blob: 0131df7f5968d7b7c155eeb710d91682f39fe4a6 [file] [log] [blame]
Changbin Du1f198e22018-02-17 13:39:38 +08001========================
2ftrace - Function Tracer
3========================
4
5Copyright 2008 Red Hat Inc.
6
7:Author: Steven Rostedt <srostedt@redhat.com>
8:License: The GNU Free Documentation License, Version 1.2
9 (dual licensed under the GPL v2)
10:Original Reviewers: Elias Oltmanns, Randy Dunlap, Andrew Morton,
11 John Kacur, and David Teigland.
12
13- Written for: 2.6.28-rc2
14- Updated for: 3.10
15- Updated for: 4.13 - Copyright 2017 VMware Inc. Steven Rostedt
16- Converted to rst format - Changbin Du <changbin.du@intel.com>
17
18Introduction
19------------
20
21Ftrace is an internal tracer designed to help out developers and
22designers of systems to find what is going on inside the kernel.
23It can be used for debugging or analyzing latencies and
24performance issues that take place outside of user-space.
25
26Although ftrace is typically considered the function tracer, it
Amir Livneh2a1e03c2018-11-01 09:57:17 -040027is really a framework of several assorted tracing utilities.
Changbin Du1f198e22018-02-17 13:39:38 +080028There's latency tracing to examine what occurs between interrupts
29disabled and enabled, as well as for preemption and from a time
30a task is woken to the task is actually scheduled in.
31
32One of the most common uses of ftrace is the event tracing.
Amir Livneh2a1e03c2018-11-01 09:57:17 -040033Throughout the kernel is hundreds of static event points that
Changbin Du1f198e22018-02-17 13:39:38 +080034can be enabled via the tracefs file system to see what is
35going on in certain parts of the kernel.
36
37See events.txt for more information.
38
39
40Implementation Details
41----------------------
42
43See :doc:`ftrace-design` for details for arch porters and such.
44
45
46The File System
47---------------
48
49Ftrace uses the tracefs file system to hold the control files as
50well as the files to display output.
51
52When tracefs is configured into the kernel (which selecting any ftrace
53option will do) the directory /sys/kernel/tracing will be created. To mount
54this directory, you can add to your /etc/fstab file::
55
56 tracefs /sys/kernel/tracing tracefs defaults 0 0
57
58Or you can mount it at run time with::
59
60 mount -t tracefs nodev /sys/kernel/tracing
61
62For quicker access to that directory you may want to make a soft link to
63it::
64
65 ln -s /sys/kernel/tracing /tracing
66
67.. attention::
68
69 Before 4.1, all ftrace tracing control files were within the debugfs
70 file system, which is typically located at /sys/kernel/debug/tracing.
71 For backward compatibility, when mounting the debugfs file system,
72 the tracefs file system will be automatically mounted at:
73
74 /sys/kernel/debug/tracing
75
76 All files located in the tracefs file system will be located in that
77 debugfs file system directory as well.
78
79.. attention::
80
81 Any selected ftrace option will also create the tracefs file system.
82 The rest of the document will assume that you are in the ftrace directory
83 (cd /sys/kernel/tracing) and will only concentrate on the files within that
84 directory and not distract from the content with the extended
85 "/sys/kernel/tracing" path name.
86
87That's it! (assuming that you have ftrace configured into your kernel)
88
89After mounting tracefs you will have access to the control and output files
90of ftrace. Here is a list of some of the key files:
91
92
93 Note: all time values are in microseconds.
94
95 current_tracer:
96
97 This is used to set or display the current tracer
98 that is configured.
99
100 available_tracers:
101
102 This holds the different types of tracers that
103 have been compiled into the kernel. The
104 tracers listed here can be configured by
105 echoing their name into current_tracer.
106
107 tracing_on:
108
109 This sets or displays whether writing to the trace
110 ring buffer is enabled. Echo 0 into this file to disable
111 the tracer or 1 to enable it. Note, this only disables
112 writing to the ring buffer, the tracing overhead may
113 still be occurring.
114
115 The kernel function tracing_off() can be used within the
116 kernel to disable writing to the ring buffer, which will
117 set this file to "0". User space can re-enable tracing by
118 echoing "1" into the file.
119
120 Note, the function and event trigger "traceoff" will also
121 set this file to zero and stop tracing. Which can also
122 be re-enabled by user space using this file.
123
124 trace:
125
126 This file holds the output of the trace in a human
127 readable format (described below). Note, tracing is temporarily
128 disabled while this file is being read (opened).
129
130 trace_pipe:
131
132 The output is the same as the "trace" file but this
133 file is meant to be streamed with live tracing.
134 Reads from this file will block until new data is
135 retrieved. Unlike the "trace" file, this file is a
136 consumer. This means reading from this file causes
137 sequential reads to display more current data. Once
138 data is read from this file, it is consumed, and
139 will not be read again with a sequential read. The
140 "trace" file is static, and if the tracer is not
141 adding more data, it will display the same
142 information every time it is read. This file will not
143 disable tracing while being read.
144
145 trace_options:
146
147 This file lets the user control the amount of data
148 that is displayed in one of the above output
149 files. Options also exist to modify how a tracer
150 or events work (stack traces, timestamps, etc).
151
152 options:
153
154 This is a directory that has a file for every available
155 trace option (also in trace_options). Options may also be set
156 or cleared by writing a "1" or "0" respectively into the
157 corresponding file with the option name.
158
159 tracing_max_latency:
160
161 Some of the tracers record the max latency.
162 For example, the maximum time that interrupts are disabled.
163 The maximum time is saved in this file. The max trace will also be
164 stored, and displayed by "trace". A new max trace will only be
165 recorded if the latency is greater than the value in this file
166 (in microseconds).
167
168 By echoing in a time into this file, no latency will be recorded
169 unless it is greater than the time in this file.
170
171 tracing_thresh:
172
173 Some latency tracers will record a trace whenever the
174 latency is greater than the number in this file.
175 Only active when the file contains a number greater than 0.
176 (in microseconds)
177
178 buffer_size_kb:
179
180 This sets or displays the number of kilobytes each CPU
181 buffer holds. By default, the trace buffers are the same size
182 for each CPU. The displayed number is the size of the
183 CPU buffer and not total size of all buffers. The
184 trace buffers are allocated in pages (blocks of memory
185 that the kernel uses for allocation, usually 4 KB in size).
186 If the last page allocated has room for more bytes
187 than requested, the rest of the page will be used,
188 making the actual allocation bigger than requested or shown.
189 ( Note, the size may not be a multiple of the page size
190 due to buffer management meta-data. )
191
192 Buffer sizes for individual CPUs may vary
193 (see "per_cpu/cpu0/buffer_size_kb" below), and if they do
194 this file will show "X".
195
196 buffer_total_size_kb:
197
198 This displays the total combined size of all the trace buffers.
199
200 free_buffer:
201
202 If a process is performing tracing, and the ring buffer should be
203 shrunk "freed" when the process is finished, even if it were to be
204 killed by a signal, this file can be used for that purpose. On close
205 of this file, the ring buffer will be resized to its minimum size.
206 Having a process that is tracing also open this file, when the process
207 exits its file descriptor for this file will be closed, and in doing so,
208 the ring buffer will be "freed".
209
210 It may also stop tracing if disable_on_free option is set.
211
212 tracing_cpumask:
213
214 This is a mask that lets the user only trace on specified CPUs.
215 The format is a hex string representing the CPUs.
216
217 set_ftrace_filter:
218
219 When dynamic ftrace is configured in (see the
220 section below "dynamic ftrace"), the code is dynamically
221 modified (code text rewrite) to disable calling of the
222 function profiler (mcount). This lets tracing be configured
223 in with practically no overhead in performance. This also
224 has a side effect of enabling or disabling specific functions
225 to be traced. Echoing names of functions into this file
226 will limit the trace to only those functions.
Steffen Maier32fb7ef2018-04-13 17:39:15 +0200227 This influences the tracers "function" and "function_graph"
228 and thus also function profiling (see "function_profile_enabled").
Changbin Du1f198e22018-02-17 13:39:38 +0800229
230 The functions listed in "available_filter_functions" are what
231 can be written into this file.
232
233 This interface also allows for commands to be used. See the
234 "Filter commands" section for more details.
235
236 set_ftrace_notrace:
237
238 This has an effect opposite to that of
239 set_ftrace_filter. Any function that is added here will not
240 be traced. If a function exists in both set_ftrace_filter
241 and set_ftrace_notrace, the function will _not_ be traced.
242
243 set_ftrace_pid:
244
245 Have the function tracer only trace the threads whose PID are
246 listed in this file.
247
248 If the "function-fork" option is set, then when a task whose
249 PID is listed in this file forks, the child's PID will
250 automatically be added to this file, and the child will be
251 traced by the function tracer as well. This option will also
252 cause PIDs of tasks that exit to be removed from the file.
253
254 set_event_pid:
255
256 Have the events only trace a task with a PID listed in this file.
257 Note, sched_switch and sched_wake_up will also trace events
258 listed in this file.
259
260 To have the PIDs of children of tasks with their PID in this file
261 added on fork, enable the "event-fork" option. That option will also
262 cause the PIDs of tasks to be removed from this file when the task
263 exits.
264
265 set_graph_function:
266
267 Functions listed in this file will cause the function graph
268 tracer to only trace these functions and the functions that
269 they call. (See the section "dynamic ftrace" for more details).
Steffen Maier32fb7ef2018-04-13 17:39:15 +0200270 Note, set_ftrace_filter and set_ftrace_notrace still affects
271 what functions are being traced.
Changbin Du1f198e22018-02-17 13:39:38 +0800272
273 set_graph_notrace:
274
275 Similar to set_graph_function, but will disable function graph
276 tracing when the function is hit until it exits the function.
277 This makes it possible to ignore tracing functions that are called
278 by a specific function.
279
280 available_filter_functions:
281
282 This lists the functions that ftrace has processed and can trace.
283 These are the function names that you can pass to
Steffen Maier32fb7ef2018-04-13 17:39:15 +0200284 "set_ftrace_filter", "set_ftrace_notrace",
285 "set_graph_function", or "set_graph_notrace".
Changbin Du1f198e22018-02-17 13:39:38 +0800286 (See the section "dynamic ftrace" below for more details.)
287
288 dyn_ftrace_total_info:
289
290 This file is for debugging purposes. The number of functions that
291 have been converted to nops and are available to be traced.
292
293 enabled_functions:
294
295 This file is more for debugging ftrace, but can also be useful
296 in seeing if any function has a callback attached to it.
297 Not only does the trace infrastructure use ftrace function
298 trace utility, but other subsystems might too. This file
299 displays all functions that have a callback attached to them
300 as well as the number of callbacks that have been attached.
301 Note, a callback may also call multiple functions which will
302 not be listed in this count.
303
304 If the callback registered to be traced by a function with
305 the "save regs" attribute (thus even more overhead), a 'R'
306 will be displayed on the same line as the function that
307 is returning registers.
308
309 If the callback registered to be traced by a function with
310 the "ip modify" attribute (thus the regs->ip can be changed),
311 an 'I' will be displayed on the same line as the function that
312 can be overridden.
313
314 If the architecture supports it, it will also show what callback
315 is being directly called by the function. If the count is greater
316 than 1 it most likely will be ftrace_ops_list_func().
317
318 If the callback of the function jumps to a trampoline that is
319 specific to a the callback and not the standard trampoline,
320 its address will be printed as well as the function that the
321 trampoline calls.
322
323 function_profile_enabled:
324
325 When set it will enable all functions with either the function
326 tracer, or if configured, the function graph tracer. It will
327 keep a histogram of the number of functions that were called
328 and if the function graph tracer was configured, it will also keep
329 track of the time spent in those functions. The histogram
330 content can be displayed in the files:
331
Masami Hiramatsu1fee4f72018-07-26 21:43:36 +0900332 trace_stat/function<cpu> ( function0, function1, etc).
Changbin Du1f198e22018-02-17 13:39:38 +0800333
Masami Hiramatsu1fee4f72018-07-26 21:43:36 +0900334 trace_stat:
Changbin Du1f198e22018-02-17 13:39:38 +0800335
336 A directory that holds different tracing stats.
337
338 kprobe_events:
339
340 Enable dynamic trace points. See kprobetrace.txt.
341
342 kprobe_profile:
343
344 Dynamic trace points stats. See kprobetrace.txt.
345
346 max_graph_depth:
347
348 Used with the function graph tracer. This is the max depth
349 it will trace into a function. Setting this to a value of
350 one will show only the first kernel function that is called
351 from user space.
352
353 printk_formats:
354
355 This is for tools that read the raw format files. If an event in
356 the ring buffer references a string, only a pointer to the string
357 is recorded into the buffer and not the string itself. This prevents
358 tools from knowing what that string was. This file displays the string
359 and address for the string allowing tools to map the pointers to what
360 the strings were.
361
362 saved_cmdlines:
363
364 Only the pid of the task is recorded in a trace event unless
365 the event specifically saves the task comm as well. Ftrace
366 makes a cache of pid mappings to comms to try to display
367 comms for events. If a pid for a comm is not listed, then
368 "<...>" is displayed in the output.
369
370 If the option "record-cmd" is set to "0", then comms of tasks
371 will not be saved during recording. By default, it is enabled.
372
373 saved_cmdlines_size:
374
375 By default, 128 comms are saved (see "saved_cmdlines" above). To
376 increase or decrease the amount of comms that are cached, echo
377 in a the number of comms to cache, into this file.
378
379 saved_tgids:
380
381 If the option "record-tgid" is set, on each scheduling context switch
382 the Task Group ID of a task is saved in a table mapping the PID of
383 the thread to its TGID. By default, the "record-tgid" option is
384 disabled.
385
386 snapshot:
387
388 This displays the "snapshot" buffer and also lets the user
389 take a snapshot of the current running trace.
390 See the "Snapshot" section below for more details.
391
392 stack_max_size:
393
394 When the stack tracer is activated, this will display the
395 maximum stack size it has encountered.
396 See the "Stack Trace" section below.
397
398 stack_trace:
399
400 This displays the stack back trace of the largest stack
401 that was encountered when the stack tracer is activated.
402 See the "Stack Trace" section below.
403
404 stack_trace_filter:
405
406 This is similar to "set_ftrace_filter" but it limits what
407 functions the stack tracer will check.
408
409 trace_clock:
410
411 Whenever an event is recorded into the ring buffer, a
412 "timestamp" is added. This stamp comes from a specified
413 clock. By default, ftrace uses the "local" clock. This
414 clock is very fast and strictly per cpu, but on some
415 systems it may not be monotonic with respect to other
416 CPUs. In other words, the local clocks may not be in sync
417 with local clocks on other CPUs.
418
419 Usual clocks for tracing::
420
421 # cat trace_clock
422 [local] global counter x86-tsc
423
424 The clock with the square brackets around it is the one in effect.
425
426 local:
427 Default clock, but may not be in sync across CPUs
428
429 global:
430 This clock is in sync with all CPUs but may
431 be a bit slower than the local clock.
432
433 counter:
434 This is not a clock at all, but literally an atomic
435 counter. It counts up one by one, but is in sync
436 with all CPUs. This is useful when you need to
437 know exactly the order events occurred with respect to
438 each other on different CPUs.
439
440 uptime:
441 This uses the jiffies counter and the time stamp
442 is relative to the time since boot up.
443
444 perf:
445 This makes ftrace use the same clock that perf uses.
446 Eventually perf will be able to read ftrace buffers
447 and this will help out in interleaving the data.
448
449 x86-tsc:
450 Architectures may define their own clocks. For
451 example, x86 uses its own TSC cycle clock here.
452
453 ppc-tb:
454 This uses the powerpc timebase register value.
455 This is in sync across CPUs and can also be used
456 to correlate events across hypervisor/guest if
457 tb_offset is known.
458
459 mono:
460 This uses the fast monotonic clock (CLOCK_MONOTONIC)
461 which is monotonic and is subject to NTP rate adjustments.
462
463 mono_raw:
464 This is the raw monotonic clock (CLOCK_MONOTONIC_RAW)
Amir Livneh2a1e03c2018-11-01 09:57:17 -0400465 which is monotonic but is not subject to any rate adjustments
Changbin Du1f198e22018-02-17 13:39:38 +0800466 and ticks at the same rate as the hardware clocksource.
467
468 boot:
Thomas Gleixnera3ed0e432018-04-25 15:33:38 +0200469 This is the boot clock (CLOCK_BOOTTIME) and is based on the
470 fast monotonic clock, but also accounts for time spent in
471 suspend. Since the clock access is designed for use in
472 tracing in the suspend path, some side effects are possible
473 if clock is accessed after the suspend time is accounted before
474 the fast mono clock is updated. In this case, the clock update
475 appears to happen slightly sooner than it normally would have.
476 Also on 32-bit systems, it's possible that the 64-bit boot offset
477 sees a partial update. These effects are rare and post
478 processing should be able to handle them. See comments in the
479 ktime_get_boot_fast_ns() function for more information.
Changbin Du1f198e22018-02-17 13:39:38 +0800480
Linus Torvalds680014d2018-04-04 14:50:29 -0700481 To set a clock, simply echo the clock name into this file::
Changbin Du1f198e22018-02-17 13:39:38 +0800482
Linus Torvalds680014d2018-04-04 14:50:29 -0700483 # echo global > trace_clock
Changbin Du1f198e22018-02-17 13:39:38 +0800484
485 trace_marker:
486
487 This is a very useful file for synchronizing user space
488 with events happening in the kernel. Writing strings into
489 this file will be written into the ftrace buffer.
490
491 It is useful in applications to open this file at the start
492 of the application and just reference the file descriptor
493 for the file::
494
495 void trace_write(const char *fmt, ...)
496 {
497 va_list ap;
498 char buf[256];
499 int n;
500
501 if (trace_fd < 0)
502 return;
503
504 va_start(ap, fmt);
505 n = vsnprintf(buf, 256, fmt, ap);
506 va_end(ap);
507
508 write(trace_fd, buf, n);
509 }
510
511 start::
512
513 trace_fd = open("trace_marker", WR_ONLY);
514
Steven Rostedt (VMware)d3439f92018-05-11 15:41:24 -0400515 Note: Writing into the trace_marker file can also initiate triggers
516 that are written into /sys/kernel/tracing/events/ftrace/print/trigger
517 See "Event triggers" in Documentation/trace/events.rst and an
518 example in Documentation/trace/histogram.rst (Section 3.)
519
Changbin Du1f198e22018-02-17 13:39:38 +0800520 trace_marker_raw:
521
522 This is similar to trace_marker above, but is meant for for binary data
523 to be written to it, where a tool can be used to parse the data
524 from trace_pipe_raw.
525
526 uprobe_events:
527
528 Add dynamic tracepoints in programs.
529 See uprobetracer.txt
530
531 uprobe_profile:
532
533 Uprobe statistics. See uprobetrace.txt
534
535 instances:
536
537 This is a way to make multiple trace buffers where different
538 events can be recorded in different buffers.
539 See "Instances" section below.
540
541 events:
542
543 This is the trace event directory. It holds event tracepoints
544 (also known as static tracepoints) that have been compiled
545 into the kernel. It shows what event tracepoints exist
546 and how they are grouped by system. There are "enable"
547 files at various levels that can enable the tracepoints
548 when a "1" is written to them.
549
550 See events.txt for more information.
551
552 set_event:
553
554 By echoing in the event into this file, will enable that event.
555
556 See events.txt for more information.
557
558 available_events:
559
560 A list of events that can be enabled in tracing.
561
562 See events.txt for more information.
563
Linus Torvalds2a56bb52018-04-10 11:27:30 -0700564 timestamp_mode:
565
566 Certain tracers may change the timestamp mode used when
567 logging trace events into the event buffer. Events with
568 different modes can coexist within a buffer but the mode in
569 effect when an event is logged determines which timestamp mode
570 is used for that event. The default timestamp mode is
571 'delta'.
572
573 Usual timestamp modes for tracing:
574
575 # cat timestamp_mode
576 [delta] absolute
577
578 The timestamp mode with the square brackets around it is the
579 one in effect.
580
581 delta: Default timestamp mode - timestamp is a delta against
582 a per-buffer timestamp.
583
584 absolute: The timestamp is a full timestamp, not a delta
585 against some other value. As such it takes up more
586 space and is less efficient.
587
Changbin Du1f198e22018-02-17 13:39:38 +0800588 hwlat_detector:
589
590 Directory for the Hardware Latency Detector.
591 See "Hardware Latency Detector" section below.
592
593 per_cpu:
594
595 This is a directory that contains the trace per_cpu information.
596
597 per_cpu/cpu0/buffer_size_kb:
598
599 The ftrace buffer is defined per_cpu. That is, there's a separate
600 buffer for each CPU to allow writes to be done atomically,
601 and free from cache bouncing. These buffers may have different
602 size buffers. This file is similar to the buffer_size_kb
603 file, but it only displays or sets the buffer size for the
604 specific CPU. (here cpu0).
605
606 per_cpu/cpu0/trace:
607
608 This is similar to the "trace" file, but it will only display
609 the data specific for the CPU. If written to, it only clears
610 the specific CPU buffer.
611
612 per_cpu/cpu0/trace_pipe
613
614 This is similar to the "trace_pipe" file, and is a consuming
615 read, but it will only display (and consume) the data specific
616 for the CPU.
617
618 per_cpu/cpu0/trace_pipe_raw
619
620 For tools that can parse the ftrace ring buffer binary format,
621 the trace_pipe_raw file can be used to extract the data
622 from the ring buffer directly. With the use of the splice()
623 system call, the buffer data can be quickly transferred to
624 a file or to the network where a server is collecting the
625 data.
626
627 Like trace_pipe, this is a consuming reader, where multiple
628 reads will always produce different data.
629
630 per_cpu/cpu0/snapshot:
631
632 This is similar to the main "snapshot" file, but will only
633 snapshot the current CPU (if supported). It only displays
634 the content of the snapshot for a given CPU, and if
635 written to, only clears this CPU buffer.
636
637 per_cpu/cpu0/snapshot_raw:
638
639 Similar to the trace_pipe_raw, but will read the binary format
640 from the snapshot buffer for the given CPU.
641
642 per_cpu/cpu0/stats:
643
644 This displays certain stats about the ring buffer:
645
646 entries:
647 The number of events that are still in the buffer.
648
649 overrun:
650 The number of lost events due to overwriting when
651 the buffer was full.
652
653 commit overrun:
654 Should always be zero.
655 This gets set if so many events happened within a nested
656 event (ring buffer is re-entrant), that it fills the
657 buffer and starts dropping events.
658
659 bytes:
660 Bytes actually read (not overwritten).
661
662 oldest event ts:
663 The oldest timestamp in the buffer
664
665 now ts:
666 The current timestamp
667
668 dropped events:
669 Events lost due to overwrite option being off.
670
671 read events:
672 The number of events read.
673
674The Tracers
675-----------
676
677Here is the list of current tracers that may be configured.
678
679 "function"
680
681 Function call tracer to trace all kernel functions.
682
683 "function_graph"
684
685 Similar to the function tracer except that the
686 function tracer probes the functions on their entry
687 whereas the function graph tracer traces on both entry
688 and exit of the functions. It then provides the ability
689 to draw a graph of function calls similar to C code
690 source.
691
692 "blk"
693
694 The block tracer. The tracer used by the blktrace user
695 application.
696
697 "hwlat"
698
699 The Hardware Latency tracer is used to detect if the hardware
700 produces any latency. See "Hardware Latency Detector" section
701 below.
702
703 "irqsoff"
704
705 Traces the areas that disable interrupts and saves
706 the trace with the longest max latency.
707 See tracing_max_latency. When a new max is recorded,
708 it replaces the old trace. It is best to view this
709 trace with the latency-format option enabled, which
710 happens automatically when the tracer is selected.
711
712 "preemptoff"
713
714 Similar to irqsoff but traces and records the amount of
715 time for which preemption is disabled.
716
717 "preemptirqsoff"
718
719 Similar to irqsoff and preemptoff, but traces and
720 records the largest time for which irqs and/or preemption
721 is disabled.
722
723 "wakeup"
724
725 Traces and records the max latency that it takes for
726 the highest priority task to get scheduled after
727 it has been woken up.
728 Traces all tasks as an average developer would expect.
729
730 "wakeup_rt"
731
732 Traces and records the max latency that it takes for just
733 RT tasks (as the current "wakeup" does). This is useful
734 for those interested in wake up timings of RT tasks.
735
736 "wakeup_dl"
737
738 Traces and records the max latency that it takes for
739 a SCHED_DEADLINE task to be woken (as the "wakeup" and
740 "wakeup_rt" does).
741
742 "mmiotrace"
743
744 A special tracer that is used to trace binary module.
745 It will trace all the calls that a module makes to the
746 hardware. Everything it writes and reads from the I/O
747 as well.
748
749 "branch"
750
751 This tracer can be configured when tracing likely/unlikely
752 calls within the kernel. It will trace when a likely and
753 unlikely branch is hit and if it was correct in its prediction
754 of being correct.
755
756 "nop"
757
758 This is the "trace nothing" tracer. To remove all
759 tracers from tracing simply echo "nop" into
760 current_tracer.
761
762
763Examples of using the tracer
764----------------------------
765
766Here are typical examples of using the tracers when controlling
767them only with the tracefs interface (without using any
768user-land utilities).
769
770Output format:
771--------------
772
773Here is an example of the output format of the file "trace"::
774
775 # tracer: function
776 #
777 # entries-in-buffer/entries-written: 140080/250280 #P:4
778 #
779 # _-----=> irqs-off
780 # / _----=> need-resched
781 # | / _---=> hardirq/softirq
782 # || / _--=> preempt-depth
783 # ||| / delay
784 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
785 # | | | |||| | |
786 bash-1977 [000] .... 17284.993652: sys_close <-system_call_fastpath
787 bash-1977 [000] .... 17284.993653: __close_fd <-sys_close
788 bash-1977 [000] .... 17284.993653: _raw_spin_lock <-__close_fd
789 sshd-1974 [003] .... 17284.993653: __srcu_read_unlock <-fsnotify
790 bash-1977 [000] .... 17284.993654: add_preempt_count <-_raw_spin_lock
791 bash-1977 [000] ...1 17284.993655: _raw_spin_unlock <-__close_fd
792 bash-1977 [000] ...1 17284.993656: sub_preempt_count <-_raw_spin_unlock
793 bash-1977 [000] .... 17284.993657: filp_close <-__close_fd
794 bash-1977 [000] .... 17284.993657: dnotify_flush <-filp_close
795 sshd-1974 [003] .... 17284.993658: sys_select <-system_call_fastpath
796 ....
797
798A header is printed with the tracer name that is represented by
799the trace. In this case the tracer is "function". Then it shows the
800number of events in the buffer as well as the total number of entries
801that were written. The difference is the number of entries that were
802lost due to the buffer filling up (250280 - 140080 = 110200 events
803lost).
804
805The header explains the content of the events. Task name "bash", the task
806PID "1977", the CPU that it was running on "000", the latency format
807(explained below), the timestamp in <secs>.<usecs> format, the
808function name that was traced "sys_close" and the parent function that
809called this function "system_call_fastpath". The timestamp is the time
810at which the function was entered.
811
812Latency trace format
813--------------------
814
815When the latency-format option is enabled or when one of the latency
816tracers is set, the trace file gives somewhat more information to see
817why a latency happened. Here is a typical trace::
818
819 # tracer: irqsoff
820 #
821 # irqsoff latency trace v1.1.5 on 3.8.0-test+
822 # --------------------------------------------------------------------
823 # latency: 259 us, #4/4, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
824 # -----------------
825 # | task: ps-6143 (uid:0 nice:0 policy:0 rt_prio:0)
826 # -----------------
827 # => started at: __lock_task_sighand
828 # => ended at: _raw_spin_unlock_irqrestore
829 #
830 #
831 # _------=> CPU#
832 # / _-----=> irqs-off
833 # | / _----=> need-resched
834 # || / _---=> hardirq/softirq
835 # ||| / _--=> preempt-depth
836 # |||| / delay
837 # cmd pid ||||| time | caller
838 # \ / ||||| \ | /
839 ps-6143 2d... 0us!: trace_hardirqs_off <-__lock_task_sighand
840 ps-6143 2d..1 259us+: trace_hardirqs_on <-_raw_spin_unlock_irqrestore
841 ps-6143 2d..1 263us+: time_hardirqs_on <-_raw_spin_unlock_irqrestore
842 ps-6143 2d..1 306us : <stack trace>
843 => trace_hardirqs_on_caller
844 => trace_hardirqs_on
845 => _raw_spin_unlock_irqrestore
846 => do_task_stat
847 => proc_tgid_stat
848 => proc_single_show
849 => seq_read
850 => vfs_read
851 => sys_read
852 => system_call_fastpath
853
854
855This shows that the current tracer is "irqsoff" tracing the time
856for which interrupts were disabled. It gives the trace version (which
857never changes) and the version of the kernel upon which this was executed on
858(3.8). Then it displays the max latency in microseconds (259 us). The number
859of trace entries displayed and the total number (both are four: #4/4).
860VP, KP, SP, and HP are always zero and are reserved for later use.
861#P is the number of online CPUs (#P:4).
862
863The task is the process that was running when the latency
864occurred. (ps pid: 6143).
865
866The start and stop (the functions in which the interrupts were
867disabled and enabled respectively) that caused the latencies:
868
869 - __lock_task_sighand is where the interrupts were disabled.
870 - _raw_spin_unlock_irqrestore is where they were enabled again.
871
872The next lines after the header are the trace itself. The header
873explains which is which.
874
875 cmd: The name of the process in the trace.
876
877 pid: The PID of that process.
878
879 CPU#: The CPU which the process was running on.
880
881 irqs-off: 'd' interrupts are disabled. '.' otherwise.
882 .. caution:: If the architecture does not support a way to
883 read the irq flags variable, an 'X' will always
884 be printed here.
885
886 need-resched:
887 - 'N' both TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED is set,
888 - 'n' only TIF_NEED_RESCHED is set,
889 - 'p' only PREEMPT_NEED_RESCHED is set,
890 - '.' otherwise.
891
892 hardirq/softirq:
893 - 'Z' - NMI occurred inside a hardirq
894 - 'z' - NMI is running
895 - 'H' - hard irq occurred inside a softirq.
896 - 'h' - hard irq is running
897 - 's' - soft irq is running
898 - '.' - normal context.
899
900 preempt-depth: The level of preempt_disabled
901
902The above is mostly meaningful for kernel developers.
903
904 time:
905 When the latency-format option is enabled, the trace file
906 output includes a timestamp relative to the start of the
907 trace. This differs from the output when latency-format
908 is disabled, which includes an absolute timestamp.
909
910 delay:
911 This is just to help catch your eye a bit better. And
912 needs to be fixed to be only relative to the same CPU.
913 The marks are determined by the difference between this
914 current trace and the next trace.
915
916 - '$' - greater than 1 second
Amir Livneh2a1e03c2018-11-01 09:57:17 -0400917 - '@' - greater than 100 millisecond
918 - '*' - greater than 10 millisecond
Changbin Du1f198e22018-02-17 13:39:38 +0800919 - '#' - greater than 1000 microsecond
920 - '!' - greater than 100 microsecond
921 - '+' - greater than 10 microsecond
922 - ' ' - less than or equal to 10 microsecond.
923
924 The rest is the same as the 'trace' file.
925
926 Note, the latency tracers will usually end with a back trace
927 to easily find where the latency occurred.
928
929trace_options
930-------------
931
932The trace_options file (or the options directory) is used to control
933what gets printed in the trace output, or manipulate the tracers.
934To see what is available, simply cat the file::
935
936 cat trace_options
937 print-parent
938 nosym-offset
939 nosym-addr
940 noverbose
941 noraw
942 nohex
943 nobin
944 noblock
945 trace_printk
946 annotate
947 nouserstacktrace
948 nosym-userobj
949 noprintk-msg-only
950 context-info
951 nolatency-format
952 record-cmd
953 norecord-tgid
954 overwrite
955 nodisable_on_free
956 irq-info
957 markers
958 noevent-fork
959 function-trace
960 nofunction-fork
961 nodisplay-graph
962 nostacktrace
963 nobranch
964
965To disable one of the options, echo in the option prepended with
966"no"::
967
968 echo noprint-parent > trace_options
969
970To enable an option, leave off the "no"::
971
972 echo sym-offset > trace_options
973
974Here are the available options:
975
976 print-parent
977 On function traces, display the calling (parent)
978 function as well as the function being traced.
979 ::
980
981 print-parent:
982 bash-4000 [01] 1477.606694: simple_strtoul <-kstrtoul
983
984 noprint-parent:
985 bash-4000 [01] 1477.606694: simple_strtoul
986
987
988 sym-offset
989 Display not only the function name, but also the
990 offset in the function. For example, instead of
991 seeing just "ktime_get", you will see
992 "ktime_get+0xb/0x20".
993 ::
994
995 sym-offset:
996 bash-4000 [01] 1477.606694: simple_strtoul+0x6/0xa0
997
998 sym-addr
999 This will also display the function address as well
1000 as the function name.
1001 ::
1002
1003 sym-addr:
1004 bash-4000 [01] 1477.606694: simple_strtoul <c0339346>
1005
1006 verbose
1007 This deals with the trace file when the
1008 latency-format option is enabled.
1009 ::
1010
1011 bash 4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
1012 (+0.000ms): simple_strtoul (kstrtoul)
1013
1014 raw
1015 This will display raw numbers. This option is best for
1016 use with user applications that can translate the raw
1017 numbers better than having it done in the kernel.
1018
1019 hex
1020 Similar to raw, but the numbers will be in a hexadecimal format.
1021
1022 bin
1023 This will print out the formats in raw binary.
1024
1025 block
1026 When set, reading trace_pipe will not block when polled.
1027
1028 trace_printk
1029 Can disable trace_printk() from writing into the buffer.
1030
1031 annotate
1032 It is sometimes confusing when the CPU buffers are full
1033 and one CPU buffer had a lot of events recently, thus
1034 a shorter time frame, were another CPU may have only had
1035 a few events, which lets it have older events. When
1036 the trace is reported, it shows the oldest events first,
1037 and it may look like only one CPU ran (the one with the
1038 oldest events). When the annotate option is set, it will
1039 display when a new CPU buffer started::
1040
1041 <idle>-0 [001] dNs4 21169.031481: wake_up_idle_cpu <-add_timer_on
1042 <idle>-0 [001] dNs4 21169.031482: _raw_spin_unlock_irqrestore <-add_timer_on
1043 <idle>-0 [001] .Ns4 21169.031484: sub_preempt_count <-_raw_spin_unlock_irqrestore
1044 ##### CPU 2 buffer started ####
1045 <idle>-0 [002] .N.1 21169.031484: rcu_idle_exit <-cpu_idle
1046 <idle>-0 [001] .Ns3 21169.031484: _raw_spin_unlock <-clocksource_watchdog
1047 <idle>-0 [001] .Ns3 21169.031485: sub_preempt_count <-_raw_spin_unlock
1048
1049 userstacktrace
1050 This option changes the trace. It records a
1051 stacktrace of the current user space thread after
1052 each trace event.
1053
1054 sym-userobj
1055 when user stacktrace are enabled, look up which
1056 object the address belongs to, and print a
1057 relative address. This is especially useful when
1058 ASLR is on, otherwise you don't get a chance to
1059 resolve the address to object/file/line after
1060 the app is no longer running
1061
1062 The lookup is performed when you read
1063 trace,trace_pipe. Example::
1064
1065 a.out-1623 [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
1066 x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
1067
1068
1069 printk-msg-only
1070 When set, trace_printk()s will only show the format
1071 and not their parameters (if trace_bprintk() or
1072 trace_bputs() was used to save the trace_printk()).
1073
1074 context-info
1075 Show only the event data. Hides the comm, PID,
1076 timestamp, CPU, and other useful data.
1077
1078 latency-format
1079 This option changes the trace output. When it is enabled,
1080 the trace displays additional information about the
1081 latency, as described in "Latency trace format".
1082
1083 record-cmd
1084 When any event or tracer is enabled, a hook is enabled
1085 in the sched_switch trace point to fill comm cache
1086 with mapped pids and comms. But this may cause some
1087 overhead, and if you only care about pids, and not the
1088 name of the task, disabling this option can lower the
1089 impact of tracing. See "saved_cmdlines".
1090
1091 record-tgid
1092 When any event or tracer is enabled, a hook is enabled
1093 in the sched_switch trace point to fill the cache of
1094 mapped Thread Group IDs (TGID) mapping to pids. See
1095 "saved_tgids".
1096
1097 overwrite
1098 This controls what happens when the trace buffer is
1099 full. If "1" (default), the oldest events are
1100 discarded and overwritten. If "0", then the newest
1101 events are discarded.
1102 (see per_cpu/cpu0/stats for overrun and dropped)
1103
1104 disable_on_free
1105 When the free_buffer is closed, tracing will
1106 stop (tracing_on set to 0).
1107
1108 irq-info
1109 Shows the interrupt, preempt count, need resched data.
1110 When disabled, the trace looks like::
1111
1112 # tracer: function
1113 #
1114 # entries-in-buffer/entries-written: 144405/9452052 #P:4
1115 #
1116 # TASK-PID CPU# TIMESTAMP FUNCTION
1117 # | | | | |
1118 <idle>-0 [002] 23636.756054: ttwu_do_activate.constprop.89 <-try_to_wake_up
1119 <idle>-0 [002] 23636.756054: activate_task <-ttwu_do_activate.constprop.89
1120 <idle>-0 [002] 23636.756055: enqueue_task <-activate_task
1121
1122
1123 markers
1124 When set, the trace_marker is writable (only by root).
1125 When disabled, the trace_marker will error with EINVAL
1126 on write.
1127
1128 event-fork
1129 When set, tasks with PIDs listed in set_event_pid will have
1130 the PIDs of their children added to set_event_pid when those
1131 tasks fork. Also, when tasks with PIDs in set_event_pid exit,
1132 their PIDs will be removed from the file.
1133
1134 function-trace
1135 The latency tracers will enable function tracing
1136 if this option is enabled (default it is). When
1137 it is disabled, the latency tracers do not trace
1138 functions. This keeps the overhead of the tracer down
1139 when performing latency tests.
1140
1141 function-fork
1142 When set, tasks with PIDs listed in set_ftrace_pid will
1143 have the PIDs of their children added to set_ftrace_pid
1144 when those tasks fork. Also, when tasks with PIDs in
1145 set_ftrace_pid exit, their PIDs will be removed from the
1146 file.
1147
1148 display-graph
1149 When set, the latency tracers (irqsoff, wakeup, etc) will
1150 use function graph tracing instead of function tracing.
1151
1152 stacktrace
1153 When set, a stack trace is recorded after any trace event
1154 is recorded.
1155
1156 branch
1157 Enable branch tracing with the tracer. This enables branch
1158 tracer along with the currently set tracer. Enabling this
1159 with the "nop" tracer is the same as just enabling the
1160 "branch" tracer.
1161
1162.. tip:: Some tracers have their own options. They only appear in this
1163 file when the tracer is active. They always appear in the
1164 options directory.
1165
1166
1167Here are the per tracer options:
1168
1169Options for function tracer:
1170
1171 func_stack_trace
1172 When set, a stack trace is recorded after every
1173 function that is recorded. NOTE! Limit the functions
1174 that are recorded before enabling this, with
1175 "set_ftrace_filter" otherwise the system performance
1176 will be critically degraded. Remember to disable
1177 this option before clearing the function filter.
1178
1179Options for function_graph tracer:
1180
1181 Since the function_graph tracer has a slightly different output
1182 it has its own options to control what is displayed.
1183
1184 funcgraph-overrun
1185 When set, the "overrun" of the graph stack is
1186 displayed after each function traced. The
1187 overrun, is when the stack depth of the calls
1188 is greater than what is reserved for each task.
1189 Each task has a fixed array of functions to
1190 trace in the call graph. If the depth of the
1191 calls exceeds that, the function is not traced.
1192 The overrun is the number of functions missed
1193 due to exceeding this array.
1194
1195 funcgraph-cpu
1196 When set, the CPU number of the CPU where the trace
1197 occurred is displayed.
1198
1199 funcgraph-overhead
1200 When set, if the function takes longer than
1201 A certain amount, then a delay marker is
1202 displayed. See "delay" above, under the
1203 header description.
1204
1205 funcgraph-proc
1206 Unlike other tracers, the process' command line
1207 is not displayed by default, but instead only
1208 when a task is traced in and out during a context
1209 switch. Enabling this options has the command
1210 of each process displayed at every line.
1211
1212 funcgraph-duration
1213 At the end of each function (the return)
1214 the duration of the amount of time in the
1215 function is displayed in microseconds.
1216
1217 funcgraph-abstime
1218 When set, the timestamp is displayed at each line.
1219
1220 funcgraph-irqs
1221 When disabled, functions that happen inside an
1222 interrupt will not be traced.
1223
1224 funcgraph-tail
1225 When set, the return event will include the function
1226 that it represents. By default this is off, and
1227 only a closing curly bracket "}" is displayed for
1228 the return of a function.
1229
1230 sleep-time
1231 When running function graph tracer, to include
1232 the time a task schedules out in its function.
1233 When enabled, it will account time the task has been
1234 scheduled out as part of the function call.
1235
1236 graph-time
1237 When running function profiler with function graph tracer,
1238 to include the time to call nested functions. When this is
1239 not set, the time reported for the function will only
1240 include the time the function itself executed for, not the
1241 time for functions that it called.
1242
1243Options for blk tracer:
1244
1245 blk_classic
1246 Shows a more minimalistic output.
1247
1248
1249irqsoff
1250-------
1251
1252When interrupts are disabled, the CPU can not react to any other
1253external event (besides NMIs and SMIs). This prevents the timer
1254interrupt from triggering or the mouse interrupt from letting
1255the kernel know of a new mouse event. The result is a latency
1256with the reaction time.
1257
1258The irqsoff tracer tracks the time for which interrupts are
1259disabled. When a new maximum latency is hit, the tracer saves
1260the trace leading up to that latency point so that every time a
1261new maximum is reached, the old saved trace is discarded and the
1262new trace is saved.
1263
1264To reset the maximum, echo 0 into tracing_max_latency. Here is
1265an example::
1266
1267 # echo 0 > options/function-trace
1268 # echo irqsoff > current_tracer
1269 # echo 1 > tracing_on
1270 # echo 0 > tracing_max_latency
1271 # ls -ltr
1272 [...]
1273 # echo 0 > tracing_on
1274 # cat trace
1275 # tracer: irqsoff
1276 #
1277 # irqsoff latency trace v1.1.5 on 3.8.0-test+
1278 # --------------------------------------------------------------------
1279 # latency: 16 us, #4/4, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1280 # -----------------
1281 # | task: swapper/0-0 (uid:0 nice:0 policy:0 rt_prio:0)
1282 # -----------------
1283 # => started at: run_timer_softirq
1284 # => ended at: run_timer_softirq
1285 #
1286 #
1287 # _------=> CPU#
1288 # / _-----=> irqs-off
1289 # | / _----=> need-resched
1290 # || / _---=> hardirq/softirq
1291 # ||| / _--=> preempt-depth
1292 # |||| / delay
1293 # cmd pid ||||| time | caller
1294 # \ / ||||| \ | /
1295 <idle>-0 0d.s2 0us+: _raw_spin_lock_irq <-run_timer_softirq
1296 <idle>-0 0dNs3 17us : _raw_spin_unlock_irq <-run_timer_softirq
1297 <idle>-0 0dNs3 17us+: trace_hardirqs_on <-run_timer_softirq
1298 <idle>-0 0dNs3 25us : <stack trace>
1299 => _raw_spin_unlock_irq
1300 => run_timer_softirq
1301 => __do_softirq
1302 => call_softirq
1303 => do_softirq
1304 => irq_exit
1305 => smp_apic_timer_interrupt
1306 => apic_timer_interrupt
1307 => rcu_idle_exit
1308 => cpu_idle
1309 => rest_init
1310 => start_kernel
1311 => x86_64_start_reservations
1312 => x86_64_start_kernel
1313
1314Here we see that that we had a latency of 16 microseconds (which is
1315very good). The _raw_spin_lock_irq in run_timer_softirq disabled
1316interrupts. The difference between the 16 and the displayed
1317timestamp 25us occurred because the clock was incremented
1318between the time of recording the max latency and the time of
1319recording the function that had that latency.
1320
1321Note the above example had function-trace not set. If we set
1322function-trace, we get a much larger output::
1323
1324 with echo 1 > options/function-trace
1325
1326 # tracer: irqsoff
1327 #
1328 # irqsoff latency trace v1.1.5 on 3.8.0-test+
1329 # --------------------------------------------------------------------
1330 # latency: 71 us, #168/168, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1331 # -----------------
1332 # | task: bash-2042 (uid:0 nice:0 policy:0 rt_prio:0)
1333 # -----------------
1334 # => started at: ata_scsi_queuecmd
1335 # => ended at: ata_scsi_queuecmd
1336 #
1337 #
1338 # _------=> CPU#
1339 # / _-----=> irqs-off
1340 # | / _----=> need-resched
1341 # || / _---=> hardirq/softirq
1342 # ||| / _--=> preempt-depth
1343 # |||| / delay
1344 # cmd pid ||||| time | caller
1345 # \ / ||||| \ | /
1346 bash-2042 3d... 0us : _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1347 bash-2042 3d... 0us : add_preempt_count <-_raw_spin_lock_irqsave
1348 bash-2042 3d..1 1us : ata_scsi_find_dev <-ata_scsi_queuecmd
1349 bash-2042 3d..1 1us : __ata_scsi_find_dev <-ata_scsi_find_dev
1350 bash-2042 3d..1 2us : ata_find_dev.part.14 <-__ata_scsi_find_dev
1351 bash-2042 3d..1 2us : ata_qc_new_init <-__ata_scsi_queuecmd
1352 bash-2042 3d..1 3us : ata_sg_init <-__ata_scsi_queuecmd
1353 bash-2042 3d..1 4us : ata_scsi_rw_xlat <-__ata_scsi_queuecmd
1354 bash-2042 3d..1 4us : ata_build_rw_tf <-ata_scsi_rw_xlat
1355 [...]
1356 bash-2042 3d..1 67us : delay_tsc <-__delay
1357 bash-2042 3d..1 67us : add_preempt_count <-delay_tsc
1358 bash-2042 3d..2 67us : sub_preempt_count <-delay_tsc
1359 bash-2042 3d..1 67us : add_preempt_count <-delay_tsc
1360 bash-2042 3d..2 68us : sub_preempt_count <-delay_tsc
1361 bash-2042 3d..1 68us+: ata_bmdma_start <-ata_bmdma_qc_issue
1362 bash-2042 3d..1 71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1363 bash-2042 3d..1 71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1364 bash-2042 3d..1 72us+: trace_hardirqs_on <-ata_scsi_queuecmd
1365 bash-2042 3d..1 120us : <stack trace>
1366 => _raw_spin_unlock_irqrestore
1367 => ata_scsi_queuecmd
1368 => scsi_dispatch_cmd
1369 => scsi_request_fn
1370 => __blk_run_queue_uncond
1371 => __blk_run_queue
1372 => blk_queue_bio
1373 => generic_make_request
1374 => submit_bio
1375 => submit_bh
1376 => __ext3_get_inode_loc
1377 => ext3_iget
1378 => ext3_lookup
1379 => lookup_real
1380 => __lookup_hash
1381 => walk_component
1382 => lookup_last
1383 => path_lookupat
1384 => filename_lookup
1385 => user_path_at_empty
1386 => user_path_at
1387 => vfs_fstatat
1388 => vfs_stat
1389 => sys_newstat
1390 => system_call_fastpath
1391
1392
1393Here we traced a 71 microsecond latency. But we also see all the
1394functions that were called during that time. Note that by
1395enabling function tracing, we incur an added overhead. This
1396overhead may extend the latency times. But nevertheless, this
1397trace has provided some very helpful debugging information.
1398
1399
1400preemptoff
1401----------
1402
1403When preemption is disabled, we may be able to receive
1404interrupts but the task cannot be preempted and a higher
1405priority task must wait for preemption to be enabled again
1406before it can preempt a lower priority task.
1407
1408The preemptoff tracer traces the places that disable preemption.
1409Like the irqsoff tracer, it records the maximum latency for
1410which preemption was disabled. The control of preemptoff tracer
1411is much like the irqsoff tracer.
1412::
1413
1414 # echo 0 > options/function-trace
1415 # echo preemptoff > current_tracer
1416 # echo 1 > tracing_on
1417 # echo 0 > tracing_max_latency
1418 # ls -ltr
1419 [...]
1420 # echo 0 > tracing_on
1421 # cat trace
1422 # tracer: preemptoff
1423 #
1424 # preemptoff latency trace v1.1.5 on 3.8.0-test+
1425 # --------------------------------------------------------------------
1426 # latency: 46 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1427 # -----------------
1428 # | task: sshd-1991 (uid:0 nice:0 policy:0 rt_prio:0)
1429 # -----------------
1430 # => started at: do_IRQ
1431 # => ended at: do_IRQ
1432 #
1433 #
1434 # _------=> CPU#
1435 # / _-----=> irqs-off
1436 # | / _----=> need-resched
1437 # || / _---=> hardirq/softirq
1438 # ||| / _--=> preempt-depth
1439 # |||| / delay
1440 # cmd pid ||||| time | caller
1441 # \ / ||||| \ | /
1442 sshd-1991 1d.h. 0us+: irq_enter <-do_IRQ
1443 sshd-1991 1d..1 46us : irq_exit <-do_IRQ
1444 sshd-1991 1d..1 47us+: trace_preempt_on <-do_IRQ
1445 sshd-1991 1d..1 52us : <stack trace>
1446 => sub_preempt_count
1447 => irq_exit
1448 => do_IRQ
1449 => ret_from_intr
1450
1451
1452This has some more changes. Preemption was disabled when an
1453interrupt came in (notice the 'h'), and was enabled on exit.
1454But we also see that interrupts have been disabled when entering
1455the preempt off section and leaving it (the 'd'). We do not know if
1456interrupts were enabled in the mean time or shortly after this
1457was over.
1458::
1459
1460 # tracer: preemptoff
1461 #
1462 # preemptoff latency trace v1.1.5 on 3.8.0-test+
1463 # --------------------------------------------------------------------
1464 # latency: 83 us, #241/241, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1465 # -----------------
1466 # | task: bash-1994 (uid:0 nice:0 policy:0 rt_prio:0)
1467 # -----------------
1468 # => started at: wake_up_new_task
1469 # => ended at: task_rq_unlock
1470 #
1471 #
1472 # _------=> CPU#
1473 # / _-----=> irqs-off
1474 # | / _----=> need-resched
1475 # || / _---=> hardirq/softirq
1476 # ||| / _--=> preempt-depth
1477 # |||| / delay
1478 # cmd pid ||||| time | caller
1479 # \ / ||||| \ | /
1480 bash-1994 1d..1 0us : _raw_spin_lock_irqsave <-wake_up_new_task
1481 bash-1994 1d..1 0us : select_task_rq_fair <-select_task_rq
1482 bash-1994 1d..1 1us : __rcu_read_lock <-select_task_rq_fair
1483 bash-1994 1d..1 1us : source_load <-select_task_rq_fair
1484 bash-1994 1d..1 1us : source_load <-select_task_rq_fair
1485 [...]
1486 bash-1994 1d..1 12us : irq_enter <-smp_apic_timer_interrupt
1487 bash-1994 1d..1 12us : rcu_irq_enter <-irq_enter
1488 bash-1994 1d..1 13us : add_preempt_count <-irq_enter
1489 bash-1994 1d.h1 13us : exit_idle <-smp_apic_timer_interrupt
1490 bash-1994 1d.h1 13us : hrtimer_interrupt <-smp_apic_timer_interrupt
1491 bash-1994 1d.h1 13us : _raw_spin_lock <-hrtimer_interrupt
1492 bash-1994 1d.h1 14us : add_preempt_count <-_raw_spin_lock
1493 bash-1994 1d.h2 14us : ktime_get_update_offsets <-hrtimer_interrupt
1494 [...]
1495 bash-1994 1d.h1 35us : lapic_next_event <-clockevents_program_event
1496 bash-1994 1d.h1 35us : irq_exit <-smp_apic_timer_interrupt
1497 bash-1994 1d.h1 36us : sub_preempt_count <-irq_exit
1498 bash-1994 1d..2 36us : do_softirq <-irq_exit
1499 bash-1994 1d..2 36us : __do_softirq <-call_softirq
1500 bash-1994 1d..2 36us : __local_bh_disable <-__do_softirq
1501 bash-1994 1d.s2 37us : add_preempt_count <-_raw_spin_lock_irq
1502 bash-1994 1d.s3 38us : _raw_spin_unlock <-run_timer_softirq
1503 bash-1994 1d.s3 39us : sub_preempt_count <-_raw_spin_unlock
1504 bash-1994 1d.s2 39us : call_timer_fn <-run_timer_softirq
1505 [...]
1506 bash-1994 1dNs2 81us : cpu_needs_another_gp <-rcu_process_callbacks
1507 bash-1994 1dNs2 82us : __local_bh_enable <-__do_softirq
1508 bash-1994 1dNs2 82us : sub_preempt_count <-__local_bh_enable
1509 bash-1994 1dN.2 82us : idle_cpu <-irq_exit
1510 bash-1994 1dN.2 83us : rcu_irq_exit <-irq_exit
1511 bash-1994 1dN.2 83us : sub_preempt_count <-irq_exit
1512 bash-1994 1.N.1 84us : _raw_spin_unlock_irqrestore <-task_rq_unlock
1513 bash-1994 1.N.1 84us+: trace_preempt_on <-task_rq_unlock
1514 bash-1994 1.N.1 104us : <stack trace>
1515 => sub_preempt_count
1516 => _raw_spin_unlock_irqrestore
1517 => task_rq_unlock
1518 => wake_up_new_task
1519 => do_fork
1520 => sys_clone
1521 => stub_clone
1522
1523
1524The above is an example of the preemptoff trace with
1525function-trace set. Here we see that interrupts were not disabled
1526the entire time. The irq_enter code lets us know that we entered
1527an interrupt 'h'. Before that, the functions being traced still
1528show that it is not in an interrupt, but we can see from the
1529functions themselves that this is not the case.
1530
1531preemptirqsoff
1532--------------
1533
1534Knowing the locations that have interrupts disabled or
1535preemption disabled for the longest times is helpful. But
1536sometimes we would like to know when either preemption and/or
1537interrupts are disabled.
1538
1539Consider the following code::
1540
1541 local_irq_disable();
1542 call_function_with_irqs_off();
1543 preempt_disable();
1544 call_function_with_irqs_and_preemption_off();
1545 local_irq_enable();
1546 call_function_with_preemption_off();
1547 preempt_enable();
1548
1549The irqsoff tracer will record the total length of
1550call_function_with_irqs_off() and
1551call_function_with_irqs_and_preemption_off().
1552
1553The preemptoff tracer will record the total length of
1554call_function_with_irqs_and_preemption_off() and
1555call_function_with_preemption_off().
1556
1557But neither will trace the time that interrupts and/or
1558preemption is disabled. This total time is the time that we can
1559not schedule. To record this time, use the preemptirqsoff
1560tracer.
1561
1562Again, using this trace is much like the irqsoff and preemptoff
1563tracers.
1564::
1565
1566 # echo 0 > options/function-trace
1567 # echo preemptirqsoff > current_tracer
1568 # echo 1 > tracing_on
1569 # echo 0 > tracing_max_latency
1570 # ls -ltr
1571 [...]
1572 # echo 0 > tracing_on
1573 # cat trace
1574 # tracer: preemptirqsoff
1575 #
1576 # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1577 # --------------------------------------------------------------------
1578 # latency: 100 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1579 # -----------------
1580 # | task: ls-2230 (uid:0 nice:0 policy:0 rt_prio:0)
1581 # -----------------
1582 # => started at: ata_scsi_queuecmd
1583 # => ended at: ata_scsi_queuecmd
1584 #
1585 #
1586 # _------=> CPU#
1587 # / _-----=> irqs-off
1588 # | / _----=> need-resched
1589 # || / _---=> hardirq/softirq
1590 # ||| / _--=> preempt-depth
1591 # |||| / delay
1592 # cmd pid ||||| time | caller
1593 # \ / ||||| \ | /
1594 ls-2230 3d... 0us+: _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1595 ls-2230 3...1 100us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1596 ls-2230 3...1 101us+: trace_preempt_on <-ata_scsi_queuecmd
1597 ls-2230 3...1 111us : <stack trace>
1598 => sub_preempt_count
1599 => _raw_spin_unlock_irqrestore
1600 => ata_scsi_queuecmd
1601 => scsi_dispatch_cmd
1602 => scsi_request_fn
1603 => __blk_run_queue_uncond
1604 => __blk_run_queue
1605 => blk_queue_bio
1606 => generic_make_request
1607 => submit_bio
1608 => submit_bh
1609 => ext3_bread
1610 => ext3_dir_bread
1611 => htree_dirblock_to_tree
1612 => ext3_htree_fill_tree
1613 => ext3_readdir
1614 => vfs_readdir
1615 => sys_getdents
1616 => system_call_fastpath
1617
1618
1619The trace_hardirqs_off_thunk is called from assembly on x86 when
1620interrupts are disabled in the assembly code. Without the
1621function tracing, we do not know if interrupts were enabled
1622within the preemption points. We do see that it started with
1623preemption enabled.
1624
1625Here is a trace with function-trace set::
1626
1627 # tracer: preemptirqsoff
1628 #
1629 # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1630 # --------------------------------------------------------------------
1631 # latency: 161 us, #339/339, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1632 # -----------------
1633 # | task: ls-2269 (uid:0 nice:0 policy:0 rt_prio:0)
1634 # -----------------
1635 # => started at: schedule
1636 # => ended at: mutex_unlock
1637 #
1638 #
1639 # _------=> CPU#
1640 # / _-----=> irqs-off
1641 # | / _----=> need-resched
1642 # || / _---=> hardirq/softirq
1643 # ||| / _--=> preempt-depth
1644 # |||| / delay
1645 # cmd pid ||||| time | caller
1646 # \ / ||||| \ | /
1647 kworker/-59 3...1 0us : __schedule <-schedule
1648 kworker/-59 3d..1 0us : rcu_preempt_qs <-rcu_note_context_switch
1649 kworker/-59 3d..1 1us : add_preempt_count <-_raw_spin_lock_irq
1650 kworker/-59 3d..2 1us : deactivate_task <-__schedule
1651 kworker/-59 3d..2 1us : dequeue_task <-deactivate_task
1652 kworker/-59 3d..2 2us : update_rq_clock <-dequeue_task
1653 kworker/-59 3d..2 2us : dequeue_task_fair <-dequeue_task
1654 kworker/-59 3d..2 2us : update_curr <-dequeue_task_fair
1655 kworker/-59 3d..2 2us : update_min_vruntime <-update_curr
1656 kworker/-59 3d..2 3us : cpuacct_charge <-update_curr
1657 kworker/-59 3d..2 3us : __rcu_read_lock <-cpuacct_charge
1658 kworker/-59 3d..2 3us : __rcu_read_unlock <-cpuacct_charge
1659 kworker/-59 3d..2 3us : update_cfs_rq_blocked_load <-dequeue_task_fair
1660 kworker/-59 3d..2 4us : clear_buddies <-dequeue_task_fair
1661 kworker/-59 3d..2 4us : account_entity_dequeue <-dequeue_task_fair
1662 kworker/-59 3d..2 4us : update_min_vruntime <-dequeue_task_fair
1663 kworker/-59 3d..2 4us : update_cfs_shares <-dequeue_task_fair
1664 kworker/-59 3d..2 5us : hrtick_update <-dequeue_task_fair
1665 kworker/-59 3d..2 5us : wq_worker_sleeping <-__schedule
1666 kworker/-59 3d..2 5us : kthread_data <-wq_worker_sleeping
1667 kworker/-59 3d..2 5us : put_prev_task_fair <-__schedule
1668 kworker/-59 3d..2 6us : pick_next_task_fair <-pick_next_task
1669 kworker/-59 3d..2 6us : clear_buddies <-pick_next_task_fair
1670 kworker/-59 3d..2 6us : set_next_entity <-pick_next_task_fair
1671 kworker/-59 3d..2 6us : update_stats_wait_end <-set_next_entity
1672 ls-2269 3d..2 7us : finish_task_switch <-__schedule
1673 ls-2269 3d..2 7us : _raw_spin_unlock_irq <-finish_task_switch
1674 ls-2269 3d..2 8us : do_IRQ <-ret_from_intr
1675 ls-2269 3d..2 8us : irq_enter <-do_IRQ
1676 ls-2269 3d..2 8us : rcu_irq_enter <-irq_enter
1677 ls-2269 3d..2 9us : add_preempt_count <-irq_enter
1678 ls-2269 3d.h2 9us : exit_idle <-do_IRQ
1679 [...]
1680 ls-2269 3d.h3 20us : sub_preempt_count <-_raw_spin_unlock
1681 ls-2269 3d.h2 20us : irq_exit <-do_IRQ
1682 ls-2269 3d.h2 21us : sub_preempt_count <-irq_exit
1683 ls-2269 3d..3 21us : do_softirq <-irq_exit
1684 ls-2269 3d..3 21us : __do_softirq <-call_softirq
1685 ls-2269 3d..3 21us+: __local_bh_disable <-__do_softirq
1686 ls-2269 3d.s4 29us : sub_preempt_count <-_local_bh_enable_ip
1687 ls-2269 3d.s5 29us : sub_preempt_count <-_local_bh_enable_ip
1688 ls-2269 3d.s5 31us : do_IRQ <-ret_from_intr
1689 ls-2269 3d.s5 31us : irq_enter <-do_IRQ
1690 ls-2269 3d.s5 31us : rcu_irq_enter <-irq_enter
1691 [...]
1692 ls-2269 3d.s5 31us : rcu_irq_enter <-irq_enter
1693 ls-2269 3d.s5 32us : add_preempt_count <-irq_enter
1694 ls-2269 3d.H5 32us : exit_idle <-do_IRQ
1695 ls-2269 3d.H5 32us : handle_irq <-do_IRQ
1696 ls-2269 3d.H5 32us : irq_to_desc <-handle_irq
1697 ls-2269 3d.H5 33us : handle_fasteoi_irq <-handle_irq
1698 [...]
1699 ls-2269 3d.s5 158us : _raw_spin_unlock_irqrestore <-rtl8139_poll
1700 ls-2269 3d.s3 158us : net_rps_action_and_irq_enable.isra.65 <-net_rx_action
1701 ls-2269 3d.s3 159us : __local_bh_enable <-__do_softirq
1702 ls-2269 3d.s3 159us : sub_preempt_count <-__local_bh_enable
1703 ls-2269 3d..3 159us : idle_cpu <-irq_exit
1704 ls-2269 3d..3 159us : rcu_irq_exit <-irq_exit
1705 ls-2269 3d..3 160us : sub_preempt_count <-irq_exit
1706 ls-2269 3d... 161us : __mutex_unlock_slowpath <-mutex_unlock
1707 ls-2269 3d... 162us+: trace_hardirqs_on <-mutex_unlock
1708 ls-2269 3d... 186us : <stack trace>
1709 => __mutex_unlock_slowpath
1710 => mutex_unlock
1711 => process_output
1712 => n_tty_write
1713 => tty_write
1714 => vfs_write
1715 => sys_write
1716 => system_call_fastpath
1717
1718This is an interesting trace. It started with kworker running and
1719scheduling out and ls taking over. But as soon as ls released the
1720rq lock and enabled interrupts (but not preemption) an interrupt
1721triggered. When the interrupt finished, it started running softirqs.
1722But while the softirq was running, another interrupt triggered.
1723When an interrupt is running inside a softirq, the annotation is 'H'.
1724
1725
1726wakeup
1727------
1728
1729One common case that people are interested in tracing is the
1730time it takes for a task that is woken to actually wake up.
1731Now for non Real-Time tasks, this can be arbitrary. But tracing
1732it none the less can be interesting.
1733
1734Without function tracing::
1735
1736 # echo 0 > options/function-trace
1737 # echo wakeup > current_tracer
1738 # echo 1 > tracing_on
1739 # echo 0 > tracing_max_latency
1740 # chrt -f 5 sleep 1
1741 # echo 0 > tracing_on
1742 # cat trace
1743 # tracer: wakeup
1744 #
1745 # wakeup latency trace v1.1.5 on 3.8.0-test+
1746 # --------------------------------------------------------------------
1747 # latency: 15 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1748 # -----------------
1749 # | task: kworker/3:1H-312 (uid:0 nice:-20 policy:0 rt_prio:0)
1750 # -----------------
1751 #
1752 # _------=> CPU#
1753 # / _-----=> irqs-off
1754 # | / _----=> need-resched
1755 # || / _---=> hardirq/softirq
1756 # ||| / _--=> preempt-depth
1757 # |||| / delay
1758 # cmd pid ||||| time | caller
1759 # \ / ||||| \ | /
1760 <idle>-0 3dNs7 0us : 0:120:R + [003] 312:100:R kworker/3:1H
1761 <idle>-0 3dNs7 1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1762 <idle>-0 3d..3 15us : __schedule <-schedule
1763 <idle>-0 3d..3 15us : 0:120:R ==> [003] 312:100:R kworker/3:1H
1764
1765The tracer only traces the highest priority task in the system
1766to avoid tracing the normal circumstances. Here we see that
1767the kworker with a nice priority of -20 (not very nice), took
1768just 15 microseconds from the time it woke up, to the time it
1769ran.
1770
1771Non Real-Time tasks are not that interesting. A more interesting
1772trace is to concentrate only on Real-Time tasks.
1773
1774wakeup_rt
1775---------
1776
1777In a Real-Time environment it is very important to know the
1778wakeup time it takes for the highest priority task that is woken
1779up to the time that it executes. This is also known as "schedule
1780latency". I stress the point that this is about RT tasks. It is
1781also important to know the scheduling latency of non-RT tasks,
1782but the average schedule latency is better for non-RT tasks.
1783Tools like LatencyTop are more appropriate for such
1784measurements.
1785
1786Real-Time environments are interested in the worst case latency.
1787That is the longest latency it takes for something to happen,
1788and not the average. We can have a very fast scheduler that may
1789only have a large latency once in a while, but that would not
1790work well with Real-Time tasks. The wakeup_rt tracer was designed
1791to record the worst case wakeups of RT tasks. Non-RT tasks are
1792not recorded because the tracer only records one worst case and
1793tracing non-RT tasks that are unpredictable will overwrite the
1794worst case latency of RT tasks (just run the normal wakeup
1795tracer for a while to see that effect).
1796
1797Since this tracer only deals with RT tasks, we will run this
1798slightly differently than we did with the previous tracers.
1799Instead of performing an 'ls', we will run 'sleep 1' under
1800'chrt' which changes the priority of the task.
1801::
1802
1803 # echo 0 > options/function-trace
1804 # echo wakeup_rt > current_tracer
1805 # echo 1 > tracing_on
1806 # echo 0 > tracing_max_latency
1807 # chrt -f 5 sleep 1
1808 # echo 0 > tracing_on
1809 # cat trace
1810 # tracer: wakeup
1811 #
1812 # tracer: wakeup_rt
1813 #
1814 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1815 # --------------------------------------------------------------------
1816 # latency: 5 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1817 # -----------------
1818 # | task: sleep-2389 (uid:0 nice:0 policy:1 rt_prio:5)
1819 # -----------------
1820 #
1821 # _------=> CPU#
1822 # / _-----=> irqs-off
1823 # | / _----=> need-resched
1824 # || / _---=> hardirq/softirq
1825 # ||| / _--=> preempt-depth
1826 # |||| / delay
1827 # cmd pid ||||| time | caller
1828 # \ / ||||| \ | /
1829 <idle>-0 3d.h4 0us : 0:120:R + [003] 2389: 94:R sleep
1830 <idle>-0 3d.h4 1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1831 <idle>-0 3d..3 5us : __schedule <-schedule
1832 <idle>-0 3d..3 5us : 0:120:R ==> [003] 2389: 94:R sleep
1833
1834
1835Running this on an idle system, we see that it only took 5 microseconds
1836to perform the task switch. Note, since the trace point in the schedule
1837is before the actual "switch", we stop the tracing when the recorded task
1838is about to schedule in. This may change if we add a new marker at the
1839end of the scheduler.
1840
1841Notice that the recorded task is 'sleep' with the PID of 2389
1842and it has an rt_prio of 5. This priority is user-space priority
1843and not the internal kernel priority. The policy is 1 for
1844SCHED_FIFO and 2 for SCHED_RR.
1845
1846Note, that the trace data shows the internal priority (99 - rtprio).
1847::
1848
1849 <idle>-0 3d..3 5us : 0:120:R ==> [003] 2389: 94:R sleep
1850
1851The 0:120:R means idle was running with a nice priority of 0 (120 - 120)
1852and in the running state 'R'. The sleep task was scheduled in with
18532389: 94:R. That is the priority is the kernel rtprio (99 - 5 = 94)
1854and it too is in the running state.
1855
1856Doing the same with chrt -r 5 and function-trace set.
1857::
1858
1859 echo 1 > options/function-trace
1860
1861 # tracer: wakeup_rt
1862 #
1863 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1864 # --------------------------------------------------------------------
1865 # latency: 29 us, #85/85, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1866 # -----------------
1867 # | task: sleep-2448 (uid:0 nice:0 policy:1 rt_prio:5)
1868 # -----------------
1869 #
1870 # _------=> CPU#
1871 # / _-----=> irqs-off
1872 # | / _----=> need-resched
1873 # || / _---=> hardirq/softirq
1874 # ||| / _--=> preempt-depth
1875 # |||| / delay
1876 # cmd pid ||||| time | caller
1877 # \ / ||||| \ | /
1878 <idle>-0 3d.h4 1us+: 0:120:R + [003] 2448: 94:R sleep
1879 <idle>-0 3d.h4 2us : ttwu_do_activate.constprop.87 <-try_to_wake_up
1880 <idle>-0 3d.h3 3us : check_preempt_curr <-ttwu_do_wakeup
1881 <idle>-0 3d.h3 3us : resched_curr <-check_preempt_curr
1882 <idle>-0 3dNh3 4us : task_woken_rt <-ttwu_do_wakeup
1883 <idle>-0 3dNh3 4us : _raw_spin_unlock <-try_to_wake_up
1884 <idle>-0 3dNh3 4us : sub_preempt_count <-_raw_spin_unlock
1885 <idle>-0 3dNh2 5us : ttwu_stat <-try_to_wake_up
1886 <idle>-0 3dNh2 5us : _raw_spin_unlock_irqrestore <-try_to_wake_up
1887 <idle>-0 3dNh2 6us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1888 <idle>-0 3dNh1 6us : _raw_spin_lock <-__run_hrtimer
1889 <idle>-0 3dNh1 6us : add_preempt_count <-_raw_spin_lock
1890 <idle>-0 3dNh2 7us : _raw_spin_unlock <-hrtimer_interrupt
1891 <idle>-0 3dNh2 7us : sub_preempt_count <-_raw_spin_unlock
1892 <idle>-0 3dNh1 7us : tick_program_event <-hrtimer_interrupt
1893 <idle>-0 3dNh1 7us : clockevents_program_event <-tick_program_event
1894 <idle>-0 3dNh1 8us : ktime_get <-clockevents_program_event
1895 <idle>-0 3dNh1 8us : lapic_next_event <-clockevents_program_event
1896 <idle>-0 3dNh1 8us : irq_exit <-smp_apic_timer_interrupt
1897 <idle>-0 3dNh1 9us : sub_preempt_count <-irq_exit
1898 <idle>-0 3dN.2 9us : idle_cpu <-irq_exit
1899 <idle>-0 3dN.2 9us : rcu_irq_exit <-irq_exit
1900 <idle>-0 3dN.2 10us : rcu_eqs_enter_common.isra.45 <-rcu_irq_exit
1901 <idle>-0 3dN.2 10us : sub_preempt_count <-irq_exit
1902 <idle>-0 3.N.1 11us : rcu_idle_exit <-cpu_idle
1903 <idle>-0 3dN.1 11us : rcu_eqs_exit_common.isra.43 <-rcu_idle_exit
1904 <idle>-0 3.N.1 11us : tick_nohz_idle_exit <-cpu_idle
1905 <idle>-0 3dN.1 12us : menu_hrtimer_cancel <-tick_nohz_idle_exit
1906 <idle>-0 3dN.1 12us : ktime_get <-tick_nohz_idle_exit
1907 <idle>-0 3dN.1 12us : tick_do_update_jiffies64 <-tick_nohz_idle_exit
1908 <idle>-0 3dN.1 13us : cpu_load_update_nohz <-tick_nohz_idle_exit
1909 <idle>-0 3dN.1 13us : _raw_spin_lock <-cpu_load_update_nohz
1910 <idle>-0 3dN.1 13us : add_preempt_count <-_raw_spin_lock
1911 <idle>-0 3dN.2 13us : __cpu_load_update <-cpu_load_update_nohz
1912 <idle>-0 3dN.2 14us : sched_avg_update <-__cpu_load_update
1913 <idle>-0 3dN.2 14us : _raw_spin_unlock <-cpu_load_update_nohz
1914 <idle>-0 3dN.2 14us : sub_preempt_count <-_raw_spin_unlock
1915 <idle>-0 3dN.1 15us : calc_load_nohz_stop <-tick_nohz_idle_exit
1916 <idle>-0 3dN.1 15us : touch_softlockup_watchdog <-tick_nohz_idle_exit
1917 <idle>-0 3dN.1 15us : hrtimer_cancel <-tick_nohz_idle_exit
1918 <idle>-0 3dN.1 15us : hrtimer_try_to_cancel <-hrtimer_cancel
1919 <idle>-0 3dN.1 16us : lock_hrtimer_base.isra.18 <-hrtimer_try_to_cancel
1920 <idle>-0 3dN.1 16us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
1921 <idle>-0 3dN.1 16us : add_preempt_count <-_raw_spin_lock_irqsave
1922 <idle>-0 3dN.2 17us : __remove_hrtimer <-remove_hrtimer.part.16
1923 <idle>-0 3dN.2 17us : hrtimer_force_reprogram <-__remove_hrtimer
1924 <idle>-0 3dN.2 17us : tick_program_event <-hrtimer_force_reprogram
1925 <idle>-0 3dN.2 18us : clockevents_program_event <-tick_program_event
1926 <idle>-0 3dN.2 18us : ktime_get <-clockevents_program_event
1927 <idle>-0 3dN.2 18us : lapic_next_event <-clockevents_program_event
1928 <idle>-0 3dN.2 19us : _raw_spin_unlock_irqrestore <-hrtimer_try_to_cancel
1929 <idle>-0 3dN.2 19us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1930 <idle>-0 3dN.1 19us : hrtimer_forward <-tick_nohz_idle_exit
1931 <idle>-0 3dN.1 20us : ktime_add_safe <-hrtimer_forward
1932 <idle>-0 3dN.1 20us : ktime_add_safe <-hrtimer_forward
1933 <idle>-0 3dN.1 20us : hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
1934 <idle>-0 3dN.1 20us : __hrtimer_start_range_ns <-hrtimer_start_range_ns
1935 <idle>-0 3dN.1 21us : lock_hrtimer_base.isra.18 <-__hrtimer_start_range_ns
1936 <idle>-0 3dN.1 21us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
1937 <idle>-0 3dN.1 21us : add_preempt_count <-_raw_spin_lock_irqsave
1938 <idle>-0 3dN.2 22us : ktime_add_safe <-__hrtimer_start_range_ns
1939 <idle>-0 3dN.2 22us : enqueue_hrtimer <-__hrtimer_start_range_ns
1940 <idle>-0 3dN.2 22us : tick_program_event <-__hrtimer_start_range_ns
1941 <idle>-0 3dN.2 23us : clockevents_program_event <-tick_program_event
1942 <idle>-0 3dN.2 23us : ktime_get <-clockevents_program_event
1943 <idle>-0 3dN.2 23us : lapic_next_event <-clockevents_program_event
1944 <idle>-0 3dN.2 24us : _raw_spin_unlock_irqrestore <-__hrtimer_start_range_ns
1945 <idle>-0 3dN.2 24us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1946 <idle>-0 3dN.1 24us : account_idle_ticks <-tick_nohz_idle_exit
1947 <idle>-0 3dN.1 24us : account_idle_time <-account_idle_ticks
1948 <idle>-0 3.N.1 25us : sub_preempt_count <-cpu_idle
1949 <idle>-0 3.N.. 25us : schedule <-cpu_idle
1950 <idle>-0 3.N.. 25us : __schedule <-preempt_schedule
1951 <idle>-0 3.N.. 26us : add_preempt_count <-__schedule
1952 <idle>-0 3.N.1 26us : rcu_note_context_switch <-__schedule
1953 <idle>-0 3.N.1 26us : rcu_sched_qs <-rcu_note_context_switch
1954 <idle>-0 3dN.1 27us : rcu_preempt_qs <-rcu_note_context_switch
1955 <idle>-0 3.N.1 27us : _raw_spin_lock_irq <-__schedule
1956 <idle>-0 3dN.1 27us : add_preempt_count <-_raw_spin_lock_irq
1957 <idle>-0 3dN.2 28us : put_prev_task_idle <-__schedule
1958 <idle>-0 3dN.2 28us : pick_next_task_stop <-pick_next_task
1959 <idle>-0 3dN.2 28us : pick_next_task_rt <-pick_next_task
1960 <idle>-0 3dN.2 29us : dequeue_pushable_task <-pick_next_task_rt
1961 <idle>-0 3d..3 29us : __schedule <-preempt_schedule
1962 <idle>-0 3d..3 30us : 0:120:R ==> [003] 2448: 94:R sleep
1963
1964This isn't that big of a trace, even with function tracing enabled,
1965so I included the entire trace.
1966
1967The interrupt went off while when the system was idle. Somewhere
1968before task_woken_rt() was called, the NEED_RESCHED flag was set,
1969this is indicated by the first occurrence of the 'N' flag.
1970
1971Latency tracing and events
1972--------------------------
1973As function tracing can induce a much larger latency, but without
1974seeing what happens within the latency it is hard to know what
1975caused it. There is a middle ground, and that is with enabling
1976events.
1977::
1978
1979 # echo 0 > options/function-trace
1980 # echo wakeup_rt > current_tracer
1981 # echo 1 > events/enable
1982 # echo 1 > tracing_on
1983 # echo 0 > tracing_max_latency
1984 # chrt -f 5 sleep 1
1985 # echo 0 > tracing_on
1986 # cat trace
1987 # tracer: wakeup_rt
1988 #
1989 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1990 # --------------------------------------------------------------------
1991 # latency: 6 us, #12/12, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1992 # -----------------
1993 # | task: sleep-5882 (uid:0 nice:0 policy:1 rt_prio:5)
1994 # -----------------
1995 #
1996 # _------=> CPU#
1997 # / _-----=> irqs-off
1998 # | / _----=> need-resched
1999 # || / _---=> hardirq/softirq
2000 # ||| / _--=> preempt-depth
2001 # |||| / delay
2002 # cmd pid ||||| time | caller
2003 # \ / ||||| \ | /
2004 <idle>-0 2d.h4 0us : 0:120:R + [002] 5882: 94:R sleep
2005 <idle>-0 2d.h4 0us : ttwu_do_activate.constprop.87 <-try_to_wake_up
2006 <idle>-0 2d.h4 1us : sched_wakeup: comm=sleep pid=5882 prio=94 success=1 target_cpu=002
2007 <idle>-0 2dNh2 1us : hrtimer_expire_exit: hrtimer=ffff88007796feb8
2008 <idle>-0 2.N.2 2us : power_end: cpu_id=2
2009 <idle>-0 2.N.2 3us : cpu_idle: state=4294967295 cpu_id=2
2010 <idle>-0 2dN.3 4us : hrtimer_cancel: hrtimer=ffff88007d50d5e0
2011 <idle>-0 2dN.3 4us : hrtimer_start: hrtimer=ffff88007d50d5e0 function=tick_sched_timer expires=34311211000000 softexpires=34311211000000
2012 <idle>-0 2.N.2 5us : rcu_utilization: Start context switch
2013 <idle>-0 2.N.2 5us : rcu_utilization: End context switch
2014 <idle>-0 2d..3 6us : __schedule <-schedule
2015 <idle>-0 2d..3 6us : 0:120:R ==> [002] 5882: 94:R sleep
2016
2017
2018Hardware Latency Detector
2019-------------------------
2020
2021The hardware latency detector is executed by enabling the "hwlat" tracer.
2022
2023NOTE, this tracer will affect the performance of the system as it will
2024periodically make a CPU constantly busy with interrupts disabled.
2025::
2026
2027 # echo hwlat > current_tracer
2028 # sleep 100
2029 # cat trace
2030 # tracer: hwlat
2031 #
2032 # _-----=> irqs-off
2033 # / _----=> need-resched
2034 # | / _---=> hardirq/softirq
2035 # || / _--=> preempt-depth
2036 # ||| / delay
2037 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2038 # | | | |||| | |
2039 <...>-3638 [001] d... 19452.055471: #1 inner/outer(us): 12/14 ts:1499801089.066141940
2040 <...>-3638 [003] d... 19454.071354: #2 inner/outer(us): 11/9 ts:1499801091.082164365
2041 <...>-3638 [002] dn.. 19461.126852: #3 inner/outer(us): 12/9 ts:1499801098.138150062
2042 <...>-3638 [001] d... 19488.340960: #4 inner/outer(us): 8/12 ts:1499801125.354139633
2043 <...>-3638 [003] d... 19494.388553: #5 inner/outer(us): 8/12 ts:1499801131.402150961
2044 <...>-3638 [003] d... 19501.283419: #6 inner/outer(us): 0/12 ts:1499801138.297435289 nmi-total:4 nmi-count:1
2045
2046
2047The above output is somewhat the same in the header. All events will have
2048interrupts disabled 'd'. Under the FUNCTION title there is:
2049
2050 #1
2051 This is the count of events recorded that were greater than the
2052 tracing_threshold (See below).
2053
2054 inner/outer(us): 12/14
2055
2056 This shows two numbers as "inner latency" and "outer latency". The test
2057 runs in a loop checking a timestamp twice. The latency detected within
2058 the two timestamps is the "inner latency" and the latency detected
2059 after the previous timestamp and the next timestamp in the loop is
2060 the "outer latency".
2061
2062 ts:1499801089.066141940
2063
2064 The absolute timestamp that the event happened.
2065
2066 nmi-total:4 nmi-count:1
2067
2068 On architectures that support it, if an NMI comes in during the
2069 test, the time spent in NMI is reported in "nmi-total" (in
2070 microseconds).
2071
2072 All architectures that have NMIs will show the "nmi-count" if an
2073 NMI comes in during the test.
2074
2075hwlat files:
2076
2077 tracing_threshold
2078 This gets automatically set to "10" to represent 10
2079 microseconds. This is the threshold of latency that
2080 needs to be detected before the trace will be recorded.
2081
2082 Note, when hwlat tracer is finished (another tracer is
2083 written into "current_tracer"), the original value for
2084 tracing_threshold is placed back into this file.
2085
2086 hwlat_detector/width
2087 The length of time the test runs with interrupts disabled.
2088
2089 hwlat_detector/window
2090 The length of time of the window which the test
2091 runs. That is, the test will run for "width"
2092 microseconds per "window" microseconds
2093
2094 tracing_cpumask
2095 When the test is started. A kernel thread is created that
2096 runs the test. This thread will alternate between CPUs
2097 listed in the tracing_cpumask between each period
2098 (one "window"). To limit the test to specific CPUs
2099 set the mask in this file to only the CPUs that the test
2100 should run on.
2101
2102function
2103--------
2104
2105This tracer is the function tracer. Enabling the function tracer
2106can be done from the debug file system. Make sure the
2107ftrace_enabled is set; otherwise this tracer is a nop.
2108See the "ftrace_enabled" section below.
2109::
2110
2111 # sysctl kernel.ftrace_enabled=1
2112 # echo function > current_tracer
2113 # echo 1 > tracing_on
2114 # usleep 1
2115 # echo 0 > tracing_on
2116 # cat trace
2117 # tracer: function
2118 #
2119 # entries-in-buffer/entries-written: 24799/24799 #P:4
2120 #
2121 # _-----=> irqs-off
2122 # / _----=> need-resched
2123 # | / _---=> hardirq/softirq
2124 # || / _--=> preempt-depth
2125 # ||| / delay
2126 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2127 # | | | |||| | |
2128 bash-1994 [002] .... 3082.063030: mutex_unlock <-rb_simple_write
2129 bash-1994 [002] .... 3082.063031: __mutex_unlock_slowpath <-mutex_unlock
2130 bash-1994 [002] .... 3082.063031: __fsnotify_parent <-fsnotify_modify
2131 bash-1994 [002] .... 3082.063032: fsnotify <-fsnotify_modify
2132 bash-1994 [002] .... 3082.063032: __srcu_read_lock <-fsnotify
2133 bash-1994 [002] .... 3082.063032: add_preempt_count <-__srcu_read_lock
2134 bash-1994 [002] ...1 3082.063032: sub_preempt_count <-__srcu_read_lock
2135 bash-1994 [002] .... 3082.063033: __srcu_read_unlock <-fsnotify
2136 [...]
2137
2138
2139Note: function tracer uses ring buffers to store the above
2140entries. The newest data may overwrite the oldest data.
2141Sometimes using echo to stop the trace is not sufficient because
2142the tracing could have overwritten the data that you wanted to
2143record. For this reason, it is sometimes better to disable
2144tracing directly from a program. This allows you to stop the
2145tracing at the point that you hit the part that you are
2146interested in. To disable the tracing directly from a C program,
2147something like following code snippet can be used::
2148
2149 int trace_fd;
2150 [...]
2151 int main(int argc, char *argv[]) {
2152 [...]
2153 trace_fd = open(tracing_file("tracing_on"), O_WRONLY);
2154 [...]
2155 if (condition_hit()) {
2156 write(trace_fd, "0", 1);
2157 }
2158 [...]
2159 }
2160
2161
2162Single thread tracing
2163---------------------
2164
2165By writing into set_ftrace_pid you can trace a
2166single thread. For example::
2167
2168 # cat set_ftrace_pid
2169 no pid
2170 # echo 3111 > set_ftrace_pid
2171 # cat set_ftrace_pid
2172 3111
2173 # echo function > current_tracer
2174 # cat trace | head
2175 # tracer: function
2176 #
2177 # TASK-PID CPU# TIMESTAMP FUNCTION
2178 # | | | | |
2179 yum-updatesd-3111 [003] 1637.254676: finish_task_switch <-thread_return
2180 yum-updatesd-3111 [003] 1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
2181 yum-updatesd-3111 [003] 1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
2182 yum-updatesd-3111 [003] 1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
2183 yum-updatesd-3111 [003] 1637.254685: fget_light <-do_sys_poll
2184 yum-updatesd-3111 [003] 1637.254686: pipe_poll <-do_sys_poll
2185 # echo > set_ftrace_pid
2186 # cat trace |head
2187 # tracer: function
2188 #
2189 # TASK-PID CPU# TIMESTAMP FUNCTION
2190 # | | | | |
2191 ##### CPU 3 buffer started ####
2192 yum-updatesd-3111 [003] 1701.957688: free_poll_entry <-poll_freewait
2193 yum-updatesd-3111 [003] 1701.957689: remove_wait_queue <-free_poll_entry
2194 yum-updatesd-3111 [003] 1701.957691: fput <-free_poll_entry
2195 yum-updatesd-3111 [003] 1701.957692: audit_syscall_exit <-sysret_audit
2196 yum-updatesd-3111 [003] 1701.957693: path_put <-audit_syscall_exit
2197
2198If you want to trace a function when executing, you could use
2199something like this simple program.
2200::
2201
2202 #include <stdio.h>
2203 #include <stdlib.h>
2204 #include <sys/types.h>
2205 #include <sys/stat.h>
2206 #include <fcntl.h>
2207 #include <unistd.h>
2208 #include <string.h>
2209
2210 #define _STR(x) #x
2211 #define STR(x) _STR(x)
2212 #define MAX_PATH 256
2213
2214 const char *find_tracefs(void)
2215 {
2216 static char tracefs[MAX_PATH+1];
2217 static int tracefs_found;
2218 char type[100];
2219 FILE *fp;
2220
2221 if (tracefs_found)
2222 return tracefs;
2223
2224 if ((fp = fopen("/proc/mounts","r")) == NULL) {
2225 perror("/proc/mounts");
2226 return NULL;
2227 }
2228
2229 while (fscanf(fp, "%*s %"
2230 STR(MAX_PATH)
2231 "s %99s %*s %*d %*d\n",
2232 tracefs, type) == 2) {
2233 if (strcmp(type, "tracefs") == 0)
2234 break;
2235 }
2236 fclose(fp);
2237
2238 if (strcmp(type, "tracefs") != 0) {
2239 fprintf(stderr, "tracefs not mounted");
2240 return NULL;
2241 }
2242
2243 strcat(tracefs, "/tracing/");
2244 tracefs_found = 1;
2245
2246 return tracefs;
2247 }
2248
2249 const char *tracing_file(const char *file_name)
2250 {
2251 static char trace_file[MAX_PATH+1];
2252 snprintf(trace_file, MAX_PATH, "%s/%s", find_tracefs(), file_name);
2253 return trace_file;
2254 }
2255
2256 int main (int argc, char **argv)
2257 {
2258 if (argc < 1)
2259 exit(-1);
2260
2261 if (fork() > 0) {
2262 int fd, ffd;
2263 char line[64];
2264 int s;
2265
2266 ffd = open(tracing_file("current_tracer"), O_WRONLY);
2267 if (ffd < 0)
2268 exit(-1);
2269 write(ffd, "nop", 3);
2270
2271 fd = open(tracing_file("set_ftrace_pid"), O_WRONLY);
2272 s = sprintf(line, "%d\n", getpid());
2273 write(fd, line, s);
2274
2275 write(ffd, "function", 8);
2276
2277 close(fd);
2278 close(ffd);
2279
2280 execvp(argv[1], argv+1);
2281 }
2282
2283 return 0;
2284 }
2285
2286Or this simple script!
2287::
2288
2289 #!/bin/bash
2290
2291 tracefs=`sed -ne 's/^tracefs \(.*\) tracefs.*/\1/p' /proc/mounts`
2292 echo nop > $tracefs/tracing/current_tracer
2293 echo 0 > $tracefs/tracing/tracing_on
2294 echo $$ > $tracefs/tracing/set_ftrace_pid
2295 echo function > $tracefs/tracing/current_tracer
2296 echo 1 > $tracefs/tracing/tracing_on
2297 exec "$@"
2298
2299
2300function graph tracer
2301---------------------------
2302
2303This tracer is similar to the function tracer except that it
2304probes a function on its entry and its exit. This is done by
2305using a dynamically allocated stack of return addresses in each
2306task_struct. On function entry the tracer overwrites the return
2307address of each function traced to set a custom probe. Thus the
2308original return address is stored on the stack of return address
2309in the task_struct.
2310
2311Probing on both ends of a function leads to special features
2312such as:
2313
2314- measure of a function's time execution
2315- having a reliable call stack to draw function calls graph
2316
2317This tracer is useful in several situations:
2318
2319- you want to find the reason of a strange kernel behavior and
2320 need to see what happens in detail on any areas (or specific
2321 ones).
2322
2323- you are experiencing weird latencies but it's difficult to
2324 find its origin.
2325
2326- you want to find quickly which path is taken by a specific
2327 function
2328
2329- you just want to peek inside a working kernel and want to see
2330 what happens there.
2331
2332::
2333
2334 # tracer: function_graph
2335 #
2336 # CPU DURATION FUNCTION CALLS
2337 # | | | | | | |
2338
2339 0) | sys_open() {
2340 0) | do_sys_open() {
2341 0) | getname() {
2342 0) | kmem_cache_alloc() {
2343 0) 1.382 us | __might_sleep();
2344 0) 2.478 us | }
2345 0) | strncpy_from_user() {
2346 0) | might_fault() {
2347 0) 1.389 us | __might_sleep();
2348 0) 2.553 us | }
2349 0) 3.807 us | }
2350 0) 7.876 us | }
2351 0) | alloc_fd() {
2352 0) 0.668 us | _spin_lock();
2353 0) 0.570 us | expand_files();
2354 0) 0.586 us | _spin_unlock();
2355
2356
2357There are several columns that can be dynamically
2358enabled/disabled. You can use every combination of options you
2359want, depending on your needs.
2360
2361- The cpu number on which the function executed is default
2362 enabled. It is sometimes better to only trace one cpu (see
2363 tracing_cpu_mask file) or you might sometimes see unordered
2364 function calls while cpu tracing switch.
2365
2366 - hide: echo nofuncgraph-cpu > trace_options
2367 - show: echo funcgraph-cpu > trace_options
2368
2369- The duration (function's time of execution) is displayed on
2370 the closing bracket line of a function or on the same line
2371 than the current function in case of a leaf one. It is default
2372 enabled.
2373
2374 - hide: echo nofuncgraph-duration > trace_options
2375 - show: echo funcgraph-duration > trace_options
2376
2377- The overhead field precedes the duration field in case of
2378 reached duration thresholds.
2379
2380 - hide: echo nofuncgraph-overhead > trace_options
2381 - show: echo funcgraph-overhead > trace_options
2382 - depends on: funcgraph-duration
2383
2384 ie::
2385
2386 3) # 1837.709 us | } /* __switch_to */
2387 3) | finish_task_switch() {
2388 3) 0.313 us | _raw_spin_unlock_irq();
2389 3) 3.177 us | }
2390 3) # 1889.063 us | } /* __schedule */
2391 3) ! 140.417 us | } /* __schedule */
2392 3) # 2034.948 us | } /* schedule */
2393 3) * 33998.59 us | } /* schedule_preempt_disabled */
2394
2395 [...]
2396
2397 1) 0.260 us | msecs_to_jiffies();
2398 1) 0.313 us | __rcu_read_unlock();
2399 1) + 61.770 us | }
2400 1) + 64.479 us | }
2401 1) 0.313 us | rcu_bh_qs();
2402 1) 0.313 us | __local_bh_enable();
2403 1) ! 217.240 us | }
2404 1) 0.365 us | idle_cpu();
2405 1) | rcu_irq_exit() {
2406 1) 0.417 us | rcu_eqs_enter_common.isra.47();
2407 1) 3.125 us | }
2408 1) ! 227.812 us | }
2409 1) ! 457.395 us | }
2410 1) @ 119760.2 us | }
2411
2412 [...]
2413
2414 2) | handle_IPI() {
2415 1) 6.979 us | }
2416 2) 0.417 us | scheduler_ipi();
2417 1) 9.791 us | }
2418 1) + 12.917 us | }
2419 2) 3.490 us | }
2420 1) + 15.729 us | }
2421 1) + 18.542 us | }
2422 2) $ 3594274 us | }
2423
2424Flags::
2425
2426 + means that the function exceeded 10 usecs.
2427 ! means that the function exceeded 100 usecs.
2428 # means that the function exceeded 1000 usecs.
2429 * means that the function exceeded 10 msecs.
2430 @ means that the function exceeded 100 msecs.
2431 $ means that the function exceeded 1 sec.
2432
2433
2434- The task/pid field displays the thread cmdline and pid which
2435 executed the function. It is default disabled.
2436
2437 - hide: echo nofuncgraph-proc > trace_options
2438 - show: echo funcgraph-proc > trace_options
2439
2440 ie::
2441
2442 # tracer: function_graph
2443 #
2444 # CPU TASK/PID DURATION FUNCTION CALLS
2445 # | | | | | | | | |
2446 0) sh-4802 | | d_free() {
2447 0) sh-4802 | | call_rcu() {
2448 0) sh-4802 | | __call_rcu() {
2449 0) sh-4802 | 0.616 us | rcu_process_gp_end();
2450 0) sh-4802 | 0.586 us | check_for_new_grace_period();
2451 0) sh-4802 | 2.899 us | }
2452 0) sh-4802 | 4.040 us | }
2453 0) sh-4802 | 5.151 us | }
2454 0) sh-4802 | + 49.370 us | }
2455
2456
2457- The absolute time field is an absolute timestamp given by the
2458 system clock since it started. A snapshot of this time is
2459 given on each entry/exit of functions
2460
2461 - hide: echo nofuncgraph-abstime > trace_options
2462 - show: echo funcgraph-abstime > trace_options
2463
2464 ie::
2465
2466 #
2467 # TIME CPU DURATION FUNCTION CALLS
2468 # | | | | | | | |
2469 360.774522 | 1) 0.541 us | }
2470 360.774522 | 1) 4.663 us | }
2471 360.774523 | 1) 0.541 us | __wake_up_bit();
2472 360.774524 | 1) 6.796 us | }
2473 360.774524 | 1) 7.952 us | }
2474 360.774525 | 1) 9.063 us | }
2475 360.774525 | 1) 0.615 us | journal_mark_dirty();
2476 360.774527 | 1) 0.578 us | __brelse();
2477 360.774528 | 1) | reiserfs_prepare_for_journal() {
2478 360.774528 | 1) | unlock_buffer() {
2479 360.774529 | 1) | wake_up_bit() {
2480 360.774529 | 1) | bit_waitqueue() {
2481 360.774530 | 1) 0.594 us | __phys_addr();
2482
2483
2484The function name is always displayed after the closing bracket
2485for a function if the start of that function is not in the
2486trace buffer.
2487
2488Display of the function name after the closing bracket may be
2489enabled for functions whose start is in the trace buffer,
2490allowing easier searching with grep for function durations.
2491It is default disabled.
2492
2493 - hide: echo nofuncgraph-tail > trace_options
2494 - show: echo funcgraph-tail > trace_options
2495
2496 Example with nofuncgraph-tail (default)::
2497
2498 0) | putname() {
2499 0) | kmem_cache_free() {
2500 0) 0.518 us | __phys_addr();
2501 0) 1.757 us | }
2502 0) 2.861 us | }
2503
2504 Example with funcgraph-tail::
2505
2506 0) | putname() {
2507 0) | kmem_cache_free() {
2508 0) 0.518 us | __phys_addr();
2509 0) 1.757 us | } /* kmem_cache_free() */
2510 0) 2.861 us | } /* putname() */
2511
2512You can put some comments on specific functions by using
2513trace_printk() For example, if you want to put a comment inside
2514the __might_sleep() function, you just have to include
2515<linux/ftrace.h> and call trace_printk() inside __might_sleep()::
2516
2517 trace_printk("I'm a comment!\n")
2518
2519will produce::
2520
2521 1) | __might_sleep() {
2522 1) | /* I'm a comment! */
2523 1) 1.449 us | }
2524
2525
2526You might find other useful features for this tracer in the
2527following "dynamic ftrace" section such as tracing only specific
2528functions or tasks.
2529
2530dynamic ftrace
2531--------------
2532
2533If CONFIG_DYNAMIC_FTRACE is set, the system will run with
2534virtually no overhead when function tracing is disabled. The way
2535this works is the mcount function call (placed at the start of
2536every kernel function, produced by the -pg switch in gcc),
2537starts of pointing to a simple return. (Enabling FTRACE will
2538include the -pg switch in the compiling of the kernel.)
2539
2540At compile time every C file object is run through the
2541recordmcount program (located in the scripts directory). This
2542program will parse the ELF headers in the C object to find all
2543the locations in the .text section that call mcount. Starting
Amir Livneh2a1e03c2018-11-01 09:57:17 -04002544with gcc version 4.6, the -mfentry has been added for x86, which
Changbin Du1f198e22018-02-17 13:39:38 +08002545calls "__fentry__" instead of "mcount". Which is called before
2546the creation of the stack frame.
2547
2548Note, not all sections are traced. They may be prevented by either
2549a notrace, or blocked another way and all inline functions are not
2550traced. Check the "available_filter_functions" file to see what functions
2551can be traced.
2552
2553A section called "__mcount_loc" is created that holds
2554references to all the mcount/fentry call sites in the .text section.
2555The recordmcount program re-links this section back into the
2556original object. The final linking stage of the kernel will add all these
2557references into a single table.
2558
2559On boot up, before SMP is initialized, the dynamic ftrace code
2560scans this table and updates all the locations into nops. It
2561also records the locations, which are added to the
2562available_filter_functions list. Modules are processed as they
2563are loaded and before they are executed. When a module is
2564unloaded, it also removes its functions from the ftrace function
2565list. This is automatic in the module unload code, and the
2566module author does not need to worry about it.
2567
2568When tracing is enabled, the process of modifying the function
2569tracepoints is dependent on architecture. The old method is to use
2570kstop_machine to prevent races with the CPUs executing code being
2571modified (which can cause the CPU to do undesirable things, especially
2572if the modified code crosses cache (or page) boundaries), and the nops are
2573patched back to calls. But this time, they do not call mcount
2574(which is just a function stub). They now call into the ftrace
2575infrastructure.
2576
2577The new method of modifying the function tracepoints is to place
2578a breakpoint at the location to be modified, sync all CPUs, modify
2579the rest of the instruction not covered by the breakpoint. Sync
2580all CPUs again, and then remove the breakpoint with the finished
2581version to the ftrace call site.
2582
2583Some archs do not even need to monkey around with the synchronization,
2584and can just slap the new code on top of the old without any
2585problems with other CPUs executing it at the same time.
2586
2587One special side-effect to the recording of the functions being
2588traced is that we can now selectively choose which functions we
2589wish to trace and which ones we want the mcount calls to remain
2590as nops.
2591
2592Two files are used, one for enabling and one for disabling the
2593tracing of specified functions. They are:
2594
2595 set_ftrace_filter
2596
2597and
2598
2599 set_ftrace_notrace
2600
2601A list of available functions that you can add to these files is
2602listed in:
2603
2604 available_filter_functions
2605
2606::
2607
2608 # cat available_filter_functions
2609 put_prev_task_idle
2610 kmem_cache_create
2611 pick_next_task_rt
2612 get_online_cpus
2613 pick_next_task_fair
2614 mutex_lock
2615 [...]
2616
2617If I am only interested in sys_nanosleep and hrtimer_interrupt::
2618
2619 # echo sys_nanosleep hrtimer_interrupt > set_ftrace_filter
2620 # echo function > current_tracer
2621 # echo 1 > tracing_on
2622 # usleep 1
2623 # echo 0 > tracing_on
2624 # cat trace
2625 # tracer: function
2626 #
2627 # entries-in-buffer/entries-written: 5/5 #P:4
2628 #
2629 # _-----=> irqs-off
2630 # / _----=> need-resched
2631 # | / _---=> hardirq/softirq
2632 # || / _--=> preempt-depth
2633 # ||| / delay
2634 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2635 # | | | |||| | |
2636 usleep-2665 [001] .... 4186.475355: sys_nanosleep <-system_call_fastpath
2637 <idle>-0 [001] d.h1 4186.475409: hrtimer_interrupt <-smp_apic_timer_interrupt
2638 usleep-2665 [001] d.h1 4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2639 <idle>-0 [003] d.h1 4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2640 <idle>-0 [002] d.h1 4186.475427: hrtimer_interrupt <-smp_apic_timer_interrupt
2641
2642To see which functions are being traced, you can cat the file:
2643::
2644
2645 # cat set_ftrace_filter
2646 hrtimer_interrupt
2647 sys_nanosleep
2648
2649
2650Perhaps this is not enough. The filters also allow glob(7) matching.
2651
Jonathan Corbet6234c7b2018-03-07 10:44:08 -07002652 ``<match>*``
Changbin Du1f198e22018-02-17 13:39:38 +08002653 will match functions that begin with <match>
Jonathan Corbet6234c7b2018-03-07 10:44:08 -07002654 ``*<match>``
Changbin Du1f198e22018-02-17 13:39:38 +08002655 will match functions that end with <match>
Jonathan Corbet6234c7b2018-03-07 10:44:08 -07002656 ``*<match>*``
Changbin Du1f198e22018-02-17 13:39:38 +08002657 will match functions that have <match> in it
Jonathan Corbet6234c7b2018-03-07 10:44:08 -07002658 ``<match1>*<match2>``
Changbin Du1f198e22018-02-17 13:39:38 +08002659 will match functions that begin with <match1> and end with <match2>
2660
2661.. note::
2662 It is better to use quotes to enclose the wild cards,
2663 otherwise the shell may expand the parameters into names
2664 of files in the local directory.
2665
2666::
2667
2668 # echo 'hrtimer_*' > set_ftrace_filter
2669
2670Produces::
2671
2672 # tracer: function
2673 #
2674 # entries-in-buffer/entries-written: 897/897 #P:4
2675 #
2676 # _-----=> irqs-off
2677 # / _----=> need-resched
2678 # | / _---=> hardirq/softirq
2679 # || / _--=> preempt-depth
2680 # ||| / delay
2681 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2682 # | | | |||| | |
2683 <idle>-0 [003] dN.1 4228.547803: hrtimer_cancel <-tick_nohz_idle_exit
2684 <idle>-0 [003] dN.1 4228.547804: hrtimer_try_to_cancel <-hrtimer_cancel
2685 <idle>-0 [003] dN.2 4228.547805: hrtimer_force_reprogram <-__remove_hrtimer
2686 <idle>-0 [003] dN.1 4228.547805: hrtimer_forward <-tick_nohz_idle_exit
2687 <idle>-0 [003] dN.1 4228.547805: hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
2688 <idle>-0 [003] d..1 4228.547858: hrtimer_get_next_event <-get_next_timer_interrupt
2689 <idle>-0 [003] d..1 4228.547859: hrtimer_start <-__tick_nohz_idle_enter
2690 <idle>-0 [003] d..2 4228.547860: hrtimer_force_reprogram <-__rem
2691
2692Notice that we lost the sys_nanosleep.
2693::
2694
2695 # cat set_ftrace_filter
2696 hrtimer_run_queues
2697 hrtimer_run_pending
2698 hrtimer_init
2699 hrtimer_cancel
2700 hrtimer_try_to_cancel
2701 hrtimer_forward
2702 hrtimer_start
2703 hrtimer_reprogram
2704 hrtimer_force_reprogram
2705 hrtimer_get_next_event
2706 hrtimer_interrupt
2707 hrtimer_nanosleep
2708 hrtimer_wakeup
2709 hrtimer_get_remaining
2710 hrtimer_get_res
2711 hrtimer_init_sleeper
2712
2713
2714This is because the '>' and '>>' act just like they do in bash.
2715To rewrite the filters, use '>'
2716To append to the filters, use '>>'
2717
2718To clear out a filter so that all functions will be recorded
2719again::
2720
2721 # echo > set_ftrace_filter
2722 # cat set_ftrace_filter
2723 #
2724
2725Again, now we want to append.
2726
2727::
2728
2729 # echo sys_nanosleep > set_ftrace_filter
2730 # cat set_ftrace_filter
2731 sys_nanosleep
2732 # echo 'hrtimer_*' >> set_ftrace_filter
2733 # cat set_ftrace_filter
2734 hrtimer_run_queues
2735 hrtimer_run_pending
2736 hrtimer_init
2737 hrtimer_cancel
2738 hrtimer_try_to_cancel
2739 hrtimer_forward
2740 hrtimer_start
2741 hrtimer_reprogram
2742 hrtimer_force_reprogram
2743 hrtimer_get_next_event
2744 hrtimer_interrupt
2745 sys_nanosleep
2746 hrtimer_nanosleep
2747 hrtimer_wakeup
2748 hrtimer_get_remaining
2749 hrtimer_get_res
2750 hrtimer_init_sleeper
2751
2752
2753The set_ftrace_notrace prevents those functions from being
2754traced.
2755::
2756
2757 # echo '*preempt*' '*lock*' > set_ftrace_notrace
2758
2759Produces::
2760
2761 # tracer: function
2762 #
2763 # entries-in-buffer/entries-written: 39608/39608 #P:4
2764 #
2765 # _-----=> irqs-off
2766 # / _----=> need-resched
2767 # | / _---=> hardirq/softirq
2768 # || / _--=> preempt-depth
2769 # ||| / delay
2770 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2771 # | | | |||| | |
2772 bash-1994 [000] .... 4342.324896: file_ra_state_init <-do_dentry_open
2773 bash-1994 [000] .... 4342.324897: open_check_o_direct <-do_last
2774 bash-1994 [000] .... 4342.324897: ima_file_check <-do_last
2775 bash-1994 [000] .... 4342.324898: process_measurement <-ima_file_check
2776 bash-1994 [000] .... 4342.324898: ima_get_action <-process_measurement
2777 bash-1994 [000] .... 4342.324898: ima_match_policy <-ima_get_action
2778 bash-1994 [000] .... 4342.324899: do_truncate <-do_last
2779 bash-1994 [000] .... 4342.324899: should_remove_suid <-do_truncate
2780 bash-1994 [000] .... 4342.324899: notify_change <-do_truncate
2781 bash-1994 [000] .... 4342.324900: current_fs_time <-notify_change
2782 bash-1994 [000] .... 4342.324900: current_kernel_time <-current_fs_time
2783 bash-1994 [000] .... 4342.324900: timespec_trunc <-current_fs_time
2784
2785We can see that there's no more lock or preempt tracing.
2786
2787
2788Dynamic ftrace with the function graph tracer
2789---------------------------------------------
2790
2791Although what has been explained above concerns both the
2792function tracer and the function-graph-tracer, there are some
2793special features only available in the function-graph tracer.
2794
2795If you want to trace only one function and all of its children,
2796you just have to echo its name into set_graph_function::
2797
2798 echo __do_fault > set_graph_function
2799
2800will produce the following "expanded" trace of the __do_fault()
2801function::
2802
2803 0) | __do_fault() {
2804 0) | filemap_fault() {
2805 0) | find_lock_page() {
2806 0) 0.804 us | find_get_page();
2807 0) | __might_sleep() {
2808 0) 1.329 us | }
2809 0) 3.904 us | }
2810 0) 4.979 us | }
2811 0) 0.653 us | _spin_lock();
2812 0) 0.578 us | page_add_file_rmap();
2813 0) 0.525 us | native_set_pte_at();
2814 0) 0.585 us | _spin_unlock();
2815 0) | unlock_page() {
2816 0) 0.541 us | page_waitqueue();
2817 0) 0.639 us | __wake_up_bit();
2818 0) 2.786 us | }
2819 0) + 14.237 us | }
2820 0) | __do_fault() {
2821 0) | filemap_fault() {
2822 0) | find_lock_page() {
2823 0) 0.698 us | find_get_page();
2824 0) | __might_sleep() {
2825 0) 1.412 us | }
2826 0) 3.950 us | }
2827 0) 5.098 us | }
2828 0) 0.631 us | _spin_lock();
2829 0) 0.571 us | page_add_file_rmap();
2830 0) 0.526 us | native_set_pte_at();
2831 0) 0.586 us | _spin_unlock();
2832 0) | unlock_page() {
2833 0) 0.533 us | page_waitqueue();
2834 0) 0.638 us | __wake_up_bit();
2835 0) 2.793 us | }
2836 0) + 14.012 us | }
2837
2838You can also expand several functions at once::
2839
2840 echo sys_open > set_graph_function
2841 echo sys_close >> set_graph_function
2842
2843Now if you want to go back to trace all functions you can clear
2844this special filter via::
2845
2846 echo > set_graph_function
2847
2848
2849ftrace_enabled
2850--------------
2851
2852Note, the proc sysctl ftrace_enable is a big on/off switch for the
2853function tracer. By default it is enabled (when function tracing is
2854enabled in the kernel). If it is disabled, all function tracing is
2855disabled. This includes not only the function tracers for ftrace, but
2856also for any other uses (perf, kprobes, stack tracing, profiling, etc).
2857
2858Please disable this with care.
2859
2860This can be disable (and enabled) with::
2861
2862 sysctl kernel.ftrace_enabled=0
2863 sysctl kernel.ftrace_enabled=1
2864
2865 or
2866
2867 echo 0 > /proc/sys/kernel/ftrace_enabled
2868 echo 1 > /proc/sys/kernel/ftrace_enabled
2869
2870
2871Filter commands
2872---------------
2873
2874A few commands are supported by the set_ftrace_filter interface.
2875Trace commands have the following format::
2876
2877 <function>:<command>:<parameter>
2878
2879The following commands are supported:
2880
2881- mod:
2882 This command enables function filtering per module. The
2883 parameter defines the module. For example, if only the write*
2884 functions in the ext3 module are desired, run:
2885
2886 echo 'write*:mod:ext3' > set_ftrace_filter
2887
2888 This command interacts with the filter in the same way as
2889 filtering based on function names. Thus, adding more functions
2890 in a different module is accomplished by appending (>>) to the
2891 filter file. Remove specific module functions by prepending
2892 '!'::
2893
2894 echo '!writeback*:mod:ext3' >> set_ftrace_filter
2895
2896 Mod command supports module globbing. Disable tracing for all
2897 functions except a specific module::
2898
2899 echo '!*:mod:!ext3' >> set_ftrace_filter
2900
2901 Disable tracing for all modules, but still trace kernel::
2902
2903 echo '!*:mod:*' >> set_ftrace_filter
2904
2905 Enable filter only for kernel::
2906
2907 echo '*write*:mod:!*' >> set_ftrace_filter
2908
2909 Enable filter for module globbing::
2910
2911 echo '*write*:mod:*snd*' >> set_ftrace_filter
2912
2913- traceon/traceoff:
2914 These commands turn tracing on and off when the specified
2915 functions are hit. The parameter determines how many times the
2916 tracing system is turned on and off. If unspecified, there is
2917 no limit. For example, to disable tracing when a schedule bug
2918 is hit the first 5 times, run::
2919
2920 echo '__schedule_bug:traceoff:5' > set_ftrace_filter
2921
2922 To always disable tracing when __schedule_bug is hit::
2923
2924 echo '__schedule_bug:traceoff' > set_ftrace_filter
2925
2926 These commands are cumulative whether or not they are appended
2927 to set_ftrace_filter. To remove a command, prepend it by '!'
2928 and drop the parameter::
2929
2930 echo '!__schedule_bug:traceoff:0' > set_ftrace_filter
2931
2932 The above removes the traceoff command for __schedule_bug
2933 that have a counter. To remove commands without counters::
2934
2935 echo '!__schedule_bug:traceoff' > set_ftrace_filter
2936
2937- snapshot:
2938 Will cause a snapshot to be triggered when the function is hit.
2939 ::
2940
2941 echo 'native_flush_tlb_others:snapshot' > set_ftrace_filter
2942
2943 To only snapshot once:
2944 ::
2945
2946 echo 'native_flush_tlb_others:snapshot:1' > set_ftrace_filter
2947
2948 To remove the above commands::
2949
2950 echo '!native_flush_tlb_others:snapshot' > set_ftrace_filter
2951 echo '!native_flush_tlb_others:snapshot:0' > set_ftrace_filter
2952
2953- enable_event/disable_event:
2954 These commands can enable or disable a trace event. Note, because
2955 function tracing callbacks are very sensitive, when these commands
2956 are registered, the trace point is activated, but disabled in
2957 a "soft" mode. That is, the tracepoint will be called, but
2958 just will not be traced. The event tracepoint stays in this mode
2959 as long as there's a command that triggers it.
2960 ::
2961
2962 echo 'try_to_wake_up:enable_event:sched:sched_switch:2' > \
2963 set_ftrace_filter
2964
2965 The format is::
2966
2967 <function>:enable_event:<system>:<event>[:count]
2968 <function>:disable_event:<system>:<event>[:count]
2969
2970 To remove the events commands::
2971
2972 echo '!try_to_wake_up:enable_event:sched:sched_switch:0' > \
2973 set_ftrace_filter
2974 echo '!schedule:disable_event:sched:sched_switch' > \
2975 set_ftrace_filter
2976
2977- dump:
2978 When the function is hit, it will dump the contents of the ftrace
2979 ring buffer to the console. This is useful if you need to debug
2980 something, and want to dump the trace when a certain function
Amir Livneh2a1e03c2018-11-01 09:57:17 -04002981 is hit. Perhaps it's a function that is called before a triple
Changbin Du1f198e22018-02-17 13:39:38 +08002982 fault happens and does not allow you to get a regular dump.
2983
2984- cpudump:
2985 When the function is hit, it will dump the contents of the ftrace
2986 ring buffer for the current CPU to the console. Unlike the "dump"
2987 command, it only prints out the contents of the ring buffer for the
2988 CPU that executed the function that triggered the dump.
2989
Masami Hiramatsu8a2933c2018-08-16 18:50:47 +09002990- stacktrace:
2991 When the function is hit, a stack trace is recorded.
2992
Changbin Du1f198e22018-02-17 13:39:38 +08002993trace_pipe
2994----------
2995
2996The trace_pipe outputs the same content as the trace file, but
2997the effect on the tracing is different. Every read from
2998trace_pipe is consumed. This means that subsequent reads will be
2999different. The trace is live.
3000::
3001
3002 # echo function > current_tracer
3003 # cat trace_pipe > /tmp/trace.out &
3004 [1] 4153
3005 # echo 1 > tracing_on
3006 # usleep 1
3007 # echo 0 > tracing_on
3008 # cat trace
3009 # tracer: function
3010 #
3011 # entries-in-buffer/entries-written: 0/0 #P:4
3012 #
3013 # _-----=> irqs-off
3014 # / _----=> need-resched
3015 # | / _---=> hardirq/softirq
3016 # || / _--=> preempt-depth
3017 # ||| / delay
3018 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3019 # | | | |||| | |
3020
3021 #
3022 # cat /tmp/trace.out
3023 bash-1994 [000] .... 5281.568961: mutex_unlock <-rb_simple_write
3024 bash-1994 [000] .... 5281.568963: __mutex_unlock_slowpath <-mutex_unlock
3025 bash-1994 [000] .... 5281.568963: __fsnotify_parent <-fsnotify_modify
3026 bash-1994 [000] .... 5281.568964: fsnotify <-fsnotify_modify
3027 bash-1994 [000] .... 5281.568964: __srcu_read_lock <-fsnotify
3028 bash-1994 [000] .... 5281.568964: add_preempt_count <-__srcu_read_lock
3029 bash-1994 [000] ...1 5281.568965: sub_preempt_count <-__srcu_read_lock
3030 bash-1994 [000] .... 5281.568965: __srcu_read_unlock <-fsnotify
3031 bash-1994 [000] .... 5281.568967: sys_dup2 <-system_call_fastpath
3032
3033
3034Note, reading the trace_pipe file will block until more input is
3035added.
3036
3037trace entries
3038-------------
3039
3040Having too much or not enough data can be troublesome in
3041diagnosing an issue in the kernel. The file buffer_size_kb is
3042used to modify the size of the internal trace buffers. The
3043number listed is the number of entries that can be recorded per
3044CPU. To know the full size, multiply the number of possible CPUs
3045with the number of entries.
3046::
3047
3048 # cat buffer_size_kb
3049 1408 (units kilobytes)
3050
3051Or simply read buffer_total_size_kb
3052::
3053
3054 # cat buffer_total_size_kb
3055 5632
3056
3057To modify the buffer, simple echo in a number (in 1024 byte segments).
3058::
3059
3060 # echo 10000 > buffer_size_kb
3061 # cat buffer_size_kb
3062 10000 (units kilobytes)
3063
3064It will try to allocate as much as possible. If you allocate too
3065much, it can cause Out-Of-Memory to trigger.
3066::
3067
3068 # echo 1000000000000 > buffer_size_kb
3069 -bash: echo: write error: Cannot allocate memory
3070 # cat buffer_size_kb
3071 85
3072
3073The per_cpu buffers can be changed individually as well:
3074::
3075
3076 # echo 10000 > per_cpu/cpu0/buffer_size_kb
3077 # echo 100 > per_cpu/cpu1/buffer_size_kb
3078
3079When the per_cpu buffers are not the same, the buffer_size_kb
3080at the top level will just show an X
3081::
3082
3083 # cat buffer_size_kb
3084 X
3085
3086This is where the buffer_total_size_kb is useful:
3087::
3088
3089 # cat buffer_total_size_kb
3090 12916
3091
3092Writing to the top level buffer_size_kb will reset all the buffers
3093to be the same again.
3094
3095Snapshot
3096--------
3097CONFIG_TRACER_SNAPSHOT makes a generic snapshot feature
3098available to all non latency tracers. (Latency tracers which
3099record max latency, such as "irqsoff" or "wakeup", can't use
3100this feature, since those are already using the snapshot
3101mechanism internally.)
3102
3103Snapshot preserves a current trace buffer at a particular point
3104in time without stopping tracing. Ftrace swaps the current
3105buffer with a spare buffer, and tracing continues in the new
3106current (=previous spare) buffer.
3107
3108The following tracefs files in "tracing" are related to this
3109feature:
3110
3111 snapshot:
3112
3113 This is used to take a snapshot and to read the output
3114 of the snapshot. Echo 1 into this file to allocate a
3115 spare buffer and to take a snapshot (swap), then read
3116 the snapshot from this file in the same format as
3117 "trace" (described above in the section "The File
3118 System"). Both reads snapshot and tracing are executable
3119 in parallel. When the spare buffer is allocated, echoing
3120 0 frees it, and echoing else (positive) values clear the
3121 snapshot contents.
3122 More details are shown in the table below.
3123
3124 +--------------+------------+------------+------------+
3125 |status\\input | 0 | 1 | else |
3126 +==============+============+============+============+
3127 |not allocated |(do nothing)| alloc+swap |(do nothing)|
3128 +--------------+------------+------------+------------+
3129 |allocated | free | swap | clear |
3130 +--------------+------------+------------+------------+
3131
3132Here is an example of using the snapshot feature.
3133::
3134
3135 # echo 1 > events/sched/enable
3136 # echo 1 > snapshot
3137 # cat snapshot
3138 # tracer: nop
3139 #
3140 # entries-in-buffer/entries-written: 71/71 #P:8
3141 #
3142 # _-----=> irqs-off
3143 # / _----=> need-resched
3144 # | / _---=> hardirq/softirq
3145 # || / _--=> preempt-depth
3146 # ||| / delay
3147 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3148 # | | | |||| | |
3149 <idle>-0 [005] d... 2440.603828: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2242 next_prio=120
3150 sleep-2242 [005] d... 2440.603846: sched_switch: prev_comm=snapshot-test-2 prev_pid=2242 prev_prio=120 prev_state=R ==> next_comm=kworker/5:1 next_pid=60 next_prio=120
3151 [...]
3152 <idle>-0 [002] d... 2440.707230: sched_switch: prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2229 next_prio=120
3153
3154 # cat trace
3155 # tracer: nop
3156 #
3157 # entries-in-buffer/entries-written: 77/77 #P:8
3158 #
3159 # _-----=> irqs-off
3160 # / _----=> need-resched
3161 # | / _---=> hardirq/softirq
3162 # || / _--=> preempt-depth
3163 # ||| / delay
3164 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3165 # | | | |||| | |
3166 <idle>-0 [007] d... 2440.707395: sched_switch: prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2243 next_prio=120
3167 snapshot-test-2-2229 [002] d... 2440.707438: sched_switch: prev_comm=snapshot-test-2 prev_pid=2229 prev_prio=120 prev_state=S ==> next_comm=swapper/2 next_pid=0 next_prio=120
3168 [...]
3169
3170
3171If you try to use this snapshot feature when current tracer is
3172one of the latency tracers, you will get the following results.
3173::
3174
3175 # echo wakeup > current_tracer
3176 # echo 1 > snapshot
3177 bash: echo: write error: Device or resource busy
3178 # cat snapshot
3179 cat: snapshot: Device or resource busy
3180
3181
3182Instances
3183---------
3184In the tracefs tracing directory is a directory called "instances".
3185This directory can have new directories created inside of it using
3186mkdir, and removing directories with rmdir. The directory created
3187with mkdir in this directory will already contain files and other
3188directories after it is created.
3189::
3190
3191 # mkdir instances/foo
3192 # ls instances/foo
3193 buffer_size_kb buffer_total_size_kb events free_buffer per_cpu
3194 set_event snapshot trace trace_clock trace_marker trace_options
3195 trace_pipe tracing_on
3196
3197As you can see, the new directory looks similar to the tracing directory
3198itself. In fact, it is very similar, except that the buffer and
3199events are agnostic from the main director, or from any other
3200instances that are created.
3201
3202The files in the new directory work just like the files with the
3203same name in the tracing directory except the buffer that is used
3204is a separate and new buffer. The files affect that buffer but do not
3205affect the main buffer with the exception of trace_options. Currently,
3206the trace_options affect all instances and the top level buffer
3207the same, but this may change in future releases. That is, options
3208may become specific to the instance they reside in.
3209
3210Notice that none of the function tracer files are there, nor is
3211current_tracer and available_tracers. This is because the buffers
3212can currently only have events enabled for them.
3213::
3214
3215 # mkdir instances/foo
3216 # mkdir instances/bar
3217 # mkdir instances/zoot
3218 # echo 100000 > buffer_size_kb
3219 # echo 1000 > instances/foo/buffer_size_kb
3220 # echo 5000 > instances/bar/per_cpu/cpu1/buffer_size_kb
3221 # echo function > current_trace
3222 # echo 1 > instances/foo/events/sched/sched_wakeup/enable
3223 # echo 1 > instances/foo/events/sched/sched_wakeup_new/enable
3224 # echo 1 > instances/foo/events/sched/sched_switch/enable
3225 # echo 1 > instances/bar/events/irq/enable
3226 # echo 1 > instances/zoot/events/syscalls/enable
3227 # cat trace_pipe
3228 CPU:2 [LOST 11745 EVENTS]
3229 bash-2044 [002] .... 10594.481032: _raw_spin_lock_irqsave <-get_page_from_freelist
3230 bash-2044 [002] d... 10594.481032: add_preempt_count <-_raw_spin_lock_irqsave
3231 bash-2044 [002] d..1 10594.481032: __rmqueue <-get_page_from_freelist
3232 bash-2044 [002] d..1 10594.481033: _raw_spin_unlock <-get_page_from_freelist
3233 bash-2044 [002] d..1 10594.481033: sub_preempt_count <-_raw_spin_unlock
3234 bash-2044 [002] d... 10594.481033: get_pageblock_flags_group <-get_pageblock_migratetype
3235 bash-2044 [002] d... 10594.481034: __mod_zone_page_state <-get_page_from_freelist
3236 bash-2044 [002] d... 10594.481034: zone_statistics <-get_page_from_freelist
3237 bash-2044 [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3238 bash-2044 [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3239 bash-2044 [002] .... 10594.481035: arch_dup_task_struct <-copy_process
3240 [...]
3241
3242 # cat instances/foo/trace_pipe
3243 bash-1998 [000] d..4 136.676759: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3244 bash-1998 [000] dN.4 136.676760: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3245 <idle>-0 [003] d.h3 136.676906: sched_wakeup: comm=rcu_preempt pid=9 prio=120 success=1 target_cpu=003
3246 <idle>-0 [003] d..3 136.676909: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=rcu_preempt next_pid=9 next_prio=120
3247 rcu_preempt-9 [003] d..3 136.676916: sched_switch: prev_comm=rcu_preempt prev_pid=9 prev_prio=120 prev_state=S ==> next_comm=swapper/3 next_pid=0 next_prio=120
3248 bash-1998 [000] d..4 136.677014: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3249 bash-1998 [000] dN.4 136.677016: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3250 bash-1998 [000] d..3 136.677018: sched_switch: prev_comm=bash prev_pid=1998 prev_prio=120 prev_state=R+ ==> next_comm=kworker/0:1 next_pid=59 next_prio=120
3251 kworker/0:1-59 [000] d..4 136.677022: sched_wakeup: comm=sshd pid=1995 prio=120 success=1 target_cpu=001
3252 kworker/0:1-59 [000] d..3 136.677025: sched_switch: prev_comm=kworker/0:1 prev_pid=59 prev_prio=120 prev_state=S ==> next_comm=bash next_pid=1998 next_prio=120
3253 [...]
3254
3255 # cat instances/bar/trace_pipe
3256 migration/1-14 [001] d.h3 138.732674: softirq_raise: vec=3 [action=NET_RX]
3257 <idle>-0 [001] dNh3 138.732725: softirq_raise: vec=3 [action=NET_RX]
3258 bash-1998 [000] d.h1 138.733101: softirq_raise: vec=1 [action=TIMER]
3259 bash-1998 [000] d.h1 138.733102: softirq_raise: vec=9 [action=RCU]
3260 bash-1998 [000] ..s2 138.733105: softirq_entry: vec=1 [action=TIMER]
3261 bash-1998 [000] ..s2 138.733106: softirq_exit: vec=1 [action=TIMER]
3262 bash-1998 [000] ..s2 138.733106: softirq_entry: vec=9 [action=RCU]
3263 bash-1998 [000] ..s2 138.733109: softirq_exit: vec=9 [action=RCU]
3264 sshd-1995 [001] d.h1 138.733278: irq_handler_entry: irq=21 name=uhci_hcd:usb4
3265 sshd-1995 [001] d.h1 138.733280: irq_handler_exit: irq=21 ret=unhandled
3266 sshd-1995 [001] d.h1 138.733281: irq_handler_entry: irq=21 name=eth0
3267 sshd-1995 [001] d.h1 138.733283: irq_handler_exit: irq=21 ret=handled
3268 [...]
3269
3270 # cat instances/zoot/trace
3271 # tracer: nop
3272 #
3273 # entries-in-buffer/entries-written: 18996/18996 #P:4
3274 #
3275 # _-----=> irqs-off
3276 # / _----=> need-resched
3277 # | / _---=> hardirq/softirq
3278 # || / _--=> preempt-depth
3279 # ||| / delay
3280 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3281 # | | | |||| | |
3282 bash-1998 [000] d... 140.733501: sys_write -> 0x2
3283 bash-1998 [000] d... 140.733504: sys_dup2(oldfd: a, newfd: 1)
3284 bash-1998 [000] d... 140.733506: sys_dup2 -> 0x1
3285 bash-1998 [000] d... 140.733508: sys_fcntl(fd: a, cmd: 1, arg: 0)
3286 bash-1998 [000] d... 140.733509: sys_fcntl -> 0x1
3287 bash-1998 [000] d... 140.733510: sys_close(fd: a)
3288 bash-1998 [000] d... 140.733510: sys_close -> 0x0
3289 bash-1998 [000] d... 140.733514: sys_rt_sigprocmask(how: 0, nset: 0, oset: 6e2768, sigsetsize: 8)
3290 bash-1998 [000] d... 140.733515: sys_rt_sigprocmask -> 0x0
3291 bash-1998 [000] d... 140.733516: sys_rt_sigaction(sig: 2, act: 7fff718846f0, oact: 7fff71884650, sigsetsize: 8)
3292 bash-1998 [000] d... 140.733516: sys_rt_sigaction -> 0x0
3293
3294You can see that the trace of the top most trace buffer shows only
3295the function tracing. The foo instance displays wakeups and task
3296switches.
3297
3298To remove the instances, simply delete their directories:
3299::
3300
3301 # rmdir instances/foo
3302 # rmdir instances/bar
3303 # rmdir instances/zoot
3304
3305Note, if a process has a trace file open in one of the instance
3306directories, the rmdir will fail with EBUSY.
3307
3308
3309Stack trace
3310-----------
3311Since the kernel has a fixed sized stack, it is important not to
3312waste it in functions. A kernel developer must be conscience of
3313what they allocate on the stack. If they add too much, the system
3314can be in danger of a stack overflow, and corruption will occur,
3315usually leading to a system panic.
3316
3317There are some tools that check this, usually with interrupts
3318periodically checking usage. But if you can perform a check
3319at every function call that will become very useful. As ftrace provides
3320a function tracer, it makes it convenient to check the stack size
3321at every function call. This is enabled via the stack tracer.
3322
3323CONFIG_STACK_TRACER enables the ftrace stack tracing functionality.
3324To enable it, write a '1' into /proc/sys/kernel/stack_tracer_enabled.
3325::
3326
3327 # echo 1 > /proc/sys/kernel/stack_tracer_enabled
3328
3329You can also enable it from the kernel command line to trace
3330the stack size of the kernel during boot up, by adding "stacktrace"
3331to the kernel command line parameter.
3332
3333After running it for a few minutes, the output looks like:
3334::
3335
3336 # cat stack_max_size
3337 2928
3338
3339 # cat stack_trace
3340 Depth Size Location (18 entries)
3341 ----- ---- --------
3342 0) 2928 224 update_sd_lb_stats+0xbc/0x4ac
3343 1) 2704 160 find_busiest_group+0x31/0x1f1
3344 2) 2544 256 load_balance+0xd9/0x662
3345 3) 2288 80 idle_balance+0xbb/0x130
3346 4) 2208 128 __schedule+0x26e/0x5b9
3347 5) 2080 16 schedule+0x64/0x66
3348 6) 2064 128 schedule_timeout+0x34/0xe0
3349 7) 1936 112 wait_for_common+0x97/0xf1
3350 8) 1824 16 wait_for_completion+0x1d/0x1f
3351 9) 1808 128 flush_work+0xfe/0x119
3352 10) 1680 16 tty_flush_to_ldisc+0x1e/0x20
3353 11) 1664 48 input_available_p+0x1d/0x5c
3354 12) 1616 48 n_tty_poll+0x6d/0x134
3355 13) 1568 64 tty_poll+0x64/0x7f
3356 14) 1504 880 do_select+0x31e/0x511
3357 15) 624 400 core_sys_select+0x177/0x216
3358 16) 224 96 sys_select+0x91/0xb9
3359 17) 128 128 system_call_fastpath+0x16/0x1b
3360
3361Note, if -mfentry is being used by gcc, functions get traced before
3362they set up the stack frame. This means that leaf level functions
3363are not tested by the stack tracer when -mfentry is used.
3364
3365Currently, -mfentry is used by gcc 4.6.0 and above on x86 only.
3366
3367More
3368----
3369More details can be found in the source code, in the `kernel/trace/*.c` files.