blob: 4bc1858dc3032af4d8836eea617f2f10c7638b3c [file] [log] [blame]
Casey Leedomc6e0d912010-06-25 12:13:28 +00001/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#include <linux/skbuff.h>
37#include <linux/netdevice.h>
38#include <linux/etherdevice.h>
39#include <linux/if_vlan.h>
40#include <linux/ip.h>
41#include <net/ipv6.h>
42#include <net/tcp.h>
43#include <linux/dma-mapping.h>
44
45#include "t4vf_common.h"
46#include "t4vf_defs.h"
47
48#include "../cxgb4/t4_regs.h"
49#include "../cxgb4/t4fw_api.h"
50#include "../cxgb4/t4_msg.h"
51
52/*
53 * Decoded Adapter Parameters.
54 */
55static u32 FL_PG_ORDER; /* large page allocation size */
56static u32 STAT_LEN; /* length of status page at ring end */
57static u32 PKTSHIFT; /* padding between CPL and packet data */
58static u32 FL_ALIGN; /* response queue message alignment */
59
60/*
61 * Constants ...
62 */
63enum {
64 /*
65 * Egress Queue sizes, producer and consumer indices are all in units
66 * of Egress Context Units bytes. Note that as far as the hardware is
67 * concerned, the free list is an Egress Queue (the host produces free
68 * buffers which the hardware consumes) and free list entries are
69 * 64-bit PCI DMA addresses.
70 */
71 EQ_UNIT = SGE_EQ_IDXSIZE,
72 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
73 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
74
75 /*
76 * Max number of TX descriptors we clean up at a time. Should be
77 * modest as freeing skbs isn't cheap and it happens while holding
78 * locks. We just need to free packets faster than they arrive, we
79 * eventually catch up and keep the amortized cost reasonable.
80 */
81 MAX_TX_RECLAIM = 16,
82
83 /*
84 * Max number of Rx buffers we replenish at a time. Again keep this
85 * modest, allocating buffers isn't cheap either.
86 */
87 MAX_RX_REFILL = 16,
88
89 /*
90 * Period of the Rx queue check timer. This timer is infrequent as it
91 * has something to do only when the system experiences severe memory
92 * shortage.
93 */
94 RX_QCHECK_PERIOD = (HZ / 2),
95
96 /*
97 * Period of the TX queue check timer and the maximum number of TX
98 * descriptors to be reclaimed by the TX timer.
99 */
100 TX_QCHECK_PERIOD = (HZ / 2),
101 MAX_TIMER_TX_RECLAIM = 100,
102
103 /*
104 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic
105 * timer will attempt to refill it.
106 */
107 FL_STARVE_THRES = 4,
108
109 /*
110 * Suspend an Ethernet TX queue with fewer available descriptors than
111 * this. We always want to have room for a maximum sized packet:
112 * inline immediate data + MAX_SKB_FRAGS. This is the same as
113 * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS
114 * (see that function and its helpers for a description of the
115 * calculation).
116 */
117 ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1,
118 ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 +
119 ((ETHTXQ_MAX_FRAGS-1) & 1) +
120 2),
121 ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
122 sizeof(struct cpl_tx_pkt_lso_core) +
123 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
124 ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR,
125
126 ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT),
127
128 /*
129 * Max TX descriptor space we allow for an Ethernet packet to be
130 * inlined into a WR. This is limited by the maximum value which
131 * we can specify for immediate data in the firmware Ethernet TX
132 * Work Request.
133 */
134 MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_MASK,
135
136 /*
137 * Max size of a WR sent through a control TX queue.
138 */
139 MAX_CTRL_WR_LEN = 256,
140
141 /*
142 * Maximum amount of data which we'll ever need to inline into a
143 * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN).
144 */
145 MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN
146 ? MAX_IMM_TX_PKT_LEN
147 : MAX_CTRL_WR_LEN),
148
149 /*
150 * For incoming packets less than RX_COPY_THRES, we copy the data into
151 * an skb rather than referencing the data. We allocate enough
152 * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes
153 * of the data (header).
154 */
155 RX_COPY_THRES = 256,
156 RX_PULL_LEN = 128,
157};
158
159/*
160 * Can't define this in the above enum because PKTSHIFT isn't a constant in
161 * the VF Driver ...
162 */
163#define RX_PKT_PULL_LEN (RX_PULL_LEN + PKTSHIFT)
164
165/*
166 * Software state per TX descriptor.
167 */
168struct tx_sw_desc {
169 struct sk_buff *skb; /* socket buffer of TX data source */
170 struct ulptx_sgl *sgl; /* scatter/gather list in TX Queue */
171};
172
173/*
174 * Software state per RX Free List descriptor. We keep track of the allocated
175 * FL page, its size, and its PCI DMA address (if the page is mapped). The FL
176 * page size and its PCI DMA mapped state are stored in the low bits of the
177 * PCI DMA address as per below.
178 */
179struct rx_sw_desc {
180 struct page *page; /* Free List page buffer */
181 dma_addr_t dma_addr; /* PCI DMA address (if mapped) */
182 /* and flags (see below) */
183};
184
185/*
186 * The low bits of rx_sw_desc.dma_addr have special meaning. Note that the
187 * SGE also uses the low 4 bits to determine the size of the buffer. It uses
188 * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array.
189 * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4
190 * bits can only contain a 0 or a 1 to indicate which size buffer we're giving
191 * to the SGE. Thus, our software state of "is the buffer mapped for DMA" is
192 * maintained in an inverse sense so the hardware never sees that bit high.
193 */
194enum {
195 RX_LARGE_BUF = 1 << 0, /* buffer is SGE_FL_BUFFER_SIZE[1] */
196 RX_UNMAPPED_BUF = 1 << 1, /* buffer is not mapped */
197};
198
199/**
200 * get_buf_addr - return DMA buffer address of software descriptor
201 * @sdesc: pointer to the software buffer descriptor
202 *
203 * Return the DMA buffer address of a software descriptor (stripping out
204 * our low-order flag bits).
205 */
206static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc)
207{
208 return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
209}
210
211/**
212 * is_buf_mapped - is buffer mapped for DMA?
213 * @sdesc: pointer to the software buffer descriptor
214 *
215 * Determine whether the buffer associated with a software descriptor in
216 * mapped for DMA or not.
217 */
218static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc)
219{
220 return !(sdesc->dma_addr & RX_UNMAPPED_BUF);
221}
222
223/**
224 * need_skb_unmap - does the platform need unmapping of sk_buffs?
225 *
226 * Returns true if the platfrom needs sk_buff unmapping. The compiler
227 * optimizes away unecessary code if this returns true.
228 */
229static inline int need_skb_unmap(void)
230{
FUJITA Tomonori57b2eaf2010-07-07 23:52:37 +0000231#ifdef CONFIG_NEED_DMA_MAP_STATE
232 return 1;
233#else
234 return 0;
235#endif
Casey Leedomc6e0d912010-06-25 12:13:28 +0000236}
237
238/**
239 * txq_avail - return the number of available slots in a TX queue
240 * @tq: the TX queue
241 *
242 * Returns the number of available descriptors in a TX queue.
243 */
244static inline unsigned int txq_avail(const struct sge_txq *tq)
245{
246 return tq->size - 1 - tq->in_use;
247}
248
249/**
250 * fl_cap - return the capacity of a Free List
251 * @fl: the Free List
252 *
253 * Returns the capacity of a Free List. The capacity is less than the
254 * size because an Egress Queue Index Unit worth of descriptors needs to
255 * be left unpopulated, otherwise the Producer and Consumer indices PIDX
256 * and CIDX will match and the hardware will think the FL is empty.
257 */
258static inline unsigned int fl_cap(const struct sge_fl *fl)
259{
260 return fl->size - FL_PER_EQ_UNIT;
261}
262
263/**
264 * fl_starving - return whether a Free List is starving.
265 * @fl: the Free List
266 *
267 * Tests specified Free List to see whether the number of buffers
268 * available to the hardware has falled below our "starvation"
269 * threshhold.
270 */
271static inline bool fl_starving(const struct sge_fl *fl)
272{
273 return fl->avail - fl->pend_cred <= FL_STARVE_THRES;
274}
275
276/**
277 * map_skb - map an skb for DMA to the device
278 * @dev: the egress net device
279 * @skb: the packet to map
280 * @addr: a pointer to the base of the DMA mapping array
281 *
282 * Map an skb for DMA to the device and return an array of DMA addresses.
283 */
284static int map_skb(struct device *dev, const struct sk_buff *skb,
285 dma_addr_t *addr)
286{
287 const skb_frag_t *fp, *end;
288 const struct skb_shared_info *si;
289
290 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
291 if (dma_mapping_error(dev, *addr))
292 goto out_err;
293
294 si = skb_shinfo(skb);
295 end = &si->frags[si->nr_frags];
296 for (fp = si->frags; fp < end; fp++) {
297 *++addr = dma_map_page(dev, fp->page, fp->page_offset, fp->size,
298 DMA_TO_DEVICE);
299 if (dma_mapping_error(dev, *addr))
300 goto unwind;
301 }
302 return 0;
303
304unwind:
305 while (fp-- > si->frags)
306 dma_unmap_page(dev, *--addr, fp->size, DMA_TO_DEVICE);
307 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
308
309out_err:
310 return -ENOMEM;
311}
312
313static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
314 const struct ulptx_sgl *sgl, const struct sge_txq *tq)
315{
316 const struct ulptx_sge_pair *p;
317 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
318
319 if (likely(skb_headlen(skb)))
320 dma_unmap_single(dev, be64_to_cpu(sgl->addr0),
321 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
322 else {
323 dma_unmap_page(dev, be64_to_cpu(sgl->addr0),
324 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
325 nfrags--;
326 }
327
328 /*
329 * the complexity below is because of the possibility of a wrap-around
330 * in the middle of an SGL
331 */
332 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
333 if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) {
334unmap:
335 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
336 be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
337 dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
338 be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
339 p++;
340 } else if ((u8 *)p == (u8 *)tq->stat) {
341 p = (const struct ulptx_sge_pair *)tq->desc;
342 goto unmap;
343 } else if ((u8 *)p + 8 == (u8 *)tq->stat) {
344 const __be64 *addr = (const __be64 *)tq->desc;
345
346 dma_unmap_page(dev, be64_to_cpu(addr[0]),
347 be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
348 dma_unmap_page(dev, be64_to_cpu(addr[1]),
349 be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
350 p = (const struct ulptx_sge_pair *)&addr[2];
351 } else {
352 const __be64 *addr = (const __be64 *)tq->desc;
353
354 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
355 be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
356 dma_unmap_page(dev, be64_to_cpu(addr[0]),
357 be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
358 p = (const struct ulptx_sge_pair *)&addr[1];
359 }
360 }
361 if (nfrags) {
362 __be64 addr;
363
364 if ((u8 *)p == (u8 *)tq->stat)
365 p = (const struct ulptx_sge_pair *)tq->desc;
366 addr = ((u8 *)p + 16 <= (u8 *)tq->stat
367 ? p->addr[0]
368 : *(const __be64 *)tq->desc);
369 dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]),
370 DMA_TO_DEVICE);
371 }
372}
373
374/**
375 * free_tx_desc - reclaims TX descriptors and their buffers
376 * @adapter: the adapter
377 * @tq: the TX queue to reclaim descriptors from
378 * @n: the number of descriptors to reclaim
379 * @unmap: whether the buffers should be unmapped for DMA
380 *
381 * Reclaims TX descriptors from an SGE TX queue and frees the associated
382 * TX buffers. Called with the TX queue lock held.
383 */
384static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq,
385 unsigned int n, bool unmap)
386{
387 struct tx_sw_desc *sdesc;
388 unsigned int cidx = tq->cidx;
389 struct device *dev = adapter->pdev_dev;
390
391 const int need_unmap = need_skb_unmap() && unmap;
392
393 sdesc = &tq->sdesc[cidx];
394 while (n--) {
395 /*
396 * If we kept a reference to the original TX skb, we need to
397 * unmap it from PCI DMA space (if required) and free it.
398 */
399 if (sdesc->skb) {
400 if (need_unmap)
401 unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq);
402 kfree_skb(sdesc->skb);
403 sdesc->skb = NULL;
404 }
405
406 sdesc++;
407 if (++cidx == tq->size) {
408 cidx = 0;
409 sdesc = tq->sdesc;
410 }
411 }
412 tq->cidx = cidx;
413}
414
415/*
416 * Return the number of reclaimable descriptors in a TX queue.
417 */
418static inline int reclaimable(const struct sge_txq *tq)
419{
420 int hw_cidx = be16_to_cpu(tq->stat->cidx);
421 int reclaimable = hw_cidx - tq->cidx;
422 if (reclaimable < 0)
423 reclaimable += tq->size;
424 return reclaimable;
425}
426
427/**
428 * reclaim_completed_tx - reclaims completed TX descriptors
429 * @adapter: the adapter
430 * @tq: the TX queue to reclaim completed descriptors from
431 * @unmap: whether the buffers should be unmapped for DMA
432 *
433 * Reclaims TX descriptors that the SGE has indicated it has processed,
434 * and frees the associated buffers if possible. Called with the TX
435 * queue locked.
436 */
437static inline void reclaim_completed_tx(struct adapter *adapter,
438 struct sge_txq *tq,
439 bool unmap)
440{
441 int avail = reclaimable(tq);
442
443 if (avail) {
444 /*
445 * Limit the amount of clean up work we do at a time to keep
446 * the TX lock hold time O(1).
447 */
448 if (avail > MAX_TX_RECLAIM)
449 avail = MAX_TX_RECLAIM;
450
451 free_tx_desc(adapter, tq, avail, unmap);
452 tq->in_use -= avail;
453 }
454}
455
456/**
457 * get_buf_size - return the size of an RX Free List buffer.
458 * @sdesc: pointer to the software buffer descriptor
459 */
460static inline int get_buf_size(const struct rx_sw_desc *sdesc)
461{
462 return FL_PG_ORDER > 0 && (sdesc->dma_addr & RX_LARGE_BUF)
463 ? (PAGE_SIZE << FL_PG_ORDER)
464 : PAGE_SIZE;
465}
466
467/**
468 * free_rx_bufs - free RX buffers on an SGE Free List
469 * @adapter: the adapter
470 * @fl: the SGE Free List to free buffers from
471 * @n: how many buffers to free
472 *
473 * Release the next @n buffers on an SGE Free List RX queue. The
474 * buffers must be made inaccessible to hardware before calling this
475 * function.
476 */
477static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n)
478{
479 while (n--) {
480 struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
481
482 if (is_buf_mapped(sdesc))
483 dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
484 get_buf_size(sdesc), PCI_DMA_FROMDEVICE);
485 put_page(sdesc->page);
486 sdesc->page = NULL;
487 if (++fl->cidx == fl->size)
488 fl->cidx = 0;
489 fl->avail--;
490 }
491}
492
493/**
494 * unmap_rx_buf - unmap the current RX buffer on an SGE Free List
495 * @adapter: the adapter
496 * @fl: the SGE Free List
497 *
498 * Unmap the current buffer on an SGE Free List RX queue. The
499 * buffer must be made inaccessible to HW before calling this function.
500 *
501 * This is similar to @free_rx_bufs above but does not free the buffer.
502 * Do note that the FL still loses any further access to the buffer.
503 * This is used predominantly to "transfer ownership" of an FL buffer
504 * to another entity (typically an skb's fragment list).
505 */
506static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl)
507{
508 struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
509
510 if (is_buf_mapped(sdesc))
511 dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
512 get_buf_size(sdesc), PCI_DMA_FROMDEVICE);
513 sdesc->page = NULL;
514 if (++fl->cidx == fl->size)
515 fl->cidx = 0;
516 fl->avail--;
517}
518
519/**
520 * ring_fl_db - righ doorbell on free list
521 * @adapter: the adapter
522 * @fl: the Free List whose doorbell should be rung ...
523 *
524 * Tell the Scatter Gather Engine that there are new free list entries
525 * available.
526 */
527static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl)
528{
529 /*
530 * The SGE keeps track of its Producer and Consumer Indices in terms
531 * of Egress Queue Units so we can only tell it about integral numbers
532 * of multiples of Free List Entries per Egress Queue Units ...
533 */
534 if (fl->pend_cred >= FL_PER_EQ_UNIT) {
535 wmb();
536 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
537 DBPRIO |
538 QID(fl->cntxt_id) |
539 PIDX(fl->pend_cred / FL_PER_EQ_UNIT));
540 fl->pend_cred %= FL_PER_EQ_UNIT;
541 }
542}
543
544/**
545 * set_rx_sw_desc - initialize software RX buffer descriptor
546 * @sdesc: pointer to the softwore RX buffer descriptor
547 * @page: pointer to the page data structure backing the RX buffer
548 * @dma_addr: PCI DMA address (possibly with low-bit flags)
549 */
550static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page,
551 dma_addr_t dma_addr)
552{
553 sdesc->page = page;
554 sdesc->dma_addr = dma_addr;
555}
556
557/*
558 * Support for poisoning RX buffers ...
559 */
560#define POISON_BUF_VAL -1
561
562static inline void poison_buf(struct page *page, size_t sz)
563{
564#if POISON_BUF_VAL >= 0
565 memset(page_address(page), POISON_BUF_VAL, sz);
566#endif
567}
568
569/**
570 * refill_fl - refill an SGE RX buffer ring
571 * @adapter: the adapter
572 * @fl: the Free List ring to refill
573 * @n: the number of new buffers to allocate
574 * @gfp: the gfp flags for the allocations
575 *
576 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
577 * allocated with the supplied gfp flags. The caller must assure that
578 * @n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN
579 * EGRESS QUEUE UNITS_ indicates an empty Free List! Returns the number
580 * of buffers allocated. If afterwards the queue is found critically low,
581 * mark it as starving in the bitmap of starving FLs.
582 */
583static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl,
584 int n, gfp_t gfp)
585{
586 struct page *page;
587 dma_addr_t dma_addr;
588 unsigned int cred = fl->avail;
589 __be64 *d = &fl->desc[fl->pidx];
590 struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx];
591
592 /*
593 * Sanity: ensure that the result of adding n Free List buffers
594 * won't result in wrapping the SGE's Producer Index around to
595 * it's Consumer Index thereby indicating an empty Free List ...
596 */
597 BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT);
598
599 /*
600 * If we support large pages, prefer large buffers and fail over to
601 * small pages if we can't allocate large pages to satisfy the refill.
602 * If we don't support large pages, drop directly into the small page
603 * allocation code.
604 */
605 if (FL_PG_ORDER == 0)
606 goto alloc_small_pages;
607
608 while (n) {
609 page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN,
610 FL_PG_ORDER);
611 if (unlikely(!page)) {
612 /*
613 * We've failed inour attempt to allocate a "large
614 * page". Fail over to the "small page" allocation
615 * below.
616 */
617 fl->large_alloc_failed++;
618 break;
619 }
620 poison_buf(page, PAGE_SIZE << FL_PG_ORDER);
621
622 dma_addr = dma_map_page(adapter->pdev_dev, page, 0,
623 PAGE_SIZE << FL_PG_ORDER,
624 PCI_DMA_FROMDEVICE);
625 if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
626 /*
627 * We've run out of DMA mapping space. Free up the
628 * buffer and return with what we've managed to put
629 * into the free list. We don't want to fail over to
630 * the small page allocation below in this case
631 * because DMA mapping resources are typically
632 * critical resources once they become scarse.
633 */
634 __free_pages(page, FL_PG_ORDER);
635 goto out;
636 }
637 dma_addr |= RX_LARGE_BUF;
638 *d++ = cpu_to_be64(dma_addr);
639
640 set_rx_sw_desc(sdesc, page, dma_addr);
641 sdesc++;
642
643 fl->avail++;
644 if (++fl->pidx == fl->size) {
645 fl->pidx = 0;
646 sdesc = fl->sdesc;
647 d = fl->desc;
648 }
649 n--;
650 }
651
652alloc_small_pages:
653 while (n--) {
654 page = __netdev_alloc_page(adapter->port[0],
655 gfp | __GFP_NOWARN);
656 if (unlikely(!page)) {
657 fl->alloc_failed++;
658 break;
659 }
660 poison_buf(page, PAGE_SIZE);
661
662 dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE,
663 PCI_DMA_FROMDEVICE);
664 if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
665 netdev_free_page(adapter->port[0], page);
666 break;
667 }
668 *d++ = cpu_to_be64(dma_addr);
669
670 set_rx_sw_desc(sdesc, page, dma_addr);
671 sdesc++;
672
673 fl->avail++;
674 if (++fl->pidx == fl->size) {
675 fl->pidx = 0;
676 sdesc = fl->sdesc;
677 d = fl->desc;
678 }
679 }
680
681out:
682 /*
683 * Update our accounting state to incorporate the new Free List
684 * buffers, tell the hardware about them and return the number of
685 * bufers which we were able to allocate.
686 */
687 cred = fl->avail - cred;
688 fl->pend_cred += cred;
689 ring_fl_db(adapter, fl);
690
691 if (unlikely(fl_starving(fl))) {
692 smp_wmb();
693 set_bit(fl->cntxt_id, adapter->sge.starving_fl);
694 }
695
696 return cred;
697}
698
699/*
700 * Refill a Free List to its capacity or the Maximum Refill Increment,
701 * whichever is smaller ...
702 */
703static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl)
704{
705 refill_fl(adapter, fl,
706 min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail),
707 GFP_ATOMIC);
708}
709
710/**
711 * alloc_ring - allocate resources for an SGE descriptor ring
712 * @dev: the PCI device's core device
713 * @nelem: the number of descriptors
714 * @hwsize: the size of each hardware descriptor
715 * @swsize: the size of each software descriptor
716 * @busaddrp: the physical PCI bus address of the allocated ring
717 * @swringp: return address pointer for software ring
718 * @stat_size: extra space in hardware ring for status information
719 *
720 * Allocates resources for an SGE descriptor ring, such as TX queues,
721 * free buffer lists, response queues, etc. Each SGE ring requires
722 * space for its hardware descriptors plus, optionally, space for software
723 * state associated with each hardware entry (the metadata). The function
724 * returns three values: the virtual address for the hardware ring (the
725 * return value of the function), the PCI bus address of the hardware
726 * ring (in *busaddrp), and the address of the software ring (in swringp).
727 * Both the hardware and software rings are returned zeroed out.
728 */
729static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize,
730 size_t swsize, dma_addr_t *busaddrp, void *swringp,
731 size_t stat_size)
732{
733 /*
734 * Allocate the hardware ring and PCI DMA bus address space for said.
735 */
736 size_t hwlen = nelem * hwsize + stat_size;
737 void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL);
738
739 if (!hwring)
740 return NULL;
741
742 /*
743 * If the caller wants a software ring, allocate it and return a
744 * pointer to it in *swringp.
745 */
746 BUG_ON((swsize != 0) != (swringp != NULL));
747 if (swsize) {
748 void *swring = kcalloc(nelem, swsize, GFP_KERNEL);
749
750 if (!swring) {
751 dma_free_coherent(dev, hwlen, hwring, *busaddrp);
752 return NULL;
753 }
754 *(void **)swringp = swring;
755 }
756
757 /*
758 * Zero out the hardware ring and return its address as our function
759 * value.
760 */
761 memset(hwring, 0, hwlen);
762 return hwring;
763}
764
765/**
766 * sgl_len - calculates the size of an SGL of the given capacity
767 * @n: the number of SGL entries
768 *
769 * Calculates the number of flits (8-byte units) needed for a Direct
770 * Scatter/Gather List that can hold the given number of entries.
771 */
772static inline unsigned int sgl_len(unsigned int n)
773{
774 /*
775 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
776 * addresses. The DSGL Work Request starts off with a 32-bit DSGL
777 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
778 * repeated sequences of { Length[i], Length[i+1], Address[i],
779 * Address[i+1] } (this ensures that all addresses are on 64-bit
780 * boundaries). If N is even, then Length[N+1] should be set to 0 and
781 * Address[N+1] is omitted.
782 *
783 * The following calculation incorporates all of the above. It's
784 * somewhat hard to follow but, briefly: the "+2" accounts for the
785 * first two flits which include the DSGL header, Length0 and
786 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
787 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
788 * finally the "+((n-1)&1)" adds the one remaining flit needed if
789 * (n-1) is odd ...
790 */
791 n--;
792 return (3 * n) / 2 + (n & 1) + 2;
793}
794
795/**
796 * flits_to_desc - returns the num of TX descriptors for the given flits
797 * @flits: the number of flits
798 *
799 * Returns the number of TX descriptors needed for the supplied number
800 * of flits.
801 */
802static inline unsigned int flits_to_desc(unsigned int flits)
803{
804 BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64));
805 return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT);
806}
807
808/**
809 * is_eth_imm - can an Ethernet packet be sent as immediate data?
810 * @skb: the packet
811 *
812 * Returns whether an Ethernet packet is small enough to fit completely as
813 * immediate data.
814 */
815static inline int is_eth_imm(const struct sk_buff *skb)
816{
817 /*
818 * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
819 * which does not accommodate immediate data. We could dike out all
820 * of the support code for immediate data but that would tie our hands
821 * too much if we ever want to enhace the firmware. It would also
822 * create more differences between the PF and VF Drivers.
823 */
824 return false;
825}
826
827/**
828 * calc_tx_flits - calculate the number of flits for a packet TX WR
829 * @skb: the packet
830 *
831 * Returns the number of flits needed for a TX Work Request for the
832 * given Ethernet packet, including the needed WR and CPL headers.
833 */
834static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
835{
836 unsigned int flits;
837
838 /*
839 * If the skb is small enough, we can pump it out as a work request
840 * with only immediate data. In that case we just have to have the
841 * TX Packet header plus the skb data in the Work Request.
842 */
843 if (is_eth_imm(skb))
844 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
845 sizeof(__be64));
846
847 /*
848 * Otherwise, we're going to have to construct a Scatter gather list
849 * of the skb body and fragments. We also include the flits necessary
850 * for the TX Packet Work Request and CPL. We always have a firmware
851 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
852 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
853 * message or, if we're doing a Large Send Offload, an LSO CPL message
854 * with an embeded TX Packet Write CPL message.
855 */
856 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
857 if (skb_shinfo(skb)->gso_size)
858 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
859 sizeof(struct cpl_tx_pkt_lso_core) +
860 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
861 else
862 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
863 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
864 return flits;
865}
866
867/**
868 * write_sgl - populate a Scatter/Gather List for a packet
869 * @skb: the packet
870 * @tq: the TX queue we are writing into
871 * @sgl: starting location for writing the SGL
872 * @end: points right after the end of the SGL
873 * @start: start offset into skb main-body data to include in the SGL
874 * @addr: the list of DMA bus addresses for the SGL elements
875 *
876 * Generates a Scatter/Gather List for the buffers that make up a packet.
877 * The caller must provide adequate space for the SGL that will be written.
878 * The SGL includes all of the packet's page fragments and the data in its
879 * main body except for the first @start bytes. @pos must be 16-byte
880 * aligned and within a TX descriptor with available space. @end points
881 * write after the end of the SGL but does not account for any potential
882 * wrap around, i.e., @end > @tq->stat.
883 */
884static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq,
885 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
886 const dma_addr_t *addr)
887{
888 unsigned int i, len;
889 struct ulptx_sge_pair *to;
890 const struct skb_shared_info *si = skb_shinfo(skb);
891 unsigned int nfrags = si->nr_frags;
892 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
893
894 len = skb_headlen(skb) - start;
895 if (likely(len)) {
896 sgl->len0 = htonl(len);
897 sgl->addr0 = cpu_to_be64(addr[0] + start);
898 nfrags++;
899 } else {
900 sgl->len0 = htonl(si->frags[0].size);
901 sgl->addr0 = cpu_to_be64(addr[1]);
902 }
903
904 sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) |
905 ULPTX_NSGE(nfrags));
906 if (likely(--nfrags == 0))
907 return;
908 /*
909 * Most of the complexity below deals with the possibility we hit the
910 * end of the queue in the middle of writing the SGL. For this case
911 * only we create the SGL in a temporary buffer and then copy it.
912 */
913 to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge;
914
915 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
916 to->len[0] = cpu_to_be32(si->frags[i].size);
917 to->len[1] = cpu_to_be32(si->frags[++i].size);
918 to->addr[0] = cpu_to_be64(addr[i]);
919 to->addr[1] = cpu_to_be64(addr[++i]);
920 }
921 if (nfrags) {
922 to->len[0] = cpu_to_be32(si->frags[i].size);
923 to->len[1] = cpu_to_be32(0);
924 to->addr[0] = cpu_to_be64(addr[i + 1]);
925 }
926 if (unlikely((u8 *)end > (u8 *)tq->stat)) {
927 unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1;
928
929 if (likely(part0))
930 memcpy(sgl->sge, buf, part0);
931 part1 = (u8 *)end - (u8 *)tq->stat;
932 memcpy(tq->desc, (u8 *)buf + part0, part1);
933 end = (void *)tq->desc + part1;
934 }
935 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
936 *(u64 *)end = 0;
937}
938
939/**
940 * check_ring_tx_db - check and potentially ring a TX queue's doorbell
941 * @adapter: the adapter
942 * @tq: the TX queue
943 * @n: number of new descriptors to give to HW
944 *
945 * Ring the doorbel for a TX queue.
946 */
947static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq,
948 int n)
949{
950 /*
951 * Warn if we write doorbells with the wrong priority and write
952 * descriptors before telling HW.
953 */
954 WARN_ON((QID(tq->cntxt_id) | PIDX(n)) & DBPRIO);
955 wmb();
956 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
957 QID(tq->cntxt_id) | PIDX(n));
958}
959
960/**
961 * inline_tx_skb - inline a packet's data into TX descriptors
962 * @skb: the packet
963 * @tq: the TX queue where the packet will be inlined
964 * @pos: starting position in the TX queue to inline the packet
965 *
966 * Inline a packet's contents directly into TX descriptors, starting at
967 * the given position within the TX DMA ring.
968 * Most of the complexity of this operation is dealing with wrap arounds
969 * in the middle of the packet we want to inline.
970 */
971static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq,
972 void *pos)
973{
974 u64 *p;
975 int left = (void *)tq->stat - pos;
976
977 if (likely(skb->len <= left)) {
978 if (likely(!skb->data_len))
979 skb_copy_from_linear_data(skb, pos, skb->len);
980 else
981 skb_copy_bits(skb, 0, pos, skb->len);
982 pos += skb->len;
983 } else {
984 skb_copy_bits(skb, 0, pos, left);
985 skb_copy_bits(skb, left, tq->desc, skb->len - left);
986 pos = (void *)tq->desc + (skb->len - left);
987 }
988
989 /* 0-pad to multiple of 16 */
990 p = PTR_ALIGN(pos, 8);
991 if ((uintptr_t)p & 8)
992 *p = 0;
993}
994
995/*
996 * Figure out what HW csum a packet wants and return the appropriate control
997 * bits.
998 */
999static u64 hwcsum(const struct sk_buff *skb)
1000{
1001 int csum_type;
1002 const struct iphdr *iph = ip_hdr(skb);
1003
1004 if (iph->version == 4) {
1005 if (iph->protocol == IPPROTO_TCP)
1006 csum_type = TX_CSUM_TCPIP;
1007 else if (iph->protocol == IPPROTO_UDP)
1008 csum_type = TX_CSUM_UDPIP;
1009 else {
1010nocsum:
1011 /*
1012 * unknown protocol, disable HW csum
1013 * and hope a bad packet is detected
1014 */
1015 return TXPKT_L4CSUM_DIS;
1016 }
1017 } else {
1018 /*
1019 * this doesn't work with extension headers
1020 */
1021 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1022
1023 if (ip6h->nexthdr == IPPROTO_TCP)
1024 csum_type = TX_CSUM_TCPIP6;
1025 else if (ip6h->nexthdr == IPPROTO_UDP)
1026 csum_type = TX_CSUM_UDPIP6;
1027 else
1028 goto nocsum;
1029 }
1030
1031 if (likely(csum_type >= TX_CSUM_TCPIP))
1032 return TXPKT_CSUM_TYPE(csum_type) |
1033 TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
1034 TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
1035 else {
1036 int start = skb_transport_offset(skb);
1037
1038 return TXPKT_CSUM_TYPE(csum_type) |
1039 TXPKT_CSUM_START(start) |
1040 TXPKT_CSUM_LOC(start + skb->csum_offset);
1041 }
1042}
1043
1044/*
1045 * Stop an Ethernet TX queue and record that state change.
1046 */
1047static void txq_stop(struct sge_eth_txq *txq)
1048{
1049 netif_tx_stop_queue(txq->txq);
1050 txq->q.stops++;
1051}
1052
1053/*
1054 * Advance our software state for a TX queue by adding n in use descriptors.
1055 */
1056static inline void txq_advance(struct sge_txq *tq, unsigned int n)
1057{
1058 tq->in_use += n;
1059 tq->pidx += n;
1060 if (tq->pidx >= tq->size)
1061 tq->pidx -= tq->size;
1062}
1063
1064/**
1065 * t4vf_eth_xmit - add a packet to an Ethernet TX queue
1066 * @skb: the packet
1067 * @dev: the egress net device
1068 *
1069 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled.
1070 */
1071int t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1072{
1073 u64 cntrl, *end;
1074 int qidx, credits;
1075 unsigned int flits, ndesc;
1076 struct adapter *adapter;
1077 struct sge_eth_txq *txq;
1078 const struct port_info *pi;
1079 struct fw_eth_tx_pkt_vm_wr *wr;
1080 struct cpl_tx_pkt_core *cpl;
1081 const struct skb_shared_info *ssi;
1082 dma_addr_t addr[MAX_SKB_FRAGS + 1];
1083 const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) +
1084 sizeof(wr->ethmacsrc) +
1085 sizeof(wr->ethtype) +
1086 sizeof(wr->vlantci));
1087
1088 /*
1089 * The chip minimum packet length is 10 octets but the firmware
1090 * command that we are using requires that we copy the Ethernet header
1091 * (including the VLAN tag) into the header so we reject anything
1092 * smaller than that ...
1093 */
1094 if (unlikely(skb->len < fw_hdr_copy_len))
1095 goto out_free;
1096
1097 /*
1098 * Figure out which TX Queue we're going to use.
1099 */
1100 pi = netdev_priv(dev);
1101 adapter = pi->adapter;
1102 qidx = skb_get_queue_mapping(skb);
1103 BUG_ON(qidx >= pi->nqsets);
1104 txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1105
1106 /*
1107 * Take this opportunity to reclaim any TX Descriptors whose DMA
1108 * transfers have completed.
1109 */
1110 reclaim_completed_tx(adapter, &txq->q, true);
1111
1112 /*
1113 * Calculate the number of flits and TX Descriptors we're going to
1114 * need along with how many TX Descriptors will be left over after
1115 * we inject our Work Request.
1116 */
1117 flits = calc_tx_flits(skb);
1118 ndesc = flits_to_desc(flits);
1119 credits = txq_avail(&txq->q) - ndesc;
1120
1121 if (unlikely(credits < 0)) {
1122 /*
1123 * Not enough room for this packet's Work Request. Stop the
1124 * TX Queue and return a "busy" condition. The queue will get
1125 * started later on when the firmware informs us that space
1126 * has opened up.
1127 */
1128 txq_stop(txq);
1129 dev_err(adapter->pdev_dev,
1130 "%s: TX ring %u full while queue awake!\n",
1131 dev->name, qidx);
1132 return NETDEV_TX_BUSY;
1133 }
1134
1135 if (!is_eth_imm(skb) &&
1136 unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) {
1137 /*
1138 * We need to map the skb into PCI DMA space (because it can't
1139 * be in-lined directly into the Work Request) and the mapping
1140 * operation failed. Record the error and drop the packet.
1141 */
1142 txq->mapping_err++;
1143 goto out_free;
1144 }
1145
1146 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1147 /*
1148 * After we're done injecting the Work Request for this
1149 * packet, we'll be below our "stop threshhold" so stop the TX
1150 * Queue now. The queue will get started later on when the
1151 * firmware informs us that space has opened up.
1152 */
1153 txq_stop(txq);
1154 }
1155
1156 /*
1157 * Start filling in our Work Request. Note that we do _not_ handle
1158 * the WR Header wrapping around the TX Descriptor Ring. If our
1159 * maximum header size ever exceeds one TX Descriptor, we'll need to
1160 * do something else here.
1161 */
1162 BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1163 wr = (void *)&txq->q.desc[txq->q.pidx];
1164 wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16(DIV_ROUND_UP(flits, 2)));
1165 wr->r3[0] = cpu_to_be64(0);
1166 wr->r3[1] = cpu_to_be64(0);
1167 skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1168 end = (u64 *)wr + flits;
1169
1170 /*
1171 * If this is a Large Send Offload packet we'll put in an LSO CPL
1172 * message with an encapsulated TX Packet CPL message. Otherwise we
1173 * just use a TX Packet CPL message.
1174 */
1175 ssi = skb_shinfo(skb);
1176 if (ssi->gso_size) {
1177 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1178 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1179 int l3hdr_len = skb_network_header_len(skb);
1180 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1181
1182 wr->op_immdlen =
1183 cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
1184 FW_WR_IMMDLEN(sizeof(*lso) +
1185 sizeof(*cpl)));
1186 /*
1187 * Fill in the LSO CPL message.
1188 */
1189 lso->lso_ctrl =
1190 cpu_to_be32(LSO_OPCODE(CPL_TX_PKT_LSO) |
1191 LSO_FIRST_SLICE |
1192 LSO_LAST_SLICE |
1193 LSO_IPV6(v6) |
1194 LSO_ETHHDR_LEN(eth_xtra_len/4) |
1195 LSO_IPHDR_LEN(l3hdr_len/4) |
1196 LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
1197 lso->ipid_ofst = cpu_to_be16(0);
1198 lso->mss = cpu_to_be16(ssi->gso_size);
1199 lso->seqno_offset = cpu_to_be32(0);
1200 lso->len = cpu_to_be32(skb->len);
1201
1202 /*
1203 * Set up TX Packet CPL pointer, control word and perform
1204 * accounting.
1205 */
1206 cpl = (void *)(lso + 1);
1207 cntrl = (TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1208 TXPKT_IPHDR_LEN(l3hdr_len) |
1209 TXPKT_ETHHDR_LEN(eth_xtra_len));
1210 txq->tso++;
1211 txq->tx_cso += ssi->gso_segs;
1212 } else {
1213 int len;
1214
1215 len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
1216 wr->op_immdlen =
1217 cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
1218 FW_WR_IMMDLEN(len));
1219
1220 /*
1221 * Set up TX Packet CPL pointer, control word and perform
1222 * accounting.
1223 */
1224 cpl = (void *)(wr + 1);
1225 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1226 cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
1227 txq->tx_cso++;
1228 } else
1229 cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
1230 }
1231
1232 /*
1233 * If there's a VLAN tag present, add that to the list of things to
1234 * do in this Work Request.
1235 */
1236 if (vlan_tx_tag_present(skb)) {
1237 txq->vlan_ins++;
1238 cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb));
1239 }
1240
1241 /*
1242 * Fill in the TX Packet CPL message header.
1243 */
1244 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE(CPL_TX_PKT_XT) |
1245 TXPKT_INTF(pi->port_id) |
1246 TXPKT_PF(0));
1247 cpl->pack = cpu_to_be16(0);
1248 cpl->len = cpu_to_be16(skb->len);
1249 cpl->ctrl1 = cpu_to_be64(cntrl);
1250
1251#ifdef T4_TRACE
1252 T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7],
1253 "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u",
1254 ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags);
1255#endif
1256
1257 /*
1258 * Fill in the body of the TX Packet CPL message with either in-lined
1259 * data or a Scatter/Gather List.
1260 */
1261 if (is_eth_imm(skb)) {
1262 /*
1263 * In-line the packet's data and free the skb since we don't
1264 * need it any longer.
1265 */
1266 inline_tx_skb(skb, &txq->q, cpl + 1);
1267 dev_kfree_skb(skb);
1268 } else {
1269 /*
1270 * Write the skb's Scatter/Gather list into the TX Packet CPL
1271 * message and retain a pointer to the skb so we can free it
1272 * later when its DMA completes. (We store the skb pointer
1273 * in the Software Descriptor corresponding to the last TX
1274 * Descriptor used by the Work Request.)
1275 *
1276 * The retained skb will be freed when the corresponding TX
1277 * Descriptors are reclaimed after their DMAs complete.
1278 * However, this could take quite a while since, in general,
1279 * the hardware is set up to be lazy about sending DMA
1280 * completion notifications to us and we mostly perform TX
1281 * reclaims in the transmit routine.
1282 *
1283 * This is good for performamce but means that we rely on new
1284 * TX packets arriving to run the destructors of completed
1285 * packets, which open up space in their sockets' send queues.
1286 * Sometimes we do not get such new packets causing TX to
1287 * stall. A single UDP transmitter is a good example of this
1288 * situation. We have a clean up timer that periodically
1289 * reclaims completed packets but it doesn't run often enough
1290 * (nor do we want it to) to prevent lengthy stalls. A
1291 * solution to this problem is to run the destructor early,
1292 * after the packet is queued but before it's DMAd. A con is
1293 * that we lie to socket memory accounting, but the amount of
1294 * extra memory is reasonable (limited by the number of TX
1295 * descriptors), the packets do actually get freed quickly by
1296 * new packets almost always, and for protocols like TCP that
1297 * wait for acks to really free up the data the extra memory
1298 * is even less. On the positive side we run the destructors
1299 * on the sending CPU rather than on a potentially different
Casey Leedom64bb3362010-06-29 12:53:39 +00001300 * completing CPU, usually a good thing.
Casey Leedomc6e0d912010-06-25 12:13:28 +00001301 *
1302 * Run the destructor before telling the DMA engine about the
1303 * packet to make sure it doesn't complete and get freed
1304 * prematurely.
1305 */
1306 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1307 struct sge_txq *tq = &txq->q;
1308 int last_desc;
1309
1310 /*
1311 * If the Work Request header was an exact multiple of our TX
1312 * Descriptor length, then it's possible that the starting SGL
1313 * pointer lines up exactly with the end of our TX Descriptor
1314 * ring. If that's the case, wrap around to the beginning
1315 * here ...
1316 */
1317 if (unlikely((void *)sgl == (void *)tq->stat)) {
1318 sgl = (void *)tq->desc;
1319 end = (void *)((void *)tq->desc +
1320 ((void *)end - (void *)tq->stat));
1321 }
1322
1323 write_sgl(skb, tq, sgl, end, 0, addr);
1324 skb_orphan(skb);
1325
1326 last_desc = tq->pidx + ndesc - 1;
1327 if (last_desc >= tq->size)
1328 last_desc -= tq->size;
1329 tq->sdesc[last_desc].skb = skb;
1330 tq->sdesc[last_desc].sgl = sgl;
1331 }
1332
1333 /*
1334 * Advance our internal TX Queue state, tell the hardware about
1335 * the new TX descriptors and return success.
1336 */
1337 txq_advance(&txq->q, ndesc);
1338 dev->trans_start = jiffies;
1339 ring_tx_db(adapter, &txq->q, ndesc);
1340 return NETDEV_TX_OK;
1341
1342out_free:
1343 /*
1344 * An error of some sort happened. Free the TX skb and tell the
1345 * OS that we've "dealt" with the packet ...
1346 */
1347 dev_kfree_skb(skb);
1348 return NETDEV_TX_OK;
1349}
1350
1351/**
1352 * t4vf_pktgl_free - free a packet gather list
1353 * @gl: the gather list
1354 *
1355 * Releases the pages of a packet gather list. We do not own the last
1356 * page on the list and do not free it.
1357 */
1358void t4vf_pktgl_free(const struct pkt_gl *gl)
1359{
1360 int frag;
1361
1362 frag = gl->nfrags - 1;
1363 while (frag--)
1364 put_page(gl->frags[frag].page);
1365}
1366
1367/**
1368 * copy_frags - copy fragments from gather list into skb_shared_info
1369 * @si: destination skb shared info structure
1370 * @gl: source internal packet gather list
1371 * @offset: packet start offset in first page
1372 *
1373 * Copy an internal packet gather list into a Linux skb_shared_info
1374 * structure.
1375 */
1376static inline void copy_frags(struct skb_shared_info *si,
1377 const struct pkt_gl *gl,
1378 unsigned int offset)
1379{
1380 unsigned int n;
1381
1382 /* usually there's just one frag */
1383 si->frags[0].page = gl->frags[0].page;
1384 si->frags[0].page_offset = gl->frags[0].page_offset + offset;
1385 si->frags[0].size = gl->frags[0].size - offset;
1386 si->nr_frags = gl->nfrags;
1387
1388 n = gl->nfrags - 1;
1389 if (n)
1390 memcpy(&si->frags[1], &gl->frags[1], n * sizeof(skb_frag_t));
1391
1392 /* get a reference to the last page, we don't own it */
1393 get_page(gl->frags[n].page);
1394}
1395
1396/**
1397 * do_gro - perform Generic Receive Offload ingress packet processing
1398 * @rxq: ingress RX Ethernet Queue
1399 * @gl: gather list for ingress packet
1400 * @pkt: CPL header for last packet fragment
1401 *
1402 * Perform Generic Receive Offload (GRO) ingress packet processing.
1403 * We use the standard Linux GRO interfaces for this.
1404 */
1405static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1406 const struct cpl_rx_pkt *pkt)
1407{
1408 int ret;
1409 struct sk_buff *skb;
1410
1411 skb = napi_get_frags(&rxq->rspq.napi);
1412 if (unlikely(!skb)) {
1413 t4vf_pktgl_free(gl);
1414 rxq->stats.rx_drops++;
1415 return;
1416 }
1417
1418 copy_frags(skb_shinfo(skb), gl, PKTSHIFT);
1419 skb->len = gl->tot_len - PKTSHIFT;
1420 skb->data_len = skb->len;
1421 skb->truesize += skb->data_len;
1422 skb->ip_summed = CHECKSUM_UNNECESSARY;
1423 skb_record_rx_queue(skb, rxq->rspq.idx);
1424
1425 if (unlikely(pkt->vlan_ex)) {
1426 struct port_info *pi = netdev_priv(rxq->rspq.netdev);
1427 struct vlan_group *grp = pi->vlan_grp;
1428
1429 rxq->stats.vlan_ex++;
1430 if (likely(grp)) {
1431 ret = vlan_gro_frags(&rxq->rspq.napi, grp,
1432 be16_to_cpu(pkt->vlan));
1433 goto stats;
1434 }
1435 }
1436 ret = napi_gro_frags(&rxq->rspq.napi);
1437
1438stats:
1439 if (ret == GRO_HELD)
1440 rxq->stats.lro_pkts++;
1441 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1442 rxq->stats.lro_merged++;
1443 rxq->stats.pkts++;
1444 rxq->stats.rx_cso++;
1445}
1446
1447/**
1448 * t4vf_ethrx_handler - process an ingress ethernet packet
1449 * @rspq: the response queue that received the packet
1450 * @rsp: the response queue descriptor holding the RX_PKT message
1451 * @gl: the gather list of packet fragments
1452 *
1453 * Process an ingress ethernet packet and deliver it to the stack.
1454 */
1455int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp,
1456 const struct pkt_gl *gl)
1457{
1458 struct sk_buff *skb;
1459 struct port_info *pi;
1460 struct skb_shared_info *ssi;
1461 const struct cpl_rx_pkt *pkt = (void *)&rsp[1];
1462 bool csum_ok = pkt->csum_calc && !pkt->err_vec;
1463 unsigned int len = be16_to_cpu(pkt->len);
1464 struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1465
1466 /*
1467 * If this is a good TCP packet and we have Generic Receive Offload
1468 * enabled, handle the packet in the GRO path.
1469 */
1470 if ((pkt->l2info & cpu_to_be32(RXF_TCP)) &&
1471 (rspq->netdev->features & NETIF_F_GRO) && csum_ok &&
1472 !pkt->ip_frag) {
1473 do_gro(rxq, gl, pkt);
1474 return 0;
1475 }
1476
1477 /*
1478 * If the ingress packet is small enough, allocate an skb large enough
1479 * for all of the data and copy it inline. Otherwise, allocate an skb
1480 * with enough room to pull in the header and reference the rest of
1481 * the data via the skb fragment list.
1482 */
1483 if (len <= RX_COPY_THRES) {
1484 /* small packets have only one fragment */
1485 skb = alloc_skb(gl->frags[0].size, GFP_ATOMIC);
1486 if (!skb)
1487 goto nomem;
1488 __skb_put(skb, gl->frags[0].size);
1489 skb_copy_to_linear_data(skb, gl->va, gl->frags[0].size);
1490 } else {
1491 skb = alloc_skb(RX_PKT_PULL_LEN, GFP_ATOMIC);
1492 if (!skb)
1493 goto nomem;
1494 __skb_put(skb, RX_PKT_PULL_LEN);
1495 skb_copy_to_linear_data(skb, gl->va, RX_PKT_PULL_LEN);
1496
1497 ssi = skb_shinfo(skb);
1498 ssi->frags[0].page = gl->frags[0].page;
1499 ssi->frags[0].page_offset = (gl->frags[0].page_offset +
1500 RX_PKT_PULL_LEN);
1501 ssi->frags[0].size = gl->frags[0].size - RX_PKT_PULL_LEN;
1502 if (gl->nfrags > 1)
1503 memcpy(&ssi->frags[1], &gl->frags[1],
1504 (gl->nfrags-1) * sizeof(skb_frag_t));
1505 ssi->nr_frags = gl->nfrags;
1506 skb->len = len + PKTSHIFT;
1507 skb->data_len = skb->len - RX_PKT_PULL_LEN;
1508 skb->truesize += skb->data_len;
1509
1510 /* Get a reference for the last page, we don't own it */
1511 get_page(gl->frags[gl->nfrags - 1].page);
1512 }
1513
1514 __skb_pull(skb, PKTSHIFT);
1515 skb->protocol = eth_type_trans(skb, rspq->netdev);
1516 skb_record_rx_queue(skb, rspq->idx);
1517 skb->dev->last_rx = jiffies; /* XXX removed 2.6.29 */
1518 pi = netdev_priv(skb->dev);
1519 rxq->stats.pkts++;
1520
1521 if (csum_ok && (pi->rx_offload & RX_CSO) && !pkt->err_vec &&
1522 (be32_to_cpu(pkt->l2info) & (RXF_UDP|RXF_TCP))) {
1523 if (!pkt->ip_frag)
1524 skb->ip_summed = CHECKSUM_UNNECESSARY;
1525 else {
1526 __sum16 c = (__force __sum16)pkt->csum;
1527 skb->csum = csum_unfold(c);
1528 skb->ip_summed = CHECKSUM_COMPLETE;
1529 }
1530 rxq->stats.rx_cso++;
1531 } else
1532 skb->ip_summed = CHECKSUM_NONE;
1533
1534 if (unlikely(pkt->vlan_ex)) {
1535 struct vlan_group *grp = pi->vlan_grp;
1536
1537 rxq->stats.vlan_ex++;
1538 if (likely(grp))
1539 vlan_hwaccel_receive_skb(skb, grp,
1540 be16_to_cpu(pkt->vlan));
1541 else
1542 dev_kfree_skb_any(skb);
1543 } else
1544 netif_receive_skb(skb);
1545
1546 return 0;
1547
1548nomem:
1549 t4vf_pktgl_free(gl);
1550 rxq->stats.rx_drops++;
1551 return 0;
1552}
1553
1554/**
1555 * is_new_response - check if a response is newly written
1556 * @rc: the response control descriptor
1557 * @rspq: the response queue
1558 *
1559 * Returns true if a response descriptor contains a yet unprocessed
1560 * response.
1561 */
1562static inline bool is_new_response(const struct rsp_ctrl *rc,
1563 const struct sge_rspq *rspq)
1564{
1565 return RSPD_GEN(rc->type_gen) == rspq->gen;
1566}
1567
1568/**
1569 * restore_rx_bufs - put back a packet's RX buffers
1570 * @gl: the packet gather list
1571 * @fl: the SGE Free List
1572 * @nfrags: how many fragments in @si
1573 *
1574 * Called when we find out that the current packet, @si, can't be
1575 * processed right away for some reason. This is a very rare event and
1576 * there's no effort to make this suspension/resumption process
1577 * particularly efficient.
1578 *
1579 * We implement the suspension by putting all of the RX buffers associated
1580 * with the current packet back on the original Free List. The buffers
1581 * have already been unmapped and are left unmapped, we mark them as
1582 * unmapped in order to prevent further unmapping attempts. (Effectively
1583 * this function undoes the series of @unmap_rx_buf calls which were done
1584 * to create the current packet's gather list.) This leaves us ready to
1585 * restart processing of the packet the next time we start processing the
1586 * RX Queue ...
1587 */
1588static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl,
1589 int frags)
1590{
1591 struct rx_sw_desc *sdesc;
1592
1593 while (frags--) {
1594 if (fl->cidx == 0)
1595 fl->cidx = fl->size - 1;
1596 else
1597 fl->cidx--;
1598 sdesc = &fl->sdesc[fl->cidx];
1599 sdesc->page = gl->frags[frags].page;
1600 sdesc->dma_addr |= RX_UNMAPPED_BUF;
1601 fl->avail++;
1602 }
1603}
1604
1605/**
1606 * rspq_next - advance to the next entry in a response queue
1607 * @rspq: the queue
1608 *
1609 * Updates the state of a response queue to advance it to the next entry.
1610 */
1611static inline void rspq_next(struct sge_rspq *rspq)
1612{
1613 rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len;
1614 if (unlikely(++rspq->cidx == rspq->size)) {
1615 rspq->cidx = 0;
1616 rspq->gen ^= 1;
1617 rspq->cur_desc = rspq->desc;
1618 }
1619}
1620
1621/**
1622 * process_responses - process responses from an SGE response queue
1623 * @rspq: the ingress response queue to process
1624 * @budget: how many responses can be processed in this round
1625 *
1626 * Process responses from a Scatter Gather Engine response queue up to
1627 * the supplied budget. Responses include received packets as well as
1628 * control messages from firmware or hardware.
1629 *
1630 * Additionally choose the interrupt holdoff time for the next interrupt
1631 * on this queue. If the system is under memory shortage use a fairly
1632 * long delay to help recovery.
1633 */
1634int process_responses(struct sge_rspq *rspq, int budget)
1635{
1636 struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1637 int budget_left = budget;
1638
1639 while (likely(budget_left)) {
1640 int ret, rsp_type;
1641 const struct rsp_ctrl *rc;
1642
1643 rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc));
1644 if (!is_new_response(rc, rspq))
1645 break;
1646
1647 /*
1648 * Figure out what kind of response we've received from the
1649 * SGE.
1650 */
1651 rmb();
1652 rsp_type = RSPD_TYPE(rc->type_gen);
1653 if (likely(rsp_type == RSP_TYPE_FLBUF)) {
1654 skb_frag_t *fp;
1655 struct pkt_gl gl;
1656 const struct rx_sw_desc *sdesc;
1657 u32 bufsz, frag;
1658 u32 len = be32_to_cpu(rc->pldbuflen_qid);
1659
1660 /*
1661 * If we get a "new buffer" message from the SGE we
1662 * need to move on to the next Free List buffer.
1663 */
1664 if (len & RSPD_NEWBUF) {
1665 /*
1666 * We get one "new buffer" message when we
1667 * first start up a queue so we need to ignore
1668 * it when our offset into the buffer is 0.
1669 */
1670 if (likely(rspq->offset > 0)) {
1671 free_rx_bufs(rspq->adapter, &rxq->fl,
1672 1);
1673 rspq->offset = 0;
1674 }
1675 len = RSPD_LEN(len);
1676 }
1677
1678 /*
1679 * Gather packet fragments.
1680 */
1681 for (frag = 0, fp = gl.frags; /**/; frag++, fp++) {
1682 BUG_ON(frag >= MAX_SKB_FRAGS);
1683 BUG_ON(rxq->fl.avail == 0);
1684 sdesc = &rxq->fl.sdesc[rxq->fl.cidx];
1685 bufsz = get_buf_size(sdesc);
1686 fp->page = sdesc->page;
1687 fp->page_offset = rspq->offset;
1688 fp->size = min(bufsz, len);
1689 len -= fp->size;
1690 if (!len)
1691 break;
1692 unmap_rx_buf(rspq->adapter, &rxq->fl);
1693 }
1694 gl.nfrags = frag+1;
1695
1696 /*
1697 * Last buffer remains mapped so explicitly make it
1698 * coherent for CPU access and start preloading first
1699 * cache line ...
1700 */
1701 dma_sync_single_for_cpu(rspq->adapter->pdev_dev,
1702 get_buf_addr(sdesc),
1703 fp->size, DMA_FROM_DEVICE);
1704 gl.va = (page_address(gl.frags[0].page) +
1705 gl.frags[0].page_offset);
1706 prefetch(gl.va);
1707
1708 /*
1709 * Hand the new ingress packet to the handler for
1710 * this Response Queue.
1711 */
1712 ret = rspq->handler(rspq, rspq->cur_desc, &gl);
1713 if (likely(ret == 0))
1714 rspq->offset += ALIGN(fp->size, FL_ALIGN);
1715 else
1716 restore_rx_bufs(&gl, &rxq->fl, frag);
1717 } else if (likely(rsp_type == RSP_TYPE_CPL)) {
1718 ret = rspq->handler(rspq, rspq->cur_desc, NULL);
1719 } else {
1720 WARN_ON(rsp_type > RSP_TYPE_CPL);
1721 ret = 0;
1722 }
1723
1724 if (unlikely(ret)) {
1725 /*
1726 * Couldn't process descriptor, back off for recovery.
1727 * We use the SGE's last timer which has the longest
1728 * interrupt coalescing value ...
1729 */
1730 const int NOMEM_TIMER_IDX = SGE_NTIMERS-1;
1731 rspq->next_intr_params =
1732 QINTR_TIMER_IDX(NOMEM_TIMER_IDX);
1733 break;
1734 }
1735
1736 rspq_next(rspq);
1737 budget_left--;
1738 }
1739
1740 /*
1741 * If this is a Response Queue with an associated Free List and
1742 * at least two Egress Queue units available in the Free List
1743 * for new buffer pointers, refill the Free List.
1744 */
1745 if (rspq->offset >= 0 &&
1746 rxq->fl.size - rxq->fl.avail >= 2*FL_PER_EQ_UNIT)
1747 __refill_fl(rspq->adapter, &rxq->fl);
1748 return budget - budget_left;
1749}
1750
1751/**
1752 * napi_rx_handler - the NAPI handler for RX processing
1753 * @napi: the napi instance
1754 * @budget: how many packets we can process in this round
1755 *
1756 * Handler for new data events when using NAPI. This does not need any
1757 * locking or protection from interrupts as data interrupts are off at
1758 * this point and other adapter interrupts do not interfere (the latter
1759 * in not a concern at all with MSI-X as non-data interrupts then have
1760 * a separate handler).
1761 */
1762static int napi_rx_handler(struct napi_struct *napi, int budget)
1763{
1764 unsigned int intr_params;
1765 struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi);
1766 int work_done = process_responses(rspq, budget);
1767
1768 if (likely(work_done < budget)) {
1769 napi_complete(napi);
1770 intr_params = rspq->next_intr_params;
1771 rspq->next_intr_params = rspq->intr_params;
1772 } else
1773 intr_params = QINTR_TIMER_IDX(SGE_TIMER_UPD_CIDX);
1774
1775 t4_write_reg(rspq->adapter,
1776 T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1777 CIDXINC(work_done) |
1778 INGRESSQID((u32)rspq->cntxt_id) |
1779 SEINTARM(intr_params));
1780 return work_done;
1781}
1782
1783/*
1784 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
1785 * (i.e., response queue serviced by NAPI polling).
1786 */
1787irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie)
1788{
1789 struct sge_rspq *rspq = cookie;
1790
1791 napi_schedule(&rspq->napi);
1792 return IRQ_HANDLED;
1793}
1794
1795/*
1796 * Process the indirect interrupt entries in the interrupt queue and kick off
1797 * NAPI for each queue that has generated an entry.
1798 */
1799static unsigned int process_intrq(struct adapter *adapter)
1800{
1801 struct sge *s = &adapter->sge;
1802 struct sge_rspq *intrq = &s->intrq;
1803 unsigned int work_done;
1804
1805 spin_lock(&adapter->sge.intrq_lock);
1806 for (work_done = 0; ; work_done++) {
1807 const struct rsp_ctrl *rc;
1808 unsigned int qid, iq_idx;
1809 struct sge_rspq *rspq;
1810
1811 /*
1812 * Grab the next response from the interrupt queue and bail
1813 * out if it's not a new response.
1814 */
1815 rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc));
1816 if (!is_new_response(rc, intrq))
1817 break;
1818
1819 /*
1820 * If the response isn't a forwarded interrupt message issue a
1821 * error and go on to the next response message. This should
1822 * never happen ...
1823 */
1824 rmb();
1825 if (unlikely(RSPD_TYPE(rc->type_gen) != RSP_TYPE_INTR)) {
1826 dev_err(adapter->pdev_dev,
1827 "Unexpected INTRQ response type %d\n",
1828 RSPD_TYPE(rc->type_gen));
1829 continue;
1830 }
1831
1832 /*
1833 * Extract the Queue ID from the interrupt message and perform
1834 * sanity checking to make sure it really refers to one of our
1835 * Ingress Queues which is active and matches the queue's ID.
1836 * None of these error conditions should ever happen so we may
1837 * want to either make them fatal and/or conditionalized under
1838 * DEBUG.
1839 */
1840 qid = RSPD_QID(be32_to_cpu(rc->pldbuflen_qid));
1841 iq_idx = IQ_IDX(s, qid);
1842 if (unlikely(iq_idx >= MAX_INGQ)) {
1843 dev_err(adapter->pdev_dev,
1844 "Ingress QID %d out of range\n", qid);
1845 continue;
1846 }
1847 rspq = s->ingr_map[iq_idx];
1848 if (unlikely(rspq == NULL)) {
1849 dev_err(adapter->pdev_dev,
1850 "Ingress QID %d RSPQ=NULL\n", qid);
1851 continue;
1852 }
1853 if (unlikely(rspq->abs_id != qid)) {
1854 dev_err(adapter->pdev_dev,
1855 "Ingress QID %d refers to RSPQ %d\n",
1856 qid, rspq->abs_id);
1857 continue;
1858 }
1859
1860 /*
1861 * Schedule NAPI processing on the indicated Response Queue
1862 * and move on to the next entry in the Forwarded Interrupt
1863 * Queue.
1864 */
1865 napi_schedule(&rspq->napi);
1866 rspq_next(intrq);
1867 }
1868
1869 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1870 CIDXINC(work_done) |
1871 INGRESSQID(intrq->cntxt_id) |
1872 SEINTARM(intrq->intr_params));
1873
1874 spin_unlock(&adapter->sge.intrq_lock);
1875
1876 return work_done;
1877}
1878
1879/*
1880 * The MSI interrupt handler handles data events from SGE response queues as
1881 * well as error and other async events as they all use the same MSI vector.
1882 */
1883irqreturn_t t4vf_intr_msi(int irq, void *cookie)
1884{
1885 struct adapter *adapter = cookie;
1886
1887 process_intrq(adapter);
1888 return IRQ_HANDLED;
1889}
1890
1891/**
1892 * t4vf_intr_handler - select the top-level interrupt handler
1893 * @adapter: the adapter
1894 *
1895 * Selects the top-level interrupt handler based on the type of interrupts
1896 * (MSI-X or MSI).
1897 */
1898irq_handler_t t4vf_intr_handler(struct adapter *adapter)
1899{
1900 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
1901 if (adapter->flags & USING_MSIX)
1902 return t4vf_sge_intr_msix;
1903 else
1904 return t4vf_intr_msi;
1905}
1906
1907/**
1908 * sge_rx_timer_cb - perform periodic maintenance of SGE RX queues
1909 * @data: the adapter
1910 *
1911 * Runs periodically from a timer to perform maintenance of SGE RX queues.
1912 *
1913 * a) Replenishes RX queues that have run out due to memory shortage.
1914 * Normally new RX buffers are added when existing ones are consumed but
1915 * when out of memory a queue can become empty. We schedule NAPI to do
1916 * the actual refill.
1917 */
1918static void sge_rx_timer_cb(unsigned long data)
1919{
1920 struct adapter *adapter = (struct adapter *)data;
1921 struct sge *s = &adapter->sge;
1922 unsigned int i;
1923
1924 /*
1925 * Scan the "Starving Free Lists" flag array looking for any Free
1926 * Lists in need of more free buffers. If we find one and it's not
1927 * being actively polled, then bump its "starving" counter and attempt
1928 * to refill it. If we're successful in adding enough buffers to push
1929 * the Free List over the starving threshold, then we can clear its
1930 * "starving" status.
1931 */
1932 for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) {
1933 unsigned long m;
1934
1935 for (m = s->starving_fl[i]; m; m &= m - 1) {
1936 unsigned int id = __ffs(m) + i * BITS_PER_LONG;
1937 struct sge_fl *fl = s->egr_map[id];
1938
1939 clear_bit(id, s->starving_fl);
1940 smp_mb__after_clear_bit();
1941
1942 /*
1943 * Since we are accessing fl without a lock there's a
1944 * small probability of a false positive where we
1945 * schedule napi but the FL is no longer starving.
1946 * No biggie.
1947 */
1948 if (fl_starving(fl)) {
1949 struct sge_eth_rxq *rxq;
1950
1951 rxq = container_of(fl, struct sge_eth_rxq, fl);
1952 if (napi_reschedule(&rxq->rspq.napi))
1953 fl->starving++;
1954 else
1955 set_bit(id, s->starving_fl);
1956 }
1957 }
1958 }
1959
1960 /*
1961 * Reschedule the next scan for starving Free Lists ...
1962 */
1963 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
1964}
1965
1966/**
1967 * sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues
1968 * @data: the adapter
1969 *
1970 * Runs periodically from a timer to perform maintenance of SGE TX queues.
1971 *
1972 * b) Reclaims completed Tx packets for the Ethernet queues. Normally
1973 * packets are cleaned up by new Tx packets, this timer cleans up packets
1974 * when no new packets are being submitted. This is essential for pktgen,
1975 * at least.
1976 */
1977static void sge_tx_timer_cb(unsigned long data)
1978{
1979 struct adapter *adapter = (struct adapter *)data;
1980 struct sge *s = &adapter->sge;
1981 unsigned int i, budget;
1982
1983 budget = MAX_TIMER_TX_RECLAIM;
1984 i = s->ethtxq_rover;
1985 do {
1986 struct sge_eth_txq *txq = &s->ethtxq[i];
1987
1988 if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) {
1989 int avail = reclaimable(&txq->q);
1990
1991 if (avail > budget)
1992 avail = budget;
1993
1994 free_tx_desc(adapter, &txq->q, avail, true);
1995 txq->q.in_use -= avail;
1996 __netif_tx_unlock(txq->txq);
1997
1998 budget -= avail;
1999 if (!budget)
2000 break;
2001 }
2002
2003 i++;
2004 if (i >= s->ethqsets)
2005 i = 0;
2006 } while (i != s->ethtxq_rover);
2007 s->ethtxq_rover = i;
2008
2009 /*
2010 * If we found too many reclaimable packets schedule a timer in the
2011 * near future to continue where we left off. Otherwise the next timer
2012 * will be at its normal interval.
2013 */
2014 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2015}
2016
2017/**
2018 * t4vf_sge_alloc_rxq - allocate an SGE RX Queue
2019 * @adapter: the adapter
2020 * @rspq: pointer to to the new rxq's Response Queue to be filled in
2021 * @iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue
2022 * @dev: the network device associated with the new rspq
2023 * @intr_dest: MSI-X vector index (overriden in MSI mode)
2024 * @fl: pointer to the new rxq's Free List to be filled in
2025 * @hnd: the interrupt handler to invoke for the rspq
2026 */
2027int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq,
2028 bool iqasynch, struct net_device *dev,
2029 int intr_dest,
2030 struct sge_fl *fl, rspq_handler_t hnd)
2031{
2032 struct port_info *pi = netdev_priv(dev);
2033 struct fw_iq_cmd cmd, rpl;
2034 int ret, iqandst, flsz = 0;
2035
2036 /*
2037 * If we're using MSI interrupts and we're not initializing the
2038 * Forwarded Interrupt Queue itself, then set up this queue for
2039 * indirect interrupts to the Forwarded Interrupt Queue. Obviously
2040 * the Forwarded Interrupt Queue must be set up before any other
2041 * ingress queue ...
2042 */
2043 if ((adapter->flags & USING_MSI) && rspq != &adapter->sge.intrq) {
2044 iqandst = SGE_INTRDST_IQ;
2045 intr_dest = adapter->sge.intrq.abs_id;
2046 } else
2047 iqandst = SGE_INTRDST_PCI;
2048
2049 /*
2050 * Allocate the hardware ring for the Response Queue. The size needs
2051 * to be a multiple of 16 which includes the mandatory status entry
2052 * (regardless of whether the Status Page capabilities are enabled or
2053 * not).
2054 */
2055 rspq->size = roundup(rspq->size, 16);
2056 rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len,
2057 0, &rspq->phys_addr, NULL, 0);
2058 if (!rspq->desc)
2059 return -ENOMEM;
2060
2061 /*
2062 * Fill in the Ingress Queue Command. Note: Ideally this code would
2063 * be in t4vf_hw.c but there are so many parameters and dependencies
2064 * on our Linux SGE state that we would end up having to pass tons of
2065 * parameters. We'll have to think about how this might be migrated
2066 * into OS-independent common code ...
2067 */
2068 memset(&cmd, 0, sizeof(cmd));
2069 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) |
2070 FW_CMD_REQUEST |
2071 FW_CMD_WRITE |
2072 FW_CMD_EXEC);
2073 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC |
2074 FW_IQ_CMD_IQSTART(1) |
2075 FW_LEN16(cmd));
2076 cmd.type_to_iqandstindex =
2077 cpu_to_be32(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2078 FW_IQ_CMD_IQASYNCH(iqasynch) |
2079 FW_IQ_CMD_VIID(pi->viid) |
2080 FW_IQ_CMD_IQANDST(iqandst) |
2081 FW_IQ_CMD_IQANUS(1) |
2082 FW_IQ_CMD_IQANUD(SGE_UPDATEDEL_INTR) |
2083 FW_IQ_CMD_IQANDSTINDEX(intr_dest));
2084 cmd.iqdroprss_to_iqesize =
2085 cpu_to_be16(FW_IQ_CMD_IQPCIECH(pi->port_id) |
2086 FW_IQ_CMD_IQGTSMODE |
2087 FW_IQ_CMD_IQINTCNTTHRESH(rspq->pktcnt_idx) |
2088 FW_IQ_CMD_IQESIZE(ilog2(rspq->iqe_len) - 4));
2089 cmd.iqsize = cpu_to_be16(rspq->size);
2090 cmd.iqaddr = cpu_to_be64(rspq->phys_addr);
2091
2092 if (fl) {
2093 /*
2094 * Allocate the ring for the hardware free list (with space
2095 * for its status page) along with the associated software
2096 * descriptor ring. The free list size needs to be a multiple
2097 * of the Egress Queue Unit.
2098 */
2099 fl->size = roundup(fl->size, FL_PER_EQ_UNIT);
2100 fl->desc = alloc_ring(adapter->pdev_dev, fl->size,
2101 sizeof(__be64), sizeof(struct rx_sw_desc),
2102 &fl->addr, &fl->sdesc, STAT_LEN);
2103 if (!fl->desc) {
2104 ret = -ENOMEM;
2105 goto err;
2106 }
2107
2108 /*
2109 * Calculate the size of the hardware free list ring plus
2110 * status page (which the SGE will place at the end of the
2111 * free list ring) in Egress Queue Units.
2112 */
2113 flsz = (fl->size / FL_PER_EQ_UNIT +
2114 STAT_LEN / EQ_UNIT);
2115
2116 /*
2117 * Fill in all the relevant firmware Ingress Queue Command
2118 * fields for the free list.
2119 */
2120 cmd.iqns_to_fl0congen =
2121 cpu_to_be32(
2122 FW_IQ_CMD_FL0HOSTFCMODE(SGE_HOSTFCMODE_NONE) |
2123 FW_IQ_CMD_FL0PACKEN |
2124 FW_IQ_CMD_FL0PADEN);
2125 cmd.fl0dcaen_to_fl0cidxfthresh =
2126 cpu_to_be16(
2127 FW_IQ_CMD_FL0FBMIN(SGE_FETCHBURSTMIN_64B) |
2128 FW_IQ_CMD_FL0FBMAX(SGE_FETCHBURSTMAX_512B));
2129 cmd.fl0size = cpu_to_be16(flsz);
2130 cmd.fl0addr = cpu_to_be64(fl->addr);
2131 }
2132
2133 /*
2134 * Issue the firmware Ingress Queue Command and extract the results if
2135 * it completes successfully.
2136 */
2137 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2138 if (ret)
2139 goto err;
2140
2141 netif_napi_add(dev, &rspq->napi, napi_rx_handler, 64);
2142 rspq->cur_desc = rspq->desc;
2143 rspq->cidx = 0;
2144 rspq->gen = 1;
2145 rspq->next_intr_params = rspq->intr_params;
2146 rspq->cntxt_id = be16_to_cpu(rpl.iqid);
2147 rspq->abs_id = be16_to_cpu(rpl.physiqid);
2148 rspq->size--; /* subtract status entry */
2149 rspq->adapter = adapter;
2150 rspq->netdev = dev;
2151 rspq->handler = hnd;
2152
2153 /* set offset to -1 to distinguish ingress queues without FL */
2154 rspq->offset = fl ? 0 : -1;
2155
2156 if (fl) {
2157 fl->cntxt_id = be16_to_cpu(rpl.fl0id);
2158 fl->avail = 0;
2159 fl->pend_cred = 0;
2160 fl->pidx = 0;
2161 fl->cidx = 0;
2162 fl->alloc_failed = 0;
2163 fl->large_alloc_failed = 0;
2164 fl->starving = 0;
2165 refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL);
2166 }
2167
2168 return 0;
2169
2170err:
2171 /*
2172 * An error occurred. Clean up our partial allocation state and
2173 * return the error.
2174 */
2175 if (rspq->desc) {
2176 dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len,
2177 rspq->desc, rspq->phys_addr);
2178 rspq->desc = NULL;
2179 }
2180 if (fl && fl->desc) {
2181 kfree(fl->sdesc);
2182 fl->sdesc = NULL;
2183 dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT,
2184 fl->desc, fl->addr);
2185 fl->desc = NULL;
2186 }
2187 return ret;
2188}
2189
2190/**
2191 * t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue
2192 * @adapter: the adapter
2193 * @txq: pointer to the new txq to be filled in
2194 * @devq: the network TX queue associated with the new txq
2195 * @iqid: the relative ingress queue ID to which events relating to
2196 * the new txq should be directed
2197 */
2198int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq,
2199 struct net_device *dev, struct netdev_queue *devq,
2200 unsigned int iqid)
2201{
2202 int ret, nentries;
2203 struct fw_eq_eth_cmd cmd, rpl;
2204 struct port_info *pi = netdev_priv(dev);
2205
2206 /*
2207 * Calculate the size of the hardware TX Queue (including the
2208 * status age on the end) in units of TX Descriptors.
2209 */
2210 nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc);
2211
2212 /*
2213 * Allocate the hardware ring for the TX ring (with space for its
2214 * status page) along with the associated software descriptor ring.
2215 */
2216 txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size,
2217 sizeof(struct tx_desc),
2218 sizeof(struct tx_sw_desc),
2219 &txq->q.phys_addr, &txq->q.sdesc, STAT_LEN);
2220 if (!txq->q.desc)
2221 return -ENOMEM;
2222
2223 /*
2224 * Fill in the Egress Queue Command. Note: As with the direct use of
2225 * the firmware Ingress Queue COmmand above in our RXQ allocation
2226 * routine, ideally, this code would be in t4vf_hw.c. Again, we'll
2227 * have to see if there's some reasonable way to parameterize it
2228 * into the common code ...
2229 */
2230 memset(&cmd, 0, sizeof(cmd));
2231 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) |
2232 FW_CMD_REQUEST |
2233 FW_CMD_WRITE |
2234 FW_CMD_EXEC);
2235 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC |
2236 FW_EQ_ETH_CMD_EQSTART |
2237 FW_LEN16(cmd));
2238 cmd.viid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_VIID(pi->viid));
2239 cmd.fetchszm_to_iqid =
2240 cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE(SGE_HOSTFCMODE_STPG) |
2241 FW_EQ_ETH_CMD_PCIECHN(pi->port_id) |
2242 FW_EQ_ETH_CMD_IQID(iqid));
2243 cmd.dcaen_to_eqsize =
2244 cpu_to_be32(FW_EQ_ETH_CMD_FBMIN(SGE_FETCHBURSTMIN_64B) |
2245 FW_EQ_ETH_CMD_FBMAX(SGE_FETCHBURSTMAX_512B) |
2246 FW_EQ_ETH_CMD_CIDXFTHRESH(SGE_CIDXFLUSHTHRESH_32) |
2247 FW_EQ_ETH_CMD_EQSIZE(nentries));
2248 cmd.eqaddr = cpu_to_be64(txq->q.phys_addr);
2249
2250 /*
2251 * Issue the firmware Egress Queue Command and extract the results if
2252 * it completes successfully.
2253 */
2254 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2255 if (ret) {
2256 /*
2257 * The girmware Ingress Queue Command failed for some reason.
2258 * Free up our partial allocation state and return the error.
2259 */
2260 kfree(txq->q.sdesc);
2261 txq->q.sdesc = NULL;
2262 dma_free_coherent(adapter->pdev_dev,
2263 nentries * sizeof(struct tx_desc),
2264 txq->q.desc, txq->q.phys_addr);
2265 txq->q.desc = NULL;
2266 return ret;
2267 }
2268
2269 txq->q.in_use = 0;
2270 txq->q.cidx = 0;
2271 txq->q.pidx = 0;
2272 txq->q.stat = (void *)&txq->q.desc[txq->q.size];
2273 txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_GET(be32_to_cpu(rpl.eqid_pkd));
2274 txq->q.abs_id =
2275 FW_EQ_ETH_CMD_PHYSEQID_GET(be32_to_cpu(rpl.physeqid_pkd));
2276 txq->txq = devq;
2277 txq->tso = 0;
2278 txq->tx_cso = 0;
2279 txq->vlan_ins = 0;
2280 txq->q.stops = 0;
2281 txq->q.restarts = 0;
2282 txq->mapping_err = 0;
2283 return 0;
2284}
2285
2286/*
2287 * Free the DMA map resources associated with a TX queue.
2288 */
2289static void free_txq(struct adapter *adapter, struct sge_txq *tq)
2290{
2291 dma_free_coherent(adapter->pdev_dev,
2292 tq->size * sizeof(*tq->desc) + STAT_LEN,
2293 tq->desc, tq->phys_addr);
2294 tq->cntxt_id = 0;
2295 tq->sdesc = NULL;
2296 tq->desc = NULL;
2297}
2298
2299/*
2300 * Free the resources associated with a response queue (possibly including a
2301 * free list).
2302 */
2303static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq,
2304 struct sge_fl *fl)
2305{
2306 unsigned int flid = fl ? fl->cntxt_id : 0xffff;
2307
2308 t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP,
2309 rspq->cntxt_id, flid, 0xffff);
2310 dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len,
2311 rspq->desc, rspq->phys_addr);
2312 netif_napi_del(&rspq->napi);
2313 rspq->netdev = NULL;
2314 rspq->cntxt_id = 0;
2315 rspq->abs_id = 0;
2316 rspq->desc = NULL;
2317
2318 if (fl) {
2319 free_rx_bufs(adapter, fl, fl->avail);
2320 dma_free_coherent(adapter->pdev_dev,
2321 fl->size * sizeof(*fl->desc) + STAT_LEN,
2322 fl->desc, fl->addr);
2323 kfree(fl->sdesc);
2324 fl->sdesc = NULL;
2325 fl->cntxt_id = 0;
2326 fl->desc = NULL;
2327 }
2328}
2329
2330/**
2331 * t4vf_free_sge_resources - free SGE resources
2332 * @adapter: the adapter
2333 *
2334 * Frees resources used by the SGE queue sets.
2335 */
2336void t4vf_free_sge_resources(struct adapter *adapter)
2337{
2338 struct sge *s = &adapter->sge;
2339 struct sge_eth_rxq *rxq = s->ethrxq;
2340 struct sge_eth_txq *txq = s->ethtxq;
2341 struct sge_rspq *evtq = &s->fw_evtq;
2342 struct sge_rspq *intrq = &s->intrq;
2343 int qs;
2344
2345 for (qs = 0; qs < adapter->sge.ethqsets; qs++) {
2346 if (rxq->rspq.desc)
2347 free_rspq_fl(adapter, &rxq->rspq, &rxq->fl);
2348 if (txq->q.desc) {
2349 t4vf_eth_eq_free(adapter, txq->q.cntxt_id);
2350 free_tx_desc(adapter, &txq->q, txq->q.in_use, true);
2351 kfree(txq->q.sdesc);
2352 free_txq(adapter, &txq->q);
2353 }
2354 }
2355 if (evtq->desc)
2356 free_rspq_fl(adapter, evtq, NULL);
2357 if (intrq->desc)
2358 free_rspq_fl(adapter, intrq, NULL);
2359}
2360
2361/**
2362 * t4vf_sge_start - enable SGE operation
2363 * @adapter: the adapter
2364 *
2365 * Start tasklets and timers associated with the DMA engine.
2366 */
2367void t4vf_sge_start(struct adapter *adapter)
2368{
2369 adapter->sge.ethtxq_rover = 0;
2370 mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2371 mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2372}
2373
2374/**
2375 * t4vf_sge_stop - disable SGE operation
2376 * @adapter: the adapter
2377 *
2378 * Stop tasklets and timers associated with the DMA engine. Note that
2379 * this is effective only if measures have been taken to disable any HW
2380 * events that may restart them.
2381 */
2382void t4vf_sge_stop(struct adapter *adapter)
2383{
2384 struct sge *s = &adapter->sge;
2385
2386 if (s->rx_timer.function)
2387 del_timer_sync(&s->rx_timer);
2388 if (s->tx_timer.function)
2389 del_timer_sync(&s->tx_timer);
2390}
2391
2392/**
2393 * t4vf_sge_init - initialize SGE
2394 * @adapter: the adapter
2395 *
2396 * Performs SGE initialization needed every time after a chip reset.
2397 * We do not initialize any of the queue sets here, instead the driver
2398 * top-level must request those individually. We also do not enable DMA
2399 * here, that should be done after the queues have been set up.
2400 */
2401int t4vf_sge_init(struct adapter *adapter)
2402{
2403 struct sge_params *sge_params = &adapter->params.sge;
2404 u32 fl0 = sge_params->sge_fl_buffer_size[0];
2405 u32 fl1 = sge_params->sge_fl_buffer_size[1];
2406 struct sge *s = &adapter->sge;
2407
2408 /*
2409 * Start by vetting the basic SGE parameters which have been set up by
2410 * the Physical Function Driver. Ideally we should be able to deal
2411 * with _any_ configuration. Practice is different ...
2412 */
2413 if (fl0 != PAGE_SIZE || (fl1 != 0 && fl1 <= fl0)) {
2414 dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
2415 fl0, fl1);
2416 return -EINVAL;
2417 }
2418 if ((sge_params->sge_control & RXPKTCPLMODE) == 0) {
2419 dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
2420 return -EINVAL;
2421 }
2422
2423 /*
2424 * Now translate the adapter parameters into our internal forms.
2425 */
2426 if (fl1)
2427 FL_PG_ORDER = ilog2(fl1) - PAGE_SHIFT;
2428 STAT_LEN = ((sge_params->sge_control & EGRSTATUSPAGESIZE) ? 128 : 64);
2429 PKTSHIFT = PKTSHIFT_GET(sge_params->sge_control);
2430 FL_ALIGN = 1 << (INGPADBOUNDARY_GET(sge_params->sge_control) +
Casey Leedomb3003be2010-06-29 12:54:12 +00002431 SGE_INGPADBOUNDARY_SHIFT);
Casey Leedomc6e0d912010-06-25 12:13:28 +00002432
2433 /*
2434 * Set up tasklet timers.
2435 */
2436 setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adapter);
2437 setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adapter);
2438
2439 /*
2440 * Initialize Forwarded Interrupt Queue lock.
2441 */
2442 spin_lock_init(&s->intrq_lock);
2443
2444 return 0;
2445}