blob: 395cb22d9f7d37f5940f0ebb74c9d501ece46647 [file] [log] [blame]
Thomas Gleixnercaab2772019-06-03 07:44:50 +02001/* SPDX-License-Identifier: GPL-2.0-only */
Marc Zyngier0369f6a2012-12-10 10:46:47 +00002/*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
Marc Zyngier0369f6a2012-12-10 10:46:47 +00005 */
6
7#ifndef __ARM64_KVM_ARM_H__
8#define __ARM64_KVM_ARM_H__
9
Mark Rutland6e530312014-11-24 14:05:44 +000010#include <asm/esr.h>
Geoff Levand286fb1c2014-10-31 23:06:47 +000011#include <asm/memory.h>
Marc Zyngier0369f6a2012-12-10 10:46:47 +000012#include <asm/types.h>
13
14/* Hyp Configuration Register (HCR) bits */
Vincenzo Frascinoc058b1c2019-09-06 10:55:29 +010015#define HCR_ATA (UL(1) << 56)
Marc Zyngiere48d53a2018-04-06 12:27:28 +010016#define HCR_FWB (UL(1) << 46)
Mark Rutlandb3669b12018-12-07 18:39:23 +000017#define HCR_API (UL(1) << 41)
18#define HCR_APK (UL(1) << 40)
Dongjiu Geng558daf62018-01-15 19:39:06 +000019#define HCR_TEA (UL(1) << 37)
20#define HCR_TERR (UL(1) << 36)
Mark Rutlandcc33c4e2018-02-13 13:39:23 +000021#define HCR_TLOR (UL(1) << 35)
Marc Zyngier68908bf2015-01-29 15:47:55 +000022#define HCR_E2H (UL(1) << 34)
Marc Zyngier0369f6a2012-12-10 10:46:47 +000023#define HCR_ID (UL(1) << 33)
24#define HCR_CD (UL(1) << 32)
25#define HCR_RW_SHIFT 31
26#define HCR_RW (UL(1) << HCR_RW_SHIFT)
27#define HCR_TRVM (UL(1) << 30)
28#define HCR_HCD (UL(1) << 29)
29#define HCR_TDZ (UL(1) << 28)
30#define HCR_TGE (UL(1) << 27)
31#define HCR_TVM (UL(1) << 26)
32#define HCR_TTLB (UL(1) << 25)
33#define HCR_TPU (UL(1) << 24)
34#define HCR_TPC (UL(1) << 23)
35#define HCR_TSW (UL(1) << 22)
36#define HCR_TAC (UL(1) << 21)
37#define HCR_TIDCP (UL(1) << 20)
38#define HCR_TSC (UL(1) << 19)
39#define HCR_TID3 (UL(1) << 18)
40#define HCR_TID2 (UL(1) << 17)
41#define HCR_TID1 (UL(1) << 16)
42#define HCR_TID0 (UL(1) << 15)
43#define HCR_TWE (UL(1) << 14)
44#define HCR_TWI (UL(1) << 13)
45#define HCR_DC (UL(1) << 12)
46#define HCR_BSU (3 << 10)
47#define HCR_BSU_IS (UL(1) << 10)
48#define HCR_FB (UL(1) << 9)
Marc Zyngier7b171452016-09-06 14:01:59 +010049#define HCR_VSE (UL(1) << 8)
Marc Zyngier0369f6a2012-12-10 10:46:47 +000050#define HCR_VI (UL(1) << 7)
51#define HCR_VF (UL(1) << 6)
52#define HCR_AMO (UL(1) << 5)
53#define HCR_IMO (UL(1) << 4)
54#define HCR_FMO (UL(1) << 3)
55#define HCR_PTW (UL(1) << 2)
56#define HCR_SWIO (UL(1) << 1)
57#define HCR_VM (UL(1) << 0)
58
59/*
60 * The bits we set in HCR:
Mark Rutlandcc33c4e2018-02-13 13:39:23 +000061 * TLOR: Trap LORegion register accesses
Adam Buchbinderef769e32016-02-24 09:52:41 -080062 * RW: 64bit by default, can be overridden for 32bit VMs
Marc Zyngier0369f6a2012-12-10 10:46:47 +000063 * TAC: Trap ACTLR
64 * TSC: Trap SMC
65 * TSW: Trap cache operations by set/way
Marc Zyngierd241aac2013-08-02 11:41:13 +010066 * TWE: Trap WFE
Marc Zyngier0369f6a2012-12-10 10:46:47 +000067 * TWI: Trap WFI
68 * TIDCP: Trap L2CTLR/L2ECTLR
69 * BSU_IS: Upgrade barriers to the inner shareable domain
Xiaoming Niad14c192020-08-28 11:18:22 +080070 * FB: Force broadcast of all maintenance operations
Marc Zyngier0369f6a2012-12-10 10:46:47 +000071 * AMO: Override CPSR.A and enable signaling with VA
72 * IMO: Override CPSR.I and enable signaling with VI
73 * FMO: Override CPSR.F and enable signaling with VF
74 * SWIO: Turn set/way invalidates into set/way clean+invalidate
James Morse71a7f8c2020-08-21 15:07:07 +010075 * PTW: Take a stage2 fault if a stage1 walk steps in device memory
Marc Zyngier0369f6a2012-12-10 10:46:47 +000076 */
Marc Zyngierd241aac2013-08-02 11:41:13 +010077#define HCR_GUEST_FLAGS (HCR_TSC | HCR_TSW | HCR_TWE | HCR_TWI | HCR_VM | \
Christoffer Dall5c401302019-10-28 14:05:41 +010078 HCR_BSU_IS | HCR_FB | HCR_TAC | \
Shih-Wei Li35a84de2017-08-03 11:45:21 +020079 HCR_AMO | HCR_SWIO | HCR_TIDCP | HCR_RW | HCR_TLOR | \
James Morse71a7f8c2020-08-21 15:07:07 +010080 HCR_FMO | HCR_IMO | HCR_PTW )
Marc Zyngier7b171452016-09-06 14:01:59 +010081#define HCR_VIRT_EXCP_MASK (HCR_VSE | HCR_VI | HCR_VF)
Vincenzo Frascino3b714d22019-09-06 10:58:01 +010082#define HCR_HOST_NVHE_FLAGS (HCR_RW | HCR_API | HCR_APK | HCR_ATA)
Marc Zyngier68908bf2015-01-29 15:47:55 +000083#define HCR_HOST_VHE_FLAGS (HCR_RW | HCR_TGE | HCR_E2H)
Marc Zyngier0369f6a2012-12-10 10:46:47 +000084
Marc Zyngier0369f6a2012-12-10 10:46:47 +000085/* TCR_EL2 Registers bits */
Suzuki K Poulosea563f752016-04-04 11:43:15 +010086#define TCR_EL2_RES1 ((1 << 31) | (1 << 23))
87#define TCR_EL2_TBI (1 << 20)
88#define TCR_EL2_PS_SHIFT 16
89#define TCR_EL2_PS_MASK (7 << TCR_EL2_PS_SHIFT)
90#define TCR_EL2_PS_40B (2 << TCR_EL2_PS_SHIFT)
91#define TCR_EL2_TG0_MASK TCR_TG0_MASK
92#define TCR_EL2_SH0_MASK TCR_SH0_MASK
93#define TCR_EL2_ORGN0_MASK TCR_ORGN0_MASK
94#define TCR_EL2_IRGN0_MASK TCR_IRGN0_MASK
95#define TCR_EL2_T0SZ_MASK 0x3f
96#define TCR_EL2_MASK (TCR_EL2_TG0_MASK | TCR_EL2_SH0_MASK | \
97 TCR_EL2_ORGN0_MASK | TCR_EL2_IRGN0_MASK | TCR_EL2_T0SZ_MASK)
Marc Zyngier0369f6a2012-12-10 10:46:47 +000098
Marc Zyngier0369f6a2012-12-10 10:46:47 +000099/* VTCR_EL2 Registers bits */
Will Deacondf655b72018-12-13 16:06:14 +0000100#define VTCR_EL2_RES1 (1U << 31)
Catalin Marinas06485052016-04-13 17:57:37 +0100101#define VTCR_EL2_HD (1 << 22)
102#define VTCR_EL2_HA (1 << 21)
Suzuki K Pouloseb2df44f2018-09-26 17:32:41 +0100103#define VTCR_EL2_PS_SHIFT TCR_EL2_PS_SHIFT
Suzuki K Poulosea563f752016-04-04 11:43:15 +0100104#define VTCR_EL2_PS_MASK TCR_EL2_PS_MASK
105#define VTCR_EL2_TG0_MASK TCR_TG0_MASK
106#define VTCR_EL2_TG0_4K TCR_TG0_4K
Suzuki K Poulose02e0b762016-03-17 14:29:24 +0000107#define VTCR_EL2_TG0_16K TCR_TG0_16K
Suzuki K Poulosea563f752016-04-04 11:43:15 +0100108#define VTCR_EL2_TG0_64K TCR_TG0_64K
109#define VTCR_EL2_SH0_MASK TCR_SH0_MASK
110#define VTCR_EL2_SH0_INNER TCR_SH0_INNER
111#define VTCR_EL2_ORGN0_MASK TCR_ORGN0_MASK
112#define VTCR_EL2_ORGN0_WBWA TCR_ORGN0_WBWA
113#define VTCR_EL2_IRGN0_MASK TCR_IRGN0_MASK
114#define VTCR_EL2_IRGN0_WBWA TCR_IRGN0_WBWA
115#define VTCR_EL2_SL0_SHIFT 6
116#define VTCR_EL2_SL0_MASK (3 << VTCR_EL2_SL0_SHIFT)
Marc Zyngier0369f6a2012-12-10 10:46:47 +0000117#define VTCR_EL2_T0SZ_MASK 0x3f
Suzuki K Poulosecb678d62016-03-30 14:33:59 +0100118#define VTCR_EL2_VS_SHIFT 19
119#define VTCR_EL2_VS_8BIT (0 << VTCR_EL2_VS_SHIFT)
120#define VTCR_EL2_VS_16BIT (1 << VTCR_EL2_VS_SHIFT)
Marc Zyngier0369f6a2012-12-10 10:46:47 +0000121
Suzuki K Pouloseb2df44f2018-09-26 17:32:41 +0100122#define VTCR_EL2_T0SZ(x) TCR_T0SZ(x)
123
Joel Schoppdbff1242014-07-09 11:17:04 -0500124/*
125 * We configure the Stage-2 page tables to always restrict the IPA space to be
126 * 40 bits wide (T0SZ = 24). Systems with a PARange smaller than 40 bits are
127 * not known to exist and will break with this configuration.
128 *
Marc Zyngierbca607e2018-10-01 13:40:36 +0100129 * The VTCR_EL2 is configured per VM and is initialised in kvm_arm_setup_stage2().
Marc Zyngier84ed7412015-03-10 19:07:01 +0000130 *
Joel Schoppdbff1242014-07-09 11:17:04 -0500131 * Note that when using 4K pages, we concatenate two first level page tables
Suzuki K Poulose02e0b762016-03-17 14:29:24 +0000132 * together. With 16K pages, we concatenate 16 first level page tables.
Joel Schoppdbff1242014-07-09 11:17:04 -0500133 *
Joel Schoppdbff1242014-07-09 11:17:04 -0500134 */
Suzuki K Pouloseacd05012016-04-04 11:53:52 +0100135
Suzuki K Pouloseacd05012016-04-04 11:53:52 +0100136#define VTCR_EL2_COMMON_BITS (VTCR_EL2_SH0_INNER | VTCR_EL2_ORGN0_WBWA | \
137 VTCR_EL2_IRGN0_WBWA | VTCR_EL2_RES1)
138
Suzuki K Poulose7e813042018-09-26 17:32:48 +0100139/*
140 * VTCR_EL2:SL0 indicates the entry level for Stage2 translation.
141 * Interestingly, it depends on the page size.
142 * See D.10.2.121, VTCR_EL2, in ARM DDI 0487C.a
143 *
144 * -----------------------------------------
145 * | Entry level | 4K | 16K/64K |
146 * ------------------------------------------
147 * | Level: 0 | 2 | - |
148 * ------------------------------------------
149 * | Level: 1 | 1 | 2 |
150 * ------------------------------------------
151 * | Level: 2 | 0 | 1 |
152 * ------------------------------------------
153 * | Level: 3 | - | 0 |
154 * ------------------------------------------
155 *
156 * The table roughly translates to :
157 *
158 * SL0(PAGE_SIZE, Entry_level) = TGRAN_SL0_BASE - Entry_Level
159 *
160 * Where TGRAN_SL0_BASE is a magic number depending on the page size:
161 * TGRAN_SL0_BASE(4K) = 2
162 * TGRAN_SL0_BASE(16K) = 3
163 * TGRAN_SL0_BASE(64K) = 3
164 * provided we take care of ruling out the unsupported cases and
165 * Entry_Level = 4 - Number_of_levels.
166 *
167 */
Marc Zyngier0369f6a2012-12-10 10:46:47 +0000168#ifdef CONFIG_ARM64_64K_PAGES
Suzuki K Poulose7e813042018-09-26 17:32:48 +0100169
170#define VTCR_EL2_TGRAN VTCR_EL2_TG0_64K
171#define VTCR_EL2_TGRAN_SL0_BASE 3UL
172
Suzuki K Poulose02e0b762016-03-17 14:29:24 +0000173#elif defined(CONFIG_ARM64_16K_PAGES)
Suzuki K Poulose7e813042018-09-26 17:32:48 +0100174
175#define VTCR_EL2_TGRAN VTCR_EL2_TG0_16K
176#define VTCR_EL2_TGRAN_SL0_BASE 3UL
177
Suzuki K Poulose02e0b762016-03-17 14:29:24 +0000178#else /* 4K */
Suzuki K Poulose7e813042018-09-26 17:32:48 +0100179
180#define VTCR_EL2_TGRAN VTCR_EL2_TG0_4K
181#define VTCR_EL2_TGRAN_SL0_BASE 2UL
182
Marc Zyngier0369f6a2012-12-10 10:46:47 +0000183#endif
184
Suzuki K Poulose7e813042018-09-26 17:32:48 +0100185#define VTCR_EL2_LVLS_TO_SL0(levels) \
186 ((VTCR_EL2_TGRAN_SL0_BASE - (4 - (levels))) << VTCR_EL2_SL0_SHIFT)
187#define VTCR_EL2_SL0_TO_LVLS(sl0) \
188 ((sl0) + 4 - VTCR_EL2_TGRAN_SL0_BASE)
189#define VTCR_EL2_LVLS(vtcr) \
190 VTCR_EL2_SL0_TO_LVLS(((vtcr) & VTCR_EL2_SL0_MASK) >> VTCR_EL2_SL0_SHIFT)
191
192#define VTCR_EL2_FLAGS (VTCR_EL2_COMMON_BITS | VTCR_EL2_TGRAN)
Suzuki K Poulose13ac4bb2018-09-26 17:32:49 +0100193#define VTCR_EL2_IPA(vtcr) (64 - ((vtcr) & VTCR_EL2_T0SZ_MASK))
194
Suzuki K Poulose59558332018-09-26 17:32:47 +0100195/*
196 * ARM VMSAv8-64 defines an algorithm for finding the translation table
197 * descriptors in section D4.2.8 in ARM DDI 0487C.a.
198 *
199 * The algorithm defines the expectations on the translation table
200 * addresses for each level, based on PAGE_SIZE, entry level
201 * and the translation table size (T0SZ). The variable "x" in the
202 * algorithm determines the alignment of a table base address at a given
203 * level and thus determines the alignment of VTTBR:BADDR for stage2
204 * page table entry level.
205 * Since the number of bits resolved at the entry level could vary
206 * depending on the T0SZ, the value of "x" is defined based on a
207 * Magic constant for a given PAGE_SIZE and Entry Level. The
208 * intermediate levels must be always aligned to the PAGE_SIZE (i.e,
209 * x = PAGE_SHIFT).
210 *
211 * The value of "x" for entry level is calculated as :
212 * x = Magic_N - T0SZ
213 *
214 * where Magic_N is an integer depending on the page size and the entry
215 * level of the page table as below:
216 *
217 * --------------------------------------------
218 * | Entry level | 4K 16K 64K |
219 * --------------------------------------------
220 * | Level: 0 (4 levels) | 28 | - | - |
221 * --------------------------------------------
222 * | Level: 1 (3 levels) | 37 | 31 | 25 |
223 * --------------------------------------------
224 * | Level: 2 (2 levels) | 46 | 42 | 38 |
225 * --------------------------------------------
226 * | Level: 3 (1 level) | - | 53 | 51 |
227 * --------------------------------------------
228 *
229 * We have a magic formula for the Magic_N below:
230 *
231 * Magic_N(PAGE_SIZE, Level) = 64 - ((PAGE_SHIFT - 3) * Number_of_levels)
232 *
233 * where Number_of_levels = (4 - Level). We are only interested in the
234 * value for Entry_Level for the stage2 page table.
235 *
236 * So, given that T0SZ = (64 - IPA_SHIFT), we can compute 'x' as follows:
237 *
238 * x = (64 - ((PAGE_SHIFT - 3) * Number_of_levels)) - (64 - IPA_SHIFT)
239 * = IPA_SHIFT - ((PAGE_SHIFT - 3) * Number of levels)
240 *
241 * Here is one way to explain the Magic Formula:
242 *
243 * x = log2(Size_of_Entry_Level_Table)
244 *
245 * Since, we can resolve (PAGE_SHIFT - 3) bits at each level, and another
246 * PAGE_SHIFT bits in the PTE, we have :
247 *
248 * Bits_Entry_level = IPA_SHIFT - ((PAGE_SHIFT - 3) * (n - 1) + PAGE_SHIFT)
249 * = IPA_SHIFT - (PAGE_SHIFT - 3) * n - 3
250 * where n = number of levels, and since each pointer is 8bytes, we have:
251 *
252 * x = Bits_Entry_Level + 3
253 * = IPA_SHIFT - (PAGE_SHIFT - 3) * n
254 *
255 * The only constraint here is that, we have to find the number of page table
256 * levels for a given IPA size (which we do, see stage2_pt_levels())
257 */
258#define ARM64_VTTBR_X(ipa, levels) ((ipa) - ((levels) * (PAGE_SHIFT - 3)))
Suzuki K Pouloseacd05012016-04-04 11:53:52 +0100259
Vladimir Murzinab510022018-07-31 14:08:57 +0100260#define VTTBR_CNP_BIT (UL(1))
Geoff Levand286fb1c2014-10-31 23:06:47 +0000261#define VTTBR_VMID_SHIFT (UL(48))
Vladimir Murzin20475f72015-11-16 11:28:18 +0000262#define VTTBR_VMID_MASK(size) (_AT(u64, (1 << size) - 1) << VTTBR_VMID_SHIFT)
Marc Zyngier0369f6a2012-12-10 10:46:47 +0000263
264/* Hyp System Trap Register */
Marc Zyngier0369f6a2012-12-10 10:46:47 +0000265#define HSTR_EL2_T(x) (1 << x)
266
Andrea Gelminiedce2292016-05-21 13:53:14 +0200267/* Hyp Coprocessor Trap Register Shifts */
Mario Smarduch33c76a02015-07-16 22:29:37 +0100268#define CPTR_EL2_TFP_SHIFT 10
269
Marc Zyngier0369f6a2012-12-10 10:46:47 +0000270/* Hyp Coprocessor Trap Register */
271#define CPTR_EL2_TCPAC (1 << 31)
Ionela Voinescu4fcdf102020-03-05 09:06:23 +0000272#define CPTR_EL2_TAM (1 << 30)
Marc Zyngier0369f6a2012-12-10 10:46:47 +0000273#define CPTR_EL2_TTA (1 << 20)
Mario Smarduch33c76a02015-07-16 22:29:37 +0100274#define CPTR_EL2_TFP (1 << CPTR_EL2_TFP_SHIFT)
Dave Martin67236562017-10-31 15:51:00 +0000275#define CPTR_EL2_TZ (1 << 8)
Dave Martin17eed272017-10-31 15:51:16 +0000276#define CPTR_EL2_RES1 0x000032ff /* known RES1 bits in CPTR_EL2 */
277#define CPTR_EL2_DEFAULT CPTR_EL2_RES1
Marc Zyngier0369f6a2012-12-10 10:46:47 +0000278
279/* Hyp Debug Configuration Register bits */
Suzuki K Poulose5b504682021-03-23 12:06:30 +0000280#define MDCR_EL2_TTRF (1 << 19)
Will Deaconf85279b2016-09-22 11:35:43 +0100281#define MDCR_EL2_TPMS (1 << 14)
282#define MDCR_EL2_E2PB_MASK (UL(0x3))
283#define MDCR_EL2_E2PB_SHIFT (UL(12))
Marc Zyngier0369f6a2012-12-10 10:46:47 +0000284#define MDCR_EL2_TDRA (1 << 11)
285#define MDCR_EL2_TDOSA (1 << 10)
286#define MDCR_EL2_TDA (1 << 9)
287#define MDCR_EL2_TDE (1 << 8)
288#define MDCR_EL2_HPME (1 << 7)
289#define MDCR_EL2_TPM (1 << 6)
290#define MDCR_EL2_TPMCR (1 << 5)
291#define MDCR_EL2_HPMN_MASK (0x1F)
292
Mark Rutland6e530312014-11-24 14:05:44 +0000293/* For compatibility with fault code shared with 32-bit */
294#define FSC_FAULT ESR_ELx_FSC_FAULT
Marc Zyngier35307b92015-03-12 18:16:51 +0000295#define FSC_ACCESS ESR_ELx_FSC_ACCESS
Mark Rutland6e530312014-11-24 14:05:44 +0000296#define FSC_PERM ESR_ELx_FSC_PERM
Tyler Baicar621f48e2017-06-21 12:17:14 -0600297#define FSC_SEA ESR_ELx_FSC_EXTABT
298#define FSC_SEA_TTW0 (0x14)
299#define FSC_SEA_TTW1 (0x15)
300#define FSC_SEA_TTW2 (0x16)
301#define FSC_SEA_TTW3 (0x17)
302#define FSC_SECC (0x18)
303#define FSC_SECC_TTW0 (0x1c)
304#define FSC_SECC_TTW1 (0x1d)
305#define FSC_SECC_TTW2 (0x1e)
306#define FSC_SECC_TTW3 (0x1f)
Marc Zyngier0369f6a2012-12-10 10:46:47 +0000307
308/* Hyp Prefetch Fault Address Register (HPFAR/HDFAR) */
Geoff Levand286fb1c2014-10-31 23:06:47 +0000309#define HPFAR_MASK (~UL(0xf))
Suzuki K Poulosebc1d7de2018-09-26 17:32:51 +0100310/*
311 * We have
312 * PAR [PA_Shift - 1 : 12] = PA [PA_Shift - 1 : 12]
313 * HPFAR [PA_Shift - 9 : 4] = FIPA [PA_Shift - 1 : 12]
314 */
315#define PAR_TO_HPFAR(par) \
316 (((par) & GENMASK_ULL(PHYS_MASK_SHIFT - 1, 12)) >> 8)
Marc Zyngier0369f6a2012-12-10 10:46:47 +0000317
Christoffer Dallb5905dc2015-08-30 15:55:22 +0200318#define ECN(x) { ESR_ELx_EC_##x, #x }
319
320#define kvm_arm_exception_class \
321 ECN(UNKNOWN), ECN(WFx), ECN(CP15_32), ECN(CP15_64), ECN(CP14_MR), \
Zenghui Yu6701c612019-07-13 04:40:54 +0000322 ECN(CP14_LS), ECN(FP_ASIMD), ECN(CP10_ID), ECN(PAC), ECN(CP14_64), \
323 ECN(SVC64), ECN(HVC64), ECN(SMC64), ECN(SYS64), ECN(SVE), \
324 ECN(IMP_DEF), ECN(IABT_LOW), ECN(IABT_CUR), \
325 ECN(PC_ALIGN), ECN(DABT_LOW), ECN(DABT_CUR), \
Christoffer Dallb5905dc2015-08-30 15:55:22 +0200326 ECN(SP_ALIGN), ECN(FP_EXC32), ECN(FP_EXC64), ECN(SERROR), \
327 ECN(BREAKPT_LOW), ECN(BREAKPT_CUR), ECN(SOFTSTP_LOW), \
328 ECN(SOFTSTP_CUR), ECN(WATCHPT_LOW), ECN(WATCHPT_CUR), \
329 ECN(BKPT32), ECN(VECTOR32), ECN(BRK64)
330
Marc Zyngier32876222015-10-28 14:15:45 +0000331#define CPACR_EL1_FPEN (3 << 20)
332#define CPACR_EL1_TTA (1 << 28)
Dave Martin17eed272017-10-31 15:51:16 +0000333#define CPACR_EL1_DEFAULT (CPACR_EL1_FPEN | CPACR_EL1_ZEN_EL1EN)
Marc Zyngier32876222015-10-28 14:15:45 +0000334
Marc Zyngier0369f6a2012-12-10 10:46:47 +0000335#endif /* __ARM64_KVM_ARM_H__ */