Dave Hansen | 5f23f6d | 2016-07-29 09:30:24 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Tests x86 Memory Protection Keys (see Documentation/x86/protection-keys.txt) |
| 3 | * |
| 4 | * There are examples in here of: |
| 5 | * * how to set protection keys on memory |
| 6 | * * how to set/clear bits in PKRU (the rights register) |
| 7 | * * how to handle SEGV_PKRU signals and extract pkey-relevant |
| 8 | * information from the siginfo |
| 9 | * |
| 10 | * Things to add: |
| 11 | * make sure KSM and KSM COW breaking works |
| 12 | * prefault pages in at malloc, or not |
| 13 | * protect MPX bounds tables with protection keys? |
| 14 | * make sure VMA splitting/merging is working correctly |
| 15 | * OOMs can destroy mm->mmap (see exit_mmap()), so make sure it is immune to pkeys |
| 16 | * look for pkey "leaks" where it is still set on a VMA but "freed" back to the kernel |
| 17 | * do a plain mprotect() to a mprotect_pkey() area and make sure the pkey sticks |
| 18 | * |
| 19 | * Compile like this: |
| 20 | * gcc -o protection_keys -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm |
| 21 | * gcc -m32 -o protection_keys_32 -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm |
| 22 | */ |
| 23 | #define _GNU_SOURCE |
| 24 | #include <errno.h> |
| 25 | #include <linux/futex.h> |
| 26 | #include <sys/time.h> |
| 27 | #include <sys/syscall.h> |
| 28 | #include <string.h> |
| 29 | #include <stdio.h> |
| 30 | #include <stdint.h> |
| 31 | #include <stdbool.h> |
| 32 | #include <signal.h> |
| 33 | #include <assert.h> |
| 34 | #include <stdlib.h> |
| 35 | #include <ucontext.h> |
| 36 | #include <sys/mman.h> |
| 37 | #include <sys/types.h> |
| 38 | #include <sys/wait.h> |
| 39 | #include <sys/stat.h> |
| 40 | #include <fcntl.h> |
| 41 | #include <unistd.h> |
| 42 | #include <sys/ptrace.h> |
| 43 | #include <setjmp.h> |
| 44 | |
| 45 | #include "pkey-helpers.h" |
| 46 | |
| 47 | int iteration_nr = 1; |
| 48 | int test_nr; |
| 49 | |
| 50 | unsigned int shadow_pkru; |
| 51 | |
| 52 | #define HPAGE_SIZE (1UL<<21) |
| 53 | #define ARRAY_SIZE(x) (sizeof(x) / sizeof(*(x))) |
| 54 | #define ALIGN_UP(x, align_to) (((x) + ((align_to)-1)) & ~((align_to)-1)) |
| 55 | #define ALIGN_DOWN(x, align_to) ((x) & ~((align_to)-1)) |
| 56 | #define ALIGN_PTR_UP(p, ptr_align_to) ((typeof(p))ALIGN_UP((unsigned long)(p), ptr_align_to)) |
| 57 | #define ALIGN_PTR_DOWN(p, ptr_align_to) ((typeof(p))ALIGN_DOWN((unsigned long)(p), ptr_align_to)) |
| 58 | #define __stringify_1(x...) #x |
| 59 | #define __stringify(x...) __stringify_1(x) |
| 60 | |
| 61 | #define PTR_ERR_ENOTSUP ((void *)-ENOTSUP) |
| 62 | |
| 63 | int dprint_in_signal; |
| 64 | char dprint_in_signal_buffer[DPRINT_IN_SIGNAL_BUF_SIZE]; |
| 65 | |
| 66 | extern void abort_hooks(void); |
| 67 | #define pkey_assert(condition) do { \ |
| 68 | if (!(condition)) { \ |
| 69 | dprintf0("assert() at %s::%d test_nr: %d iteration: %d\n", \ |
| 70 | __FILE__, __LINE__, \ |
| 71 | test_nr, iteration_nr); \ |
| 72 | dprintf0("errno at assert: %d", errno); \ |
| 73 | abort_hooks(); \ |
| 74 | assert(condition); \ |
| 75 | } \ |
| 76 | } while (0) |
| 77 | #define raw_assert(cond) assert(cond) |
| 78 | |
| 79 | void cat_into_file(char *str, char *file) |
| 80 | { |
| 81 | int fd = open(file, O_RDWR); |
| 82 | int ret; |
| 83 | |
| 84 | dprintf2("%s(): writing '%s' to '%s'\n", __func__, str, file); |
| 85 | /* |
| 86 | * these need to be raw because they are called under |
| 87 | * pkey_assert() |
| 88 | */ |
| 89 | raw_assert(fd >= 0); |
| 90 | ret = write(fd, str, strlen(str)); |
| 91 | if (ret != strlen(str)) { |
| 92 | perror("write to file failed"); |
| 93 | fprintf(stderr, "filename: '%s' str: '%s'\n", file, str); |
| 94 | raw_assert(0); |
| 95 | } |
| 96 | close(fd); |
| 97 | } |
| 98 | |
| 99 | #if CONTROL_TRACING > 0 |
| 100 | static int warned_tracing; |
| 101 | int tracing_root_ok(void) |
| 102 | { |
| 103 | if (geteuid() != 0) { |
| 104 | if (!warned_tracing) |
| 105 | fprintf(stderr, "WARNING: not run as root, " |
| 106 | "can not do tracing control\n"); |
| 107 | warned_tracing = 1; |
| 108 | return 0; |
| 109 | } |
| 110 | return 1; |
| 111 | } |
| 112 | #endif |
| 113 | |
| 114 | void tracing_on(void) |
| 115 | { |
| 116 | #if CONTROL_TRACING > 0 |
| 117 | #define TRACEDIR "/sys/kernel/debug/tracing" |
| 118 | char pidstr[32]; |
| 119 | |
| 120 | if (!tracing_root_ok()) |
| 121 | return; |
| 122 | |
| 123 | sprintf(pidstr, "%d", getpid()); |
| 124 | cat_into_file("0", TRACEDIR "/tracing_on"); |
| 125 | cat_into_file("\n", TRACEDIR "/trace"); |
| 126 | if (1) { |
| 127 | cat_into_file("function_graph", TRACEDIR "/current_tracer"); |
| 128 | cat_into_file("1", TRACEDIR "/options/funcgraph-proc"); |
| 129 | } else { |
| 130 | cat_into_file("nop", TRACEDIR "/current_tracer"); |
| 131 | } |
| 132 | cat_into_file(pidstr, TRACEDIR "/set_ftrace_pid"); |
| 133 | cat_into_file("1", TRACEDIR "/tracing_on"); |
| 134 | dprintf1("enabled tracing\n"); |
| 135 | #endif |
| 136 | } |
| 137 | |
| 138 | void tracing_off(void) |
| 139 | { |
| 140 | #if CONTROL_TRACING > 0 |
| 141 | if (!tracing_root_ok()) |
| 142 | return; |
| 143 | cat_into_file("0", "/sys/kernel/debug/tracing/tracing_on"); |
| 144 | #endif |
| 145 | } |
| 146 | |
| 147 | void abort_hooks(void) |
| 148 | { |
| 149 | fprintf(stderr, "running %s()...\n", __func__); |
| 150 | tracing_off(); |
| 151 | #ifdef SLEEP_ON_ABORT |
| 152 | sleep(SLEEP_ON_ABORT); |
| 153 | #endif |
| 154 | } |
| 155 | |
| 156 | static inline void __page_o_noops(void) |
| 157 | { |
| 158 | /* 8-bytes of instruction * 512 bytes = 1 page */ |
| 159 | asm(".rept 512 ; nopl 0x7eeeeeee(%eax) ; .endr"); |
| 160 | } |
| 161 | |
| 162 | /* |
| 163 | * This attempts to have roughly a page of instructions followed by a few |
| 164 | * instructions that do a write, and another page of instructions. That |
| 165 | * way, we are pretty sure that the write is in the second page of |
| 166 | * instructions and has at least a page of padding behind it. |
| 167 | * |
| 168 | * *That* lets us be sure to madvise() away the write instruction, which |
| 169 | * will then fault, which makes sure that the fault code handles |
| 170 | * execute-only memory properly. |
| 171 | */ |
| 172 | __attribute__((__aligned__(PAGE_SIZE))) |
| 173 | void lots_o_noops_around_write(int *write_to_me) |
| 174 | { |
| 175 | dprintf3("running %s()\n", __func__); |
| 176 | __page_o_noops(); |
| 177 | /* Assume this happens in the second page of instructions: */ |
| 178 | *write_to_me = __LINE__; |
| 179 | /* pad out by another page: */ |
| 180 | __page_o_noops(); |
| 181 | dprintf3("%s() done\n", __func__); |
| 182 | } |
| 183 | |
| 184 | /* Define some kernel-like types */ |
| 185 | #define u8 uint8_t |
| 186 | #define u16 uint16_t |
| 187 | #define u32 uint32_t |
| 188 | #define u64 uint64_t |
| 189 | |
| 190 | #ifdef __i386__ |
| 191 | #define SYS_mprotect_key 380 |
| 192 | #define SYS_pkey_alloc 381 |
| 193 | #define SYS_pkey_free 382 |
| 194 | #define REG_IP_IDX REG_EIP |
| 195 | #define si_pkey_offset 0x18 |
| 196 | #else |
| 197 | #define SYS_mprotect_key 329 |
| 198 | #define SYS_pkey_alloc 330 |
| 199 | #define SYS_pkey_free 331 |
| 200 | #define REG_IP_IDX REG_RIP |
| 201 | #define si_pkey_offset 0x20 |
| 202 | #endif |
| 203 | |
| 204 | void dump_mem(void *dumpme, int len_bytes) |
| 205 | { |
| 206 | char *c = (void *)dumpme; |
| 207 | int i; |
| 208 | |
| 209 | for (i = 0; i < len_bytes; i += sizeof(u64)) { |
| 210 | u64 *ptr = (u64 *)(c + i); |
| 211 | dprintf1("dump[%03d][@%p]: %016jx\n", i, ptr, *ptr); |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | #define __SI_FAULT (3 << 16) |
| 216 | #define SEGV_BNDERR (__SI_FAULT|3) /* failed address bound checks */ |
| 217 | #define SEGV_PKUERR (__SI_FAULT|4) |
| 218 | |
| 219 | static char *si_code_str(int si_code) |
| 220 | { |
| 221 | if (si_code & SEGV_MAPERR) |
| 222 | return "SEGV_MAPERR"; |
| 223 | if (si_code & SEGV_ACCERR) |
| 224 | return "SEGV_ACCERR"; |
| 225 | if (si_code & SEGV_BNDERR) |
| 226 | return "SEGV_BNDERR"; |
| 227 | if (si_code & SEGV_PKUERR) |
| 228 | return "SEGV_PKUERR"; |
| 229 | return "UNKNOWN"; |
| 230 | } |
| 231 | |
| 232 | int pkru_faults; |
| 233 | int last_si_pkey = -1; |
| 234 | void signal_handler(int signum, siginfo_t *si, void *vucontext) |
| 235 | { |
| 236 | ucontext_t *uctxt = vucontext; |
| 237 | int trapno; |
| 238 | unsigned long ip; |
| 239 | char *fpregs; |
| 240 | u32 *pkru_ptr; |
| 241 | u64 si_pkey; |
| 242 | u32 *si_pkey_ptr; |
| 243 | int pkru_offset; |
| 244 | fpregset_t fpregset; |
| 245 | |
| 246 | dprint_in_signal = 1; |
| 247 | dprintf1(">>>>===============SIGSEGV============================\n"); |
| 248 | dprintf1("%s()::%d, pkru: 0x%x shadow: %x\n", __func__, __LINE__, |
| 249 | __rdpkru(), shadow_pkru); |
| 250 | |
| 251 | trapno = uctxt->uc_mcontext.gregs[REG_TRAPNO]; |
| 252 | ip = uctxt->uc_mcontext.gregs[REG_IP_IDX]; |
| 253 | fpregset = uctxt->uc_mcontext.fpregs; |
| 254 | fpregs = (void *)fpregset; |
| 255 | |
| 256 | dprintf2("%s() trapno: %d ip: 0x%lx info->si_code: %s/%d\n", __func__, |
| 257 | trapno, ip, si_code_str(si->si_code), si->si_code); |
| 258 | #ifdef __i386__ |
| 259 | /* |
| 260 | * 32-bit has some extra padding so that userspace can tell whether |
| 261 | * the XSTATE header is present in addition to the "legacy" FPU |
| 262 | * state. We just assume that it is here. |
| 263 | */ |
| 264 | fpregs += 0x70; |
| 265 | #endif |
| 266 | pkru_offset = pkru_xstate_offset(); |
| 267 | pkru_ptr = (void *)(&fpregs[pkru_offset]); |
| 268 | |
| 269 | dprintf1("siginfo: %p\n", si); |
| 270 | dprintf1(" fpregs: %p\n", fpregs); |
| 271 | /* |
| 272 | * If we got a PKRU fault, we *HAVE* to have at least one bit set in |
| 273 | * here. |
| 274 | */ |
| 275 | dprintf1("pkru_xstate_offset: %d\n", pkru_xstate_offset()); |
| 276 | if (DEBUG_LEVEL > 4) |
| 277 | dump_mem(pkru_ptr - 128, 256); |
| 278 | pkey_assert(*pkru_ptr); |
| 279 | |
| 280 | si_pkey_ptr = (u32 *)(((u8 *)si) + si_pkey_offset); |
| 281 | dprintf1("si_pkey_ptr: %p\n", si_pkey_ptr); |
| 282 | dump_mem(si_pkey_ptr - 8, 24); |
| 283 | si_pkey = *si_pkey_ptr; |
| 284 | pkey_assert(si_pkey < NR_PKEYS); |
| 285 | last_si_pkey = si_pkey; |
| 286 | |
| 287 | if ((si->si_code == SEGV_MAPERR) || |
| 288 | (si->si_code == SEGV_ACCERR) || |
| 289 | (si->si_code == SEGV_BNDERR)) { |
| 290 | printf("non-PK si_code, exiting...\n"); |
| 291 | exit(4); |
| 292 | } |
| 293 | |
| 294 | dprintf1("signal pkru from xsave: %08x\n", *pkru_ptr); |
| 295 | /* need __rdpkru() version so we do not do shadow_pkru checking */ |
| 296 | dprintf1("signal pkru from pkru: %08x\n", __rdpkru()); |
| 297 | dprintf1("si_pkey from siginfo: %jx\n", si_pkey); |
| 298 | *(u64 *)pkru_ptr = 0x00000000; |
| 299 | dprintf1("WARNING: set PRKU=0 to allow faulting instruction to continue\n"); |
| 300 | pkru_faults++; |
| 301 | dprintf1("<<<<==================================================\n"); |
| 302 | return; |
| 303 | if (trapno == 14) { |
| 304 | fprintf(stderr, |
| 305 | "ERROR: In signal handler, page fault, trapno = %d, ip = %016lx\n", |
| 306 | trapno, ip); |
| 307 | fprintf(stderr, "si_addr %p\n", si->si_addr); |
| 308 | fprintf(stderr, "REG_ERR: %lx\n", |
| 309 | (unsigned long)uctxt->uc_mcontext.gregs[REG_ERR]); |
| 310 | exit(1); |
| 311 | } else { |
| 312 | fprintf(stderr, "unexpected trap %d! at 0x%lx\n", trapno, ip); |
| 313 | fprintf(stderr, "si_addr %p\n", si->si_addr); |
| 314 | fprintf(stderr, "REG_ERR: %lx\n", |
| 315 | (unsigned long)uctxt->uc_mcontext.gregs[REG_ERR]); |
| 316 | exit(2); |
| 317 | } |
| 318 | dprint_in_signal = 0; |
| 319 | } |
| 320 | |
| 321 | int wait_all_children(void) |
| 322 | { |
| 323 | int status; |
| 324 | return waitpid(-1, &status, 0); |
| 325 | } |
| 326 | |
| 327 | void sig_chld(int x) |
| 328 | { |
| 329 | dprint_in_signal = 1; |
| 330 | dprintf2("[%d] SIGCHLD: %d\n", getpid(), x); |
| 331 | dprint_in_signal = 0; |
| 332 | } |
| 333 | |
| 334 | void setup_sigsegv_handler(void) |
| 335 | { |
| 336 | int r, rs; |
| 337 | struct sigaction newact; |
| 338 | struct sigaction oldact; |
| 339 | |
| 340 | /* #PF is mapped to sigsegv */ |
| 341 | int signum = SIGSEGV; |
| 342 | |
| 343 | newact.sa_handler = 0; |
| 344 | newact.sa_sigaction = signal_handler; |
| 345 | |
| 346 | /*sigset_t - signals to block while in the handler */ |
| 347 | /* get the old signal mask. */ |
| 348 | rs = sigprocmask(SIG_SETMASK, 0, &newact.sa_mask); |
| 349 | pkey_assert(rs == 0); |
| 350 | |
| 351 | /* call sa_sigaction, not sa_handler*/ |
| 352 | newact.sa_flags = SA_SIGINFO; |
| 353 | |
| 354 | newact.sa_restorer = 0; /* void(*)(), obsolete */ |
| 355 | r = sigaction(signum, &newact, &oldact); |
| 356 | r = sigaction(SIGALRM, &newact, &oldact); |
| 357 | pkey_assert(r == 0); |
| 358 | } |
| 359 | |
| 360 | void setup_handlers(void) |
| 361 | { |
| 362 | signal(SIGCHLD, &sig_chld); |
| 363 | setup_sigsegv_handler(); |
| 364 | } |
| 365 | |
| 366 | pid_t fork_lazy_child(void) |
| 367 | { |
| 368 | pid_t forkret; |
| 369 | |
| 370 | forkret = fork(); |
| 371 | pkey_assert(forkret >= 0); |
| 372 | dprintf3("[%d] fork() ret: %d\n", getpid(), forkret); |
| 373 | |
| 374 | if (!forkret) { |
| 375 | /* in the child */ |
| 376 | while (1) { |
| 377 | dprintf1("child sleeping...\n"); |
| 378 | sleep(30); |
| 379 | } |
| 380 | } |
| 381 | return forkret; |
| 382 | } |
| 383 | |
| 384 | void davecmp(void *_a, void *_b, int len) |
| 385 | { |
| 386 | int i; |
| 387 | unsigned long *a = _a; |
| 388 | unsigned long *b = _b; |
| 389 | |
| 390 | for (i = 0; i < len / sizeof(*a); i++) { |
| 391 | if (a[i] == b[i]) |
| 392 | continue; |
| 393 | |
| 394 | dprintf3("[%3d]: a: %016lx b: %016lx\n", i, a[i], b[i]); |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | void dumpit(char *f) |
| 399 | { |
| 400 | int fd = open(f, O_RDONLY); |
| 401 | char buf[100]; |
| 402 | int nr_read; |
| 403 | |
| 404 | dprintf2("maps fd: %d\n", fd); |
| 405 | do { |
| 406 | nr_read = read(fd, &buf[0], sizeof(buf)); |
| 407 | write(1, buf, nr_read); |
| 408 | } while (nr_read > 0); |
| 409 | close(fd); |
| 410 | } |
| 411 | |
| 412 | #define PKEY_DISABLE_ACCESS 0x1 |
| 413 | #define PKEY_DISABLE_WRITE 0x2 |
| 414 | |
| 415 | u32 pkey_get(int pkey, unsigned long flags) |
| 416 | { |
| 417 | u32 mask = (PKEY_DISABLE_ACCESS|PKEY_DISABLE_WRITE); |
| 418 | u32 pkru = __rdpkru(); |
| 419 | u32 shifted_pkru; |
| 420 | u32 masked_pkru; |
| 421 | |
| 422 | dprintf1("%s(pkey=%d, flags=%lx) = %x / %d\n", |
| 423 | __func__, pkey, flags, 0, 0); |
| 424 | dprintf2("%s() raw pkru: %x\n", __func__, pkru); |
| 425 | |
| 426 | shifted_pkru = (pkru >> (pkey * PKRU_BITS_PER_PKEY)); |
| 427 | dprintf2("%s() shifted_pkru: %x\n", __func__, shifted_pkru); |
| 428 | masked_pkru = shifted_pkru & mask; |
| 429 | dprintf2("%s() masked pkru: %x\n", __func__, masked_pkru); |
| 430 | /* |
| 431 | * shift down the relevant bits to the lowest two, then |
| 432 | * mask off all the other high bits. |
| 433 | */ |
| 434 | return masked_pkru; |
| 435 | } |
| 436 | |
| 437 | int pkey_set(int pkey, unsigned long rights, unsigned long flags) |
| 438 | { |
| 439 | u32 mask = (PKEY_DISABLE_ACCESS|PKEY_DISABLE_WRITE); |
| 440 | u32 old_pkru = __rdpkru(); |
| 441 | u32 new_pkru; |
| 442 | |
| 443 | /* make sure that 'rights' only contains the bits we expect: */ |
| 444 | assert(!(rights & ~mask)); |
| 445 | |
| 446 | /* copy old pkru */ |
| 447 | new_pkru = old_pkru; |
| 448 | /* mask out bits from pkey in old value: */ |
| 449 | new_pkru &= ~(mask << (pkey * PKRU_BITS_PER_PKEY)); |
| 450 | /* OR in new bits for pkey: */ |
| 451 | new_pkru |= (rights << (pkey * PKRU_BITS_PER_PKEY)); |
| 452 | |
| 453 | __wrpkru(new_pkru); |
| 454 | |
| 455 | dprintf3("%s(pkey=%d, rights=%lx, flags=%lx) = %x pkru now: %x old_pkru: %x\n", |
| 456 | __func__, pkey, rights, flags, 0, __rdpkru(), old_pkru); |
| 457 | return 0; |
| 458 | } |
| 459 | |
| 460 | void pkey_disable_set(int pkey, int flags) |
| 461 | { |
| 462 | unsigned long syscall_flags = 0; |
| 463 | int ret; |
| 464 | int pkey_rights; |
| 465 | u32 orig_pkru; |
| 466 | |
| 467 | dprintf1("START->%s(%d, 0x%x)\n", __func__, |
| 468 | pkey, flags); |
| 469 | pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE)); |
| 470 | |
| 471 | pkey_rights = pkey_get(pkey, syscall_flags); |
| 472 | |
| 473 | dprintf1("%s(%d) pkey_get(%d): %x\n", __func__, |
| 474 | pkey, pkey, pkey_rights); |
| 475 | pkey_assert(pkey_rights >= 0); |
| 476 | |
| 477 | pkey_rights |= flags; |
| 478 | |
| 479 | ret = pkey_set(pkey, pkey_rights, syscall_flags); |
| 480 | assert(!ret); |
| 481 | /*pkru and flags have the same format */ |
| 482 | shadow_pkru |= flags << (pkey * 2); |
| 483 | dprintf1("%s(%d) shadow: 0x%x\n", __func__, pkey, shadow_pkru); |
| 484 | |
| 485 | pkey_assert(ret >= 0); |
| 486 | |
| 487 | pkey_rights = pkey_get(pkey, syscall_flags); |
| 488 | dprintf1("%s(%d) pkey_get(%d): %x\n", __func__, |
| 489 | pkey, pkey, pkey_rights); |
| 490 | |
| 491 | dprintf1("%s(%d) pkru: 0x%x\n", __func__, pkey, rdpkru()); |
| 492 | if (flags) |
| 493 | pkey_assert(rdpkru() > orig_pkru); |
| 494 | dprintf1("END<---%s(%d, 0x%x)\n", __func__, |
| 495 | pkey, flags); |
| 496 | } |
| 497 | |
| 498 | void pkey_disable_clear(int pkey, int flags) |
| 499 | { |
| 500 | unsigned long syscall_flags = 0; |
| 501 | int ret; |
| 502 | int pkey_rights = pkey_get(pkey, syscall_flags); |
| 503 | u32 orig_pkru = rdpkru(); |
| 504 | |
| 505 | pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE)); |
| 506 | |
| 507 | dprintf1("%s(%d) pkey_get(%d): %x\n", __func__, |
| 508 | pkey, pkey, pkey_rights); |
| 509 | pkey_assert(pkey_rights >= 0); |
| 510 | |
| 511 | pkey_rights |= flags; |
| 512 | |
| 513 | ret = pkey_set(pkey, pkey_rights, 0); |
| 514 | /* pkru and flags have the same format */ |
| 515 | shadow_pkru &= ~(flags << (pkey * 2)); |
| 516 | pkey_assert(ret >= 0); |
| 517 | |
| 518 | pkey_rights = pkey_get(pkey, syscall_flags); |
| 519 | dprintf1("%s(%d) pkey_get(%d): %x\n", __func__, |
| 520 | pkey, pkey, pkey_rights); |
| 521 | |
| 522 | dprintf1("%s(%d) pkru: 0x%x\n", __func__, pkey, rdpkru()); |
| 523 | if (flags) |
| 524 | assert(rdpkru() > orig_pkru); |
| 525 | } |
| 526 | |
| 527 | void pkey_write_allow(int pkey) |
| 528 | { |
| 529 | pkey_disable_clear(pkey, PKEY_DISABLE_WRITE); |
| 530 | } |
| 531 | void pkey_write_deny(int pkey) |
| 532 | { |
| 533 | pkey_disable_set(pkey, PKEY_DISABLE_WRITE); |
| 534 | } |
| 535 | void pkey_access_allow(int pkey) |
| 536 | { |
| 537 | pkey_disable_clear(pkey, PKEY_DISABLE_ACCESS); |
| 538 | } |
| 539 | void pkey_access_deny(int pkey) |
| 540 | { |
| 541 | pkey_disable_set(pkey, PKEY_DISABLE_ACCESS); |
| 542 | } |
| 543 | |
| 544 | int sys_mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot, |
| 545 | unsigned long pkey) |
| 546 | { |
| 547 | int sret; |
| 548 | |
| 549 | dprintf2("%s(0x%p, %zx, prot=%lx, pkey=%lx)\n", __func__, |
| 550 | ptr, size, orig_prot, pkey); |
| 551 | |
| 552 | errno = 0; |
| 553 | sret = syscall(SYS_mprotect_key, ptr, size, orig_prot, pkey); |
| 554 | if (errno) { |
| 555 | dprintf2("SYS_mprotect_key sret: %d\n", sret); |
| 556 | dprintf2("SYS_mprotect_key prot: 0x%lx\n", orig_prot); |
| 557 | dprintf2("SYS_mprotect_key failed, errno: %d\n", errno); |
| 558 | if (DEBUG_LEVEL >= 2) |
| 559 | perror("SYS_mprotect_pkey"); |
| 560 | } |
| 561 | return sret; |
| 562 | } |
| 563 | |
| 564 | int sys_pkey_alloc(unsigned long flags, unsigned long init_val) |
| 565 | { |
| 566 | int ret = syscall(SYS_pkey_alloc, flags, init_val); |
| 567 | dprintf1("%s(flags=%lx, init_val=%lx) syscall ret: %d errno: %d\n", |
| 568 | __func__, flags, init_val, ret, errno); |
| 569 | return ret; |
| 570 | } |
| 571 | |
| 572 | int alloc_pkey(void) |
| 573 | { |
| 574 | int ret; |
| 575 | unsigned long init_val = 0x0; |
| 576 | |
| 577 | dprintf1("alloc_pkey()::%d, pkru: 0x%x shadow: %x\n", |
| 578 | __LINE__, __rdpkru(), shadow_pkru); |
| 579 | ret = sys_pkey_alloc(0, init_val); |
| 580 | /* |
| 581 | * pkey_alloc() sets PKRU, so we need to reflect it in |
| 582 | * shadow_pkru: |
| 583 | */ |
| 584 | dprintf4("alloc_pkey()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", |
| 585 | __LINE__, ret, __rdpkru(), shadow_pkru); |
| 586 | if (ret) { |
| 587 | /* clear both the bits: */ |
| 588 | shadow_pkru &= ~(0x3 << (ret * 2)); |
| 589 | dprintf4("alloc_pkey()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", |
| 590 | __LINE__, ret, __rdpkru(), shadow_pkru); |
| 591 | /* |
| 592 | * move the new state in from init_val |
| 593 | * (remember, we cheated and init_val == pkru format) |
| 594 | */ |
| 595 | shadow_pkru |= (init_val << (ret * 2)); |
| 596 | } |
| 597 | dprintf4("alloc_pkey()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", |
| 598 | __LINE__, ret, __rdpkru(), shadow_pkru); |
| 599 | dprintf1("alloc_pkey()::%d errno: %d\n", __LINE__, errno); |
| 600 | /* for shadow checking: */ |
| 601 | rdpkru(); |
| 602 | dprintf4("alloc_pkey()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", |
| 603 | __LINE__, ret, __rdpkru(), shadow_pkru); |
| 604 | return ret; |
| 605 | } |
| 606 | |
| 607 | int sys_pkey_free(unsigned long pkey) |
| 608 | { |
| 609 | int ret = syscall(SYS_pkey_free, pkey); |
| 610 | dprintf1("%s(pkey=%ld) syscall ret: %d\n", __func__, pkey, ret); |
| 611 | return ret; |
| 612 | } |
| 613 | |
| 614 | /* |
| 615 | * I had a bug where pkey bits could be set by mprotect() but |
| 616 | * not cleared. This ensures we get lots of random bit sets |
| 617 | * and clears on the vma and pte pkey bits. |
| 618 | */ |
| 619 | int alloc_random_pkey(void) |
| 620 | { |
| 621 | int max_nr_pkey_allocs; |
| 622 | int ret; |
| 623 | int i; |
| 624 | int alloced_pkeys[NR_PKEYS]; |
| 625 | int nr_alloced = 0; |
| 626 | int random_index; |
| 627 | memset(alloced_pkeys, 0, sizeof(alloced_pkeys)); |
| 628 | |
| 629 | /* allocate every possible key and make a note of which ones we got */ |
| 630 | max_nr_pkey_allocs = NR_PKEYS; |
| 631 | max_nr_pkey_allocs = 1; |
| 632 | for (i = 0; i < max_nr_pkey_allocs; i++) { |
| 633 | int new_pkey = alloc_pkey(); |
| 634 | if (new_pkey < 0) |
| 635 | break; |
| 636 | alloced_pkeys[nr_alloced++] = new_pkey; |
| 637 | } |
| 638 | |
| 639 | pkey_assert(nr_alloced > 0); |
| 640 | /* select a random one out of the allocated ones */ |
| 641 | random_index = rand() % nr_alloced; |
| 642 | ret = alloced_pkeys[random_index]; |
| 643 | /* now zero it out so we don't free it next */ |
| 644 | alloced_pkeys[random_index] = 0; |
| 645 | |
| 646 | /* go through the allocated ones that we did not want and free them */ |
| 647 | for (i = 0; i < nr_alloced; i++) { |
| 648 | int free_ret; |
| 649 | if (!alloced_pkeys[i]) |
| 650 | continue; |
| 651 | free_ret = sys_pkey_free(alloced_pkeys[i]); |
| 652 | pkey_assert(!free_ret); |
| 653 | } |
| 654 | dprintf1("%s()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", __func__, |
| 655 | __LINE__, ret, __rdpkru(), shadow_pkru); |
| 656 | return ret; |
| 657 | } |
| 658 | |
| 659 | int mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot, |
| 660 | unsigned long pkey) |
| 661 | { |
| 662 | int nr_iterations = random() % 100; |
| 663 | int ret; |
| 664 | |
| 665 | while (0) { |
| 666 | int rpkey = alloc_random_pkey(); |
| 667 | ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey); |
| 668 | dprintf1("sys_mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n", |
| 669 | ptr, size, orig_prot, pkey, ret); |
| 670 | if (nr_iterations-- < 0) |
| 671 | break; |
| 672 | |
| 673 | dprintf1("%s()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", __func__, |
| 674 | __LINE__, ret, __rdpkru(), shadow_pkru); |
| 675 | sys_pkey_free(rpkey); |
| 676 | dprintf1("%s()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", __func__, |
| 677 | __LINE__, ret, __rdpkru(), shadow_pkru); |
| 678 | } |
| 679 | pkey_assert(pkey < NR_PKEYS); |
| 680 | |
| 681 | ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey); |
| 682 | dprintf1("mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n", |
| 683 | ptr, size, orig_prot, pkey, ret); |
| 684 | pkey_assert(!ret); |
| 685 | dprintf1("%s()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", __func__, |
| 686 | __LINE__, ret, __rdpkru(), shadow_pkru); |
| 687 | return ret; |
| 688 | } |
| 689 | |
| 690 | struct pkey_malloc_record { |
| 691 | void *ptr; |
| 692 | long size; |
| 693 | }; |
| 694 | struct pkey_malloc_record *pkey_malloc_records; |
| 695 | long nr_pkey_malloc_records; |
| 696 | void record_pkey_malloc(void *ptr, long size) |
| 697 | { |
| 698 | long i; |
| 699 | struct pkey_malloc_record *rec = NULL; |
| 700 | |
| 701 | for (i = 0; i < nr_pkey_malloc_records; i++) { |
| 702 | rec = &pkey_malloc_records[i]; |
| 703 | /* find a free record */ |
| 704 | if (rec) |
| 705 | break; |
| 706 | } |
| 707 | if (!rec) { |
| 708 | /* every record is full */ |
| 709 | size_t old_nr_records = nr_pkey_malloc_records; |
| 710 | size_t new_nr_records = (nr_pkey_malloc_records * 2 + 1); |
| 711 | size_t new_size = new_nr_records * sizeof(struct pkey_malloc_record); |
| 712 | dprintf2("new_nr_records: %zd\n", new_nr_records); |
| 713 | dprintf2("new_size: %zd\n", new_size); |
| 714 | pkey_malloc_records = realloc(pkey_malloc_records, new_size); |
| 715 | pkey_assert(pkey_malloc_records != NULL); |
| 716 | rec = &pkey_malloc_records[nr_pkey_malloc_records]; |
| 717 | /* |
| 718 | * realloc() does not initialize memory, so zero it from |
| 719 | * the first new record all the way to the end. |
| 720 | */ |
| 721 | for (i = 0; i < new_nr_records - old_nr_records; i++) |
| 722 | memset(rec + i, 0, sizeof(*rec)); |
| 723 | } |
| 724 | dprintf3("filling malloc record[%d/%p]: {%p, %ld}\n", |
| 725 | (int)(rec - pkey_malloc_records), rec, ptr, size); |
| 726 | rec->ptr = ptr; |
| 727 | rec->size = size; |
| 728 | nr_pkey_malloc_records++; |
| 729 | } |
| 730 | |
| 731 | void free_pkey_malloc(void *ptr) |
| 732 | { |
| 733 | long i; |
| 734 | int ret; |
| 735 | dprintf3("%s(%p)\n", __func__, ptr); |
| 736 | for (i = 0; i < nr_pkey_malloc_records; i++) { |
| 737 | struct pkey_malloc_record *rec = &pkey_malloc_records[i]; |
| 738 | dprintf4("looking for ptr %p at record[%ld/%p]: {%p, %ld}\n", |
| 739 | ptr, i, rec, rec->ptr, rec->size); |
| 740 | if ((ptr < rec->ptr) || |
| 741 | (ptr >= rec->ptr + rec->size)) |
| 742 | continue; |
| 743 | |
| 744 | dprintf3("found ptr %p at record[%ld/%p]: {%p, %ld}\n", |
| 745 | ptr, i, rec, rec->ptr, rec->size); |
| 746 | nr_pkey_malloc_records--; |
| 747 | ret = munmap(rec->ptr, rec->size); |
| 748 | dprintf3("munmap ret: %d\n", ret); |
| 749 | pkey_assert(!ret); |
| 750 | dprintf3("clearing rec->ptr, rec: %p\n", rec); |
| 751 | rec->ptr = NULL; |
| 752 | dprintf3("done clearing rec->ptr, rec: %p\n", rec); |
| 753 | return; |
| 754 | } |
| 755 | pkey_assert(false); |
| 756 | } |
| 757 | |
| 758 | |
| 759 | void *malloc_pkey_with_mprotect(long size, int prot, u16 pkey) |
| 760 | { |
| 761 | void *ptr; |
| 762 | int ret; |
| 763 | |
| 764 | rdpkru(); |
| 765 | dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__, |
| 766 | size, prot, pkey); |
| 767 | pkey_assert(pkey < NR_PKEYS); |
| 768 | ptr = mmap(NULL, size, prot, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); |
| 769 | pkey_assert(ptr != (void *)-1); |
| 770 | ret = mprotect_pkey((void *)ptr, PAGE_SIZE, prot, pkey); |
| 771 | pkey_assert(!ret); |
| 772 | record_pkey_malloc(ptr, size); |
| 773 | rdpkru(); |
| 774 | |
| 775 | dprintf1("%s() for pkey %d @ %p\n", __func__, pkey, ptr); |
| 776 | return ptr; |
| 777 | } |
| 778 | |
| 779 | void *malloc_pkey_anon_huge(long size, int prot, u16 pkey) |
| 780 | { |
| 781 | int ret; |
| 782 | void *ptr; |
| 783 | |
| 784 | dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__, |
| 785 | size, prot, pkey); |
| 786 | /* |
| 787 | * Guarantee we can fit at least one huge page in the resulting |
| 788 | * allocation by allocating space for 2: |
| 789 | */ |
| 790 | size = ALIGN_UP(size, HPAGE_SIZE * 2); |
| 791 | ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); |
| 792 | pkey_assert(ptr != (void *)-1); |
| 793 | record_pkey_malloc(ptr, size); |
| 794 | mprotect_pkey(ptr, size, prot, pkey); |
| 795 | |
| 796 | dprintf1("unaligned ptr: %p\n", ptr); |
| 797 | ptr = ALIGN_PTR_UP(ptr, HPAGE_SIZE); |
| 798 | dprintf1(" aligned ptr: %p\n", ptr); |
| 799 | ret = madvise(ptr, HPAGE_SIZE, MADV_HUGEPAGE); |
| 800 | dprintf1("MADV_HUGEPAGE ret: %d\n", ret); |
| 801 | ret = madvise(ptr, HPAGE_SIZE, MADV_WILLNEED); |
| 802 | dprintf1("MADV_WILLNEED ret: %d\n", ret); |
| 803 | memset(ptr, 0, HPAGE_SIZE); |
| 804 | |
| 805 | dprintf1("mmap()'d thp for pkey %d @ %p\n", pkey, ptr); |
| 806 | return ptr; |
| 807 | } |
| 808 | |
| 809 | int hugetlb_setup_ok; |
| 810 | #define GET_NR_HUGE_PAGES 10 |
| 811 | void setup_hugetlbfs(void) |
| 812 | { |
| 813 | int err; |
| 814 | int fd; |
| 815 | int validated_nr_pages; |
| 816 | int i; |
| 817 | char buf[] = "123"; |
| 818 | |
| 819 | if (geteuid() != 0) { |
| 820 | fprintf(stderr, "WARNING: not run as root, can not do hugetlb test\n"); |
| 821 | return; |
| 822 | } |
| 823 | |
| 824 | cat_into_file(__stringify(GET_NR_HUGE_PAGES), "/proc/sys/vm/nr_hugepages"); |
| 825 | |
| 826 | /* |
| 827 | * Now go make sure that we got the pages and that they |
| 828 | * are 2M pages. Someone might have made 1G the default. |
| 829 | */ |
| 830 | fd = open("/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages", O_RDONLY); |
| 831 | if (fd < 0) { |
| 832 | perror("opening sysfs 2M hugetlb config"); |
| 833 | return; |
| 834 | } |
| 835 | |
| 836 | /* -1 to guarantee leaving the trailing \0 */ |
| 837 | err = read(fd, buf, sizeof(buf)-1); |
| 838 | close(fd); |
| 839 | if (err <= 0) { |
| 840 | perror("reading sysfs 2M hugetlb config"); |
| 841 | return; |
| 842 | } |
| 843 | |
| 844 | if (atoi(buf) != GET_NR_HUGE_PAGES) { |
| 845 | fprintf(stderr, "could not confirm 2M pages, got: '%s' expected %d\n", |
| 846 | buf, GET_NR_HUGE_PAGES); |
| 847 | return; |
| 848 | } |
| 849 | |
| 850 | hugetlb_setup_ok = 1; |
| 851 | } |
| 852 | |
| 853 | void *malloc_pkey_hugetlb(long size, int prot, u16 pkey) |
| 854 | { |
| 855 | void *ptr; |
| 856 | int flags = MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB; |
| 857 | |
| 858 | if (!hugetlb_setup_ok) |
| 859 | return PTR_ERR_ENOTSUP; |
| 860 | |
| 861 | dprintf1("doing %s(%ld, %x, %x)\n", __func__, size, prot, pkey); |
| 862 | size = ALIGN_UP(size, HPAGE_SIZE * 2); |
| 863 | pkey_assert(pkey < NR_PKEYS); |
| 864 | ptr = mmap(NULL, size, PROT_NONE, flags, -1, 0); |
| 865 | pkey_assert(ptr != (void *)-1); |
| 866 | mprotect_pkey(ptr, size, prot, pkey); |
| 867 | |
| 868 | record_pkey_malloc(ptr, size); |
| 869 | |
| 870 | dprintf1("mmap()'d hugetlbfs for pkey %d @ %p\n", pkey, ptr); |
| 871 | return ptr; |
| 872 | } |
| 873 | |
| 874 | void *malloc_pkey_mmap_dax(long size, int prot, u16 pkey) |
| 875 | { |
| 876 | void *ptr; |
| 877 | int fd; |
| 878 | |
| 879 | dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__, |
| 880 | size, prot, pkey); |
| 881 | pkey_assert(pkey < NR_PKEYS); |
| 882 | fd = open("/dax/foo", O_RDWR); |
| 883 | pkey_assert(fd >= 0); |
| 884 | |
| 885 | ptr = mmap(0, size, prot, MAP_SHARED, fd, 0); |
| 886 | pkey_assert(ptr != (void *)-1); |
| 887 | |
| 888 | mprotect_pkey(ptr, size, prot, pkey); |
| 889 | |
| 890 | record_pkey_malloc(ptr, size); |
| 891 | |
| 892 | dprintf1("mmap()'d for pkey %d @ %p\n", pkey, ptr); |
| 893 | close(fd); |
| 894 | return ptr; |
| 895 | } |
| 896 | |
| 897 | void *(*pkey_malloc[])(long size, int prot, u16 pkey) = { |
| 898 | |
| 899 | malloc_pkey_with_mprotect, |
| 900 | malloc_pkey_anon_huge, |
| 901 | malloc_pkey_hugetlb |
| 902 | /* can not do direct with the pkey_mprotect() API: |
| 903 | malloc_pkey_mmap_direct, |
| 904 | malloc_pkey_mmap_dax, |
| 905 | */ |
| 906 | }; |
| 907 | |
| 908 | void *malloc_pkey(long size, int prot, u16 pkey) |
| 909 | { |
| 910 | void *ret; |
| 911 | static int malloc_type; |
| 912 | int nr_malloc_types = ARRAY_SIZE(pkey_malloc); |
| 913 | |
| 914 | pkey_assert(pkey < NR_PKEYS); |
| 915 | |
| 916 | while (1) { |
| 917 | pkey_assert(malloc_type < nr_malloc_types); |
| 918 | |
| 919 | ret = pkey_malloc[malloc_type](size, prot, pkey); |
| 920 | pkey_assert(ret != (void *)-1); |
| 921 | |
| 922 | malloc_type++; |
| 923 | if (malloc_type >= nr_malloc_types) |
| 924 | malloc_type = (random()%nr_malloc_types); |
| 925 | |
| 926 | /* try again if the malloc_type we tried is unsupported */ |
| 927 | if (ret == PTR_ERR_ENOTSUP) |
| 928 | continue; |
| 929 | |
| 930 | break; |
| 931 | } |
| 932 | |
| 933 | dprintf3("%s(%ld, prot=%x, pkey=%x) returning: %p\n", __func__, |
| 934 | size, prot, pkey, ret); |
| 935 | return ret; |
| 936 | } |
| 937 | |
| 938 | int last_pkru_faults; |
| 939 | void expected_pk_fault(int pkey) |
| 940 | { |
| 941 | dprintf2("%s(): last_pkru_faults: %d pkru_faults: %d\n", |
| 942 | __func__, last_pkru_faults, pkru_faults); |
| 943 | dprintf2("%s(%d): last_si_pkey: %d\n", __func__, pkey, last_si_pkey); |
| 944 | pkey_assert(last_pkru_faults + 1 == pkru_faults); |
| 945 | pkey_assert(last_si_pkey == pkey); |
| 946 | /* |
| 947 | * The signal handler shold have cleared out PKRU to let the |
| 948 | * test program continue. We now have to restore it. |
| 949 | */ |
| 950 | if (__rdpkru() != 0) |
| 951 | pkey_assert(0); |
| 952 | |
| 953 | __wrpkru(shadow_pkru); |
| 954 | dprintf1("%s() set PKRU=%x to restore state after signal nuked it\n", |
| 955 | __func__, shadow_pkru); |
| 956 | last_pkru_faults = pkru_faults; |
| 957 | last_si_pkey = -1; |
| 958 | } |
| 959 | |
| 960 | void do_not_expect_pk_fault(void) |
| 961 | { |
| 962 | pkey_assert(last_pkru_faults == pkru_faults); |
| 963 | } |
| 964 | |
| 965 | int test_fds[10] = { -1 }; |
| 966 | int nr_test_fds; |
| 967 | void __save_test_fd(int fd) |
| 968 | { |
| 969 | pkey_assert(fd >= 0); |
| 970 | pkey_assert(nr_test_fds < ARRAY_SIZE(test_fds)); |
| 971 | test_fds[nr_test_fds] = fd; |
| 972 | nr_test_fds++; |
| 973 | } |
| 974 | |
| 975 | int get_test_read_fd(void) |
| 976 | { |
| 977 | int test_fd = open("/etc/passwd", O_RDONLY); |
| 978 | __save_test_fd(test_fd); |
| 979 | return test_fd; |
| 980 | } |
| 981 | |
| 982 | void close_test_fds(void) |
| 983 | { |
| 984 | int i; |
| 985 | |
| 986 | for (i = 0; i < nr_test_fds; i++) { |
| 987 | if (test_fds[i] < 0) |
| 988 | continue; |
| 989 | close(test_fds[i]); |
| 990 | test_fds[i] = -1; |
| 991 | } |
| 992 | nr_test_fds = 0; |
| 993 | } |
| 994 | |
| 995 | #define barrier() __asm__ __volatile__("": : :"memory") |
| 996 | __attribute__((noinline)) int read_ptr(int *ptr) |
| 997 | { |
| 998 | /* |
| 999 | * Keep GCC from optimizing this away somehow |
| 1000 | */ |
| 1001 | barrier(); |
| 1002 | return *ptr; |
| 1003 | } |
| 1004 | |
| 1005 | void test_read_of_write_disabled_region(int *ptr, u16 pkey) |
| 1006 | { |
| 1007 | int ptr_contents; |
| 1008 | |
| 1009 | dprintf1("disabling write access to PKEY[1], doing read\n"); |
| 1010 | pkey_write_deny(pkey); |
| 1011 | ptr_contents = read_ptr(ptr); |
| 1012 | dprintf1("*ptr: %d\n", ptr_contents); |
| 1013 | dprintf1("\n"); |
| 1014 | } |
| 1015 | void test_read_of_access_disabled_region(int *ptr, u16 pkey) |
| 1016 | { |
| 1017 | int ptr_contents; |
| 1018 | |
| 1019 | dprintf1("disabling access to PKEY[%02d], doing read @ %p\n", pkey, ptr); |
| 1020 | rdpkru(); |
| 1021 | pkey_access_deny(pkey); |
| 1022 | ptr_contents = read_ptr(ptr); |
| 1023 | dprintf1("*ptr: %d\n", ptr_contents); |
| 1024 | expected_pk_fault(pkey); |
| 1025 | } |
| 1026 | void test_write_of_write_disabled_region(int *ptr, u16 pkey) |
| 1027 | { |
| 1028 | dprintf1("disabling write access to PKEY[%02d], doing write\n", pkey); |
| 1029 | pkey_write_deny(pkey); |
| 1030 | *ptr = __LINE__; |
| 1031 | expected_pk_fault(pkey); |
| 1032 | } |
| 1033 | void test_write_of_access_disabled_region(int *ptr, u16 pkey) |
| 1034 | { |
| 1035 | dprintf1("disabling access to PKEY[%02d], doing write\n", pkey); |
| 1036 | pkey_access_deny(pkey); |
| 1037 | *ptr = __LINE__; |
| 1038 | expected_pk_fault(pkey); |
| 1039 | } |
| 1040 | void test_kernel_write_of_access_disabled_region(int *ptr, u16 pkey) |
| 1041 | { |
| 1042 | int ret; |
| 1043 | int test_fd = get_test_read_fd(); |
| 1044 | |
| 1045 | dprintf1("disabling access to PKEY[%02d], " |
| 1046 | "having kernel read() to buffer\n", pkey); |
| 1047 | pkey_access_deny(pkey); |
| 1048 | ret = read(test_fd, ptr, 1); |
| 1049 | dprintf1("read ret: %d\n", ret); |
| 1050 | pkey_assert(ret); |
| 1051 | } |
| 1052 | void test_kernel_write_of_write_disabled_region(int *ptr, u16 pkey) |
| 1053 | { |
| 1054 | int ret; |
| 1055 | int test_fd = get_test_read_fd(); |
| 1056 | |
| 1057 | pkey_write_deny(pkey); |
| 1058 | ret = read(test_fd, ptr, 100); |
| 1059 | dprintf1("read ret: %d\n", ret); |
| 1060 | if (ret < 0 && (DEBUG_LEVEL > 0)) |
| 1061 | perror("verbose read result (OK for this to be bad)"); |
| 1062 | pkey_assert(ret); |
| 1063 | } |
| 1064 | |
| 1065 | void test_kernel_gup_of_access_disabled_region(int *ptr, u16 pkey) |
| 1066 | { |
| 1067 | int pipe_ret, vmsplice_ret; |
| 1068 | struct iovec iov; |
| 1069 | int pipe_fds[2]; |
| 1070 | |
| 1071 | pipe_ret = pipe(pipe_fds); |
| 1072 | |
| 1073 | pkey_assert(pipe_ret == 0); |
| 1074 | dprintf1("disabling access to PKEY[%02d], " |
| 1075 | "having kernel vmsplice from buffer\n", pkey); |
| 1076 | pkey_access_deny(pkey); |
| 1077 | iov.iov_base = ptr; |
| 1078 | iov.iov_len = PAGE_SIZE; |
| 1079 | vmsplice_ret = vmsplice(pipe_fds[1], &iov, 1, SPLICE_F_GIFT); |
| 1080 | dprintf1("vmsplice() ret: %d\n", vmsplice_ret); |
| 1081 | pkey_assert(vmsplice_ret == -1); |
| 1082 | |
| 1083 | close(pipe_fds[0]); |
| 1084 | close(pipe_fds[1]); |
| 1085 | } |
| 1086 | |
| 1087 | void test_kernel_gup_write_to_write_disabled_region(int *ptr, u16 pkey) |
| 1088 | { |
| 1089 | int ignored = 0xdada; |
| 1090 | int futex_ret; |
| 1091 | int some_int = __LINE__; |
| 1092 | |
| 1093 | dprintf1("disabling write to PKEY[%02d], " |
| 1094 | "doing futex gunk in buffer\n", pkey); |
| 1095 | *ptr = some_int; |
| 1096 | pkey_write_deny(pkey); |
| 1097 | futex_ret = syscall(SYS_futex, ptr, FUTEX_WAIT, some_int-1, NULL, |
| 1098 | &ignored, ignored); |
| 1099 | if (DEBUG_LEVEL > 0) |
| 1100 | perror("futex"); |
| 1101 | dprintf1("futex() ret: %d\n", futex_ret); |
| 1102 | } |
| 1103 | |
| 1104 | /* Assumes that all pkeys other than 'pkey' are unallocated */ |
| 1105 | void test_pkey_syscalls_on_non_allocated_pkey(int *ptr, u16 pkey) |
| 1106 | { |
| 1107 | int err; |
| 1108 | int i; |
| 1109 | |
| 1110 | /* Note: 0 is the default pkey, so don't mess with it */ |
| 1111 | for (i = 1; i < NR_PKEYS; i++) { |
| 1112 | if (pkey == i) |
| 1113 | continue; |
| 1114 | |
| 1115 | dprintf1("trying get/set/free to non-allocated pkey: %2d\n", i); |
| 1116 | err = sys_pkey_free(i); |
| 1117 | pkey_assert(err); |
| 1118 | |
| 1119 | /* not enforced when pkey_get() is not a syscall |
| 1120 | err = pkey_get(i, 0); |
| 1121 | pkey_assert(err < 0); |
| 1122 | */ |
| 1123 | |
| 1124 | err = sys_pkey_free(i); |
| 1125 | pkey_assert(err); |
| 1126 | |
| 1127 | err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, i); |
| 1128 | pkey_assert(err); |
| 1129 | } |
| 1130 | } |
| 1131 | |
| 1132 | /* Assumes that all pkeys other than 'pkey' are unallocated */ |
| 1133 | void test_pkey_syscalls_bad_args(int *ptr, u16 pkey) |
| 1134 | { |
| 1135 | int err; |
| 1136 | int bad_flag = (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE) + 1; |
| 1137 | int bad_pkey = NR_PKEYS+99; |
| 1138 | |
| 1139 | /* not enforced when pkey_get() is not a syscall |
| 1140 | err = pkey_get(bad_pkey, bad_flag); |
| 1141 | pkey_assert(err < 0); |
| 1142 | */ |
| 1143 | |
| 1144 | /* pass a known-invalid pkey in: */ |
| 1145 | err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, bad_pkey); |
| 1146 | pkey_assert(err); |
| 1147 | } |
| 1148 | |
| 1149 | /* Assumes that all pkeys other than 'pkey' are unallocated */ |
| 1150 | void test_pkey_alloc_exhaust(int *ptr, u16 pkey) |
| 1151 | { |
| 1152 | unsigned long flags; |
| 1153 | unsigned long init_val; |
| 1154 | int err; |
| 1155 | int allocated_pkeys[NR_PKEYS] = {0}; |
| 1156 | int nr_allocated_pkeys = 0; |
| 1157 | int i; |
| 1158 | |
| 1159 | for (i = 0; i < NR_PKEYS*2; i++) { |
| 1160 | int new_pkey; |
| 1161 | dprintf1("%s() alloc loop: %d\n", __func__, i); |
| 1162 | new_pkey = alloc_pkey(); |
| 1163 | dprintf4("%s()::%d, err: %d pkru: 0x%x shadow: 0x%x\n", __func__, |
| 1164 | __LINE__, err, __rdpkru(), shadow_pkru); |
| 1165 | rdpkru(); /* for shadow checking */ |
| 1166 | dprintf2("%s() errno: %d ENOSPC: %d\n", __func__, errno, ENOSPC); |
| 1167 | if ((new_pkey == -1) && (errno == ENOSPC)) { |
| 1168 | dprintf2("%s() failed to allocate pkey after %d tries\n", |
| 1169 | __func__, nr_allocated_pkeys); |
| 1170 | break; |
| 1171 | } |
| 1172 | pkey_assert(nr_allocated_pkeys < NR_PKEYS); |
| 1173 | allocated_pkeys[nr_allocated_pkeys++] = new_pkey; |
| 1174 | } |
| 1175 | |
| 1176 | dprintf3("%s()::%d\n", __func__, __LINE__); |
| 1177 | |
| 1178 | /* |
| 1179 | * ensure it did not reach the end of the loop without |
| 1180 | * failure: |
| 1181 | */ |
| 1182 | pkey_assert(i < NR_PKEYS*2); |
| 1183 | |
| 1184 | /* |
| 1185 | * There are 16 pkeys supported in hardware. One is taken |
| 1186 | * up for the default (0) and another can be taken up by |
| 1187 | * an execute-only mapping. Ensure that we can allocate |
| 1188 | * at least 14 (16-2). |
| 1189 | */ |
| 1190 | pkey_assert(i >= NR_PKEYS-2); |
| 1191 | |
| 1192 | for (i = 0; i < nr_allocated_pkeys; i++) { |
| 1193 | err = sys_pkey_free(allocated_pkeys[i]); |
| 1194 | pkey_assert(!err); |
| 1195 | rdpkru(); /* for shadow checking */ |
| 1196 | } |
| 1197 | } |
| 1198 | |
| 1199 | void test_ptrace_of_child(int *ptr, u16 pkey) |
| 1200 | { |
| 1201 | __attribute__((__unused__)) int peek_result; |
| 1202 | pid_t child_pid; |
| 1203 | void *ignored = 0; |
| 1204 | long ret; |
| 1205 | int status; |
| 1206 | /* |
| 1207 | * This is the "control" for our little expermient. Make sure |
| 1208 | * we can always access it when ptracing. |
| 1209 | */ |
| 1210 | int *plain_ptr_unaligned = malloc(HPAGE_SIZE); |
| 1211 | int *plain_ptr = ALIGN_PTR_UP(plain_ptr_unaligned, PAGE_SIZE); |
| 1212 | |
| 1213 | /* |
| 1214 | * Fork a child which is an exact copy of this process, of course. |
| 1215 | * That means we can do all of our tests via ptrace() and then plain |
| 1216 | * memory access and ensure they work differently. |
| 1217 | */ |
| 1218 | child_pid = fork_lazy_child(); |
| 1219 | dprintf1("[%d] child pid: %d\n", getpid(), child_pid); |
| 1220 | |
| 1221 | ret = ptrace(PTRACE_ATTACH, child_pid, ignored, ignored); |
| 1222 | if (ret) |
| 1223 | perror("attach"); |
| 1224 | dprintf1("[%d] attach ret: %ld %d\n", getpid(), ret, __LINE__); |
| 1225 | pkey_assert(ret != -1); |
| 1226 | ret = waitpid(child_pid, &status, WUNTRACED); |
| 1227 | if ((ret != child_pid) || !(WIFSTOPPED(status))) { |
| 1228 | fprintf(stderr, "weird waitpid result %ld stat %x\n", |
| 1229 | ret, status); |
| 1230 | pkey_assert(0); |
| 1231 | } |
| 1232 | dprintf2("waitpid ret: %ld\n", ret); |
| 1233 | dprintf2("waitpid status: %d\n", status); |
| 1234 | |
| 1235 | pkey_access_deny(pkey); |
| 1236 | pkey_write_deny(pkey); |
| 1237 | |
| 1238 | /* Write access, untested for now: |
| 1239 | ret = ptrace(PTRACE_POKEDATA, child_pid, peek_at, data); |
| 1240 | pkey_assert(ret != -1); |
| 1241 | dprintf1("poke at %p: %ld\n", peek_at, ret); |
| 1242 | */ |
| 1243 | |
| 1244 | /* |
| 1245 | * Try to access the pkey-protected "ptr" via ptrace: |
| 1246 | */ |
| 1247 | ret = ptrace(PTRACE_PEEKDATA, child_pid, ptr, ignored); |
| 1248 | /* expect it to work, without an error: */ |
| 1249 | pkey_assert(ret != -1); |
| 1250 | /* Now access from the current task, and expect an exception: */ |
| 1251 | peek_result = read_ptr(ptr); |
| 1252 | expected_pk_fault(pkey); |
| 1253 | |
| 1254 | /* |
| 1255 | * Try to access the NON-pkey-protected "plain_ptr" via ptrace: |
| 1256 | */ |
| 1257 | ret = ptrace(PTRACE_PEEKDATA, child_pid, plain_ptr, ignored); |
| 1258 | /* expect it to work, without an error: */ |
| 1259 | pkey_assert(ret != -1); |
| 1260 | /* Now access from the current task, and expect NO exception: */ |
| 1261 | peek_result = read_ptr(plain_ptr); |
| 1262 | do_not_expect_pk_fault(); |
| 1263 | |
| 1264 | ret = ptrace(PTRACE_DETACH, child_pid, ignored, 0); |
| 1265 | pkey_assert(ret != -1); |
| 1266 | |
| 1267 | ret = kill(child_pid, SIGKILL); |
| 1268 | pkey_assert(ret != -1); |
| 1269 | |
| 1270 | wait(&status); |
| 1271 | |
| 1272 | free(plain_ptr_unaligned); |
| 1273 | } |
| 1274 | |
| 1275 | void test_executing_on_unreadable_memory(int *ptr, u16 pkey) |
| 1276 | { |
| 1277 | void *p1; |
| 1278 | int scratch; |
| 1279 | int ptr_contents; |
| 1280 | int ret; |
| 1281 | |
| 1282 | p1 = ALIGN_PTR_UP(&lots_o_noops_around_write, PAGE_SIZE); |
| 1283 | dprintf3("&lots_o_noops: %p\n", &lots_o_noops_around_write); |
| 1284 | /* lots_o_noops_around_write should be page-aligned already */ |
| 1285 | assert(p1 == &lots_o_noops_around_write); |
| 1286 | |
| 1287 | /* Point 'p1' at the *second* page of the function: */ |
| 1288 | p1 += PAGE_SIZE; |
| 1289 | |
| 1290 | madvise(p1, PAGE_SIZE, MADV_DONTNEED); |
| 1291 | lots_o_noops_around_write(&scratch); |
| 1292 | ptr_contents = read_ptr(p1); |
| 1293 | dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents); |
| 1294 | |
| 1295 | ret = mprotect_pkey(p1, PAGE_SIZE, PROT_EXEC, (u64)pkey); |
| 1296 | pkey_assert(!ret); |
| 1297 | pkey_access_deny(pkey); |
| 1298 | |
| 1299 | dprintf2("pkru: %x\n", rdpkru()); |
| 1300 | |
| 1301 | /* |
| 1302 | * Make sure this is an *instruction* fault |
| 1303 | */ |
| 1304 | madvise(p1, PAGE_SIZE, MADV_DONTNEED); |
| 1305 | lots_o_noops_around_write(&scratch); |
| 1306 | do_not_expect_pk_fault(); |
| 1307 | ptr_contents = read_ptr(p1); |
| 1308 | dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents); |
| 1309 | expected_pk_fault(pkey); |
| 1310 | } |
| 1311 | |
| 1312 | void test_mprotect_pkey_on_unsupported_cpu(int *ptr, u16 pkey) |
| 1313 | { |
| 1314 | int size = PAGE_SIZE; |
| 1315 | int sret; |
| 1316 | |
| 1317 | if (cpu_has_pku()) { |
| 1318 | dprintf1("SKIP: %s: no CPU support\n", __func__); |
| 1319 | return; |
| 1320 | } |
| 1321 | |
| 1322 | sret = syscall(SYS_mprotect_key, ptr, size, PROT_READ, pkey); |
| 1323 | pkey_assert(sret < 0); |
| 1324 | } |
| 1325 | |
| 1326 | void (*pkey_tests[])(int *ptr, u16 pkey) = { |
| 1327 | test_read_of_write_disabled_region, |
| 1328 | test_read_of_access_disabled_region, |
| 1329 | test_write_of_write_disabled_region, |
| 1330 | test_write_of_access_disabled_region, |
| 1331 | test_kernel_write_of_access_disabled_region, |
| 1332 | test_kernel_write_of_write_disabled_region, |
| 1333 | test_kernel_gup_of_access_disabled_region, |
| 1334 | test_kernel_gup_write_to_write_disabled_region, |
| 1335 | test_executing_on_unreadable_memory, |
| 1336 | test_ptrace_of_child, |
| 1337 | test_pkey_syscalls_on_non_allocated_pkey, |
| 1338 | test_pkey_syscalls_bad_args, |
| 1339 | test_pkey_alloc_exhaust, |
| 1340 | }; |
| 1341 | |
| 1342 | void run_tests_once(void) |
| 1343 | { |
| 1344 | int *ptr; |
| 1345 | int prot = PROT_READ|PROT_WRITE; |
| 1346 | |
| 1347 | for (test_nr = 0; test_nr < ARRAY_SIZE(pkey_tests); test_nr++) { |
| 1348 | int pkey; |
| 1349 | int orig_pkru_faults = pkru_faults; |
| 1350 | |
| 1351 | dprintf1("======================\n"); |
| 1352 | dprintf1("test %d preparing...\n", test_nr); |
| 1353 | |
| 1354 | tracing_on(); |
| 1355 | pkey = alloc_random_pkey(); |
| 1356 | dprintf1("test %d starting with pkey: %d\n", test_nr, pkey); |
| 1357 | ptr = malloc_pkey(PAGE_SIZE, prot, pkey); |
| 1358 | dprintf1("test %d starting...\n", test_nr); |
| 1359 | pkey_tests[test_nr](ptr, pkey); |
| 1360 | dprintf1("freeing test memory: %p\n", ptr); |
| 1361 | free_pkey_malloc(ptr); |
| 1362 | sys_pkey_free(pkey); |
| 1363 | |
| 1364 | dprintf1("pkru_faults: %d\n", pkru_faults); |
| 1365 | dprintf1("orig_pkru_faults: %d\n", orig_pkru_faults); |
| 1366 | |
| 1367 | tracing_off(); |
| 1368 | close_test_fds(); |
| 1369 | |
| 1370 | printf("test %2d PASSED (itertation %d)\n", test_nr, iteration_nr); |
| 1371 | dprintf1("======================\n\n"); |
| 1372 | } |
| 1373 | iteration_nr++; |
| 1374 | } |
| 1375 | |
| 1376 | void pkey_setup_shadow(void) |
| 1377 | { |
| 1378 | shadow_pkru = __rdpkru(); |
| 1379 | } |
| 1380 | |
| 1381 | int main(void) |
| 1382 | { |
| 1383 | int nr_iterations = 22; |
| 1384 | |
| 1385 | setup_handlers(); |
| 1386 | |
| 1387 | printf("has pku: %d\n", cpu_has_pku()); |
| 1388 | |
| 1389 | if (!cpu_has_pku()) { |
| 1390 | int size = PAGE_SIZE; |
| 1391 | int *ptr; |
| 1392 | |
| 1393 | printf("running PKEY tests for unsupported CPU/OS\n"); |
| 1394 | |
| 1395 | ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); |
| 1396 | assert(ptr != (void *)-1); |
| 1397 | test_mprotect_pkey_on_unsupported_cpu(ptr, 1); |
| 1398 | exit(0); |
| 1399 | } |
| 1400 | |
| 1401 | pkey_setup_shadow(); |
| 1402 | printf("startup pkru: %x\n", rdpkru()); |
| 1403 | setup_hugetlbfs(); |
| 1404 | |
| 1405 | while (nr_iterations-- > 0) |
| 1406 | run_tests_once(); |
| 1407 | |
| 1408 | printf("done (all tests OK)\n"); |
| 1409 | return 0; |
| 1410 | } |