blob: 40517f35daaed4fe4425d7e10138643a7f1602ff [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
11#include <linux/kernel.h>
12#include <linux/init.h>
13#include <linux/errno.h>
14#include <linux/time.h>
15#include <linux/aio_abi.h>
16#include <linux/module.h>
17#include <linux/syscalls.h>
18
19#define DEBUG 0
20
21#include <linux/sched.h>
22#include <linux/fs.h>
23#include <linux/file.h>
24#include <linux/mm.h>
25#include <linux/mman.h>
26#include <linux/slab.h>
27#include <linux/timer.h>
28#include <linux/aio.h>
29#include <linux/highmem.h>
30#include <linux/workqueue.h>
31#include <linux/security.h>
32
33#include <asm/kmap_types.h>
34#include <asm/uaccess.h>
35#include <asm/mmu_context.h>
36
37#if DEBUG > 1
38#define dprintk printk
39#else
40#define dprintk(x...) do { ; } while (0)
41#endif
42
Adrian Bunk25ee7e32005-04-25 08:18:14 -070043static long aio_run = 0; /* for testing only */
44static long aio_wakeups = 0; /* for testing only */
Linus Torvalds1da177e2005-04-16 15:20:36 -070045
46/*------ sysctl variables----*/
47atomic_t aio_nr = ATOMIC_INIT(0); /* current system wide number of aio requests */
48unsigned aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
49/*----end sysctl variables---*/
50
51static kmem_cache_t *kiocb_cachep;
52static kmem_cache_t *kioctx_cachep;
53
54static struct workqueue_struct *aio_wq;
55
56/* Used for rare fput completion. */
57static void aio_fput_routine(void *);
58static DECLARE_WORK(fput_work, aio_fput_routine, NULL);
59
60static DEFINE_SPINLOCK(fput_lock);
Adrian Bunk25ee7e32005-04-25 08:18:14 -070061static LIST_HEAD(fput_head);
Linus Torvalds1da177e2005-04-16 15:20:36 -070062
63static void aio_kick_handler(void *);
64
65/* aio_setup
66 * Creates the slab caches used by the aio routines, panic on
67 * failure as this is done early during the boot sequence.
68 */
69static int __init aio_setup(void)
70{
71 kiocb_cachep = kmem_cache_create("kiocb", sizeof(struct kiocb),
72 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
73 kioctx_cachep = kmem_cache_create("kioctx", sizeof(struct kioctx),
74 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
75
76 aio_wq = create_workqueue("aio");
77
78 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
79
80 return 0;
81}
82
83static void aio_free_ring(struct kioctx *ctx)
84{
85 struct aio_ring_info *info = &ctx->ring_info;
86 long i;
87
88 for (i=0; i<info->nr_pages; i++)
89 put_page(info->ring_pages[i]);
90
91 if (info->mmap_size) {
92 down_write(&ctx->mm->mmap_sem);
93 do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
94 up_write(&ctx->mm->mmap_sem);
95 }
96
97 if (info->ring_pages && info->ring_pages != info->internal_pages)
98 kfree(info->ring_pages);
99 info->ring_pages = NULL;
100 info->nr = 0;
101}
102
103static int aio_setup_ring(struct kioctx *ctx)
104{
105 struct aio_ring *ring;
106 struct aio_ring_info *info = &ctx->ring_info;
107 unsigned nr_events = ctx->max_reqs;
108 unsigned long size;
109 int nr_pages;
110
111 /* Compensate for the ring buffer's head/tail overlap entry */
112 nr_events += 2; /* 1 is required, 2 for good luck */
113
114 size = sizeof(struct aio_ring);
115 size += sizeof(struct io_event) * nr_events;
116 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
117
118 if (nr_pages < 0)
119 return -EINVAL;
120
121 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
122
123 info->nr = 0;
124 info->ring_pages = info->internal_pages;
125 if (nr_pages > AIO_RING_PAGES) {
126 info->ring_pages = kmalloc(sizeof(struct page *) * nr_pages, GFP_KERNEL);
127 if (!info->ring_pages)
128 return -ENOMEM;
129 memset(info->ring_pages, 0, sizeof(struct page *) * nr_pages);
130 }
131
132 info->mmap_size = nr_pages * PAGE_SIZE;
133 dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
134 down_write(&ctx->mm->mmap_sem);
135 info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
136 PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
137 0);
138 if (IS_ERR((void *)info->mmap_base)) {
139 up_write(&ctx->mm->mmap_sem);
140 printk("mmap err: %ld\n", -info->mmap_base);
141 info->mmap_size = 0;
142 aio_free_ring(ctx);
143 return -EAGAIN;
144 }
145
146 dprintk("mmap address: 0x%08lx\n", info->mmap_base);
147 info->nr_pages = get_user_pages(current, ctx->mm,
148 info->mmap_base, nr_pages,
149 1, 0, info->ring_pages, NULL);
150 up_write(&ctx->mm->mmap_sem);
151
152 if (unlikely(info->nr_pages != nr_pages)) {
153 aio_free_ring(ctx);
154 return -EAGAIN;
155 }
156
157 ctx->user_id = info->mmap_base;
158
159 info->nr = nr_events; /* trusted copy */
160
161 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
162 ring->nr = nr_events; /* user copy */
163 ring->id = ctx->user_id;
164 ring->head = ring->tail = 0;
165 ring->magic = AIO_RING_MAGIC;
166 ring->compat_features = AIO_RING_COMPAT_FEATURES;
167 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
168 ring->header_length = sizeof(struct aio_ring);
169 kunmap_atomic(ring, KM_USER0);
170
171 return 0;
172}
173
174
175/* aio_ring_event: returns a pointer to the event at the given index from
176 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
177 */
178#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
179#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
180#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
181
182#define aio_ring_event(info, nr, km) ({ \
183 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
184 struct io_event *__event; \
185 __event = kmap_atomic( \
186 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
187 __event += pos % AIO_EVENTS_PER_PAGE; \
188 __event; \
189})
190
191#define put_aio_ring_event(event, km) do { \
192 struct io_event *__event = (event); \
193 (void)__event; \
194 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
195} while(0)
196
197/* ioctx_alloc
198 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
199 */
200static struct kioctx *ioctx_alloc(unsigned nr_events)
201{
202 struct mm_struct *mm;
203 struct kioctx *ctx;
204
205 /* Prevent overflows */
206 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
207 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
208 pr_debug("ENOMEM: nr_events too high\n");
209 return ERR_PTR(-EINVAL);
210 }
211
212 if (nr_events > aio_max_nr)
213 return ERR_PTR(-EAGAIN);
214
215 ctx = kmem_cache_alloc(kioctx_cachep, GFP_KERNEL);
216 if (!ctx)
217 return ERR_PTR(-ENOMEM);
218
219 memset(ctx, 0, sizeof(*ctx));
220 ctx->max_reqs = nr_events;
221 mm = ctx->mm = current->mm;
222 atomic_inc(&mm->mm_count);
223
224 atomic_set(&ctx->users, 1);
225 spin_lock_init(&ctx->ctx_lock);
226 spin_lock_init(&ctx->ring_info.ring_lock);
227 init_waitqueue_head(&ctx->wait);
228
229 INIT_LIST_HEAD(&ctx->active_reqs);
230 INIT_LIST_HEAD(&ctx->run_list);
231 INIT_WORK(&ctx->wq, aio_kick_handler, ctx);
232
233 if (aio_setup_ring(ctx) < 0)
234 goto out_freectx;
235
236 /* limit the number of system wide aios */
237 atomic_add(ctx->max_reqs, &aio_nr); /* undone by __put_ioctx */
238 if (unlikely(atomic_read(&aio_nr) > aio_max_nr))
239 goto out_cleanup;
240
241 /* now link into global list. kludge. FIXME */
242 write_lock(&mm->ioctx_list_lock);
243 ctx->next = mm->ioctx_list;
244 mm->ioctx_list = ctx;
245 write_unlock(&mm->ioctx_list_lock);
246
247 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
248 ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
249 return ctx;
250
251out_cleanup:
252 atomic_sub(ctx->max_reqs, &aio_nr);
253 ctx->max_reqs = 0; /* prevent __put_ioctx from sub'ing aio_nr */
254 __put_ioctx(ctx);
255 return ERR_PTR(-EAGAIN);
256
257out_freectx:
258 mmdrop(mm);
259 kmem_cache_free(kioctx_cachep, ctx);
260 ctx = ERR_PTR(-ENOMEM);
261
262 dprintk("aio: error allocating ioctx %p\n", ctx);
263 return ctx;
264}
265
266/* aio_cancel_all
267 * Cancels all outstanding aio requests on an aio context. Used
268 * when the processes owning a context have all exited to encourage
269 * the rapid destruction of the kioctx.
270 */
271static void aio_cancel_all(struct kioctx *ctx)
272{
273 int (*cancel)(struct kiocb *, struct io_event *);
274 struct io_event res;
275 spin_lock_irq(&ctx->ctx_lock);
276 ctx->dead = 1;
277 while (!list_empty(&ctx->active_reqs)) {
278 struct list_head *pos = ctx->active_reqs.next;
279 struct kiocb *iocb = list_kiocb(pos);
280 list_del_init(&iocb->ki_list);
281 cancel = iocb->ki_cancel;
282 kiocbSetCancelled(iocb);
283 if (cancel) {
284 iocb->ki_users++;
285 spin_unlock_irq(&ctx->ctx_lock);
286 cancel(iocb, &res);
287 spin_lock_irq(&ctx->ctx_lock);
288 }
289 }
290 spin_unlock_irq(&ctx->ctx_lock);
291}
292
Adrian Bunk25ee7e32005-04-25 08:18:14 -0700293static void wait_for_all_aios(struct kioctx *ctx)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700294{
295 struct task_struct *tsk = current;
296 DECLARE_WAITQUEUE(wait, tsk);
297
298 if (!ctx->reqs_active)
299 return;
300
301 add_wait_queue(&ctx->wait, &wait);
302 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
303 while (ctx->reqs_active) {
304 schedule();
305 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
306 }
307 __set_task_state(tsk, TASK_RUNNING);
308 remove_wait_queue(&ctx->wait, &wait);
309}
310
311/* wait_on_sync_kiocb:
312 * Waits on the given sync kiocb to complete.
313 */
314ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb)
315{
316 while (iocb->ki_users) {
317 set_current_state(TASK_UNINTERRUPTIBLE);
318 if (!iocb->ki_users)
319 break;
320 schedule();
321 }
322 __set_current_state(TASK_RUNNING);
323 return iocb->ki_user_data;
324}
325
326/* exit_aio: called when the last user of mm goes away. At this point,
327 * there is no way for any new requests to be submited or any of the
328 * io_* syscalls to be called on the context. However, there may be
329 * outstanding requests which hold references to the context; as they
330 * go away, they will call put_ioctx and release any pinned memory
331 * associated with the request (held via struct page * references).
332 */
333void fastcall exit_aio(struct mm_struct *mm)
334{
335 struct kioctx *ctx = mm->ioctx_list;
336 mm->ioctx_list = NULL;
337 while (ctx) {
338 struct kioctx *next = ctx->next;
339 ctx->next = NULL;
340 aio_cancel_all(ctx);
341
342 wait_for_all_aios(ctx);
343 /*
344 * this is an overkill, but ensures we don't leave
345 * the ctx on the aio_wq
346 */
347 flush_workqueue(aio_wq);
348
349 if (1 != atomic_read(&ctx->users))
350 printk(KERN_DEBUG
351 "exit_aio:ioctx still alive: %d %d %d\n",
352 atomic_read(&ctx->users), ctx->dead,
353 ctx->reqs_active);
354 put_ioctx(ctx);
355 ctx = next;
356 }
357}
358
359/* __put_ioctx
360 * Called when the last user of an aio context has gone away,
361 * and the struct needs to be freed.
362 */
363void fastcall __put_ioctx(struct kioctx *ctx)
364{
365 unsigned nr_events = ctx->max_reqs;
366
367 if (unlikely(ctx->reqs_active))
368 BUG();
369
370 cancel_delayed_work(&ctx->wq);
371 flush_workqueue(aio_wq);
372 aio_free_ring(ctx);
373 mmdrop(ctx->mm);
374 ctx->mm = NULL;
375 pr_debug("__put_ioctx: freeing %p\n", ctx);
376 kmem_cache_free(kioctx_cachep, ctx);
377
378 atomic_sub(nr_events, &aio_nr);
379}
380
381/* aio_get_req
382 * Allocate a slot for an aio request. Increments the users count
383 * of the kioctx so that the kioctx stays around until all requests are
384 * complete. Returns NULL if no requests are free.
385 *
386 * Returns with kiocb->users set to 2. The io submit code path holds
387 * an extra reference while submitting the i/o.
388 * This prevents races between the aio code path referencing the
389 * req (after submitting it) and aio_complete() freeing the req.
390 */
391static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx));
392static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx)
393{
394 struct kiocb *req = NULL;
395 struct aio_ring *ring;
396 int okay = 0;
397
398 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
399 if (unlikely(!req))
400 return NULL;
401
402 req->ki_flags = 1 << KIF_LOCKED;
403 req->ki_users = 2;
404 req->ki_key = 0;
405 req->ki_ctx = ctx;
406 req->ki_cancel = NULL;
407 req->ki_retry = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700408 req->ki_dtor = NULL;
409 req->private = NULL;
410 INIT_LIST_HEAD(&req->ki_run_list);
411
412 /* Check if the completion queue has enough free space to
413 * accept an event from this io.
414 */
415 spin_lock_irq(&ctx->ctx_lock);
416 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
417 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
418 list_add(&req->ki_list, &ctx->active_reqs);
419 get_ioctx(ctx);
420 ctx->reqs_active++;
421 okay = 1;
422 }
423 kunmap_atomic(ring, KM_USER0);
424 spin_unlock_irq(&ctx->ctx_lock);
425
426 if (!okay) {
427 kmem_cache_free(kiocb_cachep, req);
428 req = NULL;
429 }
430
431 return req;
432}
433
434static inline struct kiocb *aio_get_req(struct kioctx *ctx)
435{
436 struct kiocb *req;
437 /* Handle a potential starvation case -- should be exceedingly rare as
438 * requests will be stuck on fput_head only if the aio_fput_routine is
439 * delayed and the requests were the last user of the struct file.
440 */
441 req = __aio_get_req(ctx);
442 if (unlikely(NULL == req)) {
443 aio_fput_routine(NULL);
444 req = __aio_get_req(ctx);
445 }
446 return req;
447}
448
449static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
450{
451 if (req->ki_dtor)
452 req->ki_dtor(req);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700453 kmem_cache_free(kiocb_cachep, req);
454 ctx->reqs_active--;
455
456 if (unlikely(!ctx->reqs_active && ctx->dead))
457 wake_up(&ctx->wait);
458}
459
460static void aio_fput_routine(void *data)
461{
462 spin_lock_irq(&fput_lock);
463 while (likely(!list_empty(&fput_head))) {
464 struct kiocb *req = list_kiocb(fput_head.next);
465 struct kioctx *ctx = req->ki_ctx;
466
467 list_del(&req->ki_list);
468 spin_unlock_irq(&fput_lock);
469
470 /* Complete the fput */
471 __fput(req->ki_filp);
472
473 /* Link the iocb into the context's free list */
474 spin_lock_irq(&ctx->ctx_lock);
475 really_put_req(ctx, req);
476 spin_unlock_irq(&ctx->ctx_lock);
477
478 put_ioctx(ctx);
479 spin_lock_irq(&fput_lock);
480 }
481 spin_unlock_irq(&fput_lock);
482}
483
484/* __aio_put_req
485 * Returns true if this put was the last user of the request.
486 */
487static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
488{
489 dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
490 req, atomic_read(&req->ki_filp->f_count));
491
492 req->ki_users --;
493 if (unlikely(req->ki_users < 0))
494 BUG();
495 if (likely(req->ki_users))
496 return 0;
497 list_del(&req->ki_list); /* remove from active_reqs */
498 req->ki_cancel = NULL;
499 req->ki_retry = NULL;
500
501 /* Must be done under the lock to serialise against cancellation.
502 * Call this aio_fput as it duplicates fput via the fput_work.
503 */
504 if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) {
505 get_ioctx(ctx);
506 spin_lock(&fput_lock);
507 list_add(&req->ki_list, &fput_head);
508 spin_unlock(&fput_lock);
509 queue_work(aio_wq, &fput_work);
510 } else
511 really_put_req(ctx, req);
512 return 1;
513}
514
515/* aio_put_req
516 * Returns true if this put was the last user of the kiocb,
517 * false if the request is still in use.
518 */
519int fastcall aio_put_req(struct kiocb *req)
520{
521 struct kioctx *ctx = req->ki_ctx;
522 int ret;
523 spin_lock_irq(&ctx->ctx_lock);
524 ret = __aio_put_req(ctx, req);
525 spin_unlock_irq(&ctx->ctx_lock);
526 if (ret)
527 put_ioctx(ctx);
528 return ret;
529}
530
531/* Lookup an ioctx id. ioctx_list is lockless for reads.
532 * FIXME: this is O(n) and is only suitable for development.
533 */
534struct kioctx *lookup_ioctx(unsigned long ctx_id)
535{
536 struct kioctx *ioctx;
537 struct mm_struct *mm;
538
539 mm = current->mm;
540 read_lock(&mm->ioctx_list_lock);
541 for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
542 if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
543 get_ioctx(ioctx);
544 break;
545 }
546 read_unlock(&mm->ioctx_list_lock);
547
548 return ioctx;
549}
550
551/*
552 * use_mm
553 * Makes the calling kernel thread take on the specified
554 * mm context.
555 * Called by the retry thread execute retries within the
556 * iocb issuer's mm context, so that copy_from/to_user
557 * operations work seamlessly for aio.
558 * (Note: this routine is intended to be called only
559 * from a kernel thread context)
560 */
561static void use_mm(struct mm_struct *mm)
562{
563 struct mm_struct *active_mm;
564 struct task_struct *tsk = current;
565
566 task_lock(tsk);
567 tsk->flags |= PF_BORROWED_MM;
568 active_mm = tsk->active_mm;
569 atomic_inc(&mm->mm_count);
570 tsk->mm = mm;
571 tsk->active_mm = mm;
572 activate_mm(active_mm, mm);
573 task_unlock(tsk);
574
575 mmdrop(active_mm);
576}
577
578/*
579 * unuse_mm
580 * Reverses the effect of use_mm, i.e. releases the
581 * specified mm context which was earlier taken on
582 * by the calling kernel thread
583 * (Note: this routine is intended to be called only
584 * from a kernel thread context)
585 *
586 * Comments: Called with ctx->ctx_lock held. This nests
587 * task_lock instead ctx_lock.
588 */
Adrian Bunk25ee7e32005-04-25 08:18:14 -0700589static void unuse_mm(struct mm_struct *mm)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700590{
591 struct task_struct *tsk = current;
592
593 task_lock(tsk);
594 tsk->flags &= ~PF_BORROWED_MM;
595 tsk->mm = NULL;
596 /* active_mm is still 'mm' */
597 enter_lazy_tlb(mm, tsk);
598 task_unlock(tsk);
599}
600
601/*
602 * Queue up a kiocb to be retried. Assumes that the kiocb
603 * has already been marked as kicked, and places it on
604 * the retry run list for the corresponding ioctx, if it
605 * isn't already queued. Returns 1 if it actually queued
606 * the kiocb (to tell the caller to activate the work
607 * queue to process it), or 0, if it found that it was
608 * already queued.
609 *
610 * Should be called with the spin lock iocb->ki_ctx->ctx_lock
611 * held
612 */
613static inline int __queue_kicked_iocb(struct kiocb *iocb)
614{
615 struct kioctx *ctx = iocb->ki_ctx;
616
617 if (list_empty(&iocb->ki_run_list)) {
618 list_add_tail(&iocb->ki_run_list,
619 &ctx->run_list);
620 iocb->ki_queued++;
621 return 1;
622 }
623 return 0;
624}
625
626/* aio_run_iocb
627 * This is the core aio execution routine. It is
628 * invoked both for initial i/o submission and
629 * subsequent retries via the aio_kick_handler.
630 * Expects to be invoked with iocb->ki_ctx->lock
631 * already held. The lock is released and reaquired
632 * as needed during processing.
633 *
634 * Calls the iocb retry method (already setup for the
635 * iocb on initial submission) for operation specific
636 * handling, but takes care of most of common retry
637 * execution details for a given iocb. The retry method
638 * needs to be non-blocking as far as possible, to avoid
639 * holding up other iocbs waiting to be serviced by the
640 * retry kernel thread.
641 *
642 * The trickier parts in this code have to do with
643 * ensuring that only one retry instance is in progress
644 * for a given iocb at any time. Providing that guarantee
645 * simplifies the coding of individual aio operations as
646 * it avoids various potential races.
647 */
648static ssize_t aio_run_iocb(struct kiocb *iocb)
649{
650 struct kioctx *ctx = iocb->ki_ctx;
651 ssize_t (*retry)(struct kiocb *);
652 ssize_t ret;
653
654 if (iocb->ki_retried++ > 1024*1024) {
655 printk("Maximal retry count. Bytes done %Zd\n",
656 iocb->ki_nbytes - iocb->ki_left);
657 return -EAGAIN;
658 }
659
660 if (!(iocb->ki_retried & 0xff)) {
661 pr_debug("%ld retry: %d of %d (kick %ld, Q %ld run %ld, wake %ld)\n",
662 iocb->ki_retried,
663 iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes,
664 iocb->ki_kicked, iocb->ki_queued, aio_run, aio_wakeups);
665 }
666
667 if (!(retry = iocb->ki_retry)) {
668 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
669 return 0;
670 }
671
672 /*
673 * We don't want the next retry iteration for this
674 * operation to start until this one has returned and
675 * updated the iocb state. However, wait_queue functions
676 * can trigger a kick_iocb from interrupt context in the
677 * meantime, indicating that data is available for the next
678 * iteration. We want to remember that and enable the
679 * next retry iteration _after_ we are through with
680 * this one.
681 *
682 * So, in order to be able to register a "kick", but
683 * prevent it from being queued now, we clear the kick
684 * flag, but make the kick code *think* that the iocb is
685 * still on the run list until we are actually done.
686 * When we are done with this iteration, we check if
687 * the iocb was kicked in the meantime and if so, queue
688 * it up afresh.
689 */
690
691 kiocbClearKicked(iocb);
692
693 /*
694 * This is so that aio_complete knows it doesn't need to
695 * pull the iocb off the run list (We can't just call
696 * INIT_LIST_HEAD because we don't want a kick_iocb to
697 * queue this on the run list yet)
698 */
699 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
700 spin_unlock_irq(&ctx->ctx_lock);
701
702 /* Quit retrying if the i/o has been cancelled */
703 if (kiocbIsCancelled(iocb)) {
704 ret = -EINTR;
705 aio_complete(iocb, ret, 0);
706 /* must not access the iocb after this */
707 goto out;
708 }
709
710 /*
711 * Now we are all set to call the retry method in async
712 * context. By setting this thread's io_wait context
713 * to point to the wait queue entry inside the currently
714 * running iocb for the duration of the retry, we ensure
715 * that async notification wakeups are queued by the
716 * operation instead of blocking waits, and when notified,
717 * cause the iocb to be kicked for continuation (through
718 * the aio_wake_function callback).
719 */
720 BUG_ON(current->io_wait != NULL);
721 current->io_wait = &iocb->ki_wait;
722 ret = retry(iocb);
723 current->io_wait = NULL;
724
725 if (-EIOCBRETRY != ret) {
726 if (-EIOCBQUEUED != ret) {
727 BUG_ON(!list_empty(&iocb->ki_wait.task_list));
728 aio_complete(iocb, ret, 0);
729 /* must not access the iocb after this */
730 }
731 } else {
732 /*
733 * Issue an additional retry to avoid waiting forever if
734 * no waits were queued (e.g. in case of a short read).
735 */
736 if (list_empty(&iocb->ki_wait.task_list))
737 kiocbSetKicked(iocb);
738 }
739out:
740 spin_lock_irq(&ctx->ctx_lock);
741
742 if (-EIOCBRETRY == ret) {
743 /*
744 * OK, now that we are done with this iteration
745 * and know that there is more left to go,
746 * this is where we let go so that a subsequent
747 * "kick" can start the next iteration
748 */
749
750 /* will make __queue_kicked_iocb succeed from here on */
751 INIT_LIST_HEAD(&iocb->ki_run_list);
752 /* we must queue the next iteration ourselves, if it
753 * has already been kicked */
754 if (kiocbIsKicked(iocb)) {
755 __queue_kicked_iocb(iocb);
756 }
757 }
758 return ret;
759}
760
761/*
762 * __aio_run_iocbs:
763 * Process all pending retries queued on the ioctx
764 * run list.
765 * Assumes it is operating within the aio issuer's mm
766 * context. Expects to be called with ctx->ctx_lock held
767 */
768static int __aio_run_iocbs(struct kioctx *ctx)
769{
770 struct kiocb *iocb;
771 int count = 0;
772 LIST_HEAD(run_list);
773
774 list_splice_init(&ctx->run_list, &run_list);
775 while (!list_empty(&run_list)) {
776 iocb = list_entry(run_list.next, struct kiocb,
777 ki_run_list);
778 list_del(&iocb->ki_run_list);
779 /*
780 * Hold an extra reference while retrying i/o.
781 */
782 iocb->ki_users++; /* grab extra reference */
783 aio_run_iocb(iocb);
784 if (__aio_put_req(ctx, iocb)) /* drop extra ref */
785 put_ioctx(ctx);
786 count++;
787 }
788 aio_run++;
789 if (!list_empty(&ctx->run_list))
790 return 1;
791 return 0;
792}
793
794static void aio_queue_work(struct kioctx * ctx)
795{
796 unsigned long timeout;
797 /*
798 * if someone is waiting, get the work started right
799 * away, otherwise, use a longer delay
800 */
801 smp_mb();
802 if (waitqueue_active(&ctx->wait))
803 timeout = 1;
804 else
805 timeout = HZ/10;
806 queue_delayed_work(aio_wq, &ctx->wq, timeout);
807}
808
809
810/*
811 * aio_run_iocbs:
812 * Process all pending retries queued on the ioctx
813 * run list.
814 * Assumes it is operating within the aio issuer's mm
815 * context.
816 */
817static inline void aio_run_iocbs(struct kioctx *ctx)
818{
819 int requeue;
820
821 spin_lock_irq(&ctx->ctx_lock);
822
823 requeue = __aio_run_iocbs(ctx);
824 spin_unlock_irq(&ctx->ctx_lock);
825 if (requeue)
826 aio_queue_work(ctx);
827}
828
829/*
830 * just like aio_run_iocbs, but keeps running them until
831 * the list stays empty
832 */
833static inline void aio_run_all_iocbs(struct kioctx *ctx)
834{
835 spin_lock_irq(&ctx->ctx_lock);
836 while (__aio_run_iocbs(ctx))
837 ;
838 spin_unlock_irq(&ctx->ctx_lock);
839}
840
841/*
842 * aio_kick_handler:
843 * Work queue handler triggered to process pending
844 * retries on an ioctx. Takes on the aio issuer's
845 * mm context before running the iocbs, so that
846 * copy_xxx_user operates on the issuer's address
847 * space.
848 * Run on aiod's context.
849 */
850static void aio_kick_handler(void *data)
851{
852 struct kioctx *ctx = data;
853 mm_segment_t oldfs = get_fs();
854 int requeue;
855
856 set_fs(USER_DS);
857 use_mm(ctx->mm);
858 spin_lock_irq(&ctx->ctx_lock);
859 requeue =__aio_run_iocbs(ctx);
860 unuse_mm(ctx->mm);
861 spin_unlock_irq(&ctx->ctx_lock);
862 set_fs(oldfs);
863 /*
864 * we're in a worker thread already, don't use queue_delayed_work,
865 */
866 if (requeue)
867 queue_work(aio_wq, &ctx->wq);
868}
869
870
871/*
872 * Called by kick_iocb to queue the kiocb for retry
873 * and if required activate the aio work queue to process
874 * it
875 */
Adrian Bunk25ee7e32005-04-25 08:18:14 -0700876static void queue_kicked_iocb(struct kiocb *iocb)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700877{
878 struct kioctx *ctx = iocb->ki_ctx;
879 unsigned long flags;
880 int run = 0;
881
882 WARN_ON((!list_empty(&iocb->ki_wait.task_list)));
883
884 spin_lock_irqsave(&ctx->ctx_lock, flags);
885 run = __queue_kicked_iocb(iocb);
886 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
887 if (run) {
888 aio_queue_work(ctx);
889 aio_wakeups++;
890 }
891}
892
893/*
894 * kick_iocb:
895 * Called typically from a wait queue callback context
896 * (aio_wake_function) to trigger a retry of the iocb.
897 * The retry is usually executed by aio workqueue
898 * threads (See aio_kick_handler).
899 */
900void fastcall kick_iocb(struct kiocb *iocb)
901{
902 /* sync iocbs are easy: they can only ever be executing from a
903 * single context. */
904 if (is_sync_kiocb(iocb)) {
905 kiocbSetKicked(iocb);
906 wake_up_process(iocb->ki_obj.tsk);
907 return;
908 }
909
910 iocb->ki_kicked++;
911 /* If its already kicked we shouldn't queue it again */
912 if (!kiocbTryKick(iocb)) {
913 queue_kicked_iocb(iocb);
914 }
915}
916EXPORT_SYMBOL(kick_iocb);
917
918/* aio_complete
919 * Called when the io request on the given iocb is complete.
920 * Returns true if this is the last user of the request. The
921 * only other user of the request can be the cancellation code.
922 */
923int fastcall aio_complete(struct kiocb *iocb, long res, long res2)
924{
925 struct kioctx *ctx = iocb->ki_ctx;
926 struct aio_ring_info *info;
927 struct aio_ring *ring;
928 struct io_event *event;
929 unsigned long flags;
930 unsigned long tail;
931 int ret;
932
933 /* Special case handling for sync iocbs: events go directly
934 * into the iocb for fast handling. Note that this will not
935 * work if we allow sync kiocbs to be cancelled. in which
936 * case the usage count checks will have to move under ctx_lock
937 * for all cases.
938 */
939 if (is_sync_kiocb(iocb)) {
940 int ret;
941
942 iocb->ki_user_data = res;
943 if (iocb->ki_users == 1) {
944 iocb->ki_users = 0;
945 ret = 1;
946 } else {
947 spin_lock_irq(&ctx->ctx_lock);
948 iocb->ki_users--;
949 ret = (0 == iocb->ki_users);
950 spin_unlock_irq(&ctx->ctx_lock);
951 }
952 /* sync iocbs put the task here for us */
953 wake_up_process(iocb->ki_obj.tsk);
954 return ret;
955 }
956
957 info = &ctx->ring_info;
958
959 /* add a completion event to the ring buffer.
960 * must be done holding ctx->ctx_lock to prevent
961 * other code from messing with the tail
962 * pointer since we might be called from irq
963 * context.
964 */
965 spin_lock_irqsave(&ctx->ctx_lock, flags);
966
967 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
968 list_del_init(&iocb->ki_run_list);
969
970 /*
971 * cancelled requests don't get events, userland was given one
972 * when the event got cancelled.
973 */
974 if (kiocbIsCancelled(iocb))
975 goto put_rq;
976
977 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
978
979 tail = info->tail;
980 event = aio_ring_event(info, tail, KM_IRQ0);
Ken Chen4bf69b22005-05-01 08:59:15 -0700981 if (++tail >= info->nr)
982 tail = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700983
984 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
985 event->data = iocb->ki_user_data;
986 event->res = res;
987 event->res2 = res2;
988
989 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
990 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
991 res, res2);
992
993 /* after flagging the request as done, we
994 * must never even look at it again
995 */
996 smp_wmb(); /* make event visible before updating tail */
997
998 info->tail = tail;
999 ring->tail = tail;
1000
1001 put_aio_ring_event(event, KM_IRQ0);
1002 kunmap_atomic(ring, KM_IRQ1);
1003
1004 pr_debug("added to ring %p at [%lu]\n", iocb, tail);
1005
1006 pr_debug("%ld retries: %d of %d (kicked %ld, Q %ld run %ld wake %ld)\n",
1007 iocb->ki_retried,
1008 iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes,
1009 iocb->ki_kicked, iocb->ki_queued, aio_run, aio_wakeups);
1010put_rq:
1011 /* everything turned out well, dispose of the aiocb. */
1012 ret = __aio_put_req(ctx, iocb);
1013
1014 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1015
1016 if (waitqueue_active(&ctx->wait))
1017 wake_up(&ctx->wait);
1018
1019 if (ret)
1020 put_ioctx(ctx);
1021
1022 return ret;
1023}
1024
1025/* aio_read_evt
1026 * Pull an event off of the ioctx's event ring. Returns the number of
1027 * events fetched (0 or 1 ;-)
1028 * FIXME: make this use cmpxchg.
1029 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1030 */
1031static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1032{
1033 struct aio_ring_info *info = &ioctx->ring_info;
1034 struct aio_ring *ring;
1035 unsigned long head;
1036 int ret = 0;
1037
1038 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1039 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1040 (unsigned long)ring->head, (unsigned long)ring->tail,
1041 (unsigned long)ring->nr);
1042
1043 if (ring->head == ring->tail)
1044 goto out;
1045
1046 spin_lock(&info->ring_lock);
1047
1048 head = ring->head % info->nr;
1049 if (head != ring->tail) {
1050 struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1051 *ent = *evp;
1052 head = (head + 1) % info->nr;
1053 smp_mb(); /* finish reading the event before updatng the head */
1054 ring->head = head;
1055 ret = 1;
1056 put_aio_ring_event(evp, KM_USER1);
1057 }
1058 spin_unlock(&info->ring_lock);
1059
1060out:
1061 kunmap_atomic(ring, KM_USER0);
1062 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
1063 (unsigned long)ring->head, (unsigned long)ring->tail);
1064 return ret;
1065}
1066
1067struct aio_timeout {
1068 struct timer_list timer;
1069 int timed_out;
1070 struct task_struct *p;
1071};
1072
1073static void timeout_func(unsigned long data)
1074{
1075 struct aio_timeout *to = (struct aio_timeout *)data;
1076
1077 to->timed_out = 1;
1078 wake_up_process(to->p);
1079}
1080
1081static inline void init_timeout(struct aio_timeout *to)
1082{
1083 init_timer(&to->timer);
1084 to->timer.data = (unsigned long)to;
1085 to->timer.function = timeout_func;
1086 to->timed_out = 0;
1087 to->p = current;
1088}
1089
1090static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1091 const struct timespec *ts)
1092{
1093 to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1094 if (time_after(to->timer.expires, jiffies))
1095 add_timer(&to->timer);
1096 else
1097 to->timed_out = 1;
1098}
1099
1100static inline void clear_timeout(struct aio_timeout *to)
1101{
1102 del_singleshot_timer_sync(&to->timer);
1103}
1104
1105static int read_events(struct kioctx *ctx,
1106 long min_nr, long nr,
1107 struct io_event __user *event,
1108 struct timespec __user *timeout)
1109{
1110 long start_jiffies = jiffies;
1111 struct task_struct *tsk = current;
1112 DECLARE_WAITQUEUE(wait, tsk);
1113 int ret;
1114 int i = 0;
1115 struct io_event ent;
1116 struct aio_timeout to;
1117 int event_loop = 0; /* testing only */
1118 int retry = 0;
1119
1120 /* needed to zero any padding within an entry (there shouldn't be
1121 * any, but C is fun!
1122 */
1123 memset(&ent, 0, sizeof(ent));
1124retry:
1125 ret = 0;
1126 while (likely(i < nr)) {
1127 ret = aio_read_evt(ctx, &ent);
1128 if (unlikely(ret <= 0))
1129 break;
1130
1131 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1132 ent.data, ent.obj, ent.res, ent.res2);
1133
1134 /* Could we split the check in two? */
1135 ret = -EFAULT;
1136 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1137 dprintk("aio: lost an event due to EFAULT.\n");
1138 break;
1139 }
1140 ret = 0;
1141
1142 /* Good, event copied to userland, update counts. */
1143 event ++;
1144 i ++;
1145 }
1146
1147 if (min_nr <= i)
1148 return i;
1149 if (ret)
1150 return ret;
1151
1152 /* End fast path */
1153
1154 /* racey check, but it gets redone */
1155 if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1156 retry = 1;
1157 aio_run_all_iocbs(ctx);
1158 goto retry;
1159 }
1160
1161 init_timeout(&to);
1162 if (timeout) {
1163 struct timespec ts;
1164 ret = -EFAULT;
1165 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1166 goto out;
1167
1168 set_timeout(start_jiffies, &to, &ts);
1169 }
1170
1171 while (likely(i < nr)) {
1172 add_wait_queue_exclusive(&ctx->wait, &wait);
1173 do {
1174 set_task_state(tsk, TASK_INTERRUPTIBLE);
1175 ret = aio_read_evt(ctx, &ent);
1176 if (ret)
1177 break;
1178 if (min_nr <= i)
1179 break;
1180 ret = 0;
1181 if (to.timed_out) /* Only check after read evt */
1182 break;
1183 schedule();
1184 event_loop++;
1185 if (signal_pending(tsk)) {
1186 ret = -EINTR;
1187 break;
1188 }
1189 /*ret = aio_read_evt(ctx, &ent);*/
1190 } while (1) ;
1191
1192 set_task_state(tsk, TASK_RUNNING);
1193 remove_wait_queue(&ctx->wait, &wait);
1194
1195 if (unlikely(ret <= 0))
1196 break;
1197
1198 ret = -EFAULT;
1199 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1200 dprintk("aio: lost an event due to EFAULT.\n");
1201 break;
1202 }
1203
1204 /* Good, event copied to userland, update counts. */
1205 event ++;
1206 i ++;
1207 }
1208
1209 if (timeout)
1210 clear_timeout(&to);
1211out:
1212 pr_debug("event loop executed %d times\n", event_loop);
1213 pr_debug("aio_run %ld\n", aio_run);
1214 pr_debug("aio_wakeups %ld\n", aio_wakeups);
1215 return i ? i : ret;
1216}
1217
1218/* Take an ioctx and remove it from the list of ioctx's. Protects
1219 * against races with itself via ->dead.
1220 */
1221static void io_destroy(struct kioctx *ioctx)
1222{
1223 struct mm_struct *mm = current->mm;
1224 struct kioctx **tmp;
1225 int was_dead;
1226
1227 /* delete the entry from the list is someone else hasn't already */
1228 write_lock(&mm->ioctx_list_lock);
1229 was_dead = ioctx->dead;
1230 ioctx->dead = 1;
1231 for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
1232 tmp = &(*tmp)->next)
1233 ;
1234 if (*tmp)
1235 *tmp = ioctx->next;
1236 write_unlock(&mm->ioctx_list_lock);
1237
1238 dprintk("aio_release(%p)\n", ioctx);
1239 if (likely(!was_dead))
1240 put_ioctx(ioctx); /* twice for the list */
1241
1242 aio_cancel_all(ioctx);
1243 wait_for_all_aios(ioctx);
1244 put_ioctx(ioctx); /* once for the lookup */
1245}
1246
1247/* sys_io_setup:
1248 * Create an aio_context capable of receiving at least nr_events.
1249 * ctxp must not point to an aio_context that already exists, and
1250 * must be initialized to 0 prior to the call. On successful
1251 * creation of the aio_context, *ctxp is filled in with the resulting
1252 * handle. May fail with -EINVAL if *ctxp is not initialized,
1253 * if the specified nr_events exceeds internal limits. May fail
1254 * with -EAGAIN if the specified nr_events exceeds the user's limit
1255 * of available events. May fail with -ENOMEM if insufficient kernel
1256 * resources are available. May fail with -EFAULT if an invalid
1257 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1258 * implemented.
1259 */
1260asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1261{
1262 struct kioctx *ioctx = NULL;
1263 unsigned long ctx;
1264 long ret;
1265
1266 ret = get_user(ctx, ctxp);
1267 if (unlikely(ret))
1268 goto out;
1269
1270 ret = -EINVAL;
1271 if (unlikely(ctx || (int)nr_events <= 0)) {
1272 pr_debug("EINVAL: io_setup: ctx or nr_events > max\n");
1273 goto out;
1274 }
1275
1276 ioctx = ioctx_alloc(nr_events);
1277 ret = PTR_ERR(ioctx);
1278 if (!IS_ERR(ioctx)) {
1279 ret = put_user(ioctx->user_id, ctxp);
1280 if (!ret)
1281 return 0;
1282
1283 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1284 io_destroy(ioctx);
1285 }
1286
1287out:
1288 return ret;
1289}
1290
1291/* sys_io_destroy:
1292 * Destroy the aio_context specified. May cancel any outstanding
1293 * AIOs and block on completion. Will fail with -ENOSYS if not
1294 * implemented. May fail with -EFAULT if the context pointed to
1295 * is invalid.
1296 */
1297asmlinkage long sys_io_destroy(aio_context_t ctx)
1298{
1299 struct kioctx *ioctx = lookup_ioctx(ctx);
1300 if (likely(NULL != ioctx)) {
1301 io_destroy(ioctx);
1302 return 0;
1303 }
1304 pr_debug("EINVAL: io_destroy: invalid context id\n");
1305 return -EINVAL;
1306}
1307
1308/*
1309 * Default retry method for aio_read (also used for first time submit)
1310 * Responsible for updating iocb state as retries progress
1311 */
1312static ssize_t aio_pread(struct kiocb *iocb)
1313{
1314 struct file *file = iocb->ki_filp;
1315 struct address_space *mapping = file->f_mapping;
1316 struct inode *inode = mapping->host;
1317 ssize_t ret = 0;
1318
1319 ret = file->f_op->aio_read(iocb, iocb->ki_buf,
1320 iocb->ki_left, iocb->ki_pos);
1321
1322 /*
1323 * Can't just depend on iocb->ki_left to determine
1324 * whether we are done. This may have been a short read.
1325 */
1326 if (ret > 0) {
1327 iocb->ki_buf += ret;
1328 iocb->ki_left -= ret;
1329 /*
1330 * For pipes and sockets we return once we have
1331 * some data; for regular files we retry till we
1332 * complete the entire read or find that we can't
1333 * read any more data (e.g short reads).
1334 */
1335 if (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))
1336 ret = -EIOCBRETRY;
1337 }
1338
1339 /* This means we must have transferred all that we could */
1340 /* No need to retry anymore */
1341 if ((ret == 0) || (iocb->ki_left == 0))
1342 ret = iocb->ki_nbytes - iocb->ki_left;
1343
1344 return ret;
1345}
1346
1347/*
1348 * Default retry method for aio_write (also used for first time submit)
1349 * Responsible for updating iocb state as retries progress
1350 */
1351static ssize_t aio_pwrite(struct kiocb *iocb)
1352{
1353 struct file *file = iocb->ki_filp;
1354 ssize_t ret = 0;
1355
1356 ret = file->f_op->aio_write(iocb, iocb->ki_buf,
1357 iocb->ki_left, iocb->ki_pos);
1358
1359 if (ret > 0) {
1360 iocb->ki_buf += ret;
1361 iocb->ki_left -= ret;
1362
1363 ret = -EIOCBRETRY;
1364 }
1365
1366 /* This means we must have transferred all that we could */
1367 /* No need to retry anymore */
1368 if ((ret == 0) || (iocb->ki_left == 0))
1369 ret = iocb->ki_nbytes - iocb->ki_left;
1370
1371 return ret;
1372}
1373
1374static ssize_t aio_fdsync(struct kiocb *iocb)
1375{
1376 struct file *file = iocb->ki_filp;
1377 ssize_t ret = -EINVAL;
1378
1379 if (file->f_op->aio_fsync)
1380 ret = file->f_op->aio_fsync(iocb, 1);
1381 return ret;
1382}
1383
1384static ssize_t aio_fsync(struct kiocb *iocb)
1385{
1386 struct file *file = iocb->ki_filp;
1387 ssize_t ret = -EINVAL;
1388
1389 if (file->f_op->aio_fsync)
1390 ret = file->f_op->aio_fsync(iocb, 0);
1391 return ret;
1392}
1393
1394/*
1395 * aio_setup_iocb:
1396 * Performs the initial checks and aio retry method
1397 * setup for the kiocb at the time of io submission.
1398 */
Adrian Bunk25ee7e32005-04-25 08:18:14 -07001399static ssize_t aio_setup_iocb(struct kiocb *kiocb)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001400{
1401 struct file *file = kiocb->ki_filp;
1402 ssize_t ret = 0;
1403
1404 switch (kiocb->ki_opcode) {
1405 case IOCB_CMD_PREAD:
1406 ret = -EBADF;
1407 if (unlikely(!(file->f_mode & FMODE_READ)))
1408 break;
1409 ret = -EFAULT;
1410 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1411 kiocb->ki_left)))
1412 break;
1413 ret = -EINVAL;
1414 if (file->f_op->aio_read)
1415 kiocb->ki_retry = aio_pread;
1416 break;
1417 case IOCB_CMD_PWRITE:
1418 ret = -EBADF;
1419 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1420 break;
1421 ret = -EFAULT;
1422 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1423 kiocb->ki_left)))
1424 break;
1425 ret = -EINVAL;
1426 if (file->f_op->aio_write)
1427 kiocb->ki_retry = aio_pwrite;
1428 break;
1429 case IOCB_CMD_FDSYNC:
1430 ret = -EINVAL;
1431 if (file->f_op->aio_fsync)
1432 kiocb->ki_retry = aio_fdsync;
1433 break;
1434 case IOCB_CMD_FSYNC:
1435 ret = -EINVAL;
1436 if (file->f_op->aio_fsync)
1437 kiocb->ki_retry = aio_fsync;
1438 break;
1439 default:
1440 dprintk("EINVAL: io_submit: no operation provided\n");
1441 ret = -EINVAL;
1442 }
1443
1444 if (!kiocb->ki_retry)
1445 return ret;
1446
1447 return 0;
1448}
1449
1450/*
1451 * aio_wake_function:
1452 * wait queue callback function for aio notification,
1453 * Simply triggers a retry of the operation via kick_iocb.
1454 *
1455 * This callback is specified in the wait queue entry in
1456 * a kiocb (current->io_wait points to this wait queue
1457 * entry when an aio operation executes; it is used
1458 * instead of a synchronous wait when an i/o blocking
1459 * condition is encountered during aio).
1460 *
1461 * Note:
1462 * This routine is executed with the wait queue lock held.
1463 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1464 * the ioctx lock inside the wait queue lock. This is safe
1465 * because this callback isn't used for wait queues which
1466 * are nested inside ioctx lock (i.e. ctx->wait)
1467 */
Adrian Bunk25ee7e32005-04-25 08:18:14 -07001468static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1469 int sync, void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001470{
1471 struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1472
1473 list_del_init(&wait->task_list);
1474 kick_iocb(iocb);
1475 return 1;
1476}
1477
1478int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1479 struct iocb *iocb)
1480{
1481 struct kiocb *req;
1482 struct file *file;
1483 ssize_t ret;
1484
1485 /* enforce forwards compatibility on users */
1486 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2 ||
1487 iocb->aio_reserved3)) {
1488 pr_debug("EINVAL: io_submit: reserve field set\n");
1489 return -EINVAL;
1490 }
1491
1492 /* prevent overflows */
1493 if (unlikely(
1494 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1495 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1496 ((ssize_t)iocb->aio_nbytes < 0)
1497 )) {
1498 pr_debug("EINVAL: io_submit: overflow check\n");
1499 return -EINVAL;
1500 }
1501
1502 file = fget(iocb->aio_fildes);
1503 if (unlikely(!file))
1504 return -EBADF;
1505
1506 req = aio_get_req(ctx); /* returns with 2 references to req */
1507 if (unlikely(!req)) {
1508 fput(file);
1509 return -EAGAIN;
1510 }
1511
1512 req->ki_filp = file;
Ken Chen212079c2005-05-01 08:59:15 -07001513 ret = put_user(req->ki_key, &user_iocb->aio_key);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001514 if (unlikely(ret)) {
1515 dprintk("EFAULT: aio_key\n");
1516 goto out_put_req;
1517 }
1518
1519 req->ki_obj.user = user_iocb;
1520 req->ki_user_data = iocb->aio_data;
1521 req->ki_pos = iocb->aio_offset;
1522
1523 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1524 req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1525 req->ki_opcode = iocb->aio_lio_opcode;
1526 init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1527 INIT_LIST_HEAD(&req->ki_wait.task_list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001528 req->ki_retried = 0;
1529 req->ki_kicked = 0;
1530 req->ki_queued = 0;
1531 aio_run = 0;
1532 aio_wakeups = 0;
1533
1534 ret = aio_setup_iocb(req);
1535
1536 if (ret)
1537 goto out_put_req;
1538
1539 spin_lock_irq(&ctx->ctx_lock);
1540 list_add_tail(&req->ki_run_list, &ctx->run_list);
1541 /* drain the run list */
1542 while (__aio_run_iocbs(ctx))
1543 ;
1544 spin_unlock_irq(&ctx->ctx_lock);
1545 aio_put_req(req); /* drop extra ref to req */
1546 return 0;
1547
1548out_put_req:
1549 aio_put_req(req); /* drop extra ref to req */
1550 aio_put_req(req); /* drop i/o ref to req */
1551 return ret;
1552}
1553
1554/* sys_io_submit:
1555 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1556 * the number of iocbs queued. May return -EINVAL if the aio_context
1557 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1558 * *iocbpp[0] is not properly initialized, if the operation specified
1559 * is invalid for the file descriptor in the iocb. May fail with
1560 * -EFAULT if any of the data structures point to invalid data. May
1561 * fail with -EBADF if the file descriptor specified in the first
1562 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1563 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1564 * fail with -ENOSYS if not implemented.
1565 */
1566asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1567 struct iocb __user * __user *iocbpp)
1568{
1569 struct kioctx *ctx;
1570 long ret = 0;
1571 int i;
1572
1573 if (unlikely(nr < 0))
1574 return -EINVAL;
1575
1576 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1577 return -EFAULT;
1578
1579 ctx = lookup_ioctx(ctx_id);
1580 if (unlikely(!ctx)) {
1581 pr_debug("EINVAL: io_submit: invalid context id\n");
1582 return -EINVAL;
1583 }
1584
1585 /*
1586 * AKPM: should this return a partial result if some of the IOs were
1587 * successfully submitted?
1588 */
1589 for (i=0; i<nr; i++) {
1590 struct iocb __user *user_iocb;
1591 struct iocb tmp;
1592
1593 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1594 ret = -EFAULT;
1595 break;
1596 }
1597
1598 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1599 ret = -EFAULT;
1600 break;
1601 }
1602
1603 ret = io_submit_one(ctx, user_iocb, &tmp);
1604 if (ret)
1605 break;
1606 }
1607
1608 put_ioctx(ctx);
1609 return i ? i : ret;
1610}
1611
1612/* lookup_kiocb
1613 * Finds a given iocb for cancellation.
1614 * MUST be called with ctx->ctx_lock held.
1615 */
Adrian Bunk25ee7e32005-04-25 08:18:14 -07001616static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1617 u32 key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001618{
1619 struct list_head *pos;
1620 /* TODO: use a hash or array, this sucks. */
1621 list_for_each(pos, &ctx->active_reqs) {
1622 struct kiocb *kiocb = list_kiocb(pos);
1623 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1624 return kiocb;
1625 }
1626 return NULL;
1627}
1628
1629/* sys_io_cancel:
1630 * Attempts to cancel an iocb previously passed to io_submit. If
1631 * the operation is successfully cancelled, the resulting event is
1632 * copied into the memory pointed to by result without being placed
1633 * into the completion queue and 0 is returned. May fail with
1634 * -EFAULT if any of the data structures pointed to are invalid.
1635 * May fail with -EINVAL if aio_context specified by ctx_id is
1636 * invalid. May fail with -EAGAIN if the iocb specified was not
1637 * cancelled. Will fail with -ENOSYS if not implemented.
1638 */
1639asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1640 struct io_event __user *result)
1641{
1642 int (*cancel)(struct kiocb *iocb, struct io_event *res);
1643 struct kioctx *ctx;
1644 struct kiocb *kiocb;
1645 u32 key;
1646 int ret;
1647
1648 ret = get_user(key, &iocb->aio_key);
1649 if (unlikely(ret))
1650 return -EFAULT;
1651
1652 ctx = lookup_ioctx(ctx_id);
1653 if (unlikely(!ctx))
1654 return -EINVAL;
1655
1656 spin_lock_irq(&ctx->ctx_lock);
1657 ret = -EAGAIN;
1658 kiocb = lookup_kiocb(ctx, iocb, key);
1659 if (kiocb && kiocb->ki_cancel) {
1660 cancel = kiocb->ki_cancel;
1661 kiocb->ki_users ++;
1662 kiocbSetCancelled(kiocb);
1663 } else
1664 cancel = NULL;
1665 spin_unlock_irq(&ctx->ctx_lock);
1666
1667 if (NULL != cancel) {
1668 struct io_event tmp;
1669 pr_debug("calling cancel\n");
1670 memset(&tmp, 0, sizeof(tmp));
1671 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1672 tmp.data = kiocb->ki_user_data;
1673 ret = cancel(kiocb, &tmp);
1674 if (!ret) {
1675 /* Cancellation succeeded -- copy the result
1676 * into the user's buffer.
1677 */
1678 if (copy_to_user(result, &tmp, sizeof(tmp)))
1679 ret = -EFAULT;
1680 }
1681 } else
1682 printk(KERN_DEBUG "iocb has no cancel operation\n");
1683
1684 put_ioctx(ctx);
1685
1686 return ret;
1687}
1688
1689/* io_getevents:
1690 * Attempts to read at least min_nr events and up to nr events from
1691 * the completion queue for the aio_context specified by ctx_id. May
1692 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1693 * if nr is out of range, if when is out of range. May fail with
1694 * -EFAULT if any of the memory specified to is invalid. May return
1695 * 0 or < min_nr if no events are available and the timeout specified
1696 * by when has elapsed, where when == NULL specifies an infinite
1697 * timeout. Note that the timeout pointed to by when is relative and
1698 * will be updated if not NULL and the operation blocks. Will fail
1699 * with -ENOSYS if not implemented.
1700 */
1701asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1702 long min_nr,
1703 long nr,
1704 struct io_event __user *events,
1705 struct timespec __user *timeout)
1706{
1707 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1708 long ret = -EINVAL;
1709
1710 if (likely(ioctx)) {
1711 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1712 ret = read_events(ioctx, min_nr, nr, events, timeout);
1713 put_ioctx(ioctx);
1714 }
1715
1716 return ret;
1717}
1718
1719__initcall(aio_setup);
1720
1721EXPORT_SYMBOL(aio_complete);
1722EXPORT_SYMBOL(aio_put_req);
1723EXPORT_SYMBOL(wait_on_sync_kiocb);