Joern Engel | 5db53f3 | 2009-11-20 20:13:39 +0100 | [diff] [blame^] | 1 | /* |
| 2 | * lib/btree.c - Simple In-memory B+Tree |
| 3 | * |
| 4 | * As should be obvious for Linux kernel code, license is GPLv2 |
| 5 | * |
| 6 | * Copyright (c) 2007-2008 Joern Engel <joern@logfs.org> |
| 7 | * Bits and pieces stolen from Peter Zijlstra's code, which is |
| 8 | * Copyright 2007, Red Hat Inc. Peter Zijlstra <pzijlstr@redhat.com> |
| 9 | * GPLv2 |
| 10 | * |
| 11 | * see http://programming.kicks-ass.net/kernel-patches/vma_lookup/btree.patch |
| 12 | * |
| 13 | * A relatively simple B+Tree implementation. I have written it as a learning |
| 14 | * excercise to understand how B+Trees work. Turned out to be useful as well. |
| 15 | * |
| 16 | * B+Trees can be used similar to Linux radix trees (which don't have anything |
| 17 | * in common with textbook radix trees, beware). Prerequisite for them working |
| 18 | * well is that access to a random tree node is much faster than a large number |
| 19 | * of operations within each node. |
| 20 | * |
| 21 | * Disks have fulfilled the prerequisite for a long time. More recently DRAM |
| 22 | * has gained similar properties, as memory access times, when measured in cpu |
| 23 | * cycles, have increased. Cacheline sizes have increased as well, which also |
| 24 | * helps B+Trees. |
| 25 | * |
| 26 | * Compared to radix trees, B+Trees are more efficient when dealing with a |
| 27 | * sparsely populated address space. Between 25% and 50% of the memory is |
| 28 | * occupied with valid pointers. When densely populated, radix trees contain |
| 29 | * ~98% pointers - hard to beat. Very sparse radix trees contain only ~2% |
| 30 | * pointers. |
| 31 | * |
| 32 | * This particular implementation stores pointers identified by a long value. |
| 33 | * Storing NULL pointers is illegal, lookup will return NULL when no entry |
| 34 | * was found. |
| 35 | * |
| 36 | * A tricks was used that is not commonly found in textbooks. The lowest |
| 37 | * values are to the right, not to the left. All used slots within a node |
| 38 | * are on the left, all unused slots contain NUL values. Most operations |
| 39 | * simply loop once over all slots and terminate on the first NUL. |
| 40 | */ |
| 41 | |
| 42 | #include <linux/btree.h> |
| 43 | #include <linux/cache.h> |
| 44 | #include <linux/kernel.h> |
| 45 | #include <linux/slab.h> |
| 46 | #include <linux/module.h> |
| 47 | |
| 48 | #define MAX(a, b) ((a) > (b) ? (a) : (b)) |
| 49 | #define NODESIZE MAX(L1_CACHE_BYTES, 128) |
| 50 | |
| 51 | struct btree_geo { |
| 52 | int keylen; |
| 53 | int no_pairs; |
| 54 | int no_longs; |
| 55 | }; |
| 56 | |
| 57 | struct btree_geo btree_geo32 = { |
| 58 | .keylen = 1, |
| 59 | .no_pairs = NODESIZE / sizeof(long) / 2, |
| 60 | .no_longs = NODESIZE / sizeof(long) / 2, |
| 61 | }; |
| 62 | EXPORT_SYMBOL_GPL(btree_geo32); |
| 63 | |
| 64 | #define LONG_PER_U64 (64 / BITS_PER_LONG) |
| 65 | struct btree_geo btree_geo64 = { |
| 66 | .keylen = LONG_PER_U64, |
| 67 | .no_pairs = NODESIZE / sizeof(long) / (1 + LONG_PER_U64), |
| 68 | .no_longs = LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + LONG_PER_U64)), |
| 69 | }; |
| 70 | EXPORT_SYMBOL_GPL(btree_geo64); |
| 71 | |
| 72 | struct btree_geo btree_geo128 = { |
| 73 | .keylen = 2 * LONG_PER_U64, |
| 74 | .no_pairs = NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64), |
| 75 | .no_longs = 2 * LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64)), |
| 76 | }; |
| 77 | EXPORT_SYMBOL_GPL(btree_geo128); |
| 78 | |
| 79 | static struct kmem_cache *btree_cachep; |
| 80 | |
| 81 | void *btree_alloc(gfp_t gfp_mask, void *pool_data) |
| 82 | { |
| 83 | return kmem_cache_alloc(btree_cachep, gfp_mask); |
| 84 | } |
| 85 | EXPORT_SYMBOL_GPL(btree_alloc); |
| 86 | |
| 87 | void btree_free(void *element, void *pool_data) |
| 88 | { |
| 89 | kmem_cache_free(btree_cachep, element); |
| 90 | } |
| 91 | EXPORT_SYMBOL_GPL(btree_free); |
| 92 | |
| 93 | static unsigned long *btree_node_alloc(struct btree_head *head, gfp_t gfp) |
| 94 | { |
| 95 | unsigned long *node; |
| 96 | |
| 97 | node = mempool_alloc(head->mempool, gfp); |
| 98 | memset(node, 0, NODESIZE); |
| 99 | return node; |
| 100 | } |
| 101 | |
| 102 | static int longcmp(const unsigned long *l1, const unsigned long *l2, size_t n) |
| 103 | { |
| 104 | size_t i; |
| 105 | |
| 106 | for (i = 0; i < n; i++) { |
| 107 | if (l1[i] < l2[i]) |
| 108 | return -1; |
| 109 | if (l1[i] > l2[i]) |
| 110 | return 1; |
| 111 | } |
| 112 | return 0; |
| 113 | } |
| 114 | |
| 115 | static unsigned long *longcpy(unsigned long *dest, const unsigned long *src, |
| 116 | size_t n) |
| 117 | { |
| 118 | size_t i; |
| 119 | |
| 120 | for (i = 0; i < n; i++) |
| 121 | dest[i] = src[i]; |
| 122 | return dest; |
| 123 | } |
| 124 | |
| 125 | static unsigned long *longset(unsigned long *s, unsigned long c, size_t n) |
| 126 | { |
| 127 | size_t i; |
| 128 | |
| 129 | for (i = 0; i < n; i++) |
| 130 | s[i] = c; |
| 131 | return s; |
| 132 | } |
| 133 | |
| 134 | static void dec_key(struct btree_geo *geo, unsigned long *key) |
| 135 | { |
| 136 | unsigned long val; |
| 137 | int i; |
| 138 | |
| 139 | for (i = geo->keylen - 1; i >= 0; i--) { |
| 140 | val = key[i]; |
| 141 | key[i] = val - 1; |
| 142 | if (val) |
| 143 | break; |
| 144 | } |
| 145 | } |
| 146 | |
| 147 | static unsigned long *bkey(struct btree_geo *geo, unsigned long *node, int n) |
| 148 | { |
| 149 | return &node[n * geo->keylen]; |
| 150 | } |
| 151 | |
| 152 | static void *bval(struct btree_geo *geo, unsigned long *node, int n) |
| 153 | { |
| 154 | return (void *)node[geo->no_longs + n]; |
| 155 | } |
| 156 | |
| 157 | static void setkey(struct btree_geo *geo, unsigned long *node, int n, |
| 158 | unsigned long *key) |
| 159 | { |
| 160 | longcpy(bkey(geo, node, n), key, geo->keylen); |
| 161 | } |
| 162 | |
| 163 | static void setval(struct btree_geo *geo, unsigned long *node, int n, |
| 164 | void *val) |
| 165 | { |
| 166 | node[geo->no_longs + n] = (unsigned long) val; |
| 167 | } |
| 168 | |
| 169 | static void clearpair(struct btree_geo *geo, unsigned long *node, int n) |
| 170 | { |
| 171 | longset(bkey(geo, node, n), 0, geo->keylen); |
| 172 | node[geo->no_longs + n] = 0; |
| 173 | } |
| 174 | |
| 175 | static inline void __btree_init(struct btree_head *head) |
| 176 | { |
| 177 | head->node = NULL; |
| 178 | head->height = 0; |
| 179 | } |
| 180 | |
| 181 | void btree_init_mempool(struct btree_head *head, mempool_t *mempool) |
| 182 | { |
| 183 | __btree_init(head); |
| 184 | head->mempool = mempool; |
| 185 | } |
| 186 | EXPORT_SYMBOL_GPL(btree_init_mempool); |
| 187 | |
| 188 | int btree_init(struct btree_head *head) |
| 189 | { |
| 190 | __btree_init(head); |
| 191 | head->mempool = mempool_create(0, btree_alloc, btree_free, NULL); |
| 192 | if (!head->mempool) |
| 193 | return -ENOMEM; |
| 194 | return 0; |
| 195 | } |
| 196 | EXPORT_SYMBOL_GPL(btree_init); |
| 197 | |
| 198 | void btree_destroy(struct btree_head *head) |
| 199 | { |
| 200 | mempool_destroy(head->mempool); |
| 201 | head->mempool = NULL; |
| 202 | } |
| 203 | EXPORT_SYMBOL_GPL(btree_destroy); |
| 204 | |
| 205 | void *btree_last(struct btree_head *head, struct btree_geo *geo, |
| 206 | unsigned long *key) |
| 207 | { |
| 208 | int height = head->height; |
| 209 | unsigned long *node = head->node; |
| 210 | |
| 211 | if (height == 0) |
| 212 | return NULL; |
| 213 | |
| 214 | for ( ; height > 1; height--) |
| 215 | node = bval(geo, node, 0); |
| 216 | |
| 217 | longcpy(key, bkey(geo, node, 0), geo->keylen); |
| 218 | return bval(geo, node, 0); |
| 219 | } |
| 220 | EXPORT_SYMBOL_GPL(btree_last); |
| 221 | |
| 222 | static int keycmp(struct btree_geo *geo, unsigned long *node, int pos, |
| 223 | unsigned long *key) |
| 224 | { |
| 225 | return longcmp(bkey(geo, node, pos), key, geo->keylen); |
| 226 | } |
| 227 | |
| 228 | static int keyzero(struct btree_geo *geo, unsigned long *key) |
| 229 | { |
| 230 | int i; |
| 231 | |
| 232 | for (i = 0; i < geo->keylen; i++) |
| 233 | if (key[i]) |
| 234 | return 0; |
| 235 | |
| 236 | return 1; |
| 237 | } |
| 238 | |
| 239 | void *btree_lookup(struct btree_head *head, struct btree_geo *geo, |
| 240 | unsigned long *key) |
| 241 | { |
| 242 | int i, height = head->height; |
| 243 | unsigned long *node = head->node; |
| 244 | |
| 245 | if (height == 0) |
| 246 | return NULL; |
| 247 | |
| 248 | for ( ; height > 1; height--) { |
| 249 | for (i = 0; i < geo->no_pairs; i++) |
| 250 | if (keycmp(geo, node, i, key) <= 0) |
| 251 | break; |
| 252 | if (i == geo->no_pairs) |
| 253 | return NULL; |
| 254 | node = bval(geo, node, i); |
| 255 | if (!node) |
| 256 | return NULL; |
| 257 | } |
| 258 | |
| 259 | if (!node) |
| 260 | return NULL; |
| 261 | |
| 262 | for (i = 0; i < geo->no_pairs; i++) |
| 263 | if (keycmp(geo, node, i, key) == 0) |
| 264 | return bval(geo, node, i); |
| 265 | return NULL; |
| 266 | } |
| 267 | EXPORT_SYMBOL_GPL(btree_lookup); |
| 268 | |
| 269 | int btree_update(struct btree_head *head, struct btree_geo *geo, |
| 270 | unsigned long *key, void *val) |
| 271 | { |
| 272 | int i, height = head->height; |
| 273 | unsigned long *node = head->node; |
| 274 | |
| 275 | if (height == 0) |
| 276 | return -ENOENT; |
| 277 | |
| 278 | for ( ; height > 1; height--) { |
| 279 | for (i = 0; i < geo->no_pairs; i++) |
| 280 | if (keycmp(geo, node, i, key) <= 0) |
| 281 | break; |
| 282 | if (i == geo->no_pairs) |
| 283 | return -ENOENT; |
| 284 | node = bval(geo, node, i); |
| 285 | if (!node) |
| 286 | return -ENOENT; |
| 287 | } |
| 288 | |
| 289 | if (!node) |
| 290 | return -ENOENT; |
| 291 | |
| 292 | for (i = 0; i < geo->no_pairs; i++) |
| 293 | if (keycmp(geo, node, i, key) == 0) { |
| 294 | setval(geo, node, i, val); |
| 295 | return 0; |
| 296 | } |
| 297 | return -ENOENT; |
| 298 | } |
| 299 | EXPORT_SYMBOL_GPL(btree_update); |
| 300 | |
| 301 | /* |
| 302 | * Usually this function is quite similar to normal lookup. But the key of |
| 303 | * a parent node may be smaller than the smallest key of all its siblings. |
| 304 | * In such a case we cannot just return NULL, as we have only proven that no |
| 305 | * key smaller than __key, but larger than this parent key exists. |
| 306 | * So we set __key to the parent key and retry. We have to use the smallest |
| 307 | * such parent key, which is the last parent key we encountered. |
| 308 | */ |
| 309 | void *btree_get_prev(struct btree_head *head, struct btree_geo *geo, |
| 310 | unsigned long *__key) |
| 311 | { |
| 312 | int i, height; |
| 313 | unsigned long *node, *oldnode; |
| 314 | unsigned long *retry_key = NULL, key[geo->keylen]; |
| 315 | |
| 316 | if (keyzero(geo, __key)) |
| 317 | return NULL; |
| 318 | |
| 319 | if (head->height == 0) |
| 320 | return NULL; |
| 321 | retry: |
| 322 | longcpy(key, __key, geo->keylen); |
| 323 | dec_key(geo, key); |
| 324 | |
| 325 | node = head->node; |
| 326 | for (height = head->height ; height > 1; height--) { |
| 327 | for (i = 0; i < geo->no_pairs; i++) |
| 328 | if (keycmp(geo, node, i, key) <= 0) |
| 329 | break; |
| 330 | if (i == geo->no_pairs) |
| 331 | goto miss; |
| 332 | oldnode = node; |
| 333 | node = bval(geo, node, i); |
| 334 | if (!node) |
| 335 | goto miss; |
| 336 | retry_key = bkey(geo, oldnode, i); |
| 337 | } |
| 338 | |
| 339 | if (!node) |
| 340 | goto miss; |
| 341 | |
| 342 | for (i = 0; i < geo->no_pairs; i++) { |
| 343 | if (keycmp(geo, node, i, key) <= 0) { |
| 344 | if (bval(geo, node, i)) { |
| 345 | longcpy(__key, bkey(geo, node, i), geo->keylen); |
| 346 | return bval(geo, node, i); |
| 347 | } else |
| 348 | goto miss; |
| 349 | } |
| 350 | } |
| 351 | miss: |
| 352 | if (retry_key) { |
| 353 | __key = retry_key; |
| 354 | retry_key = NULL; |
| 355 | goto retry; |
| 356 | } |
| 357 | return NULL; |
| 358 | } |
| 359 | |
| 360 | static int getpos(struct btree_geo *geo, unsigned long *node, |
| 361 | unsigned long *key) |
| 362 | { |
| 363 | int i; |
| 364 | |
| 365 | for (i = 0; i < geo->no_pairs; i++) { |
| 366 | if (keycmp(geo, node, i, key) <= 0) |
| 367 | break; |
| 368 | } |
| 369 | return i; |
| 370 | } |
| 371 | |
| 372 | static int getfill(struct btree_geo *geo, unsigned long *node, int start) |
| 373 | { |
| 374 | int i; |
| 375 | |
| 376 | for (i = start; i < geo->no_pairs; i++) |
| 377 | if (!bval(geo, node, i)) |
| 378 | break; |
| 379 | return i; |
| 380 | } |
| 381 | |
| 382 | /* |
| 383 | * locate the correct leaf node in the btree |
| 384 | */ |
| 385 | static unsigned long *find_level(struct btree_head *head, struct btree_geo *geo, |
| 386 | unsigned long *key, int level) |
| 387 | { |
| 388 | unsigned long *node = head->node; |
| 389 | int i, height; |
| 390 | |
| 391 | for (height = head->height; height > level; height--) { |
| 392 | for (i = 0; i < geo->no_pairs; i++) |
| 393 | if (keycmp(geo, node, i, key) <= 0) |
| 394 | break; |
| 395 | |
| 396 | if ((i == geo->no_pairs) || !bval(geo, node, i)) { |
| 397 | /* right-most key is too large, update it */ |
| 398 | /* FIXME: If the right-most key on higher levels is |
| 399 | * always zero, this wouldn't be necessary. */ |
| 400 | i--; |
| 401 | setkey(geo, node, i, key); |
| 402 | } |
| 403 | BUG_ON(i < 0); |
| 404 | node = bval(geo, node, i); |
| 405 | } |
| 406 | BUG_ON(!node); |
| 407 | return node; |
| 408 | } |
| 409 | |
| 410 | static int btree_grow(struct btree_head *head, struct btree_geo *geo, |
| 411 | gfp_t gfp) |
| 412 | { |
| 413 | unsigned long *node; |
| 414 | int fill; |
| 415 | |
| 416 | node = btree_node_alloc(head, gfp); |
| 417 | if (!node) |
| 418 | return -ENOMEM; |
| 419 | if (head->node) { |
| 420 | fill = getfill(geo, head->node, 0); |
| 421 | setkey(geo, node, 0, bkey(geo, head->node, fill - 1)); |
| 422 | setval(geo, node, 0, head->node); |
| 423 | } |
| 424 | head->node = node; |
| 425 | head->height++; |
| 426 | return 0; |
| 427 | } |
| 428 | |
| 429 | static void btree_shrink(struct btree_head *head, struct btree_geo *geo) |
| 430 | { |
| 431 | unsigned long *node; |
| 432 | int fill; |
| 433 | |
| 434 | if (head->height <= 1) |
| 435 | return; |
| 436 | |
| 437 | node = head->node; |
| 438 | fill = getfill(geo, node, 0); |
| 439 | BUG_ON(fill > 1); |
| 440 | head->node = bval(geo, node, 0); |
| 441 | head->height--; |
| 442 | mempool_free(node, head->mempool); |
| 443 | } |
| 444 | |
| 445 | static int btree_insert_level(struct btree_head *head, struct btree_geo *geo, |
| 446 | unsigned long *key, void *val, int level, |
| 447 | gfp_t gfp) |
| 448 | { |
| 449 | unsigned long *node; |
| 450 | int i, pos, fill, err; |
| 451 | |
| 452 | BUG_ON(!val); |
| 453 | if (head->height < level) { |
| 454 | err = btree_grow(head, geo, gfp); |
| 455 | if (err) |
| 456 | return err; |
| 457 | } |
| 458 | |
| 459 | retry: |
| 460 | node = find_level(head, geo, key, level); |
| 461 | pos = getpos(geo, node, key); |
| 462 | fill = getfill(geo, node, pos); |
| 463 | /* two identical keys are not allowed */ |
| 464 | BUG_ON(pos < fill && keycmp(geo, node, pos, key) == 0); |
| 465 | |
| 466 | if (fill == geo->no_pairs) { |
| 467 | /* need to split node */ |
| 468 | unsigned long *new; |
| 469 | |
| 470 | new = btree_node_alloc(head, gfp); |
| 471 | if (!new) |
| 472 | return -ENOMEM; |
| 473 | err = btree_insert_level(head, geo, |
| 474 | bkey(geo, node, fill / 2 - 1), |
| 475 | new, level + 1, gfp); |
| 476 | if (err) { |
| 477 | mempool_free(new, head->mempool); |
| 478 | return err; |
| 479 | } |
| 480 | for (i = 0; i < fill / 2; i++) { |
| 481 | setkey(geo, new, i, bkey(geo, node, i)); |
| 482 | setval(geo, new, i, bval(geo, node, i)); |
| 483 | setkey(geo, node, i, bkey(geo, node, i + fill / 2)); |
| 484 | setval(geo, node, i, bval(geo, node, i + fill / 2)); |
| 485 | clearpair(geo, node, i + fill / 2); |
| 486 | } |
| 487 | if (fill & 1) { |
| 488 | setkey(geo, node, i, bkey(geo, node, fill - 1)); |
| 489 | setval(geo, node, i, bval(geo, node, fill - 1)); |
| 490 | clearpair(geo, node, fill - 1); |
| 491 | } |
| 492 | goto retry; |
| 493 | } |
| 494 | BUG_ON(fill >= geo->no_pairs); |
| 495 | |
| 496 | /* shift and insert */ |
| 497 | for (i = fill; i > pos; i--) { |
| 498 | setkey(geo, node, i, bkey(geo, node, i - 1)); |
| 499 | setval(geo, node, i, bval(geo, node, i - 1)); |
| 500 | } |
| 501 | setkey(geo, node, pos, key); |
| 502 | setval(geo, node, pos, val); |
| 503 | |
| 504 | return 0; |
| 505 | } |
| 506 | |
| 507 | int btree_insert(struct btree_head *head, struct btree_geo *geo, |
| 508 | unsigned long *key, void *val, gfp_t gfp) |
| 509 | { |
| 510 | return btree_insert_level(head, geo, key, val, 1, gfp); |
| 511 | } |
| 512 | EXPORT_SYMBOL_GPL(btree_insert); |
| 513 | |
| 514 | static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo, |
| 515 | unsigned long *key, int level); |
| 516 | static void merge(struct btree_head *head, struct btree_geo *geo, int level, |
| 517 | unsigned long *left, int lfill, |
| 518 | unsigned long *right, int rfill, |
| 519 | unsigned long *parent, int lpos) |
| 520 | { |
| 521 | int i; |
| 522 | |
| 523 | for (i = 0; i < rfill; i++) { |
| 524 | /* Move all keys to the left */ |
| 525 | setkey(geo, left, lfill + i, bkey(geo, right, i)); |
| 526 | setval(geo, left, lfill + i, bval(geo, right, i)); |
| 527 | } |
| 528 | /* Exchange left and right child in parent */ |
| 529 | setval(geo, parent, lpos, right); |
| 530 | setval(geo, parent, lpos + 1, left); |
| 531 | /* Remove left (formerly right) child from parent */ |
| 532 | btree_remove_level(head, geo, bkey(geo, parent, lpos), level + 1); |
| 533 | mempool_free(right, head->mempool); |
| 534 | } |
| 535 | |
| 536 | static void rebalance(struct btree_head *head, struct btree_geo *geo, |
| 537 | unsigned long *key, int level, unsigned long *child, int fill) |
| 538 | { |
| 539 | unsigned long *parent, *left = NULL, *right = NULL; |
| 540 | int i, no_left, no_right; |
| 541 | |
| 542 | if (fill == 0) { |
| 543 | /* Because we don't steal entries from a neigbour, this case |
| 544 | * can happen. Parent node contains a single child, this |
| 545 | * node, so merging with a sibling never happens. |
| 546 | */ |
| 547 | btree_remove_level(head, geo, key, level + 1); |
| 548 | mempool_free(child, head->mempool); |
| 549 | return; |
| 550 | } |
| 551 | |
| 552 | parent = find_level(head, geo, key, level + 1); |
| 553 | i = getpos(geo, parent, key); |
| 554 | BUG_ON(bval(geo, parent, i) != child); |
| 555 | |
| 556 | if (i > 0) { |
| 557 | left = bval(geo, parent, i - 1); |
| 558 | no_left = getfill(geo, left, 0); |
| 559 | if (fill + no_left <= geo->no_pairs) { |
| 560 | merge(head, geo, level, |
| 561 | left, no_left, |
| 562 | child, fill, |
| 563 | parent, i - 1); |
| 564 | return; |
| 565 | } |
| 566 | } |
| 567 | if (i + 1 < getfill(geo, parent, i)) { |
| 568 | right = bval(geo, parent, i + 1); |
| 569 | no_right = getfill(geo, right, 0); |
| 570 | if (fill + no_right <= geo->no_pairs) { |
| 571 | merge(head, geo, level, |
| 572 | child, fill, |
| 573 | right, no_right, |
| 574 | parent, i); |
| 575 | return; |
| 576 | } |
| 577 | } |
| 578 | /* |
| 579 | * We could also try to steal one entry from the left or right |
| 580 | * neighbor. By not doing so we changed the invariant from |
| 581 | * "all nodes are at least half full" to "no two neighboring |
| 582 | * nodes can be merged". Which means that the average fill of |
| 583 | * all nodes is still half or better. |
| 584 | */ |
| 585 | } |
| 586 | |
| 587 | static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo, |
| 588 | unsigned long *key, int level) |
| 589 | { |
| 590 | unsigned long *node; |
| 591 | int i, pos, fill; |
| 592 | void *ret; |
| 593 | |
| 594 | if (level > head->height) { |
| 595 | /* we recursed all the way up */ |
| 596 | head->height = 0; |
| 597 | head->node = NULL; |
| 598 | return NULL; |
| 599 | } |
| 600 | |
| 601 | node = find_level(head, geo, key, level); |
| 602 | pos = getpos(geo, node, key); |
| 603 | fill = getfill(geo, node, pos); |
| 604 | if ((level == 1) && (keycmp(geo, node, pos, key) != 0)) |
| 605 | return NULL; |
| 606 | ret = bval(geo, node, pos); |
| 607 | |
| 608 | /* remove and shift */ |
| 609 | for (i = pos; i < fill - 1; i++) { |
| 610 | setkey(geo, node, i, bkey(geo, node, i + 1)); |
| 611 | setval(geo, node, i, bval(geo, node, i + 1)); |
| 612 | } |
| 613 | clearpair(geo, node, fill - 1); |
| 614 | |
| 615 | if (fill - 1 < geo->no_pairs / 2) { |
| 616 | if (level < head->height) |
| 617 | rebalance(head, geo, key, level, node, fill - 1); |
| 618 | else if (fill - 1 == 1) |
| 619 | btree_shrink(head, geo); |
| 620 | } |
| 621 | |
| 622 | return ret; |
| 623 | } |
| 624 | |
| 625 | void *btree_remove(struct btree_head *head, struct btree_geo *geo, |
| 626 | unsigned long *key) |
| 627 | { |
| 628 | if (head->height == 0) |
| 629 | return NULL; |
| 630 | |
| 631 | return btree_remove_level(head, geo, key, 1); |
| 632 | } |
| 633 | EXPORT_SYMBOL_GPL(btree_remove); |
| 634 | |
| 635 | int btree_merge(struct btree_head *target, struct btree_head *victim, |
| 636 | struct btree_geo *geo, gfp_t gfp) |
| 637 | { |
| 638 | unsigned long key[geo->keylen]; |
| 639 | unsigned long dup[geo->keylen]; |
| 640 | void *val; |
| 641 | int err; |
| 642 | |
| 643 | BUG_ON(target == victim); |
| 644 | |
| 645 | if (!(target->node)) { |
| 646 | /* target is empty, just copy fields over */ |
| 647 | target->node = victim->node; |
| 648 | target->height = victim->height; |
| 649 | __btree_init(victim); |
| 650 | return 0; |
| 651 | } |
| 652 | |
| 653 | /* TODO: This needs some optimizations. Currently we do three tree |
| 654 | * walks to remove a single object from the victim. |
| 655 | */ |
| 656 | for (;;) { |
| 657 | if (!btree_last(victim, geo, key)) |
| 658 | break; |
| 659 | val = btree_lookup(victim, geo, key); |
| 660 | err = btree_insert(target, geo, key, val, gfp); |
| 661 | if (err) |
| 662 | return err; |
| 663 | /* We must make a copy of the key, as the original will get |
| 664 | * mangled inside btree_remove. */ |
| 665 | longcpy(dup, key, geo->keylen); |
| 666 | btree_remove(victim, geo, dup); |
| 667 | } |
| 668 | return 0; |
| 669 | } |
| 670 | EXPORT_SYMBOL_GPL(btree_merge); |
| 671 | |
| 672 | static size_t __btree_for_each(struct btree_head *head, struct btree_geo *geo, |
| 673 | unsigned long *node, unsigned long opaque, |
| 674 | void (*func)(void *elem, unsigned long opaque, |
| 675 | unsigned long *key, size_t index, |
| 676 | void *func2), |
| 677 | void *func2, int reap, int height, size_t count) |
| 678 | { |
| 679 | int i; |
| 680 | unsigned long *child; |
| 681 | |
| 682 | for (i = 0; i < geo->no_pairs; i++) { |
| 683 | child = bval(geo, node, i); |
| 684 | if (!child) |
| 685 | break; |
| 686 | if (height > 1) |
| 687 | count = __btree_for_each(head, geo, child, opaque, |
| 688 | func, func2, reap, height - 1, count); |
| 689 | else |
| 690 | func(child, opaque, bkey(geo, node, i), count++, |
| 691 | func2); |
| 692 | } |
| 693 | if (reap) |
| 694 | mempool_free(node, head->mempool); |
| 695 | return count; |
| 696 | } |
| 697 | |
| 698 | static void empty(void *elem, unsigned long opaque, unsigned long *key, |
| 699 | size_t index, void *func2) |
| 700 | { |
| 701 | } |
| 702 | |
| 703 | void visitorl(void *elem, unsigned long opaque, unsigned long *key, |
| 704 | size_t index, void *__func) |
| 705 | { |
| 706 | visitorl_t func = __func; |
| 707 | |
| 708 | func(elem, opaque, *key, index); |
| 709 | } |
| 710 | EXPORT_SYMBOL_GPL(visitorl); |
| 711 | |
| 712 | void visitor32(void *elem, unsigned long opaque, unsigned long *__key, |
| 713 | size_t index, void *__func) |
| 714 | { |
| 715 | visitor32_t func = __func; |
| 716 | u32 *key = (void *)__key; |
| 717 | |
| 718 | func(elem, opaque, *key, index); |
| 719 | } |
| 720 | EXPORT_SYMBOL_GPL(visitor32); |
| 721 | |
| 722 | void visitor64(void *elem, unsigned long opaque, unsigned long *__key, |
| 723 | size_t index, void *__func) |
| 724 | { |
| 725 | visitor64_t func = __func; |
| 726 | u64 *key = (void *)__key; |
| 727 | |
| 728 | func(elem, opaque, *key, index); |
| 729 | } |
| 730 | EXPORT_SYMBOL_GPL(visitor64); |
| 731 | |
| 732 | void visitor128(void *elem, unsigned long opaque, unsigned long *__key, |
| 733 | size_t index, void *__func) |
| 734 | { |
| 735 | visitor128_t func = __func; |
| 736 | u64 *key = (void *)__key; |
| 737 | |
| 738 | func(elem, opaque, key[0], key[1], index); |
| 739 | } |
| 740 | EXPORT_SYMBOL_GPL(visitor128); |
| 741 | |
| 742 | size_t btree_visitor(struct btree_head *head, struct btree_geo *geo, |
| 743 | unsigned long opaque, |
| 744 | void (*func)(void *elem, unsigned long opaque, |
| 745 | unsigned long *key, |
| 746 | size_t index, void *func2), |
| 747 | void *func2) |
| 748 | { |
| 749 | size_t count = 0; |
| 750 | |
| 751 | if (!func2) |
| 752 | func = empty; |
| 753 | if (head->node) |
| 754 | count = __btree_for_each(head, geo, head->node, opaque, func, |
| 755 | func2, 0, head->height, 0); |
| 756 | return count; |
| 757 | } |
| 758 | EXPORT_SYMBOL_GPL(btree_visitor); |
| 759 | |
| 760 | size_t btree_grim_visitor(struct btree_head *head, struct btree_geo *geo, |
| 761 | unsigned long opaque, |
| 762 | void (*func)(void *elem, unsigned long opaque, |
| 763 | unsigned long *key, |
| 764 | size_t index, void *func2), |
| 765 | void *func2) |
| 766 | { |
| 767 | size_t count = 0; |
| 768 | |
| 769 | if (!func2) |
| 770 | func = empty; |
| 771 | if (head->node) |
| 772 | count = __btree_for_each(head, geo, head->node, opaque, func, |
| 773 | func2, 1, head->height, 0); |
| 774 | __btree_init(head); |
| 775 | return count; |
| 776 | } |
| 777 | EXPORT_SYMBOL_GPL(btree_grim_visitor); |
| 778 | |
| 779 | static int __init btree_module_init(void) |
| 780 | { |
| 781 | btree_cachep = kmem_cache_create("btree_node", NODESIZE, 0, |
| 782 | SLAB_HWCACHE_ALIGN, NULL); |
| 783 | return 0; |
| 784 | } |
| 785 | |
| 786 | static void __exit btree_module_exit(void) |
| 787 | { |
| 788 | kmem_cache_destroy(btree_cachep); |
| 789 | } |
| 790 | |
| 791 | /* If core code starts using btree, initialization should happen even earlier */ |
| 792 | module_init(btree_module_init); |
| 793 | module_exit(btree_module_exit); |
| 794 | |
| 795 | MODULE_AUTHOR("Joern Engel <joern@logfs.org>"); |
| 796 | MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>"); |
| 797 | MODULE_LICENSE("GPL"); |