->userspace_addr);
Marek Majtykaca09f022015-09-16 12:04:55 +02001844 phys_addr_t pa;
1845
1846 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1847 pa += vm_start - vma->vm_start;
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001848
Mario Smarduch15a49a42015-01-15 15:58:58 -08001849 /* IO region dirty page logging not allowed */
Marc Zyngier72f31042017-03-16 18:20:50 +00001850 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1851 ret = -EINVAL;
1852 goto out;
1853 }
Mario Smarduch15a49a42015-01-15 15:58:58 -08001854
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001855 ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1856 vm_end - vm_start,
1857 writable);
1858 if (ret)
1859 break;
1860 }
1861 hva = vm_end;
1862 } while (hva < reg_end);
1863
Mario Smarduch15a49a42015-01-15 15:58:58 -08001864 if (change == KVM_MR_FLAGS_ONLY)
Marc Zyngier72f31042017-03-16 18:20:50 +00001865 goto out;
Mario Smarduch15a49a42015-01-15 15:58:58 -08001866
Ard Biesheuvel849260c2014-11-17 14:58:53 +00001867 spin_lock(&kvm->mmu_lock);
1868 if (ret)
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001869 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
Ard Biesheuvel849260c2014-11-17 14:58:53 +00001870 else
1871 stage2_flush_memslot(kvm, memslot);
1872 spin_unlock(&kvm->mmu_lock);
Marc Zyngier72f31042017-03-16 18:20:50 +00001873out:
1874 up_read(&current->mm->mmap_sem);
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001875 return ret;
Eric Augerdf6ce242014-06-06 11:10:23 +02001876}
1877
1878void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1879 struct kvm_memory_slot *dont)
1880{
1881}
1882
1883int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1884 unsigned long npages)
1885{
1886 return 0;
1887}
1888
Paolo Bonzini15f46012015-05-17 21:26:08 +02001889void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
Eric Augerdf6ce242014-06-06 11:10:23 +02001890{
1891}
1892
1893void kvm_arch_flush_shadow_all(struct kvm *kvm)
1894{
Suzuki K Poulose293f2932016-09-08 16:25:49 +01001895 kvm_free_stage2_pgd(kvm);
Eric Augerdf6ce242014-06-06 11:10:23 +02001896}
1897
1898void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1899 struct kvm_memory_slot *slot)
1900{
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001901 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1902 phys_addr_t size = slot->npages << PAGE_SHIFT;
1903
1904 spin_lock(&kvm->mmu_lock);
1905 unmap_stage2_range(kvm, gpa, size);
1906 spin_unlock(&kvm->mmu_lock);
Eric Augerdf6ce242014-06-06 11:10:23 +02001907}
Marc Zyngier3c1e7162014-12-19 16:05:31 +00001908
1909/*
1910 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1911 *
1912 * Main problems:
1913 * - S/W ops are local to a CPU (not broadcast)
1914 * - We have line migration behind our back (speculation)
1915 * - System caches don't support S/W at all (damn!)
1916 *
1917 * In the face of the above, the best we can do is to try and convert
1918 * S/W ops to VA ops. Because the guest is not allowed to infer the
1919 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1920 * which is a rather good thing for us.
1921 *
1922 * Also, it is only used when turning caches on/off ("The expected
1923 * usage of the cache maintenance instructions that operate by set/way
1924 * is associated with the cache maintenance instructions associated
1925 * with the powerdown and powerup of caches, if this is required by
1926 * the implementation.").
1927 *
1928 * We use the following policy:
1929 *
1930 * - If we trap a S/W operation, we enable VM trapping to detect
1931 * caches being turned on/off, and do a full clean.
1932 *
1933 * - We flush the caches on both caches being turned on and off.
1934 *
1935 * - Once the caches are enabled, we stop trapping VM ops.
1936 */
1937void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1938{
1939 unsigned long hcr = vcpu_get_hcr(vcpu);
1940
1941 /*
1942 * If this is the first time we do a S/W operation
1943 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1944 * VM trapping.
1945 *
1946 * Otherwise, rely on the VM trapping to wait for the MMU +
1947 * Caches to be turned off. At that point, we'll be able to
1948 * clean the caches again.
1949 */
1950 if (!(hcr & HCR_TVM)) {
1951 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1952 vcpu_has_cache_enabled(vcpu));
1953 stage2_flush_vm(vcpu->kvm);
1954 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
1955 }
1956}
1957
1958void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1959{
1960 bool now_enabled = vcpu_has_cache_enabled(vcpu);
1961
1962 /*
1963 * If switching the MMU+caches on, need to invalidate the caches.
1964 * If switching it off, need to clean the caches.
1965 * Clean + invalidate does the trick always.
1966 */
1967 if (now_enabled != was_enabled)
1968 stage2_flush_vm(vcpu->kvm);
1969
1970 /* Caches are now on, stop trapping VM ops (until a S/W op) */
1971 if (now_enabled)
1972 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
1973
1974 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1975}