blob: e1d931c457a732de79a7af61fa55e9a31dff7088 [file] [log] [blame]
Sumit Guptadf320f82020-07-16 14:00:01 +05301// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved
4 */
5
6#include <linux/cpu.h>
7#include <linux/cpufreq.h>
8#include <linux/delay.h>
9#include <linux/dma-mapping.h>
10#include <linux/module.h>
11#include <linux/of.h>
12#include <linux/of_platform.h>
13#include <linux/platform_device.h>
14#include <linux/slab.h>
15
16#include <asm/smp_plat.h>
17
18#include <soc/tegra/bpmp.h>
19#include <soc/tegra/bpmp-abi.h>
20
21#define KHZ 1000
22#define REF_CLK_MHZ 408 /* 408 MHz */
23#define US_DELAY 500
24#define US_DELAY_MIN 2
25#define CPUFREQ_TBL_STEP_HZ (50 * KHZ * KHZ)
26#define MAX_CNT ~0U
27
28/* cpufreq transisition latency */
29#define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */
30
31enum cluster {
32 CLUSTER0,
33 CLUSTER1,
34 CLUSTER2,
35 CLUSTER3,
36 MAX_CLUSTERS,
37};
38
39struct tegra194_cpufreq_data {
40 void __iomem *regs;
41 size_t num_clusters;
42 struct cpufreq_frequency_table **tables;
43};
44
45struct tegra_cpu_ctr {
46 u32 cpu;
47 u32 delay;
48 u32 coreclk_cnt, last_coreclk_cnt;
49 u32 refclk_cnt, last_refclk_cnt;
50};
51
52struct read_counters_work {
53 struct work_struct work;
54 struct tegra_cpu_ctr c;
55};
56
57static struct workqueue_struct *read_counters_wq;
58
Sumit Gupta93d0c1a2020-08-12 01:13:17 +053059static void get_cpu_cluster(void *cluster)
Sumit Guptadf320f82020-07-16 14:00:01 +053060{
Sumit Gupta93d0c1a2020-08-12 01:13:17 +053061 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
62
63 *((uint32_t *)cluster) = MPIDR_AFFINITY_LEVEL(mpidr, 1);
Sumit Guptadf320f82020-07-16 14:00:01 +053064}
65
66/*
67 * Read per-core Read-only system register NVFREQ_FEEDBACK_EL1.
68 * The register provides frequency feedback information to
69 * determine the average actual frequency a core has run at over
70 * a period of time.
71 * [31:0] PLLP counter: Counts at fixed frequency (408 MHz)
72 * [63:32] Core clock counter: counts on every core clock cycle
73 * where the core is architecturally clocking
74 */
75static u64 read_freq_feedback(void)
76{
77 u64 val = 0;
78
79 asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : );
80
81 return val;
82}
83
84static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response
85 *nltbl, u16 ndiv)
86{
87 return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv);
88}
89
90static void tegra_read_counters(struct work_struct *work)
91{
92 struct read_counters_work *read_counters_work;
93 struct tegra_cpu_ctr *c;
94 u64 val;
95
96 /*
97 * ref_clk_counter(32 bit counter) runs on constant clk,
98 * pll_p(408MHz).
99 * It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter
100 * = 10526880 usec = 10.527 sec to overflow
101 *
102 * Like wise core_clk_counter(32 bit counter) runs on core clock.
103 * It's synchronized to crab_clk (cpu_crab_clk) which runs at
104 * freq of cluster. Assuming max cluster clock ~2000MHz,
105 * It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter
106 * = ~2.147 sec to overflow
107 */
108 read_counters_work = container_of(work, struct read_counters_work,
109 work);
110 c = &read_counters_work->c;
111
112 val = read_freq_feedback();
113 c->last_refclk_cnt = lower_32_bits(val);
114 c->last_coreclk_cnt = upper_32_bits(val);
115 udelay(c->delay);
116 val = read_freq_feedback();
117 c->refclk_cnt = lower_32_bits(val);
118 c->coreclk_cnt = upper_32_bits(val);
119}
120
121/*
122 * Return instantaneous cpu speed
123 * Instantaneous freq is calculated as -
124 * -Takes sample on every query of getting the freq.
125 * - Read core and ref clock counters;
126 * - Delay for X us
127 * - Read above cycle counters again
128 * - Calculates freq by subtracting current and previous counters
129 * divided by the delay time or eqv. of ref_clk_counter in delta time
130 * - Return Kcycles/second, freq in KHz
131 *
132 * delta time period = x sec
133 * = delta ref_clk_counter / (408 * 10^6) sec
134 * freq in Hz = cycles/sec
135 * = (delta cycles / x sec
136 * = (delta cycles * 408 * 10^6) / delta ref_clk_counter
137 * in KHz = (delta cycles * 408 * 10^3) / delta ref_clk_counter
138 *
139 * @cpu - logical cpu whose freq to be updated
140 * Returns freq in KHz on success, 0 if cpu is offline
141 */
142static unsigned int tegra194_get_speed_common(u32 cpu, u32 delay)
143{
144 struct read_counters_work read_counters_work;
145 struct tegra_cpu_ctr c;
146 u32 delta_refcnt;
147 u32 delta_ccnt;
148 u32 rate_mhz;
149
150 /*
151 * udelay() is required to reconstruct cpu frequency over an
152 * observation window. Using workqueue to call udelay() with
153 * interrupts enabled.
154 */
155 read_counters_work.c.cpu = cpu;
156 read_counters_work.c.delay = delay;
157 INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters);
158 queue_work_on(cpu, read_counters_wq, &read_counters_work.work);
159 flush_work(&read_counters_work.work);
160 c = read_counters_work.c;
161
162 if (c.coreclk_cnt < c.last_coreclk_cnt)
163 delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt);
164 else
165 delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt;
166 if (!delta_ccnt)
167 return 0;
168
169 /* ref clock is 32 bits */
170 if (c.refclk_cnt < c.last_refclk_cnt)
171 delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt);
172 else
173 delta_refcnt = c.refclk_cnt - c.last_refclk_cnt;
174 if (!delta_refcnt) {
175 pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu);
176 return 0;
177 }
178 rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt;
179
180 return (rate_mhz * KHZ); /* in KHz */
181}
182
183static unsigned int tegra194_get_speed(u32 cpu)
184{
185 return tegra194_get_speed_common(cpu, US_DELAY);
186}
187
188static int tegra194_cpufreq_init(struct cpufreq_policy *policy)
189{
190 struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
Sumit Guptadf320f82020-07-16 14:00:01 +0530191 u32 cpu;
Sumit Gupta93d0c1a2020-08-12 01:13:17 +0530192 u32 cl;
193
194 smp_call_function_single(policy->cpu, get_cpu_cluster, &cl, true);
Sumit Guptadf320f82020-07-16 14:00:01 +0530195
196 if (cl >= data->num_clusters)
197 return -EINVAL;
198
199 /* boot freq */
200 policy->cur = tegra194_get_speed_common(policy->cpu, US_DELAY_MIN);
201
202 /* set same policy for all cpus in a cluster */
203 for (cpu = (cl * 2); cpu < ((cl + 1) * 2); cpu++)
204 cpumask_set_cpu(cpu, policy->cpus);
205
206 policy->freq_table = data->tables[cl];
207 policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY;
208
209 return 0;
210}
211
212static void set_cpu_ndiv(void *data)
213{
214 struct cpufreq_frequency_table *tbl = data;
215 u64 ndiv_val = (u64)tbl->driver_data;
216
217 asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val));
218}
219
220static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy,
221 unsigned int index)
222{
223 struct cpufreq_frequency_table *tbl = policy->freq_table + index;
224
225 /*
226 * Each core writes frequency in per core register. Then both cores
227 * in a cluster run at same frequency which is the maximum frequency
228 * request out of the values requested by both cores in that cluster.
229 */
230 on_each_cpu_mask(policy->cpus, set_cpu_ndiv, tbl, true);
231
232 return 0;
233}
234
235static struct cpufreq_driver tegra194_cpufreq_driver = {
236 .name = "tegra194",
237 .flags = CPUFREQ_STICKY | CPUFREQ_CONST_LOOPS |
238 CPUFREQ_NEED_INITIAL_FREQ_CHECK,
239 .verify = cpufreq_generic_frequency_table_verify,
240 .target_index = tegra194_cpufreq_set_target,
241 .get = tegra194_get_speed,
242 .init = tegra194_cpufreq_init,
243 .attr = cpufreq_generic_attr,
244};
245
246static void tegra194_cpufreq_free_resources(void)
247{
248 destroy_workqueue(read_counters_wq);
249}
250
251static struct cpufreq_frequency_table *
252init_freq_table(struct platform_device *pdev, struct tegra_bpmp *bpmp,
253 unsigned int cluster_id)
254{
255 struct cpufreq_frequency_table *freq_table;
256 struct mrq_cpu_ndiv_limits_response resp;
257 unsigned int num_freqs, ndiv, delta_ndiv;
258 struct mrq_cpu_ndiv_limits_request req;
259 struct tegra_bpmp_message msg;
260 u16 freq_table_step_size;
261 int err, index;
262
263 memset(&req, 0, sizeof(req));
264 req.cluster_id = cluster_id;
265
266 memset(&msg, 0, sizeof(msg));
267 msg.mrq = MRQ_CPU_NDIV_LIMITS;
268 msg.tx.data = &req;
269 msg.tx.size = sizeof(req);
270 msg.rx.data = &resp;
271 msg.rx.size = sizeof(resp);
272
273 err = tegra_bpmp_transfer(bpmp, &msg);
274 if (err)
275 return ERR_PTR(err);
276
277 /*
278 * Make sure frequency table step is a multiple of mdiv to match
279 * vhint table granularity.
280 */
281 freq_table_step_size = resp.mdiv *
282 DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz);
283
284 dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n",
285 cluster_id, freq_table_step_size);
286
287 delta_ndiv = resp.ndiv_max - resp.ndiv_min;
288
289 if (unlikely(delta_ndiv == 0)) {
290 num_freqs = 1;
291 } else {
292 /* We store both ndiv_min and ndiv_max hence the +1 */
293 num_freqs = delta_ndiv / freq_table_step_size + 1;
294 }
295
296 num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0;
297
298 freq_table = devm_kcalloc(&pdev->dev, num_freqs + 1,
299 sizeof(*freq_table), GFP_KERNEL);
300 if (!freq_table)
301 return ERR_PTR(-ENOMEM);
302
303 for (index = 0, ndiv = resp.ndiv_min;
304 ndiv < resp.ndiv_max;
305 index++, ndiv += freq_table_step_size) {
306 freq_table[index].driver_data = ndiv;
307 freq_table[index].frequency = map_ndiv_to_freq(&resp, ndiv);
308 }
309
310 freq_table[index].driver_data = resp.ndiv_max;
311 freq_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max);
312 freq_table[index].frequency = CPUFREQ_TABLE_END;
313
314 return freq_table;
315}
316
317static int tegra194_cpufreq_probe(struct platform_device *pdev)
318{
319 struct tegra194_cpufreq_data *data;
320 struct tegra_bpmp *bpmp;
321 int err, i;
322
323 data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
324 if (!data)
325 return -ENOMEM;
326
327 data->num_clusters = MAX_CLUSTERS;
328 data->tables = devm_kcalloc(&pdev->dev, data->num_clusters,
329 sizeof(*data->tables), GFP_KERNEL);
330 if (!data->tables)
331 return -ENOMEM;
332
333 platform_set_drvdata(pdev, data);
334
335 bpmp = tegra_bpmp_get(&pdev->dev);
336 if (IS_ERR(bpmp))
337 return PTR_ERR(bpmp);
338
339 read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1);
340 if (!read_counters_wq) {
341 dev_err(&pdev->dev, "fail to create_workqueue\n");
342 err = -EINVAL;
343 goto put_bpmp;
344 }
345
346 for (i = 0; i < data->num_clusters; i++) {
347 data->tables[i] = init_freq_table(pdev, bpmp, i);
348 if (IS_ERR(data->tables[i])) {
349 err = PTR_ERR(data->tables[i]);
350 goto err_free_res;
351 }
352 }
353
354 tegra194_cpufreq_driver.driver_data = data;
355
356 err = cpufreq_register_driver(&tegra194_cpufreq_driver);
357 if (!err)
358 goto put_bpmp;
359
360err_free_res:
361 tegra194_cpufreq_free_resources();
362put_bpmp:
363 tegra_bpmp_put(bpmp);
364 return err;
365}
366
367static int tegra194_cpufreq_remove(struct platform_device *pdev)
368{
369 cpufreq_unregister_driver(&tegra194_cpufreq_driver);
370 tegra194_cpufreq_free_resources();
371
372 return 0;
373}
374
375static const struct of_device_id tegra194_cpufreq_of_match[] = {
376 { .compatible = "nvidia,tegra194-ccplex", },
377 { /* sentinel */ }
378};
379MODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match);
380
381static struct platform_driver tegra194_ccplex_driver = {
382 .driver = {
383 .name = "tegra194-cpufreq",
384 .of_match_table = tegra194_cpufreq_of_match,
385 },
386 .probe = tegra194_cpufreq_probe,
387 .remove = tegra194_cpufreq_remove,
388};
389module_platform_driver(tegra194_ccplex_driver);
390
391MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
392MODULE_AUTHOR("Sumit Gupta <sumitg@nvidia.com>");
393MODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver");
394MODULE_LICENSE("GPL v2");