blob: 55ffb34be95e1b1020dc684aac0eaa6f587ffed4 [file] [log] [blame]
Kuninori Morimoto4eef5a92018-07-02 06:22:30 +00001// SPDX-License-Identifier: GPL-2.0+
2//
3// soc-ops.c -- Generic ASoC operations
4//
5// Copyright 2005 Wolfson Microelectronics PLC.
6// Copyright 2005 Openedhand Ltd.
7// Copyright (C) 2010 Slimlogic Ltd.
8// Copyright (C) 2010 Texas Instruments Inc.
9//
10// Author: Liam Girdwood <lrg@slimlogic.co.uk>
11// with code, comments and ideas from :-
12// Richard Purdie <richard@openedhand.com>
Mark Brown70771482014-10-28 22:15:31 +000013
14#include <linux/module.h>
15#include <linux/moduleparam.h>
16#include <linux/init.h>
17#include <linux/delay.h>
18#include <linux/pm.h>
19#include <linux/bitops.h>
20#include <linux/ctype.h>
21#include <linux/slab.h>
22#include <sound/core.h>
23#include <sound/jack.h>
24#include <sound/pcm.h>
25#include <sound/pcm_params.h>
26#include <sound/soc.h>
27#include <sound/soc-dpcm.h>
28#include <sound/initval.h>
29
30/**
31 * snd_soc_info_enum_double - enumerated double mixer info callback
32 * @kcontrol: mixer control
33 * @uinfo: control element information
34 *
35 * Callback to provide information about a double enumerated
36 * mixer control.
37 *
38 * Returns 0 for success.
39 */
40int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
41 struct snd_ctl_elem_info *uinfo)
42{
43 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
44
45 return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
46 e->items, e->texts);
47}
48EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
49
50/**
51 * snd_soc_get_enum_double - enumerated double mixer get callback
52 * @kcontrol: mixer control
53 * @ucontrol: control element information
54 *
55 * Callback to get the value of a double enumerated mixer.
56 *
57 * Returns 0 for success.
58 */
59int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
60 struct snd_ctl_elem_value *ucontrol)
61{
62 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
63 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
64 unsigned int val, item;
65 unsigned int reg_val;
66 int ret;
67
68 ret = snd_soc_component_read(component, e->reg, &reg_val);
69 if (ret)
70 return ret;
71 val = (reg_val >> e->shift_l) & e->mask;
72 item = snd_soc_enum_val_to_item(e, val);
73 ucontrol->value.enumerated.item[0] = item;
74 if (e->shift_l != e->shift_r) {
Jaswinder Jassal189f06c2016-08-29 16:06:58 +010075 val = (reg_val >> e->shift_r) & e->mask;
Mark Brown70771482014-10-28 22:15:31 +000076 item = snd_soc_enum_val_to_item(e, val);
77 ucontrol->value.enumerated.item[1] = item;
78 }
79
80 return 0;
81}
82EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
83
84/**
85 * snd_soc_put_enum_double - enumerated double mixer put callback
86 * @kcontrol: mixer control
87 * @ucontrol: control element information
88 *
89 * Callback to set the value of a double enumerated mixer.
90 *
91 * Returns 0 for success.
92 */
93int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
94 struct snd_ctl_elem_value *ucontrol)
95{
96 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
97 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
98 unsigned int *item = ucontrol->value.enumerated.item;
99 unsigned int val;
100 unsigned int mask;
101
102 if (item[0] >= e->items)
103 return -EINVAL;
104 val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
105 mask = e->mask << e->shift_l;
106 if (e->shift_l != e->shift_r) {
107 if (item[1] >= e->items)
108 return -EINVAL;
109 val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
110 mask |= e->mask << e->shift_r;
111 }
112
113 return snd_soc_component_update_bits(component, e->reg, mask, val);
114}
115EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
116
117/**
Charles Keepax8abab352017-01-12 11:38:15 +0000118 * snd_soc_read_signed - Read a codec register and interpret as signed value
Mark Brown70771482014-10-28 22:15:31 +0000119 * @component: component
120 * @reg: Register to read
121 * @mask: Mask to use after shifting the register value
122 * @shift: Right shift of register value
123 * @sign_bit: Bit that describes if a number is negative or not.
124 * @signed_val: Pointer to where the read value should be stored
125 *
126 * This functions reads a codec register. The register value is shifted right
127 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
128 * the given registervalue into a signed integer if sign_bit is non-zero.
129 *
130 * Returns 0 on sucess, otherwise an error value
131 */
132static int snd_soc_read_signed(struct snd_soc_component *component,
133 unsigned int reg, unsigned int mask, unsigned int shift,
134 unsigned int sign_bit, int *signed_val)
135{
136 int ret;
137 unsigned int val;
138
139 ret = snd_soc_component_read(component, reg, &val);
140 if (ret < 0)
141 return ret;
142
143 val = (val >> shift) & mask;
144
145 if (!sign_bit) {
146 *signed_val = val;
147 return 0;
148 }
149
150 /* non-negative number */
151 if (!(val & BIT(sign_bit))) {
152 *signed_val = val;
153 return 0;
154 }
155
156 ret = val;
157
158 /*
159 * The register most probably does not contain a full-sized int.
160 * Instead we have an arbitrary number of bits in a signed
161 * representation which has to be translated into a full-sized int.
162 * This is done by filling up all bits above the sign-bit.
163 */
164 ret |= ~((int)(BIT(sign_bit) - 1));
165
166 *signed_val = ret;
167
168 return 0;
169}
170
171/**
172 * snd_soc_info_volsw - single mixer info callback
173 * @kcontrol: mixer control
174 * @uinfo: control element information
175 *
176 * Callback to provide information about a single mixer control, or a double
177 * mixer control that spans 2 registers.
178 *
179 * Returns 0 for success.
180 */
181int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
182 struct snd_ctl_elem_info *uinfo)
183{
184 struct soc_mixer_control *mc =
185 (struct soc_mixer_control *)kcontrol->private_value;
186 int platform_max;
187
188 if (!mc->platform_max)
189 mc->platform_max = mc->max;
190 platform_max = mc->platform_max;
191
192 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
193 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
194 else
195 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
196
197 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
198 uinfo->value.integer.min = 0;
199 uinfo->value.integer.max = platform_max - mc->min;
200 return 0;
201}
202EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
203
204/**
Charles Keepax34198712015-10-14 13:31:24 +0100205 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
206 * @kcontrol: mixer control
207 * @uinfo: control element information
208 *
209 * Callback to provide information about a single mixer control, or a double
210 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
211 * have a range that represents both positive and negative values either side
212 * of zero but without a sign bit.
213 *
214 * Returns 0 for success.
215 */
216int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
217 struct snd_ctl_elem_info *uinfo)
218{
219 struct soc_mixer_control *mc =
220 (struct soc_mixer_control *)kcontrol->private_value;
221
222 snd_soc_info_volsw(kcontrol, uinfo);
223 /* Max represents the number of levels in an SX control not the
224 * maximum value, so add the minimum value back on
225 */
226 uinfo->value.integer.max += mc->min;
227
228 return 0;
229}
230EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
231
232/**
Mark Brown70771482014-10-28 22:15:31 +0000233 * snd_soc_get_volsw - single mixer get callback
234 * @kcontrol: mixer control
235 * @ucontrol: control element information
236 *
237 * Callback to get the value of a single mixer control, or a double mixer
238 * control that spans 2 registers.
239 *
240 * Returns 0 for success.
241 */
242int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
243 struct snd_ctl_elem_value *ucontrol)
244{
245 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
246 struct soc_mixer_control *mc =
247 (struct soc_mixer_control *)kcontrol->private_value;
248 unsigned int reg = mc->reg;
249 unsigned int reg2 = mc->rreg;
250 unsigned int shift = mc->shift;
251 unsigned int rshift = mc->rshift;
252 int max = mc->max;
253 int min = mc->min;
254 int sign_bit = mc->sign_bit;
255 unsigned int mask = (1 << fls(max)) - 1;
256 unsigned int invert = mc->invert;
257 int val;
258 int ret;
259
260 if (sign_bit)
261 mask = BIT(sign_bit + 1) - 1;
262
263 ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
264 if (ret)
265 return ret;
266
267 ucontrol->value.integer.value[0] = val - min;
268 if (invert)
269 ucontrol->value.integer.value[0] =
270 max - ucontrol->value.integer.value[0];
271
272 if (snd_soc_volsw_is_stereo(mc)) {
273 if (reg == reg2)
274 ret = snd_soc_read_signed(component, reg, mask, rshift,
275 sign_bit, &val);
276 else
277 ret = snd_soc_read_signed(component, reg2, mask, shift,
278 sign_bit, &val);
279 if (ret)
280 return ret;
281
282 ucontrol->value.integer.value[1] = val - min;
283 if (invert)
284 ucontrol->value.integer.value[1] =
285 max - ucontrol->value.integer.value[1];
286 }
287
288 return 0;
289}
290EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
291
292/**
293 * snd_soc_put_volsw - single mixer put callback
294 * @kcontrol: mixer control
295 * @ucontrol: control element information
296 *
297 * Callback to set the value of a single mixer control, or a double mixer
298 * control that spans 2 registers.
299 *
300 * Returns 0 for success.
301 */
302int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
303 struct snd_ctl_elem_value *ucontrol)
304{
305 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
306 struct soc_mixer_control *mc =
307 (struct soc_mixer_control *)kcontrol->private_value;
308 unsigned int reg = mc->reg;
309 unsigned int reg2 = mc->rreg;
310 unsigned int shift = mc->shift;
311 unsigned int rshift = mc->rshift;
312 int max = mc->max;
313 int min = mc->min;
314 unsigned int sign_bit = mc->sign_bit;
315 unsigned int mask = (1 << fls(max)) - 1;
316 unsigned int invert = mc->invert;
317 int err;
318 bool type_2r = false;
319 unsigned int val2 = 0;
320 unsigned int val, val_mask;
321
322 if (sign_bit)
323 mask = BIT(sign_bit + 1) - 1;
324
325 val = ((ucontrol->value.integer.value[0] + min) & mask);
326 if (invert)
327 val = max - val;
328 val_mask = mask << shift;
329 val = val << shift;
330 if (snd_soc_volsw_is_stereo(mc)) {
331 val2 = ((ucontrol->value.integer.value[1] + min) & mask);
332 if (invert)
333 val2 = max - val2;
334 if (reg == reg2) {
335 val_mask |= mask << rshift;
336 val |= val2 << rshift;
337 } else {
338 val2 = val2 << shift;
339 type_2r = true;
340 }
341 }
342 err = snd_soc_component_update_bits(component, reg, val_mask, val);
343 if (err < 0)
344 return err;
345
346 if (type_2r)
347 err = snd_soc_component_update_bits(component, reg2, val_mask,
348 val2);
349
350 return err;
351}
352EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
353
354/**
355 * snd_soc_get_volsw_sx - single mixer get callback
356 * @kcontrol: mixer control
357 * @ucontrol: control element information
358 *
359 * Callback to get the value of a single mixer control, or a double mixer
360 * control that spans 2 registers.
361 *
362 * Returns 0 for success.
363 */
364int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
365 struct snd_ctl_elem_value *ucontrol)
366{
367 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
368 struct soc_mixer_control *mc =
369 (struct soc_mixer_control *)kcontrol->private_value;
370 unsigned int reg = mc->reg;
371 unsigned int reg2 = mc->rreg;
372 unsigned int shift = mc->shift;
373 unsigned int rshift = mc->rshift;
374 int max = mc->max;
375 int min = mc->min;
Rohit kumarae7d1242018-09-11 14:59:21 +0530376 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
Mark Brown70771482014-10-28 22:15:31 +0000377 unsigned int val;
378 int ret;
379
380 ret = snd_soc_component_read(component, reg, &val);
381 if (ret < 0)
382 return ret;
383
384 ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
385
386 if (snd_soc_volsw_is_stereo(mc)) {
387 ret = snd_soc_component_read(component, reg2, &val);
388 if (ret < 0)
389 return ret;
390
391 val = ((val >> rshift) - min) & mask;
392 ucontrol->value.integer.value[1] = val;
393 }
394
395 return 0;
396}
397EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
398
399/**
400 * snd_soc_put_volsw_sx - double mixer set callback
401 * @kcontrol: mixer control
Randy Dunlap9a11ef7f2015-11-23 17:37:54 -0800402 * @ucontrol: control element information
Mark Brown70771482014-10-28 22:15:31 +0000403 *
404 * Callback to set the value of a double mixer control that spans 2 registers.
405 *
406 * Returns 0 for success.
407 */
408int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
409 struct snd_ctl_elem_value *ucontrol)
410{
411 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
412 struct soc_mixer_control *mc =
413 (struct soc_mixer_control *)kcontrol->private_value;
414
415 unsigned int reg = mc->reg;
416 unsigned int reg2 = mc->rreg;
417 unsigned int shift = mc->shift;
418 unsigned int rshift = mc->rshift;
419 int max = mc->max;
420 int min = mc->min;
Rohit kumarae7d1242018-09-11 14:59:21 +0530421 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
Mark Brown70771482014-10-28 22:15:31 +0000422 int err = 0;
423 unsigned int val, val_mask, val2 = 0;
424
425 val_mask = mask << shift;
426 val = (ucontrol->value.integer.value[0] + min) & mask;
427 val = val << shift;
428
429 err = snd_soc_component_update_bits(component, reg, val_mask, val);
430 if (err < 0)
431 return err;
432
433 if (snd_soc_volsw_is_stereo(mc)) {
434 val_mask = mask << rshift;
435 val2 = (ucontrol->value.integer.value[1] + min) & mask;
436 val2 = val2 << rshift;
437
438 err = snd_soc_component_update_bits(component, reg2, val_mask,
439 val2);
440 }
441 return err;
442}
443EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
444
445/**
446 * snd_soc_info_volsw_range - single mixer info callback with range.
447 * @kcontrol: mixer control
448 * @uinfo: control element information
449 *
450 * Callback to provide information, within a range, about a single
451 * mixer control.
452 *
453 * returns 0 for success.
454 */
455int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
456 struct snd_ctl_elem_info *uinfo)
457{
458 struct soc_mixer_control *mc =
459 (struct soc_mixer_control *)kcontrol->private_value;
460 int platform_max;
461 int min = mc->min;
462
463 if (!mc->platform_max)
464 mc->platform_max = mc->max;
465 platform_max = mc->platform_max;
466
467 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
468 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
469 uinfo->value.integer.min = 0;
470 uinfo->value.integer.max = platform_max - min;
471
472 return 0;
473}
474EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
475
476/**
477 * snd_soc_put_volsw_range - single mixer put value callback with range.
478 * @kcontrol: mixer control
479 * @ucontrol: control element information
480 *
481 * Callback to set the value, within a range, for a single mixer control.
482 *
483 * Returns 0 for success.
484 */
485int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
486 struct snd_ctl_elem_value *ucontrol)
487{
488 struct soc_mixer_control *mc =
489 (struct soc_mixer_control *)kcontrol->private_value;
490 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
491 unsigned int reg = mc->reg;
492 unsigned int rreg = mc->rreg;
493 unsigned int shift = mc->shift;
494 int min = mc->min;
495 int max = mc->max;
496 unsigned int mask = (1 << fls(max)) - 1;
497 unsigned int invert = mc->invert;
498 unsigned int val, val_mask;
499 int ret;
500
501 if (invert)
502 val = (max - ucontrol->value.integer.value[0]) & mask;
503 else
504 val = ((ucontrol->value.integer.value[0] + min) & mask);
505 val_mask = mask << shift;
506 val = val << shift;
507
508 ret = snd_soc_component_update_bits(component, reg, val_mask, val);
509 if (ret < 0)
510 return ret;
511
512 if (snd_soc_volsw_is_stereo(mc)) {
513 if (invert)
514 val = (max - ucontrol->value.integer.value[1]) & mask;
515 else
516 val = ((ucontrol->value.integer.value[1] + min) & mask);
517 val_mask = mask << shift;
518 val = val << shift;
519
520 ret = snd_soc_component_update_bits(component, rreg, val_mask,
521 val);
522 }
523
524 return ret;
525}
526EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
527
528/**
529 * snd_soc_get_volsw_range - single mixer get callback with range
530 * @kcontrol: mixer control
531 * @ucontrol: control element information
532 *
533 * Callback to get the value, within a range, of a single mixer control.
534 *
535 * Returns 0 for success.
536 */
537int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
538 struct snd_ctl_elem_value *ucontrol)
539{
540 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
541 struct soc_mixer_control *mc =
542 (struct soc_mixer_control *)kcontrol->private_value;
543 unsigned int reg = mc->reg;
544 unsigned int rreg = mc->rreg;
545 unsigned int shift = mc->shift;
546 int min = mc->min;
547 int max = mc->max;
548 unsigned int mask = (1 << fls(max)) - 1;
549 unsigned int invert = mc->invert;
550 unsigned int val;
551 int ret;
552
553 ret = snd_soc_component_read(component, reg, &val);
554 if (ret)
555 return ret;
556
557 ucontrol->value.integer.value[0] = (val >> shift) & mask;
558 if (invert)
559 ucontrol->value.integer.value[0] =
560 max - ucontrol->value.integer.value[0];
561 else
562 ucontrol->value.integer.value[0] =
563 ucontrol->value.integer.value[0] - min;
564
565 if (snd_soc_volsw_is_stereo(mc)) {
566 ret = snd_soc_component_read(component, rreg, &val);
567 if (ret)
568 return ret;
569
570 ucontrol->value.integer.value[1] = (val >> shift) & mask;
571 if (invert)
572 ucontrol->value.integer.value[1] =
573 max - ucontrol->value.integer.value[1];
574 else
575 ucontrol->value.integer.value[1] =
576 ucontrol->value.integer.value[1] - min;
577 }
578
579 return 0;
580}
581EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
582
583/**
584 * snd_soc_limit_volume - Set new limit to an existing volume control.
585 *
Lars-Peter Clausen26d9ca32015-10-18 17:04:33 +0200586 * @card: where to look for the control
Mark Brown70771482014-10-28 22:15:31 +0000587 * @name: Name of the control
588 * @max: new maximum limit
589 *
590 * Return 0 for success, else error.
591 */
Lars-Peter Clausen26d9ca32015-10-18 17:04:33 +0200592int snd_soc_limit_volume(struct snd_soc_card *card,
Mark Brown70771482014-10-28 22:15:31 +0000593 const char *name, int max)
594{
Mark Brown70771482014-10-28 22:15:31 +0000595 struct snd_kcontrol *kctl;
596 struct soc_mixer_control *mc;
Mark Brown70771482014-10-28 22:15:31 +0000597 int ret = -EINVAL;
598
599 /* Sanity check for name and max */
600 if (unlikely(!name || max <= 0))
601 return -EINVAL;
602
Kuninori Morimoto0881ab62019-10-02 14:23:14 +0900603 kctl = snd_soc_card_get_kcontrol(card, name);
604 if (kctl) {
Mark Brown70771482014-10-28 22:15:31 +0000605 mc = (struct soc_mixer_control *)kctl->private_value;
606 if (max <= mc->max) {
607 mc->platform_max = max;
608 ret = 0;
609 }
610 }
611 return ret;
612}
613EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
614
615int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
616 struct snd_ctl_elem_info *uinfo)
617{
618 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
619 struct soc_bytes *params = (void *)kcontrol->private_value;
620
621 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
622 uinfo->count = params->num_regs * component->val_bytes;
623
624 return 0;
625}
626EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
627
628int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
629 struct snd_ctl_elem_value *ucontrol)
630{
631 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
632 struct soc_bytes *params = (void *)kcontrol->private_value;
633 int ret;
634
635 if (component->regmap)
636 ret = regmap_raw_read(component->regmap, params->base,
637 ucontrol->value.bytes.data,
638 params->num_regs * component->val_bytes);
639 else
640 ret = -EINVAL;
641
642 /* Hide any masked bytes to ensure consistent data reporting */
643 if (ret == 0 && params->mask) {
644 switch (component->val_bytes) {
645 case 1:
646 ucontrol->value.bytes.data[0] &= ~params->mask;
647 break;
648 case 2:
649 ((u16 *)(&ucontrol->value.bytes.data))[0]
650 &= cpu_to_be16(~params->mask);
651 break;
652 case 4:
653 ((u32 *)(&ucontrol->value.bytes.data))[0]
654 &= cpu_to_be32(~params->mask);
655 break;
656 default:
657 return -EINVAL;
658 }
659 }
660
661 return ret;
662}
663EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
664
665int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
666 struct snd_ctl_elem_value *ucontrol)
667{
668 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
669 struct soc_bytes *params = (void *)kcontrol->private_value;
670 int ret, len;
671 unsigned int val, mask;
672 void *data;
673
674 if (!component->regmap || !params->num_regs)
675 return -EINVAL;
676
677 len = params->num_regs * component->val_bytes;
678
679 data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
680 if (!data)
681 return -ENOMEM;
682
683 /*
684 * If we've got a mask then we need to preserve the register
685 * bits. We shouldn't modify the incoming data so take a
686 * copy.
687 */
688 if (params->mask) {
689 ret = regmap_read(component->regmap, params->base, &val);
690 if (ret != 0)
691 goto out;
692
693 val &= params->mask;
694
695 switch (component->val_bytes) {
696 case 1:
697 ((u8 *)data)[0] &= ~params->mask;
698 ((u8 *)data)[0] |= val;
699 break;
700 case 2:
701 mask = ~params->mask;
702 ret = regmap_parse_val(component->regmap,
703 &mask, &mask);
704 if (ret != 0)
705 goto out;
706
707 ((u16 *)data)[0] &= mask;
708
709 ret = regmap_parse_val(component->regmap,
710 &val, &val);
711 if (ret != 0)
712 goto out;
713
714 ((u16 *)data)[0] |= val;
715 break;
716 case 4:
717 mask = ~params->mask;
718 ret = regmap_parse_val(component->regmap,
719 &mask, &mask);
720 if (ret != 0)
721 goto out;
722
723 ((u32 *)data)[0] &= mask;
724
725 ret = regmap_parse_val(component->regmap,
726 &val, &val);
727 if (ret != 0)
728 goto out;
729
730 ((u32 *)data)[0] |= val;
731 break;
732 default:
733 ret = -EINVAL;
734 goto out;
735 }
736 }
737
738 ret = regmap_raw_write(component->regmap, params->base,
739 data, len);
740
741out:
742 kfree(data);
743
744 return ret;
745}
746EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
747
748int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
749 struct snd_ctl_elem_info *ucontrol)
750{
751 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
752
753 ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
754 ucontrol->count = params->max;
755
756 return 0;
757}
758EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
759
760int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
761 unsigned int size, unsigned int __user *tlv)
762{
763 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
764 unsigned int count = size < params->max ? size : params->max;
765 int ret = -ENXIO;
766
767 switch (op_flag) {
768 case SNDRV_CTL_TLV_OP_READ:
769 if (params->get)
Mythri P Ka1e5e7e92015-11-09 23:20:00 +0530770 ret = params->get(kcontrol, tlv, count);
Mark Brown70771482014-10-28 22:15:31 +0000771 break;
772 case SNDRV_CTL_TLV_OP_WRITE:
773 if (params->put)
Mythri P Ka1e5e7e92015-11-09 23:20:00 +0530774 ret = params->put(kcontrol, tlv, count);
Mark Brown70771482014-10-28 22:15:31 +0000775 break;
776 }
777 return ret;
778}
779EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
780
781/**
782 * snd_soc_info_xr_sx - signed multi register info callback
783 * @kcontrol: mreg control
784 * @uinfo: control element information
785 *
786 * Callback to provide information of a control that can
787 * span multiple codec registers which together
788 * forms a single signed value in a MSB/LSB manner.
789 *
790 * Returns 0 for success.
791 */
792int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
793 struct snd_ctl_elem_info *uinfo)
794{
795 struct soc_mreg_control *mc =
796 (struct soc_mreg_control *)kcontrol->private_value;
797 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
798 uinfo->count = 1;
799 uinfo->value.integer.min = mc->min;
800 uinfo->value.integer.max = mc->max;
801
802 return 0;
803}
804EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
805
806/**
807 * snd_soc_get_xr_sx - signed multi register get callback
808 * @kcontrol: mreg control
809 * @ucontrol: control element information
810 *
811 * Callback to get the value of a control that can span
812 * multiple codec registers which together forms a single
813 * signed value in a MSB/LSB manner. The control supports
814 * specifying total no of bits used to allow for bitfields
815 * across the multiple codec registers.
816 *
817 * Returns 0 for success.
818 */
819int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
820 struct snd_ctl_elem_value *ucontrol)
821{
822 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
823 struct soc_mreg_control *mc =
824 (struct soc_mreg_control *)kcontrol->private_value;
825 unsigned int regbase = mc->regbase;
826 unsigned int regcount = mc->regcount;
827 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
이경택0ab07092020-03-30 16:35:59 +0900828 unsigned int regwmask = (1UL<<regwshift)-1;
Mark Brown70771482014-10-28 22:15:31 +0000829 unsigned int invert = mc->invert;
830 unsigned long mask = (1UL<<mc->nbits)-1;
831 long min = mc->min;
832 long max = mc->max;
833 long val = 0;
834 unsigned int regval;
835 unsigned int i;
836 int ret;
837
838 for (i = 0; i < regcount; i++) {
839 ret = snd_soc_component_read(component, regbase+i, &regval);
840 if (ret)
841 return ret;
842 val |= (regval & regwmask) << (regwshift*(regcount-i-1));
843 }
844 val &= mask;
845 if (min < 0 && val > max)
846 val |= ~mask;
847 if (invert)
848 val = max - val;
849 ucontrol->value.integer.value[0] = val;
850
851 return 0;
852}
853EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
854
855/**
856 * snd_soc_put_xr_sx - signed multi register get callback
857 * @kcontrol: mreg control
858 * @ucontrol: control element information
859 *
860 * Callback to set the value of a control that can span
861 * multiple codec registers which together forms a single
862 * signed value in a MSB/LSB manner. The control supports
863 * specifying total no of bits used to allow for bitfields
864 * across the multiple codec registers.
865 *
866 * Returns 0 for success.
867 */
868int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
869 struct snd_ctl_elem_value *ucontrol)
870{
871 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
872 struct soc_mreg_control *mc =
873 (struct soc_mreg_control *)kcontrol->private_value;
874 unsigned int regbase = mc->regbase;
875 unsigned int regcount = mc->regcount;
876 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
이경택0ab07092020-03-30 16:35:59 +0900877 unsigned int regwmask = (1UL<<regwshift)-1;
Mark Brown70771482014-10-28 22:15:31 +0000878 unsigned int invert = mc->invert;
879 unsigned long mask = (1UL<<mc->nbits)-1;
880 long max = mc->max;
881 long val = ucontrol->value.integer.value[0];
882 unsigned int i, regval, regmask;
883 int err;
884
885 if (invert)
886 val = max - val;
887 val &= mask;
888 for (i = 0; i < regcount; i++) {
889 regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
890 regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
891 err = snd_soc_component_update_bits(component, regbase+i,
892 regmask, regval);
893 if (err < 0)
894 return err;
895 }
896
897 return 0;
898}
899EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
900
901/**
902 * snd_soc_get_strobe - strobe get callback
903 * @kcontrol: mixer control
904 * @ucontrol: control element information
905 *
906 * Callback get the value of a strobe mixer control.
907 *
908 * Returns 0 for success.
909 */
910int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
911 struct snd_ctl_elem_value *ucontrol)
912{
913 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
914 struct soc_mixer_control *mc =
915 (struct soc_mixer_control *)kcontrol->private_value;
916 unsigned int reg = mc->reg;
917 unsigned int shift = mc->shift;
918 unsigned int mask = 1 << shift;
919 unsigned int invert = mc->invert != 0;
920 unsigned int val;
921 int ret;
922
923 ret = snd_soc_component_read(component, reg, &val);
924 if (ret)
925 return ret;
926
927 val &= mask;
928
929 if (shift != 0 && val != 0)
930 val = val >> shift;
931 ucontrol->value.enumerated.item[0] = val ^ invert;
932
933 return 0;
934}
935EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
936
937/**
938 * snd_soc_put_strobe - strobe put callback
939 * @kcontrol: mixer control
940 * @ucontrol: control element information
941 *
942 * Callback strobe a register bit to high then low (or the inverse)
943 * in one pass of a single mixer enum control.
944 *
945 * Returns 1 for success.
946 */
947int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
948 struct snd_ctl_elem_value *ucontrol)
949{
950 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
951 struct soc_mixer_control *mc =
952 (struct soc_mixer_control *)kcontrol->private_value;
953 unsigned int reg = mc->reg;
954 unsigned int shift = mc->shift;
955 unsigned int mask = 1 << shift;
956 unsigned int invert = mc->invert != 0;
957 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
958 unsigned int val1 = (strobe ^ invert) ? mask : 0;
959 unsigned int val2 = (strobe ^ invert) ? 0 : mask;
960 int err;
961
962 err = snd_soc_component_update_bits(component, reg, mask, val1);
963 if (err < 0)
964 return err;
965
966 return snd_soc_component_update_bits(component, reg, mask, val2);
967}
968EXPORT_SYMBOL_GPL(snd_soc_put_strobe);