blob: 9ee96640744e59759d787700e2d4878837b52b21 [file] [log] [blame]
Andi Kleend4897e12016-06-24 13:41:25 -07001perf.data format
2
3Uptodate as of v4.7
4
5This document describes the on-disk perf.data format, generated by perf record
6or perf inject and consumed by the other perf tools.
7
8On a high level perf.data contains the events generated by the PMUs, plus metadata.
9
10All fields are in native-endian of the machine that generated the perf.data.
11
12When perf is writing to a pipe it uses a special version of the file
13format that does not rely on seeking to adjust data offsets. This
David Carrillo-Cisneros6d134912017-04-10 13:14:28 -070014format is described in "Pipe-mode data" section. The pipe data version can be
15augmented with additional events using perf inject.
Andi Kleend4897e12016-06-24 13:41:25 -070016
17The file starts with a perf_header:
18
19struct perf_header {
20 char magic[8]; /* PERFILE2 */
21 uint64_t size; /* size of the header */
22 uint64_t attr_size; /* size of an attribute in attrs */
23 struct perf_file_section attrs;
24 struct perf_file_section data;
25 struct perf_file_section event_types;
26 uint64_t flags;
27 uint64_t flags1[3];
28};
29
30The magic number identifies the perf file and the version. Current perf versions
31use PERFILE2. Old perf versions generated a version 1 format (PERFFILE). Version 1
32is not described here. The magic number also identifies the endian. When the
33magic value is 64bit byte swapped compared the file is in non-native
34endian.
35
36A perf_file_section contains a pointer to another section of the perf file.
37The header contains three such pointers: for attributes, data and event types.
38
39struct perf_file_section {
40 uint64_t offset; /* offset from start of file */
41 uint64_t size; /* size of the section */
42};
43
44Flags section:
45
Jonas Rabenstein8c23a522019-02-19 16:45:15 +010046For each of the optional features a perf_file_section it placed after the data
47section if the feature bit is set in the perf_header flags bitset. The
48respective perf_file_section points to the data of the additional header and
49defines its size.
Andi Kleend4897e12016-06-24 13:41:25 -070050
51Some headers consist of strings, which are defined like this:
52
53struct perf_header_string {
54 uint32_t len;
55 char string[len]; /* zero terminated */
56};
57
58Some headers consist of a sequence of strings, which start with a
59
60struct perf_header_string_list {
61 uint32_t nr;
62 struct perf_header_string strings[nr]; /* variable length records */
63};
64
65The bits are the flags bits in a 256 bit bitmap starting with
66flags. These define the valid bits:
67
68 HEADER_RESERVED = 0, /* always cleared */
69 HEADER_FIRST_FEATURE = 1,
70 HEADER_TRACING_DATA = 1,
71
72Describe me.
73
74 HEADER_BUILD_ID = 2,
75
76The header consists of an sequence of build_id_event. The size of each record
77is defined by header.size (see perf_event.h). Each event defines a ELF build id
78for a executable file name for a pid. An ELF build id is a unique identifier
79assigned by the linker to an executable.
80
81struct build_id_event {
82 struct perf_event_header header;
83 pid_t pid;
84 uint8_t build_id[24];
85 char filename[header.size - offsetof(struct build_id_event, filename)];
86};
87
88 HEADER_HOSTNAME = 3,
89
90A perf_header_string with the hostname where the data was collected
91(uname -n)
92
93 HEADER_OSRELEASE = 4,
94
95A perf_header_string with the os release where the data was collected
96(uname -r)
97
98 HEADER_VERSION = 5,
99
100A perf_header_string with the perf user tool version where the
101data was collected. This is the same as the version of the source tree
102the perf tool was built from.
103
104 HEADER_ARCH = 6,
105
106A perf_header_string with the CPU architecture (uname -m)
107
108 HEADER_NRCPUS = 7,
109
110A structure defining the number of CPUs.
111
112struct nr_cpus {
Andi Kleend4897e12016-06-24 13:41:25 -0700113 uint32_t nr_cpus_available; /* CPUs not yet onlined */
Arnaldo Carvalho de Melo18a70572018-05-25 16:37:36 -0300114 uint32_t nr_cpus_online;
Andi Kleend4897e12016-06-24 13:41:25 -0700115};
116
117 HEADER_CPUDESC = 8,
118
119A perf_header_string with description of the CPU. On x86 this is the model name
120in /proc/cpuinfo
121
122 HEADER_CPUID = 9,
123
124A perf_header_string with the exact CPU type. On x86 this is
125vendor,family,model,stepping. For example: GenuineIntel,6,69,1
126
127 HEADER_TOTAL_MEM = 10,
128
Vince Weaver2e9a06d2019-07-25 11:57:43 -0400129An uint64_t with the total memory in kilobytes.
Andi Kleend4897e12016-06-24 13:41:25 -0700130
131 HEADER_CMDLINE = 11,
132
Jonas Rabenstein7a663c02019-02-19 16:45:14 +0100133A perf_header_string_list with the perf arg-vector used to collect the data.
Andi Kleend4897e12016-06-24 13:41:25 -0700134
135 HEADER_EVENT_DESC = 12,
136
137Another description of the perf_event_attrs, more detailed than header.attrs
138including IDs and names. See perf_event.h or the man page for a description
139of a struct perf_event_attr.
140
141struct {
142 uint32_t nr; /* number of events */
143 uint32_t attr_size; /* size of each perf_event_attr */
144 struct {
145 struct perf_event_attr attr; /* size of attr_size */
146 uint32_t nr_ids;
147 struct perf_header_string event_string;
148 uint64_t ids[nr_ids];
149 } events[nr]; /* Variable length records */
150};
151
152 HEADER_CPU_TOPOLOGY = 13,
153
Andi Kleend4897e12016-06-24 13:41:25 -0700154struct {
Arnaldo Carvalho de Melo36edfb92019-06-06 17:03:18 -0300155 /*
156 * First revision of HEADER_CPU_TOPOLOGY
157 *
158 * See 'struct perf_header_string_list' definition earlier
159 * in this file.
160 */
161
Andi Kleend4897e12016-06-24 13:41:25 -0700162 struct perf_header_string_list cores; /* Variable length */
163 struct perf_header_string_list threads; /* Variable length */
Arnaldo Carvalho de Melo36edfb92019-06-06 17:03:18 -0300164
165 /*
166 * Second revision of HEADER_CPU_TOPOLOGY, older tools
167 * will not consider what comes next
168 */
169
Thomas Richter0c711132018-05-28 09:44:33 +0200170 struct {
171 uint32_t core_id;
172 uint32_t socket_id;
173 } cpus[nr]; /* Variable length records */
Arnaldo Carvalho de Melo36edfb92019-06-06 17:03:18 -0300174 /* 'nr' comes from previously processed HEADER_NRCPUS's nr_cpu_avail */
175
176 /*
177 * Third revision of HEADER_CPU_TOPOLOGY, older tools
178 * will not consider what comes next
179 */
180
181 struct perf_header_string_list dies; /* Variable length */
182 uint32_t die_id[nr_cpus_avail]; /* from previously processed HEADER_NR_CPUS, VLA */
Andi Kleend4897e12016-06-24 13:41:25 -0700183};
184
185Example:
Kan Liange05a8992019-06-04 15:50:43 -0700186 sibling sockets : 0-8
Kan Liangacae8b32019-06-04 15:50:41 -0700187 sibling dies : 0-3
188 sibling dies : 4-7
Andi Kleend4897e12016-06-24 13:41:25 -0700189 sibling threads : 0-1
190 sibling threads : 2-3
Kan Liangacae8b32019-06-04 15:50:41 -0700191 sibling threads : 4-5
192 sibling threads : 6-7
Andi Kleend4897e12016-06-24 13:41:25 -0700193
194 HEADER_NUMA_TOPOLOGY = 14,
195
196 A list of NUMA node descriptions
197
198struct {
199 uint32_t nr;
200 struct {
201 uint32_t nodenr;
202 uint64_t mem_total;
203 uint64_t mem_free;
204 struct perf_header_string cpus;
205 } nodes[nr]; /* Variable length records */
206};
207
208 HEADER_BRANCH_STACK = 15,
209
210Not implemented in perf.
211
212 HEADER_PMU_MAPPINGS = 16,
213
214 A list of PMU structures, defining the different PMUs supported by perf.
215
216struct {
217 uint32_t nr;
218 struct pmu {
219 uint32_t pmu_type;
220 struct perf_header_string pmu_name;
221 } [nr]; /* Variable length records */
222};
223
224 HEADER_GROUP_DESC = 17,
225
226 Description of counter groups ({...} in perf syntax)
227
228struct {
229 uint32_t nr;
230 struct {
231 struct perf_header_string string;
232 uint32_t leader_idx;
233 uint32_t nr_members;
234 } [nr]; /* Variable length records */
235};
236
237 HEADER_AUXTRACE = 18,
238
239Define additional auxtrace areas in the perf.data. auxtrace is used to store
240undecoded hardware tracing information, such as Intel Processor Trace data.
241
242/**
243 * struct auxtrace_index_entry - indexes a AUX area tracing event within a
244 * perf.data file.
245 * @file_offset: offset within the perf.data file
246 * @sz: size of the event
247 */
248struct auxtrace_index_entry {
249 u64 file_offset;
250 u64 sz;
251};
252
253#define PERF_AUXTRACE_INDEX_ENTRY_COUNT 256
254
255/**
256 * struct auxtrace_index - index of AUX area tracing events within a perf.data
257 * file.
258 * @list: linking a number of arrays of entries
259 * @nr: number of entries
260 * @entries: array of entries
261 */
262struct auxtrace_index {
263 struct list_head list;
264 size_t nr;
265 struct auxtrace_index_entry entries[PERF_AUXTRACE_INDEX_ENTRY_COUNT];
266};
267
Andi Kleen35c0a812017-11-09 06:55:24 -0800268 HEADER_STAT = 19,
269
270This is merely a flag signifying that the data section contains data
271recorded from perf stat record.
272
273 HEADER_CACHE = 20,
274
275Description of the cache hierarchy. Based on the Linux sysfs format
276in /sys/devices/system/cpu/cpu*/cache/
277
278 u32 version Currently always 1
279 u32 number_of_cache_levels
280
281struct {
282 u32 level;
283 u32 line_size;
284 u32 sets;
285 u32 ways;
286 struct perf_header_string type;
287 struct perf_header_string size;
288 struct perf_header_string map;
289}[number_of_cache_levels];
290
Jin Yao60115182017-12-08 21:13:41 +0800291 HEADER_SAMPLE_TIME = 21,
292
293Two uint64_t for the time of first sample and the time of last sample.
294
Arnaldo Carvalho de Melo835fbf12019-05-29 15:35:03 -0300295 HEADER_SAMPLE_TOPOLOGY = 22,
296
297Physical memory map and its node assignments.
298
299The format of data in MEM_TOPOLOGY is as follows:
300
Vince Weaver31439062019-08-01 14:30:43 -0400301 u64 version; // Currently 1
302 u64 block_size_bytes; // /sys/devices/system/memory/block_size_bytes
303 u64 count; // number of nodes
Arnaldo Carvalho de Melo835fbf12019-05-29 15:35:03 -0300304
Vince Weaver31439062019-08-01 14:30:43 -0400305struct memory_node {
306 u64 node_id; // node index
307 u64 size; // size of bitmap
308 struct bitmap {
309 /* size of bitmap again */
310 u64 bitmapsize;
311 /* bitmap of memory indexes that belongs to node */
312 /* /sys/devices/system/node/node<NODE>/memory<INDEX> */
313 u64 entries[(bitmapsize/64)+1];
314 }
315}[count];
Arnaldo Carvalho de Melo835fbf12019-05-29 15:35:03 -0300316
317The MEM_TOPOLOGY can be displayed with following command:
318
319$ perf report --header-only -I
320...
321# memory nodes (nr 1, block size 0x8000000):
322# 0 [7G]: 0-23,32-69
323
Arnaldo Carvalho de Meloa9de7cf2019-05-29 15:43:51 -0300324 HEADER_CLOCKID = 23,
325
326One uint64_t for the clockid frequency, specified, for instance, via 'perf
327record -k' (see clock_gettime()), to enable timestamps derived metrics
328conversion into wall clock time on the reporting stage.
329
Arnaldo Carvalho de Melo0da6ae92019-05-29 15:50:50 -0300330 HEADER_DIR_FORMAT = 24,
331
332The data files layout is described by HEADER_DIR_FORMAT feature. Currently it
333holds only version number (1):
334
335 uint64_t version;
336
337The current version holds only version value (1) means that data files:
338
339- Follow the 'data.*' name format.
340
341- Contain raw events data in standard perf format as read from kernel (and need
342 to be sorted)
343
344Future versions are expected to describe different data files layout according
345to special needs.
346
Song Liu8e21be42019-05-20 23:44:06 -0700347 HEADER_BPF_PROG_INFO = 25,
348
349struct bpf_prog_info_linear, which contains detailed information about
350a BPF program, including type, id, tag, jited/xlated instructions, etc.
351
352 HEADER_BPF_BTF = 26,
353
354Contains BPF Type Format (BTF). For more information about BTF, please
355refer to Documentation/bpf/btf.rst.
356
357struct {
358 u32 id;
359 u32 data_size;
360 char data[];
361};
362
Alexey Budankov42e1fd82019-03-18 20:41:33 +0300363 HEADER_COMPRESSED = 27,
364
365struct {
366 u32 version;
367 u32 type;
368 u32 level;
369 u32 ratio;
370 u32 mmap_len;
371};
372
373Indicates that trace contains records of PERF_RECORD_COMPRESSED type
374that have perf_events records in compressed form.
375
Kan Liang6f91ea22020-03-19 13:25:02 -0700376 HEADER_CPU_PMU_CAPS = 28,
377
378 A list of cpu PMU capabilities. The format of data is as below.
379
380struct {
381 u32 nr_cpu_pmu_caps;
382 {
383 char name[];
384 char value[];
385 } [nr_cpu_pmu_caps]
386};
387
388
389Example:
390 cpu pmu capabilities: branches=32, max_precise=3, pmu_name=icelake
391
Jiri Olsad1e325c2020-08-05 11:34:40 +0200392 HEADER_CLOCK_DATA = 29,
393
394 Contains clock id and its reference time together with wall clock
395 time taken at the 'same time', both values are in nanoseconds.
396 The format of data is as below.
397
398struct {
399 u32 version; /* version = 1 */
400 u32 clockid;
401 u64 wall_clock_ns;
402 u64 clockid_time_ns;
403};
404
Andi Kleend4897e12016-06-24 13:41:25 -0700405 other bits are reserved and should ignored for now
406 HEADER_FEAT_BITS = 256,
407
408Attributes
409
410This is an array of perf_event_attrs, each attr_size bytes long, which defines
411each event collected. See perf_event.h or the man page for a detailed
412description.
413
414Data
415
416This section is the bulk of the file. It consist of a stream of perf_events
417describing events. This matches the format generated by the kernel.
418See perf_event.h or the manpage for a detailed description.
419
420Some notes on parsing:
421
422Ordering
423
424The events are not necessarily in time stamp order, as they can be
425collected in parallel on different CPUs. If the events should be
426processed in time order they need to be sorted first. It is possible
427to only do a partial sort using the FINISHED_ROUND event header (see
428below). perf record guarantees that there is no reordering over a
429FINISHED_ROUND.
430
431ID vs IDENTIFIER
432
433When the event stream contains multiple events each event is identified
434by an ID. This can be either through the PERF_SAMPLE_ID or the
435PERF_SAMPLE_IDENTIFIER header. The PERF_SAMPLE_IDENTIFIER header is
436at a fixed offset from the event header, which allows reliable
Kim Phillips12919272017-05-03 13:13:50 +0100437parsing of the header. Relying on ID may be ambiguous.
Andi Kleend4897e12016-06-24 13:41:25 -0700438IDENTIFIER is only supported by newer Linux kernels.
439
440Perf record specific events:
441
442In addition to the kernel generated event types perf record adds its
443own event types (in addition it also synthesizes some kernel events,
444for example MMAP events)
445
446 PERF_RECORD_USER_TYPE_START = 64,
447 PERF_RECORD_HEADER_ATTR = 64,
448
449struct attr_event {
450 struct perf_event_header header;
451 struct perf_event_attr attr;
452 uint64_t id[];
453};
454
Kim Phillips12919272017-05-03 13:13:50 +0100455 PERF_RECORD_HEADER_EVENT_TYPE = 65, /* deprecated */
Andi Kleend4897e12016-06-24 13:41:25 -0700456
457#define MAX_EVENT_NAME 64
458
459struct perf_trace_event_type {
460 uint64_t event_id;
461 char name[MAX_EVENT_NAME];
462};
463
464struct event_type_event {
465 struct perf_event_header header;
466 struct perf_trace_event_type event_type;
467};
468
469
470 PERF_RECORD_HEADER_TRACING_DATA = 66,
471
472Describe me
473
474struct tracing_data_event {
475 struct perf_event_header header;
476 uint32_t size;
477};
478
479 PERF_RECORD_HEADER_BUILD_ID = 67,
480
481Define a ELF build ID for a referenced executable.
482
483 struct build_id_event; /* See above */
484
485 PERF_RECORD_FINISHED_ROUND = 68,
486
487No event reordering over this header. No payload.
488
489 PERF_RECORD_ID_INDEX = 69,
490
491Map event ids to CPUs and TIDs.
492
493struct id_index_entry {
494 uint64_t id;
495 uint64_t idx;
496 uint64_t cpu;
497 uint64_t tid;
498};
499
500struct id_index_event {
501 struct perf_event_header header;
502 uint64_t nr;
503 struct id_index_entry entries[nr];
504};
505
506 PERF_RECORD_AUXTRACE_INFO = 70,
507
508Auxtrace type specific information. Describe me
509
510struct auxtrace_info_event {
511 struct perf_event_header header;
512 uint32_t type;
513 uint32_t reserved__; /* For alignment */
514 uint64_t priv[];
515};
516
517 PERF_RECORD_AUXTRACE = 71,
518
519Defines auxtrace data. Followed by the actual data. The contents of
520the auxtrace data is dependent on the event and the CPU. For example
521for Intel Processor Trace it contains Processor Trace data generated
522by the CPU.
523
524struct auxtrace_event {
525 struct perf_event_header header;
526 uint64_t size;
527 uint64_t offset;
528 uint64_t reference;
529 uint32_t idx;
530 uint32_t tid;
531 uint32_t cpu;
532 uint32_t reserved__; /* For alignment */
533};
534
535struct aux_event {
536 struct perf_event_header header;
537 uint64_t aux_offset;
538 uint64_t aux_size;
539 uint64_t flags;
540};
541
542 PERF_RECORD_AUXTRACE_ERROR = 72,
543
544Describes an error in hardware tracing
545
546enum auxtrace_error_type {
547 PERF_AUXTRACE_ERROR_ITRACE = 1,
548 PERF_AUXTRACE_ERROR_MAX
549};
550
551#define MAX_AUXTRACE_ERROR_MSG 64
552
553struct auxtrace_error_event {
554 struct perf_event_header header;
555 uint32_t type;
556 uint32_t code;
557 uint32_t cpu;
558 uint32_t pid;
559 uint32_t tid;
560 uint32_t reserved__; /* For alignment */
561 uint64_t ip;
562 char msg[MAX_AUXTRACE_ERROR_MSG];
563};
564
David Carrillo-Cisnerose9def1b2017-07-17 21:25:48 -0700565 PERF_RECORD_HEADER_FEATURE = 80,
566
567Describes a header feature. These are records used in pipe-mode that
568contain information that otherwise would be in perf.data file's header.
569
Alexey Budankov42e1fd82019-03-18 20:41:33 +0300570 PERF_RECORD_COMPRESSED = 81,
571
572struct compressed_event {
573 struct perf_event_header header;
574 char data[];
575};
576
577The header is followed by compressed data frame that can be decompressed
578into array of perf trace records. The size of the entire compressed event
579record including the header is limited by the max value of header.size.
580
Andi Kleend4897e12016-06-24 13:41:25 -0700581Event types
582
583Define the event attributes with their IDs.
584
585An array bound by the perf_file_section size.
586
587 struct {
588 struct perf_event_attr attr; /* Size defined by header.attr_size */
589 struct perf_file_section ids;
590 }
591
592ids points to a array of uint64_t defining the ids for event attr attr.
593
David Carrillo-Cisneros6d134912017-04-10 13:14:28 -0700594Pipe-mode data
595
596Pipe-mode avoid seeks in the file by removing the perf_file_section and flags
597from the struct perf_header. The trimmed header is:
598
599struct perf_pipe_file_header {
600 u64 magic;
601 u64 size;
602};
603
604The information about attrs, data, and event_types is instead in the
David Carrillo-Cisnerose9def1b2017-07-17 21:25:48 -0700605synthesized events PERF_RECORD_ATTR, PERF_RECORD_HEADER_TRACING_DATA,
606PERF_RECORD_HEADER_EVENT_TYPE, and PERF_RECORD_HEADER_FEATURE
607that are generated by perf record in pipe-mode.
David Carrillo-Cisneros6d134912017-04-10 13:14:28 -0700608
609
Andi Kleend4897e12016-06-24 13:41:25 -0700610References:
611
612include/uapi/linux/perf_event.h
613
614This is the canonical description of the kernel generated perf_events
615and the perf_event_attrs.
616
617perf_events manpage
618
619A manpage describing perf_event and perf_event_attr is here:
620http://web.eece.maine.edu/~vweaver/projects/perf_events/programming.html
621This tends to be slightly behind the kernel include, but has better
622descriptions. An (typically older) version of the man page may be
623included with the standard Linux man pages, available with "man
624perf_events"
625
626pmu-tools
627
628https://github.com/andikleen/pmu-tools/tree/master/parser
629
630A definition of the perf.data format in python "construct" format is available
631in pmu-tools parser. This allows to read perf.data from python and dump it.
632
633quipper
634
635The quipper C++ parser is available at
Stephane Eranian2427b432018-03-07 23:59:45 -0800636http://github.com/google/perf_data_converter/tree/master/src/quipper
Simon Que2acad192016-09-28 11:37:53 -0700637