Paolo Bonzini | 5a9624a | 2020-10-16 10:29:37 -0400 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Kernel-based Virtual Machine driver for Linux |
| 4 | * |
| 5 | * Macros and functions to access KVM PTEs (also known as SPTEs) |
| 6 | * |
| 7 | * Copyright (C) 2006 Qumranet, Inc. |
| 8 | * Copyright 2020 Red Hat, Inc. and/or its affiliates. |
| 9 | */ |
| 10 | |
| 11 | |
| 12 | #include <linux/kvm_host.h> |
| 13 | #include "mmu.h" |
| 14 | #include "mmu_internal.h" |
| 15 | #include "x86.h" |
| 16 | #include "spte.h" |
| 17 | |
| 18 | #include <asm/e820/api.h> |
| 19 | |
| 20 | u64 __read_mostly shadow_nx_mask; |
| 21 | u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ |
| 22 | u64 __read_mostly shadow_user_mask; |
| 23 | u64 __read_mostly shadow_accessed_mask; |
| 24 | u64 __read_mostly shadow_dirty_mask; |
| 25 | u64 __read_mostly shadow_mmio_value; |
| 26 | u64 __read_mostly shadow_mmio_access_mask; |
| 27 | u64 __read_mostly shadow_present_mask; |
| 28 | u64 __read_mostly shadow_me_mask; |
| 29 | u64 __read_mostly shadow_acc_track_mask; |
| 30 | |
| 31 | u64 __read_mostly shadow_nonpresent_or_rsvd_mask; |
| 32 | u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; |
| 33 | |
| 34 | u8 __read_mostly shadow_phys_bits; |
| 35 | |
| 36 | static u64 generation_mmio_spte_mask(u64 gen) |
| 37 | { |
| 38 | u64 mask; |
| 39 | |
| 40 | WARN_ON(gen & ~MMIO_SPTE_GEN_MASK); |
| 41 | BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK); |
| 42 | |
| 43 | mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK; |
| 44 | mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK; |
| 45 | return mask; |
| 46 | } |
| 47 | |
| 48 | u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access) |
| 49 | { |
| 50 | u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK; |
| 51 | u64 mask = generation_mmio_spte_mask(gen); |
| 52 | u64 gpa = gfn << PAGE_SHIFT; |
| 53 | |
| 54 | access &= shadow_mmio_access_mask; |
| 55 | mask |= shadow_mmio_value | access; |
| 56 | mask |= gpa | shadow_nonpresent_or_rsvd_mask; |
| 57 | mask |= (gpa & shadow_nonpresent_or_rsvd_mask) |
| 58 | << shadow_nonpresent_or_rsvd_mask_len; |
| 59 | |
| 60 | return mask; |
| 61 | } |
| 62 | |
| 63 | static bool kvm_is_mmio_pfn(kvm_pfn_t pfn) |
| 64 | { |
| 65 | if (pfn_valid(pfn)) |
| 66 | return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) && |
| 67 | /* |
| 68 | * Some reserved pages, such as those from NVDIMM |
| 69 | * DAX devices, are not for MMIO, and can be mapped |
| 70 | * with cached memory type for better performance. |
| 71 | * However, the above check misconceives those pages |
| 72 | * as MMIO, and results in KVM mapping them with UC |
| 73 | * memory type, which would hurt the performance. |
| 74 | * Therefore, we check the host memory type in addition |
| 75 | * and only treat UC/UC-/WC pages as MMIO. |
| 76 | */ |
| 77 | (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn)); |
| 78 | |
| 79 | return !e820__mapped_raw_any(pfn_to_hpa(pfn), |
| 80 | pfn_to_hpa(pfn + 1) - 1, |
| 81 | E820_TYPE_RAM); |
| 82 | } |
| 83 | |
| 84 | int make_spte(struct kvm_vcpu *vcpu, unsigned int pte_access, int level, |
| 85 | gfn_t gfn, kvm_pfn_t pfn, u64 old_spte, bool speculative, |
| 86 | bool can_unsync, bool host_writable, bool ad_disabled, |
| 87 | u64 *new_spte) |
| 88 | { |
| 89 | u64 spte = 0; |
| 90 | int ret = 0; |
| 91 | |
| 92 | if (ad_disabled) |
| 93 | spte |= SPTE_AD_DISABLED_MASK; |
| 94 | else if (kvm_vcpu_ad_need_write_protect(vcpu)) |
| 95 | spte |= SPTE_AD_WRPROT_ONLY_MASK; |
| 96 | |
| 97 | /* |
| 98 | * For the EPT case, shadow_present_mask is 0 if hardware |
| 99 | * supports exec-only page table entries. In that case, |
| 100 | * ACC_USER_MASK and shadow_user_mask are used to represent |
| 101 | * read access. See FNAME(gpte_access) in paging_tmpl.h. |
| 102 | */ |
| 103 | spte |= shadow_present_mask; |
| 104 | if (!speculative) |
| 105 | spte |= spte_shadow_accessed_mask(spte); |
| 106 | |
| 107 | if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) && |
| 108 | is_nx_huge_page_enabled()) { |
| 109 | pte_access &= ~ACC_EXEC_MASK; |
| 110 | } |
| 111 | |
| 112 | if (pte_access & ACC_EXEC_MASK) |
| 113 | spte |= shadow_x_mask; |
| 114 | else |
| 115 | spte |= shadow_nx_mask; |
| 116 | |
| 117 | if (pte_access & ACC_USER_MASK) |
| 118 | spte |= shadow_user_mask; |
| 119 | |
| 120 | if (level > PG_LEVEL_4K) |
| 121 | spte |= PT_PAGE_SIZE_MASK; |
| 122 | if (tdp_enabled) |
| 123 | spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn, |
| 124 | kvm_is_mmio_pfn(pfn)); |
| 125 | |
| 126 | if (host_writable) |
| 127 | spte |= SPTE_HOST_WRITEABLE; |
| 128 | else |
| 129 | pte_access &= ~ACC_WRITE_MASK; |
| 130 | |
| 131 | if (!kvm_is_mmio_pfn(pfn)) |
| 132 | spte |= shadow_me_mask; |
| 133 | |
| 134 | spte |= (u64)pfn << PAGE_SHIFT; |
| 135 | |
| 136 | if (pte_access & ACC_WRITE_MASK) { |
| 137 | spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE; |
| 138 | |
| 139 | /* |
| 140 | * Optimization: for pte sync, if spte was writable the hash |
| 141 | * lookup is unnecessary (and expensive). Write protection |
| 142 | * is responsibility of mmu_get_page / kvm_sync_page. |
| 143 | * Same reasoning can be applied to dirty page accounting. |
| 144 | */ |
| 145 | if (!can_unsync && is_writable_pte(old_spte)) |
| 146 | goto out; |
| 147 | |
| 148 | if (mmu_need_write_protect(vcpu, gfn, can_unsync)) { |
| 149 | pgprintk("%s: found shadow page for %llx, marking ro\n", |
| 150 | __func__, gfn); |
| 151 | ret |= SET_SPTE_WRITE_PROTECTED_PT; |
| 152 | pte_access &= ~ACC_WRITE_MASK; |
| 153 | spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE); |
| 154 | } |
| 155 | } |
| 156 | |
| 157 | if (pte_access & ACC_WRITE_MASK) |
| 158 | spte |= spte_shadow_dirty_mask(spte); |
| 159 | |
| 160 | if (speculative) |
| 161 | spte = mark_spte_for_access_track(spte); |
| 162 | |
| 163 | out: |
| 164 | *new_spte = spte; |
| 165 | return ret; |
| 166 | } |
| 167 | |
| 168 | u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled) |
| 169 | { |
| 170 | u64 spte; |
| 171 | |
| 172 | spte = __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK | |
| 173 | shadow_user_mask | shadow_x_mask | shadow_me_mask; |
| 174 | |
| 175 | if (ad_disabled) |
| 176 | spte |= SPTE_AD_DISABLED_MASK; |
| 177 | else |
| 178 | spte |= shadow_accessed_mask; |
| 179 | |
| 180 | return spte; |
| 181 | } |
| 182 | |
| 183 | u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn) |
| 184 | { |
| 185 | u64 new_spte; |
| 186 | |
| 187 | new_spte = old_spte & ~PT64_BASE_ADDR_MASK; |
| 188 | new_spte |= (u64)new_pfn << PAGE_SHIFT; |
| 189 | |
| 190 | new_spte &= ~PT_WRITABLE_MASK; |
| 191 | new_spte &= ~SPTE_HOST_WRITEABLE; |
| 192 | |
| 193 | new_spte = mark_spte_for_access_track(new_spte); |
| 194 | |
| 195 | return new_spte; |
| 196 | } |
| 197 | |
| 198 | static u8 kvm_get_shadow_phys_bits(void) |
| 199 | { |
| 200 | /* |
| 201 | * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected |
| 202 | * in CPU detection code, but the processor treats those reduced bits as |
| 203 | * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at |
| 204 | * the physical address bits reported by CPUID. |
| 205 | */ |
| 206 | if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008)) |
| 207 | return cpuid_eax(0x80000008) & 0xff; |
| 208 | |
| 209 | /* |
| 210 | * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with |
| 211 | * custom CPUID. Proceed with whatever the kernel found since these features |
| 212 | * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008). |
| 213 | */ |
| 214 | return boot_cpu_data.x86_phys_bits; |
| 215 | } |
| 216 | |
| 217 | u64 mark_spte_for_access_track(u64 spte) |
| 218 | { |
| 219 | if (spte_ad_enabled(spte)) |
| 220 | return spte & ~shadow_accessed_mask; |
| 221 | |
| 222 | if (is_access_track_spte(spte)) |
| 223 | return spte; |
| 224 | |
| 225 | /* |
| 226 | * Making an Access Tracking PTE will result in removal of write access |
| 227 | * from the PTE. So, verify that we will be able to restore the write |
| 228 | * access in the fast page fault path later on. |
| 229 | */ |
| 230 | WARN_ONCE((spte & PT_WRITABLE_MASK) && |
| 231 | !spte_can_locklessly_be_made_writable(spte), |
| 232 | "kvm: Writable SPTE is not locklessly dirty-trackable\n"); |
| 233 | |
| 234 | WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask << |
| 235 | shadow_acc_track_saved_bits_shift), |
| 236 | "kvm: Access Tracking saved bit locations are not zero\n"); |
| 237 | |
| 238 | spte |= (spte & shadow_acc_track_saved_bits_mask) << |
| 239 | shadow_acc_track_saved_bits_shift; |
| 240 | spte &= ~shadow_acc_track_mask; |
| 241 | |
| 242 | return spte; |
| 243 | } |
| 244 | |
| 245 | void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask) |
| 246 | { |
| 247 | BUG_ON((u64)(unsigned)access_mask != access_mask); |
| 248 | WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << shadow_nonpresent_or_rsvd_mask_len)); |
| 249 | WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask); |
| 250 | shadow_mmio_value = mmio_value | SPTE_MMIO_MASK; |
| 251 | shadow_mmio_access_mask = access_mask; |
| 252 | } |
| 253 | EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); |
| 254 | |
| 255 | /* |
| 256 | * Sets the shadow PTE masks used by the MMU. |
| 257 | * |
| 258 | * Assumptions: |
| 259 | * - Setting either @accessed_mask or @dirty_mask requires setting both |
| 260 | * - At least one of @accessed_mask or @acc_track_mask must be set |
| 261 | */ |
| 262 | void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask, |
| 263 | u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask, |
| 264 | u64 acc_track_mask, u64 me_mask) |
| 265 | { |
| 266 | BUG_ON(!dirty_mask != !accessed_mask); |
| 267 | BUG_ON(!accessed_mask && !acc_track_mask); |
| 268 | BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK); |
| 269 | |
| 270 | shadow_user_mask = user_mask; |
| 271 | shadow_accessed_mask = accessed_mask; |
| 272 | shadow_dirty_mask = dirty_mask; |
| 273 | shadow_nx_mask = nx_mask; |
| 274 | shadow_x_mask = x_mask; |
| 275 | shadow_present_mask = p_mask; |
| 276 | shadow_acc_track_mask = acc_track_mask; |
| 277 | shadow_me_mask = me_mask; |
| 278 | } |
| 279 | EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes); |
| 280 | |
| 281 | void kvm_mmu_reset_all_pte_masks(void) |
| 282 | { |
| 283 | u8 low_phys_bits; |
| 284 | |
| 285 | shadow_user_mask = 0; |
| 286 | shadow_accessed_mask = 0; |
| 287 | shadow_dirty_mask = 0; |
| 288 | shadow_nx_mask = 0; |
| 289 | shadow_x_mask = 0; |
| 290 | shadow_present_mask = 0; |
| 291 | shadow_acc_track_mask = 0; |
| 292 | |
| 293 | shadow_phys_bits = kvm_get_shadow_phys_bits(); |
| 294 | |
| 295 | /* |
| 296 | * If the CPU has 46 or less physical address bits, then set an |
| 297 | * appropriate mask to guard against L1TF attacks. Otherwise, it is |
| 298 | * assumed that the CPU is not vulnerable to L1TF. |
| 299 | * |
| 300 | * Some Intel CPUs address the L1 cache using more PA bits than are |
| 301 | * reported by CPUID. Use the PA width of the L1 cache when possible |
| 302 | * to achieve more effective mitigation, e.g. if system RAM overlaps |
| 303 | * the most significant bits of legal physical address space. |
| 304 | */ |
| 305 | shadow_nonpresent_or_rsvd_mask = 0; |
| 306 | low_phys_bits = boot_cpu_data.x86_phys_bits; |
| 307 | if (boot_cpu_has_bug(X86_BUG_L1TF) && |
| 308 | !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >= |
| 309 | 52 - shadow_nonpresent_or_rsvd_mask_len)) { |
| 310 | low_phys_bits = boot_cpu_data.x86_cache_bits |
| 311 | - shadow_nonpresent_or_rsvd_mask_len; |
| 312 | shadow_nonpresent_or_rsvd_mask = |
| 313 | rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1); |
| 314 | } |
| 315 | |
| 316 | shadow_nonpresent_or_rsvd_lower_gfn_mask = |
| 317 | GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT); |
| 318 | } |