Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Adaptec AAC series RAID controller driver |
| 3 | * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com> |
| 4 | * |
| 5 | * based on the old aacraid driver that is.. |
| 6 | * Adaptec aacraid device driver for Linux. |
| 7 | * |
| 8 | * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com) |
| 9 | * |
| 10 | * This program is free software; you can redistribute it and/or modify |
| 11 | * it under the terms of the GNU General Public License as published by |
| 12 | * the Free Software Foundation; either version 2, or (at your option) |
| 13 | * any later version. |
| 14 | * |
| 15 | * This program is distributed in the hope that it will be useful, |
| 16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 18 | * GNU General Public License for more details. |
| 19 | * |
| 20 | * You should have received a copy of the GNU General Public License |
| 21 | * along with this program; see the file COPYING. If not, write to |
| 22 | * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. |
| 23 | * |
| 24 | * Module Name: |
| 25 | * commsup.c |
| 26 | * |
| 27 | * Abstract: Contain all routines that are required for FSA host/adapter |
| 28 | * commuication. |
| 29 | * |
| 30 | */ |
| 31 | |
| 32 | #include <linux/kernel.h> |
| 33 | #include <linux/init.h> |
| 34 | #include <linux/types.h> |
| 35 | #include <linux/sched.h> |
| 36 | #include <linux/pci.h> |
| 37 | #include <linux/spinlock.h> |
| 38 | #include <linux/slab.h> |
| 39 | #include <linux/completion.h> |
| 40 | #include <linux/blkdev.h> |
| 41 | #include <asm/semaphore.h> |
| 42 | |
| 43 | #include "aacraid.h" |
| 44 | |
| 45 | /** |
| 46 | * fib_map_alloc - allocate the fib objects |
| 47 | * @dev: Adapter to allocate for |
| 48 | * |
| 49 | * Allocate and map the shared PCI space for the FIB blocks used to |
| 50 | * talk to the Adaptec firmware. |
| 51 | */ |
| 52 | |
| 53 | static int fib_map_alloc(struct aac_dev *dev) |
| 54 | { |
| 55 | if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, sizeof(struct hw_fib) * AAC_NUM_FIB, &dev->hw_fib_pa))==NULL) |
| 56 | return -ENOMEM; |
| 57 | return 0; |
| 58 | } |
| 59 | |
| 60 | /** |
| 61 | * fib_map_free - free the fib objects |
| 62 | * @dev: Adapter to free |
| 63 | * |
| 64 | * Free the PCI mappings and the memory allocated for FIB blocks |
| 65 | * on this adapter. |
| 66 | */ |
| 67 | |
| 68 | void fib_map_free(struct aac_dev *dev) |
| 69 | { |
| 70 | pci_free_consistent(dev->pdev, sizeof(struct hw_fib) * AAC_NUM_FIB, dev->hw_fib_va, dev->hw_fib_pa); |
| 71 | } |
| 72 | |
| 73 | /** |
| 74 | * fib_setup - setup the fibs |
| 75 | * @dev: Adapter to set up |
| 76 | * |
| 77 | * Allocate the PCI space for the fibs, map it and then intialise the |
| 78 | * fib area, the unmapped fib data and also the free list |
| 79 | */ |
| 80 | |
| 81 | int fib_setup(struct aac_dev * dev) |
| 82 | { |
| 83 | struct fib *fibptr; |
| 84 | struct hw_fib *hw_fib_va; |
| 85 | dma_addr_t hw_fib_pa; |
| 86 | int i; |
| 87 | |
| 88 | if(fib_map_alloc(dev)<0) |
| 89 | return -ENOMEM; |
| 90 | |
| 91 | hw_fib_va = dev->hw_fib_va; |
| 92 | hw_fib_pa = dev->hw_fib_pa; |
| 93 | memset(hw_fib_va, 0, sizeof(struct hw_fib) * AAC_NUM_FIB); |
| 94 | /* |
| 95 | * Initialise the fibs |
| 96 | */ |
| 97 | for (i = 0, fibptr = &dev->fibs[i]; i < AAC_NUM_FIB; i++, fibptr++) |
| 98 | { |
| 99 | fibptr->dev = dev; |
| 100 | fibptr->hw_fib = hw_fib_va; |
| 101 | fibptr->data = (void *) fibptr->hw_fib->data; |
| 102 | fibptr->next = fibptr+1; /* Forward chain the fibs */ |
| 103 | init_MUTEX_LOCKED(&fibptr->event_wait); |
| 104 | spin_lock_init(&fibptr->event_lock); |
Mark Haverkamp | 56b5871 | 2005-04-27 06:05:51 -0700 | [diff] [blame^] | 105 | hw_fib_va->header.XferState = cpu_to_le32(0xffffffff); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 106 | hw_fib_va->header.SenderSize = cpu_to_le16(sizeof(struct hw_fib)); |
| 107 | fibptr->hw_fib_pa = hw_fib_pa; |
| 108 | hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + sizeof(struct hw_fib)); |
| 109 | hw_fib_pa = hw_fib_pa + sizeof(struct hw_fib); |
| 110 | } |
| 111 | /* |
| 112 | * Add the fib chain to the free list |
| 113 | */ |
| 114 | dev->fibs[AAC_NUM_FIB-1].next = NULL; |
| 115 | /* |
| 116 | * Enable this to debug out of queue space |
| 117 | */ |
| 118 | dev->free_fib = &dev->fibs[0]; |
| 119 | return 0; |
| 120 | } |
| 121 | |
| 122 | /** |
| 123 | * fib_alloc - allocate a fib |
| 124 | * @dev: Adapter to allocate the fib for |
| 125 | * |
| 126 | * Allocate a fib from the adapter fib pool. If the pool is empty we |
| 127 | * wait for fibs to become free. |
| 128 | */ |
| 129 | |
| 130 | struct fib * fib_alloc(struct aac_dev *dev) |
| 131 | { |
| 132 | struct fib * fibptr; |
| 133 | unsigned long flags; |
| 134 | spin_lock_irqsave(&dev->fib_lock, flags); |
| 135 | fibptr = dev->free_fib; |
| 136 | /* Cannot sleep here or you get hangs. Instead we did the |
| 137 | maths at compile time. */ |
| 138 | if(!fibptr) |
| 139 | BUG(); |
| 140 | dev->free_fib = fibptr->next; |
| 141 | spin_unlock_irqrestore(&dev->fib_lock, flags); |
| 142 | /* |
| 143 | * Set the proper node type code and node byte size |
| 144 | */ |
| 145 | fibptr->type = FSAFS_NTC_FIB_CONTEXT; |
| 146 | fibptr->size = sizeof(struct fib); |
| 147 | /* |
| 148 | * Null out fields that depend on being zero at the start of |
| 149 | * each I/O |
| 150 | */ |
| 151 | fibptr->hw_fib->header.XferState = 0; |
| 152 | fibptr->callback = NULL; |
| 153 | fibptr->callback_data = NULL; |
| 154 | |
| 155 | return fibptr; |
| 156 | } |
| 157 | |
| 158 | /** |
| 159 | * fib_free - free a fib |
| 160 | * @fibptr: fib to free up |
| 161 | * |
| 162 | * Frees up a fib and places it on the appropriate queue |
| 163 | * (either free or timed out) |
| 164 | */ |
| 165 | |
| 166 | void fib_free(struct fib * fibptr) |
| 167 | { |
| 168 | unsigned long flags; |
| 169 | |
| 170 | spin_lock_irqsave(&fibptr->dev->fib_lock, flags); |
| 171 | if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) { |
| 172 | aac_config.fib_timeouts++; |
| 173 | fibptr->next = fibptr->dev->timeout_fib; |
| 174 | fibptr->dev->timeout_fib = fibptr; |
| 175 | } else { |
| 176 | if (fibptr->hw_fib->header.XferState != 0) { |
| 177 | printk(KERN_WARNING "fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", |
| 178 | (void*)fibptr, |
| 179 | le32_to_cpu(fibptr->hw_fib->header.XferState)); |
| 180 | } |
| 181 | fibptr->next = fibptr->dev->free_fib; |
| 182 | fibptr->dev->free_fib = fibptr; |
| 183 | } |
| 184 | spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); |
| 185 | } |
| 186 | |
| 187 | /** |
| 188 | * fib_init - initialise a fib |
| 189 | * @fibptr: The fib to initialize |
| 190 | * |
| 191 | * Set up the generic fib fields ready for use |
| 192 | */ |
| 193 | |
| 194 | void fib_init(struct fib *fibptr) |
| 195 | { |
| 196 | struct hw_fib *hw_fib = fibptr->hw_fib; |
| 197 | |
| 198 | hw_fib->header.StructType = FIB_MAGIC; |
| 199 | hw_fib->header.Size = cpu_to_le16(sizeof(struct hw_fib)); |
| 200 | hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); |
| 201 | hw_fib->header.SenderFibAddress = cpu_to_le32(fibptr->hw_fib_pa); |
| 202 | hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); |
| 203 | hw_fib->header.SenderSize = cpu_to_le16(sizeof(struct hw_fib)); |
| 204 | } |
| 205 | |
| 206 | /** |
| 207 | * fib_deallocate - deallocate a fib |
| 208 | * @fibptr: fib to deallocate |
| 209 | * |
| 210 | * Will deallocate and return to the free pool the FIB pointed to by the |
| 211 | * caller. |
| 212 | */ |
| 213 | |
Adrian Bunk | 4833869 | 2005-04-25 19:45:58 -0700 | [diff] [blame] | 214 | static void fib_dealloc(struct fib * fibptr) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 215 | { |
| 216 | struct hw_fib *hw_fib = fibptr->hw_fib; |
| 217 | if(hw_fib->header.StructType != FIB_MAGIC) |
| 218 | BUG(); |
| 219 | hw_fib->header.XferState = 0; |
| 220 | } |
| 221 | |
| 222 | /* |
| 223 | * Commuication primitives define and support the queuing method we use to |
| 224 | * support host to adapter commuication. All queue accesses happen through |
| 225 | * these routines and are the only routines which have a knowledge of the |
| 226 | * how these queues are implemented. |
| 227 | */ |
| 228 | |
| 229 | /** |
| 230 | * aac_get_entry - get a queue entry |
| 231 | * @dev: Adapter |
| 232 | * @qid: Queue Number |
| 233 | * @entry: Entry return |
| 234 | * @index: Index return |
| 235 | * @nonotify: notification control |
| 236 | * |
| 237 | * With a priority the routine returns a queue entry if the queue has free entries. If the queue |
| 238 | * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is |
| 239 | * returned. |
| 240 | */ |
| 241 | |
| 242 | static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) |
| 243 | { |
| 244 | struct aac_queue * q; |
| 245 | |
| 246 | /* |
| 247 | * All of the queues wrap when they reach the end, so we check |
| 248 | * to see if they have reached the end and if they have we just |
| 249 | * set the index back to zero. This is a wrap. You could or off |
| 250 | * the high bits in all updates but this is a bit faster I think. |
| 251 | */ |
| 252 | |
| 253 | q = &dev->queues->queue[qid]; |
| 254 | |
| 255 | *index = le32_to_cpu(*(q->headers.producer)); |
| 256 | if ((*index - 2) == le32_to_cpu(*(q->headers.consumer))) |
| 257 | *nonotify = 1; |
| 258 | |
| 259 | if (qid == AdapHighCmdQueue) { |
| 260 | if (*index >= ADAP_HIGH_CMD_ENTRIES) |
| 261 | *index = 0; |
| 262 | } else if (qid == AdapNormCmdQueue) { |
| 263 | if (*index >= ADAP_NORM_CMD_ENTRIES) |
| 264 | *index = 0; /* Wrap to front of the Producer Queue. */ |
| 265 | } |
| 266 | else if (qid == AdapHighRespQueue) |
| 267 | { |
| 268 | if (*index >= ADAP_HIGH_RESP_ENTRIES) |
| 269 | *index = 0; |
| 270 | } |
| 271 | else if (qid == AdapNormRespQueue) |
| 272 | { |
| 273 | if (*index >= ADAP_NORM_RESP_ENTRIES) |
| 274 | *index = 0; /* Wrap to front of the Producer Queue. */ |
| 275 | } |
| 276 | else { |
| 277 | printk("aacraid: invalid qid\n"); |
| 278 | BUG(); |
| 279 | } |
| 280 | |
| 281 | if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */ |
| 282 | printk(KERN_WARNING "Queue %d full, %d outstanding.\n", |
| 283 | qid, q->numpending); |
| 284 | return 0; |
| 285 | } else { |
| 286 | *entry = q->base + *index; |
| 287 | return 1; |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | /** |
| 292 | * aac_queue_get - get the next free QE |
| 293 | * @dev: Adapter |
| 294 | * @index: Returned index |
| 295 | * @priority: Priority of fib |
| 296 | * @fib: Fib to associate with the queue entry |
| 297 | * @wait: Wait if queue full |
| 298 | * @fibptr: Driver fib object to go with fib |
| 299 | * @nonotify: Don't notify the adapter |
| 300 | * |
| 301 | * Gets the next free QE off the requested priorty adapter command |
| 302 | * queue and associates the Fib with the QE. The QE represented by |
| 303 | * index is ready to insert on the queue when this routine returns |
| 304 | * success. |
| 305 | */ |
| 306 | |
| 307 | static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) |
| 308 | { |
| 309 | struct aac_entry * entry = NULL; |
| 310 | int map = 0; |
| 311 | struct aac_queue * q = &dev->queues->queue[qid]; |
| 312 | |
| 313 | spin_lock_irqsave(q->lock, q->SavedIrql); |
| 314 | |
| 315 | if (qid == AdapHighCmdQueue || qid == AdapNormCmdQueue) |
| 316 | { |
| 317 | /* if no entries wait for some if caller wants to */ |
| 318 | while (!aac_get_entry(dev, qid, &entry, index, nonotify)) |
| 319 | { |
| 320 | printk(KERN_ERR "GetEntries failed\n"); |
| 321 | } |
| 322 | /* |
| 323 | * Setup queue entry with a command, status and fib mapped |
| 324 | */ |
| 325 | entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); |
| 326 | map = 1; |
| 327 | } |
| 328 | else if (qid == AdapHighRespQueue || qid == AdapNormRespQueue) |
| 329 | { |
| 330 | while(!aac_get_entry(dev, qid, &entry, index, nonotify)) |
| 331 | { |
| 332 | /* if no entries wait for some if caller wants to */ |
| 333 | } |
| 334 | /* |
| 335 | * Setup queue entry with command, status and fib mapped |
| 336 | */ |
| 337 | entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); |
| 338 | entry->addr = hw_fib->header.SenderFibAddress; |
| 339 | /* Restore adapters pointer to the FIB */ |
| 340 | hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */ |
| 341 | map = 0; |
| 342 | } |
| 343 | /* |
| 344 | * If MapFib is true than we need to map the Fib and put pointers |
| 345 | * in the queue entry. |
| 346 | */ |
| 347 | if (map) |
| 348 | entry->addr = cpu_to_le32(fibptr->hw_fib_pa); |
| 349 | return 0; |
| 350 | } |
| 351 | |
| 352 | |
| 353 | /** |
| 354 | * aac_insert_entry - insert a queue entry |
| 355 | * @dev: Adapter |
| 356 | * @index: Index of entry to insert |
| 357 | * @qid: Queue number |
| 358 | * @nonotify: Suppress adapter notification |
| 359 | * |
| 360 | * Gets the next free QE off the requested priorty adapter command |
| 361 | * queue and associates the Fib with the QE. The QE represented by |
| 362 | * index is ready to insert on the queue when this routine returns |
| 363 | * success. |
| 364 | */ |
| 365 | |
| 366 | static int aac_insert_entry(struct aac_dev * dev, u32 index, u32 qid, unsigned long nonotify) |
| 367 | { |
| 368 | struct aac_queue * q = &dev->queues->queue[qid]; |
| 369 | |
| 370 | if(q == NULL) |
| 371 | BUG(); |
| 372 | *(q->headers.producer) = cpu_to_le32(index + 1); |
| 373 | spin_unlock_irqrestore(q->lock, q->SavedIrql); |
| 374 | |
| 375 | if (qid == AdapHighCmdQueue || |
| 376 | qid == AdapNormCmdQueue || |
| 377 | qid == AdapHighRespQueue || |
| 378 | qid == AdapNormRespQueue) |
| 379 | { |
| 380 | if (!nonotify) |
| 381 | aac_adapter_notify(dev, qid); |
| 382 | } |
| 383 | else |
| 384 | printk("Suprise insert!\n"); |
| 385 | return 0; |
| 386 | } |
| 387 | |
| 388 | /* |
| 389 | * Define the highest level of host to adapter communication routines. |
| 390 | * These routines will support host to adapter FS commuication. These |
| 391 | * routines have no knowledge of the commuication method used. This level |
| 392 | * sends and receives FIBs. This level has no knowledge of how these FIBs |
| 393 | * get passed back and forth. |
| 394 | */ |
| 395 | |
| 396 | /** |
| 397 | * fib_send - send a fib to the adapter |
| 398 | * @command: Command to send |
| 399 | * @fibptr: The fib |
| 400 | * @size: Size of fib data area |
| 401 | * @priority: Priority of Fib |
| 402 | * @wait: Async/sync select |
| 403 | * @reply: True if a reply is wanted |
| 404 | * @callback: Called with reply |
| 405 | * @callback_data: Passed to callback |
| 406 | * |
| 407 | * Sends the requested FIB to the adapter and optionally will wait for a |
| 408 | * response FIB. If the caller does not wish to wait for a response than |
| 409 | * an event to wait on must be supplied. This event will be set when a |
| 410 | * response FIB is received from the adapter. |
| 411 | */ |
| 412 | |
| 413 | int fib_send(u16 command, struct fib * fibptr, unsigned long size, int priority, int wait, int reply, fib_callback callback, void * callback_data) |
| 414 | { |
| 415 | u32 index; |
| 416 | u32 qid; |
| 417 | struct aac_dev * dev = fibptr->dev; |
| 418 | unsigned long nointr = 0; |
| 419 | struct hw_fib * hw_fib = fibptr->hw_fib; |
| 420 | struct aac_queue * q; |
| 421 | unsigned long flags = 0; |
| 422 | if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) |
| 423 | return -EBUSY; |
| 424 | /* |
| 425 | * There are 5 cases with the wait and reponse requested flags. |
| 426 | * The only invalid cases are if the caller requests to wait and |
| 427 | * does not request a response and if the caller does not want a |
| 428 | * response and the Fib is not allocated from pool. If a response |
| 429 | * is not requesed the Fib will just be deallocaed by the DPC |
| 430 | * routine when the response comes back from the adapter. No |
| 431 | * further processing will be done besides deleting the Fib. We |
| 432 | * will have a debug mode where the adapter can notify the host |
| 433 | * it had a problem and the host can log that fact. |
| 434 | */ |
| 435 | if (wait && !reply) { |
| 436 | return -EINVAL; |
| 437 | } else if (!wait && reply) { |
| 438 | hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); |
| 439 | FIB_COUNTER_INCREMENT(aac_config.AsyncSent); |
| 440 | } else if (!wait && !reply) { |
| 441 | hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); |
| 442 | FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); |
| 443 | } else if (wait && reply) { |
| 444 | hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); |
| 445 | FIB_COUNTER_INCREMENT(aac_config.NormalSent); |
| 446 | } |
| 447 | /* |
| 448 | * Map the fib into 32bits by using the fib number |
| 449 | */ |
| 450 | |
| 451 | hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr-dev->fibs)) << 1); |
| 452 | hw_fib->header.SenderData = (u32)(fibptr - dev->fibs); |
| 453 | /* |
| 454 | * Set FIB state to indicate where it came from and if we want a |
| 455 | * response from the adapter. Also load the command from the |
| 456 | * caller. |
| 457 | * |
| 458 | * Map the hw fib pointer as a 32bit value |
| 459 | */ |
| 460 | hw_fib->header.Command = cpu_to_le16(command); |
| 461 | hw_fib->header.XferState |= cpu_to_le32(SentFromHost); |
| 462 | fibptr->hw_fib->header.Flags = 0; /* 0 the flags field - internal only*/ |
| 463 | /* |
| 464 | * Set the size of the Fib we want to send to the adapter |
| 465 | */ |
| 466 | hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); |
| 467 | if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { |
| 468 | return -EMSGSIZE; |
| 469 | } |
| 470 | /* |
| 471 | * Get a queue entry connect the FIB to it and send an notify |
| 472 | * the adapter a command is ready. |
| 473 | */ |
| 474 | if (priority == FsaHigh) { |
| 475 | hw_fib->header.XferState |= cpu_to_le32(HighPriority); |
| 476 | qid = AdapHighCmdQueue; |
| 477 | } else { |
| 478 | hw_fib->header.XferState |= cpu_to_le32(NormalPriority); |
| 479 | qid = AdapNormCmdQueue; |
| 480 | } |
| 481 | q = &dev->queues->queue[qid]; |
| 482 | |
| 483 | if(wait) |
| 484 | spin_lock_irqsave(&fibptr->event_lock, flags); |
| 485 | if(aac_queue_get( dev, &index, qid, hw_fib, 1, fibptr, &nointr)<0) |
| 486 | return -EWOULDBLOCK; |
| 487 | dprintk((KERN_DEBUG "fib_send: inserting a queue entry at index %d.\n",index)); |
| 488 | dprintk((KERN_DEBUG "Fib contents:.\n")); |
| 489 | dprintk((KERN_DEBUG " Command = %d.\n", hw_fib->header.Command)); |
| 490 | dprintk((KERN_DEBUG " XferState = %x.\n", hw_fib->header.XferState)); |
| 491 | dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib)); |
| 492 | dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); |
| 493 | dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr)); |
| 494 | /* |
| 495 | * Fill in the Callback and CallbackContext if we are not |
| 496 | * going to wait. |
| 497 | */ |
| 498 | if (!wait) { |
| 499 | fibptr->callback = callback; |
| 500 | fibptr->callback_data = callback_data; |
| 501 | } |
| 502 | FIB_COUNTER_INCREMENT(aac_config.FibsSent); |
| 503 | list_add_tail(&fibptr->queue, &q->pendingq); |
| 504 | q->numpending++; |
| 505 | |
| 506 | fibptr->done = 0; |
| 507 | fibptr->flags = 0; |
| 508 | |
| 509 | if(aac_insert_entry(dev, index, qid, (nointr & aac_config.irq_mod)) < 0) |
| 510 | return -EWOULDBLOCK; |
| 511 | /* |
| 512 | * If the caller wanted us to wait for response wait now. |
| 513 | */ |
| 514 | |
| 515 | if (wait) { |
| 516 | spin_unlock_irqrestore(&fibptr->event_lock, flags); |
| 517 | down(&fibptr->event_wait); |
| 518 | if(fibptr->done == 0) |
| 519 | BUG(); |
| 520 | |
| 521 | if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){ |
| 522 | return -ETIMEDOUT; |
| 523 | } else { |
| 524 | return 0; |
| 525 | } |
| 526 | } |
| 527 | /* |
| 528 | * If the user does not want a response than return success otherwise |
| 529 | * return pending |
| 530 | */ |
| 531 | if (reply) |
| 532 | return -EINPROGRESS; |
| 533 | else |
| 534 | return 0; |
| 535 | } |
| 536 | |
| 537 | /** |
| 538 | * aac_consumer_get - get the top of the queue |
| 539 | * @dev: Adapter |
| 540 | * @q: Queue |
| 541 | * @entry: Return entry |
| 542 | * |
| 543 | * Will return a pointer to the entry on the top of the queue requested that |
| 544 | * we are a consumer of, and return the address of the queue entry. It does |
| 545 | * not change the state of the queue. |
| 546 | */ |
| 547 | |
| 548 | int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) |
| 549 | { |
| 550 | u32 index; |
| 551 | int status; |
| 552 | if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { |
| 553 | status = 0; |
| 554 | } else { |
| 555 | /* |
| 556 | * The consumer index must be wrapped if we have reached |
| 557 | * the end of the queue, else we just use the entry |
| 558 | * pointed to by the header index |
| 559 | */ |
| 560 | if (le32_to_cpu(*q->headers.consumer) >= q->entries) |
| 561 | index = 0; |
| 562 | else |
| 563 | index = le32_to_cpu(*q->headers.consumer); |
| 564 | *entry = q->base + index; |
| 565 | status = 1; |
| 566 | } |
| 567 | return(status); |
| 568 | } |
| 569 | |
| 570 | /** |
| 571 | * aac_consumer_free - free consumer entry |
| 572 | * @dev: Adapter |
| 573 | * @q: Queue |
| 574 | * @qid: Queue ident |
| 575 | * |
| 576 | * Frees up the current top of the queue we are a consumer of. If the |
| 577 | * queue was full notify the producer that the queue is no longer full. |
| 578 | */ |
| 579 | |
| 580 | void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) |
| 581 | { |
| 582 | int wasfull = 0; |
| 583 | u32 notify; |
| 584 | |
| 585 | if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) |
| 586 | wasfull = 1; |
| 587 | |
| 588 | if (le32_to_cpu(*q->headers.consumer) >= q->entries) |
| 589 | *q->headers.consumer = cpu_to_le32(1); |
| 590 | else |
| 591 | *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1); |
| 592 | |
| 593 | if (wasfull) { |
| 594 | switch (qid) { |
| 595 | |
| 596 | case HostNormCmdQueue: |
| 597 | notify = HostNormCmdNotFull; |
| 598 | break; |
| 599 | case HostHighCmdQueue: |
| 600 | notify = HostHighCmdNotFull; |
| 601 | break; |
| 602 | case HostNormRespQueue: |
| 603 | notify = HostNormRespNotFull; |
| 604 | break; |
| 605 | case HostHighRespQueue: |
| 606 | notify = HostHighRespNotFull; |
| 607 | break; |
| 608 | default: |
| 609 | BUG(); |
| 610 | return; |
| 611 | } |
| 612 | aac_adapter_notify(dev, notify); |
| 613 | } |
| 614 | } |
| 615 | |
| 616 | /** |
| 617 | * fib_adapter_complete - complete adapter issued fib |
| 618 | * @fibptr: fib to complete |
| 619 | * @size: size of fib |
| 620 | * |
| 621 | * Will do all necessary work to complete a FIB that was sent from |
| 622 | * the adapter. |
| 623 | */ |
| 624 | |
| 625 | int fib_adapter_complete(struct fib * fibptr, unsigned short size) |
| 626 | { |
| 627 | struct hw_fib * hw_fib = fibptr->hw_fib; |
| 628 | struct aac_dev * dev = fibptr->dev; |
| 629 | unsigned long nointr = 0; |
| 630 | if (hw_fib->header.XferState == 0) |
| 631 | return 0; |
| 632 | /* |
| 633 | * If we plan to do anything check the structure type first. |
| 634 | */ |
| 635 | if ( hw_fib->header.StructType != FIB_MAGIC ) { |
| 636 | return -EINVAL; |
| 637 | } |
| 638 | /* |
| 639 | * This block handles the case where the adapter had sent us a |
| 640 | * command and we have finished processing the command. We |
| 641 | * call completeFib when we are done processing the command |
| 642 | * and want to send a response back to the adapter. This will |
| 643 | * send the completed cdb to the adapter. |
| 644 | */ |
| 645 | if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { |
| 646 | hw_fib->header.XferState |= cpu_to_le32(HostProcessed); |
| 647 | if (hw_fib->header.XferState & cpu_to_le32(HighPriority)) { |
| 648 | u32 index; |
| 649 | if (size) |
| 650 | { |
| 651 | size += sizeof(struct aac_fibhdr); |
| 652 | if (size > le16_to_cpu(hw_fib->header.SenderSize)) |
| 653 | return -EMSGSIZE; |
| 654 | hw_fib->header.Size = cpu_to_le16(size); |
| 655 | } |
| 656 | if(aac_queue_get(dev, &index, AdapHighRespQueue, hw_fib, 1, NULL, &nointr) < 0) { |
| 657 | return -EWOULDBLOCK; |
| 658 | } |
| 659 | if (aac_insert_entry(dev, index, AdapHighRespQueue, (nointr & (int)aac_config.irq_mod)) != 0) { |
| 660 | } |
Mark Haverkamp | 56b5871 | 2005-04-27 06:05:51 -0700 | [diff] [blame^] | 661 | } else if (hw_fib->header.XferState & |
| 662 | cpu_to_le32(NormalPriority)) { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 663 | u32 index; |
| 664 | |
| 665 | if (size) { |
| 666 | size += sizeof(struct aac_fibhdr); |
| 667 | if (size > le16_to_cpu(hw_fib->header.SenderSize)) |
| 668 | return -EMSGSIZE; |
| 669 | hw_fib->header.Size = cpu_to_le16(size); |
| 670 | } |
| 671 | if (aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr) < 0) |
| 672 | return -EWOULDBLOCK; |
| 673 | if (aac_insert_entry(dev, index, AdapNormRespQueue, (nointr & (int)aac_config.irq_mod)) != 0) |
| 674 | { |
| 675 | } |
| 676 | } |
| 677 | } |
| 678 | else |
| 679 | { |
| 680 | printk(KERN_WARNING "fib_adapter_complete: Unknown xferstate detected.\n"); |
| 681 | BUG(); |
| 682 | } |
| 683 | return 0; |
| 684 | } |
| 685 | |
| 686 | /** |
| 687 | * fib_complete - fib completion handler |
| 688 | * @fib: FIB to complete |
| 689 | * |
| 690 | * Will do all necessary work to complete a FIB. |
| 691 | */ |
| 692 | |
| 693 | int fib_complete(struct fib * fibptr) |
| 694 | { |
| 695 | struct hw_fib * hw_fib = fibptr->hw_fib; |
| 696 | |
| 697 | /* |
| 698 | * Check for a fib which has already been completed |
| 699 | */ |
| 700 | |
| 701 | if (hw_fib->header.XferState == 0) |
| 702 | return 0; |
| 703 | /* |
| 704 | * If we plan to do anything check the structure type first. |
| 705 | */ |
| 706 | |
| 707 | if (hw_fib->header.StructType != FIB_MAGIC) |
| 708 | return -EINVAL; |
| 709 | /* |
| 710 | * This block completes a cdb which orginated on the host and we |
| 711 | * just need to deallocate the cdb or reinit it. At this point the |
| 712 | * command is complete that we had sent to the adapter and this |
| 713 | * cdb could be reused. |
| 714 | */ |
| 715 | if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && |
| 716 | (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) |
| 717 | { |
| 718 | fib_dealloc(fibptr); |
| 719 | } |
| 720 | else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) |
| 721 | { |
| 722 | /* |
| 723 | * This handles the case when the host has aborted the I/O |
| 724 | * to the adapter because the adapter is not responding |
| 725 | */ |
| 726 | fib_dealloc(fibptr); |
| 727 | } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { |
| 728 | fib_dealloc(fibptr); |
| 729 | } else { |
| 730 | BUG(); |
| 731 | } |
| 732 | return 0; |
| 733 | } |
| 734 | |
| 735 | /** |
| 736 | * aac_printf - handle printf from firmware |
| 737 | * @dev: Adapter |
| 738 | * @val: Message info |
| 739 | * |
| 740 | * Print a message passed to us by the controller firmware on the |
| 741 | * Adaptec board |
| 742 | */ |
| 743 | |
| 744 | void aac_printf(struct aac_dev *dev, u32 val) |
| 745 | { |
| 746 | int length = val & 0xffff; |
| 747 | int level = (val >> 16) & 0xffff; |
| 748 | char *cp = dev->printfbuf; |
| 749 | |
| 750 | /* |
| 751 | * The size of the printfbuf is set in port.c |
| 752 | * There is no variable or define for it |
| 753 | */ |
| 754 | if (length > 255) |
| 755 | length = 255; |
| 756 | if (cp[length] != 0) |
| 757 | cp[length] = 0; |
| 758 | if (level == LOG_AAC_HIGH_ERROR) |
| 759 | printk(KERN_WARNING "aacraid:%s", cp); |
| 760 | else |
| 761 | printk(KERN_INFO "aacraid:%s", cp); |
| 762 | memset(cp, 0, 256); |
| 763 | } |
| 764 | |
| 765 | /** |
| 766 | * aac_command_thread - command processing thread |
| 767 | * @dev: Adapter to monitor |
| 768 | * |
| 769 | * Waits on the commandready event in it's queue. When the event gets set |
| 770 | * it will pull FIBs off it's queue. It will continue to pull FIBs off |
| 771 | * until the queue is empty. When the queue is empty it will wait for |
| 772 | * more FIBs. |
| 773 | */ |
| 774 | |
| 775 | int aac_command_thread(struct aac_dev * dev) |
| 776 | { |
| 777 | struct hw_fib *hw_fib, *hw_newfib; |
| 778 | struct fib *fib, *newfib; |
| 779 | struct aac_queue_block *queues = dev->queues; |
| 780 | struct aac_fib_context *fibctx; |
| 781 | unsigned long flags; |
| 782 | DECLARE_WAITQUEUE(wait, current); |
| 783 | |
| 784 | /* |
| 785 | * We can only have one thread per adapter for AIF's. |
| 786 | */ |
| 787 | if (dev->aif_thread) |
| 788 | return -EINVAL; |
| 789 | /* |
| 790 | * Set up the name that will appear in 'ps' |
| 791 | * stored in task_struct.comm[16]. |
| 792 | */ |
| 793 | daemonize("aacraid"); |
| 794 | allow_signal(SIGKILL); |
| 795 | /* |
| 796 | * Let the DPC know it has a place to send the AIF's to. |
| 797 | */ |
| 798 | dev->aif_thread = 1; |
| 799 | add_wait_queue(&queues->queue[HostNormCmdQueue].cmdready, &wait); |
| 800 | set_current_state(TASK_INTERRUPTIBLE); |
| 801 | while(1) |
| 802 | { |
| 803 | spin_lock_irqsave(queues->queue[HostNormCmdQueue].lock, flags); |
| 804 | while(!list_empty(&(queues->queue[HostNormCmdQueue].cmdq))) { |
| 805 | struct list_head *entry; |
| 806 | struct aac_aifcmd * aifcmd; |
| 807 | |
| 808 | set_current_state(TASK_RUNNING); |
| 809 | |
| 810 | entry = queues->queue[HostNormCmdQueue].cmdq.next; |
| 811 | list_del(entry); |
| 812 | |
| 813 | spin_unlock_irqrestore(queues->queue[HostNormCmdQueue].lock, flags); |
| 814 | fib = list_entry(entry, struct fib, fiblink); |
| 815 | /* |
| 816 | * We will process the FIB here or pass it to a |
| 817 | * worker thread that is TBD. We Really can't |
| 818 | * do anything at this point since we don't have |
| 819 | * anything defined for this thread to do. |
| 820 | */ |
| 821 | hw_fib = fib->hw_fib; |
| 822 | memset(fib, 0, sizeof(struct fib)); |
| 823 | fib->type = FSAFS_NTC_FIB_CONTEXT; |
| 824 | fib->size = sizeof( struct fib ); |
| 825 | fib->hw_fib = hw_fib; |
| 826 | fib->data = hw_fib->data; |
| 827 | fib->dev = dev; |
| 828 | /* |
| 829 | * We only handle AifRequest fibs from the adapter. |
| 830 | */ |
| 831 | aifcmd = (struct aac_aifcmd *) hw_fib->data; |
| 832 | if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { |
| 833 | /* Handle Driver Notify Events */ |
Mark Haverkamp | 56b5871 | 2005-04-27 06:05:51 -0700 | [diff] [blame^] | 834 | *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); |
| 835 | fib_adapter_complete(fib, (u16)sizeof(u32)); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 836 | } else { |
| 837 | struct list_head *entry; |
| 838 | /* The u32 here is important and intended. We are using |
| 839 | 32bit wrapping time to fit the adapter field */ |
| 840 | |
| 841 | u32 time_now, time_last; |
| 842 | unsigned long flagv; |
| 843 | |
| 844 | time_now = jiffies/HZ; |
| 845 | |
| 846 | spin_lock_irqsave(&dev->fib_lock, flagv); |
| 847 | entry = dev->fib_list.next; |
| 848 | /* |
| 849 | * For each Context that is on the |
| 850 | * fibctxList, make a copy of the |
| 851 | * fib, and then set the event to wake up the |
| 852 | * thread that is waiting for it. |
| 853 | */ |
| 854 | while (entry != &dev->fib_list) { |
| 855 | /* |
| 856 | * Extract the fibctx |
| 857 | */ |
| 858 | fibctx = list_entry(entry, struct aac_fib_context, next); |
| 859 | /* |
| 860 | * Check if the queue is getting |
| 861 | * backlogged |
| 862 | */ |
| 863 | if (fibctx->count > 20) |
| 864 | { |
| 865 | /* |
| 866 | * It's *not* jiffies folks, |
| 867 | * but jiffies / HZ so do not |
| 868 | * panic ... |
| 869 | */ |
| 870 | time_last = fibctx->jiffies; |
| 871 | /* |
| 872 | * Has it been > 2 minutes |
| 873 | * since the last read off |
| 874 | * the queue? |
| 875 | */ |
| 876 | if ((time_now - time_last) > 120) { |
| 877 | entry = entry->next; |
| 878 | aac_close_fib_context(dev, fibctx); |
| 879 | continue; |
| 880 | } |
| 881 | } |
| 882 | /* |
| 883 | * Warning: no sleep allowed while |
| 884 | * holding spinlock |
| 885 | */ |
| 886 | hw_newfib = kmalloc(sizeof(struct hw_fib), GFP_ATOMIC); |
| 887 | newfib = kmalloc(sizeof(struct fib), GFP_ATOMIC); |
| 888 | if (newfib && hw_newfib) { |
| 889 | /* |
| 890 | * Make the copy of the FIB |
| 891 | */ |
| 892 | memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); |
| 893 | memcpy(newfib, fib, sizeof(struct fib)); |
| 894 | newfib->hw_fib = hw_newfib; |
| 895 | /* |
| 896 | * Put the FIB onto the |
| 897 | * fibctx's fibs |
| 898 | */ |
| 899 | list_add_tail(&newfib->fiblink, &fibctx->fib_list); |
| 900 | fibctx->count++; |
| 901 | /* |
| 902 | * Set the event to wake up the |
| 903 | * thread that will waiting. |
| 904 | */ |
| 905 | up(&fibctx->wait_sem); |
| 906 | } else { |
| 907 | printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); |
| 908 | if(newfib) |
| 909 | kfree(newfib); |
| 910 | if(hw_newfib) |
| 911 | kfree(hw_newfib); |
| 912 | } |
| 913 | entry = entry->next; |
| 914 | } |
| 915 | /* |
| 916 | * Set the status of this FIB |
| 917 | */ |
Mark Haverkamp | 56b5871 | 2005-04-27 06:05:51 -0700 | [diff] [blame^] | 918 | *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 919 | fib_adapter_complete(fib, sizeof(u32)); |
| 920 | spin_unlock_irqrestore(&dev->fib_lock, flagv); |
| 921 | } |
| 922 | spin_lock_irqsave(queues->queue[HostNormCmdQueue].lock, flags); |
| 923 | kfree(fib); |
| 924 | } |
| 925 | /* |
| 926 | * There are no more AIF's |
| 927 | */ |
| 928 | spin_unlock_irqrestore(queues->queue[HostNormCmdQueue].lock, flags); |
| 929 | schedule(); |
| 930 | |
| 931 | if(signal_pending(current)) |
| 932 | break; |
| 933 | set_current_state(TASK_INTERRUPTIBLE); |
| 934 | } |
| 935 | remove_wait_queue(&queues->queue[HostNormCmdQueue].cmdready, &wait); |
| 936 | dev->aif_thread = 0; |
| 937 | complete_and_exit(&dev->aif_completion, 0); |
| 938 | } |