Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Copyright (C) 2020 BAIKAL ELECTRONICS, JSC |
| 4 | * |
| 5 | * Authors: |
| 6 | * Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru> |
| 7 | * Serge Semin <Sergey.Semin@baikalelectronics.ru> |
| 8 | * |
| 9 | * Baikal-T1 Process, Voltage, Temperature sensor driver |
| 10 | */ |
| 11 | |
| 12 | #include <linux/bitfield.h> |
| 13 | #include <linux/bitops.h> |
| 14 | #include <linux/clk.h> |
| 15 | #include <linux/completion.h> |
| 16 | #include <linux/device.h> |
| 17 | #include <linux/hwmon-sysfs.h> |
| 18 | #include <linux/hwmon.h> |
| 19 | #include <linux/interrupt.h> |
| 20 | #include <linux/io.h> |
| 21 | #include <linux/kernel.h> |
| 22 | #include <linux/ktime.h> |
| 23 | #include <linux/limits.h> |
| 24 | #include <linux/module.h> |
| 25 | #include <linux/mutex.h> |
| 26 | #include <linux/of.h> |
| 27 | #include <linux/platform_device.h> |
| 28 | #include <linux/seqlock.h> |
| 29 | #include <linux/sysfs.h> |
| 30 | #include <linux/types.h> |
| 31 | |
| 32 | #include "bt1-pvt.h" |
| 33 | |
| 34 | /* |
| 35 | * For the sake of the code simplification we created the sensors info table |
| 36 | * with the sensor names, activation modes, threshold registers base address |
| 37 | * and the thresholds bit fields. |
| 38 | */ |
| 39 | static const struct pvt_sensor_info pvt_info[] = { |
| 40 | PVT_SENSOR_INFO(0, "CPU Core Temperature", hwmon_temp, TEMP, TTHRES), |
| 41 | PVT_SENSOR_INFO(0, "CPU Core Voltage", hwmon_in, VOLT, VTHRES), |
| 42 | PVT_SENSOR_INFO(1, "CPU Core Low-Vt", hwmon_in, LVT, LTHRES), |
| 43 | PVT_SENSOR_INFO(2, "CPU Core High-Vt", hwmon_in, HVT, HTHRES), |
| 44 | PVT_SENSOR_INFO(3, "CPU Core Standard-Vt", hwmon_in, SVT, STHRES), |
| 45 | }; |
| 46 | |
| 47 | /* |
| 48 | * The original translation formulae of the temperature (in degrees of Celsius) |
| 49 | * to PVT data and vice-versa are following: |
| 50 | * N = 1.8322e-8*(T^4) + 2.343e-5*(T^3) + 8.7018e-3*(T^2) + 3.9269*(T^1) + |
| 51 | * 1.7204e2, |
| 52 | * T = -1.6743e-11*(N^4) + 8.1542e-8*(N^3) + -1.8201e-4*(N^2) + |
| 53 | * 3.1020e-1*(N^1) - 4.838e1, |
| 54 | * where T = [-48.380, 147.438]C and N = [0, 1023]. |
| 55 | * They must be accordingly altered to be suitable for the integer arithmetics. |
| 56 | * The technique is called 'factor redistribution', which just makes sure the |
| 57 | * multiplications and divisions are made so to have a result of the operations |
| 58 | * within the integer numbers limit. In addition we need to translate the |
| 59 | * formulae to accept millidegrees of Celsius. Here what they look like after |
| 60 | * the alterations: |
| 61 | * N = (18322e-20*(T^4) + 2343e-13*(T^3) + 87018e-9*(T^2) + 39269e-3*T + |
| 62 | * 17204e2) / 1e4, |
| 63 | * T = -16743e-12*(D^4) + 81542e-9*(D^3) - 182010e-6*(D^2) + 310200e-3*D - |
| 64 | * 48380, |
| 65 | * where T = [-48380, 147438] mC and N = [0, 1023]. |
| 66 | */ |
Serge Semin | 3325169 | 2020-06-03 03:07:53 +0300 | [diff] [blame] | 67 | static const struct pvt_poly __maybe_unused poly_temp_to_N = { |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 68 | .total_divider = 10000, |
| 69 | .terms = { |
| 70 | {4, 18322, 10000, 10000}, |
| 71 | {3, 2343, 10000, 10}, |
| 72 | {2, 87018, 10000, 10}, |
| 73 | {1, 39269, 1000, 1}, |
| 74 | {0, 1720400, 1, 1} |
| 75 | } |
| 76 | }; |
| 77 | |
| 78 | static const struct pvt_poly poly_N_to_temp = { |
| 79 | .total_divider = 1, |
| 80 | .terms = { |
| 81 | {4, -16743, 1000, 1}, |
| 82 | {3, 81542, 1000, 1}, |
| 83 | {2, -182010, 1000, 1}, |
| 84 | {1, 310200, 1000, 1}, |
| 85 | {0, -48380, 1, 1} |
| 86 | } |
| 87 | }; |
| 88 | |
| 89 | /* |
| 90 | * Similar alterations are performed for the voltage conversion equations. |
| 91 | * The original formulae are: |
| 92 | * N = 1.8658e3*V - 1.1572e3, |
| 93 | * V = (N + 1.1572e3) / 1.8658e3, |
| 94 | * where V = [0.620, 1.168] V and N = [0, 1023]. |
| 95 | * After the optimization they looks as follows: |
| 96 | * N = (18658e-3*V - 11572) / 10, |
| 97 | * V = N * 10^5 / 18658 + 11572 * 10^4 / 18658. |
| 98 | */ |
Serge Semin | 3325169 | 2020-06-03 03:07:53 +0300 | [diff] [blame] | 99 | static const struct pvt_poly __maybe_unused poly_volt_to_N = { |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 100 | .total_divider = 10, |
| 101 | .terms = { |
| 102 | {1, 18658, 1000, 1}, |
| 103 | {0, -11572, 1, 1} |
| 104 | } |
| 105 | }; |
| 106 | |
| 107 | static const struct pvt_poly poly_N_to_volt = { |
| 108 | .total_divider = 10, |
| 109 | .terms = { |
| 110 | {1, 100000, 18658, 1}, |
| 111 | {0, 115720000, 1, 18658} |
| 112 | } |
| 113 | }; |
| 114 | |
| 115 | /* |
| 116 | * Here is the polynomial calculation function, which performs the |
| 117 | * redistributed terms calculations. It's pretty straightforward. We walk |
| 118 | * over each degree term up to the free one, and perform the redistributed |
| 119 | * multiplication of the term coefficient, its divider (as for the rationale |
| 120 | * fraction representation), data power and the rational fraction divider |
| 121 | * leftover. Then all of this is collected in a total sum variable, which |
| 122 | * value is normalized by the total divider before being returned. |
| 123 | */ |
| 124 | static long pvt_calc_poly(const struct pvt_poly *poly, long data) |
| 125 | { |
| 126 | const struct pvt_poly_term *term = poly->terms; |
| 127 | long tmp, ret = 0; |
| 128 | int deg; |
| 129 | |
| 130 | do { |
| 131 | tmp = term->coef; |
| 132 | for (deg = 0; deg < term->deg; ++deg) |
| 133 | tmp = mult_frac(tmp, data, term->divider); |
| 134 | ret += tmp / term->divider_leftover; |
| 135 | } while ((term++)->deg); |
| 136 | |
| 137 | return ret / poly->total_divider; |
| 138 | } |
| 139 | |
| 140 | static inline u32 pvt_update(void __iomem *reg, u32 mask, u32 data) |
| 141 | { |
| 142 | u32 old; |
| 143 | |
| 144 | old = readl_relaxed(reg); |
| 145 | writel((old & ~mask) | (data & mask), reg); |
| 146 | |
| 147 | return old & mask; |
| 148 | } |
| 149 | |
| 150 | /* |
| 151 | * Baikal-T1 PVT mode can be updated only when the controller is disabled. |
| 152 | * So first we disable it, then set the new mode together with the controller |
| 153 | * getting back enabled. The same concerns the temperature trim and |
| 154 | * measurements timeout. If it is necessary the interface mutex is supposed |
| 155 | * to be locked at the time the operations are performed. |
| 156 | */ |
| 157 | static inline void pvt_set_mode(struct pvt_hwmon *pvt, u32 mode) |
| 158 | { |
| 159 | u32 old; |
| 160 | |
| 161 | mode = FIELD_PREP(PVT_CTRL_MODE_MASK, mode); |
| 162 | |
| 163 | old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); |
| 164 | pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_MODE_MASK | PVT_CTRL_EN, |
| 165 | mode | old); |
| 166 | } |
| 167 | |
| 168 | static inline u32 pvt_calc_trim(long temp) |
| 169 | { |
| 170 | temp = clamp_val(temp, 0, PVT_TRIM_TEMP); |
| 171 | |
| 172 | return DIV_ROUND_UP(temp, PVT_TRIM_STEP); |
| 173 | } |
| 174 | |
| 175 | static inline void pvt_set_trim(struct pvt_hwmon *pvt, u32 trim) |
| 176 | { |
| 177 | u32 old; |
| 178 | |
| 179 | trim = FIELD_PREP(PVT_CTRL_TRIM_MASK, trim); |
| 180 | |
| 181 | old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); |
| 182 | pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_TRIM_MASK | PVT_CTRL_EN, |
| 183 | trim | old); |
| 184 | } |
| 185 | |
| 186 | static inline void pvt_set_tout(struct pvt_hwmon *pvt, u32 tout) |
| 187 | { |
| 188 | u32 old; |
| 189 | |
| 190 | old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); |
| 191 | writel(tout, pvt->regs + PVT_TTIMEOUT); |
| 192 | pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, old); |
| 193 | } |
| 194 | |
| 195 | /* |
| 196 | * This driver can optionally provide the hwmon alarms for each sensor the PVT |
| 197 | * controller supports. The alarms functionality is made compile-time |
| 198 | * configurable due to the hardware interface implementation peculiarity |
| 199 | * described further in this comment. So in case if alarms are unnecessary in |
| 200 | * your system design it's recommended to have them disabled to prevent the PVT |
| 201 | * IRQs being periodically raised to get the data cache/alarms status up to |
| 202 | * date. |
| 203 | * |
| 204 | * Baikal-T1 PVT embedded controller is based on the Analog Bits PVT sensor, |
| 205 | * but is equipped with a dedicated control wrapper. It exposes the PVT |
| 206 | * sub-block registers space via the APB3 bus. In addition the wrapper provides |
| 207 | * a common interrupt vector of the sensors conversion completion events and |
| 208 | * threshold value alarms. Alas the wrapper interface hasn't been fully thought |
| 209 | * through. There is only one sensor can be activated at a time, for which the |
| 210 | * thresholds comparator is enabled right after the data conversion is |
| 211 | * completed. Due to this if alarms need to be implemented for all available |
| 212 | * sensors we can't just set the thresholds and enable the interrupts. We need |
| 213 | * to enable the sensors one after another and let the controller to detect |
| 214 | * the alarms by itself at each conversion. This also makes pointless to handle |
| 215 | * the alarms interrupts, since in occasion they happen synchronously with |
| 216 | * data conversion completion. The best driver design would be to have the |
| 217 | * completion interrupts enabled only and keep the converted value in the |
| 218 | * driver data cache. This solution is implemented if hwmon alarms are enabled |
| 219 | * in this driver. In case if the alarms are disabled, the conversion is |
| 220 | * performed on demand at the time a sensors input file is read. |
| 221 | */ |
| 222 | |
| 223 | #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS) |
| 224 | |
| 225 | #define pvt_hard_isr NULL |
| 226 | |
| 227 | static irqreturn_t pvt_soft_isr(int irq, void *data) |
| 228 | { |
| 229 | const struct pvt_sensor_info *info; |
| 230 | struct pvt_hwmon *pvt = data; |
| 231 | struct pvt_cache *cache; |
| 232 | u32 val, thres_sts, old; |
| 233 | |
| 234 | /* |
| 235 | * DVALID bit will be cleared by reading the data. We need to save the |
| 236 | * status before the next conversion happens. Threshold events will be |
| 237 | * handled a bit later. |
| 238 | */ |
| 239 | thres_sts = readl(pvt->regs + PVT_RAW_INTR_STAT); |
| 240 | |
| 241 | /* |
| 242 | * Then lets recharge the PVT interface with the next sampling mode. |
| 243 | * Lock the interface mutex to serialize trim, timeouts and alarm |
| 244 | * thresholds settings. |
| 245 | */ |
| 246 | cache = &pvt->cache[pvt->sensor]; |
| 247 | info = &pvt_info[pvt->sensor]; |
| 248 | pvt->sensor = (pvt->sensor == PVT_SENSOR_LAST) ? |
| 249 | PVT_SENSOR_FIRST : (pvt->sensor + 1); |
| 250 | |
| 251 | /* |
| 252 | * For some reason we have to mask the interrupt before changing the |
| 253 | * mode, otherwise sometimes the temperature mode doesn't get |
| 254 | * activated even though the actual mode in the ctrl register |
| 255 | * corresponds to one. Then we read the data. By doing so we also |
| 256 | * recharge the data conversion. After this the mode corresponding |
| 257 | * to the next sensor in the row is set. Finally we enable the |
| 258 | * interrupts back. |
| 259 | */ |
| 260 | mutex_lock(&pvt->iface_mtx); |
| 261 | |
| 262 | old = pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, |
| 263 | PVT_INTR_DVALID); |
| 264 | |
| 265 | val = readl(pvt->regs + PVT_DATA); |
| 266 | |
| 267 | pvt_set_mode(pvt, pvt_info[pvt->sensor].mode); |
| 268 | |
| 269 | pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, old); |
| 270 | |
| 271 | mutex_unlock(&pvt->iface_mtx); |
| 272 | |
| 273 | /* |
| 274 | * We can now update the data cache with data just retrieved from the |
| 275 | * sensor. Lock write-seqlock to make sure the reader has a coherent |
| 276 | * data. |
| 277 | */ |
| 278 | write_seqlock(&cache->data_seqlock); |
| 279 | |
| 280 | cache->data = FIELD_GET(PVT_DATA_DATA_MASK, val); |
| 281 | |
| 282 | write_sequnlock(&cache->data_seqlock); |
| 283 | |
| 284 | /* |
| 285 | * While PVT core is doing the next mode data conversion, we'll check |
| 286 | * whether the alarms were triggered for the current sensor. Note that |
| 287 | * according to the documentation only one threshold IRQ status can be |
| 288 | * set at a time, that's why if-else statement is utilized. |
| 289 | */ |
| 290 | if ((thres_sts & info->thres_sts_lo) ^ cache->thres_sts_lo) { |
| 291 | WRITE_ONCE(cache->thres_sts_lo, thres_sts & info->thres_sts_lo); |
| 292 | hwmon_notify_event(pvt->hwmon, info->type, info->attr_min_alarm, |
| 293 | info->channel); |
| 294 | } else if ((thres_sts & info->thres_sts_hi) ^ cache->thres_sts_hi) { |
| 295 | WRITE_ONCE(cache->thres_sts_hi, thres_sts & info->thres_sts_hi); |
| 296 | hwmon_notify_event(pvt->hwmon, info->type, info->attr_max_alarm, |
| 297 | info->channel); |
| 298 | } |
| 299 | |
| 300 | return IRQ_HANDLED; |
| 301 | } |
| 302 | |
Guenter Roeck | 26797d8 | 2020-06-08 07:21:36 -0700 | [diff] [blame] | 303 | static inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type) |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 304 | { |
| 305 | return 0644; |
| 306 | } |
| 307 | |
Guenter Roeck | 26797d8 | 2020-06-08 07:21:36 -0700 | [diff] [blame] | 308 | static inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type) |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 309 | { |
| 310 | return 0444; |
| 311 | } |
| 312 | |
| 313 | static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type, |
| 314 | long *val) |
| 315 | { |
| 316 | struct pvt_cache *cache = &pvt->cache[type]; |
| 317 | unsigned int seq; |
| 318 | u32 data; |
| 319 | |
| 320 | do { |
| 321 | seq = read_seqbegin(&cache->data_seqlock); |
| 322 | data = cache->data; |
| 323 | } while (read_seqretry(&cache->data_seqlock, seq)); |
| 324 | |
| 325 | if (type == PVT_TEMP) |
| 326 | *val = pvt_calc_poly(&poly_N_to_temp, data); |
| 327 | else |
| 328 | *val = pvt_calc_poly(&poly_N_to_volt, data); |
| 329 | |
| 330 | return 0; |
| 331 | } |
| 332 | |
| 333 | static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type, |
| 334 | bool is_low, long *val) |
| 335 | { |
| 336 | u32 data; |
| 337 | |
| 338 | /* No need in serialization, since it is just read from MMIO. */ |
| 339 | data = readl(pvt->regs + pvt_info[type].thres_base); |
| 340 | |
| 341 | if (is_low) |
| 342 | data = FIELD_GET(PVT_THRES_LO_MASK, data); |
| 343 | else |
| 344 | data = FIELD_GET(PVT_THRES_HI_MASK, data); |
| 345 | |
| 346 | if (type == PVT_TEMP) |
| 347 | *val = pvt_calc_poly(&poly_N_to_temp, data); |
| 348 | else |
| 349 | *val = pvt_calc_poly(&poly_N_to_volt, data); |
| 350 | |
| 351 | return 0; |
| 352 | } |
| 353 | |
| 354 | static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type, |
| 355 | bool is_low, long val) |
| 356 | { |
| 357 | u32 data, limit, mask; |
| 358 | int ret; |
| 359 | |
| 360 | if (type == PVT_TEMP) { |
| 361 | val = clamp(val, PVT_TEMP_MIN, PVT_TEMP_MAX); |
| 362 | data = pvt_calc_poly(&poly_temp_to_N, val); |
| 363 | } else { |
| 364 | val = clamp(val, PVT_VOLT_MIN, PVT_VOLT_MAX); |
| 365 | data = pvt_calc_poly(&poly_volt_to_N, val); |
| 366 | } |
| 367 | |
| 368 | /* Serialize limit update, since a part of the register is changed. */ |
| 369 | ret = mutex_lock_interruptible(&pvt->iface_mtx); |
| 370 | if (ret) |
| 371 | return ret; |
| 372 | |
| 373 | /* Make sure the upper and lower ranges don't intersect. */ |
| 374 | limit = readl(pvt->regs + pvt_info[type].thres_base); |
| 375 | if (is_low) { |
| 376 | limit = FIELD_GET(PVT_THRES_HI_MASK, limit); |
| 377 | data = clamp_val(data, PVT_DATA_MIN, limit); |
| 378 | data = FIELD_PREP(PVT_THRES_LO_MASK, data); |
| 379 | mask = PVT_THRES_LO_MASK; |
| 380 | } else { |
| 381 | limit = FIELD_GET(PVT_THRES_LO_MASK, limit); |
| 382 | data = clamp_val(data, limit, PVT_DATA_MAX); |
| 383 | data = FIELD_PREP(PVT_THRES_HI_MASK, data); |
| 384 | mask = PVT_THRES_HI_MASK; |
| 385 | } |
| 386 | |
| 387 | pvt_update(pvt->regs + pvt_info[type].thres_base, mask, data); |
| 388 | |
| 389 | mutex_unlock(&pvt->iface_mtx); |
| 390 | |
| 391 | return 0; |
| 392 | } |
| 393 | |
| 394 | static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type, |
| 395 | bool is_low, long *val) |
| 396 | { |
| 397 | if (is_low) |
| 398 | *val = !!READ_ONCE(pvt->cache[type].thres_sts_lo); |
| 399 | else |
| 400 | *val = !!READ_ONCE(pvt->cache[type].thres_sts_hi); |
| 401 | |
| 402 | return 0; |
| 403 | } |
| 404 | |
| 405 | static const struct hwmon_channel_info *pvt_channel_info[] = { |
| 406 | HWMON_CHANNEL_INFO(chip, |
| 407 | HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL), |
| 408 | HWMON_CHANNEL_INFO(temp, |
| 409 | HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL | |
| 410 | HWMON_T_MIN | HWMON_T_MIN_ALARM | |
| 411 | HWMON_T_MAX | HWMON_T_MAX_ALARM | |
| 412 | HWMON_T_OFFSET), |
| 413 | HWMON_CHANNEL_INFO(in, |
| 414 | HWMON_I_INPUT | HWMON_I_LABEL | |
| 415 | HWMON_I_MIN | HWMON_I_MIN_ALARM | |
| 416 | HWMON_I_MAX | HWMON_I_MAX_ALARM, |
| 417 | HWMON_I_INPUT | HWMON_I_LABEL | |
| 418 | HWMON_I_MIN | HWMON_I_MIN_ALARM | |
| 419 | HWMON_I_MAX | HWMON_I_MAX_ALARM, |
| 420 | HWMON_I_INPUT | HWMON_I_LABEL | |
| 421 | HWMON_I_MIN | HWMON_I_MIN_ALARM | |
| 422 | HWMON_I_MAX | HWMON_I_MAX_ALARM, |
| 423 | HWMON_I_INPUT | HWMON_I_LABEL | |
| 424 | HWMON_I_MIN | HWMON_I_MIN_ALARM | |
| 425 | HWMON_I_MAX | HWMON_I_MAX_ALARM), |
| 426 | NULL |
| 427 | }; |
| 428 | |
| 429 | #else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */ |
| 430 | |
| 431 | static irqreturn_t pvt_hard_isr(int irq, void *data) |
| 432 | { |
| 433 | struct pvt_hwmon *pvt = data; |
| 434 | struct pvt_cache *cache; |
| 435 | u32 val; |
| 436 | |
| 437 | /* |
| 438 | * Mask the DVALID interrupt so after exiting from the handler a |
| 439 | * repeated conversion wouldn't happen. |
| 440 | */ |
| 441 | pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, |
| 442 | PVT_INTR_DVALID); |
| 443 | |
| 444 | /* |
| 445 | * Nothing special for alarm-less driver. Just read the data, update |
| 446 | * the cache and notify a waiter of this event. |
| 447 | */ |
| 448 | val = readl(pvt->regs + PVT_DATA); |
| 449 | if (!(val & PVT_DATA_VALID)) { |
| 450 | dev_err(pvt->dev, "Got IRQ when data isn't valid\n"); |
| 451 | return IRQ_HANDLED; |
| 452 | } |
| 453 | |
| 454 | cache = &pvt->cache[pvt->sensor]; |
| 455 | |
| 456 | WRITE_ONCE(cache->data, FIELD_GET(PVT_DATA_DATA_MASK, val)); |
| 457 | |
| 458 | complete(&cache->conversion); |
| 459 | |
| 460 | return IRQ_HANDLED; |
| 461 | } |
| 462 | |
| 463 | #define pvt_soft_isr NULL |
| 464 | |
Guenter Roeck | 26797d8 | 2020-06-08 07:21:36 -0700 | [diff] [blame] | 465 | static inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type) |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 466 | { |
| 467 | return 0; |
| 468 | } |
| 469 | |
Guenter Roeck | 26797d8 | 2020-06-08 07:21:36 -0700 | [diff] [blame] | 470 | static inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type) |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 471 | { |
| 472 | return 0; |
| 473 | } |
| 474 | |
| 475 | static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type, |
| 476 | long *val) |
| 477 | { |
| 478 | struct pvt_cache *cache = &pvt->cache[type]; |
| 479 | u32 data; |
| 480 | int ret; |
| 481 | |
| 482 | /* |
| 483 | * Lock PVT conversion interface until data cache is updated. The |
| 484 | * data read procedure is following: set the requested PVT sensor |
| 485 | * mode, enable IRQ and conversion, wait until conversion is finished, |
| 486 | * then disable conversion and IRQ, and read the cached data. |
| 487 | */ |
| 488 | ret = mutex_lock_interruptible(&pvt->iface_mtx); |
| 489 | if (ret) |
| 490 | return ret; |
| 491 | |
| 492 | pvt->sensor = type; |
| 493 | pvt_set_mode(pvt, pvt_info[type].mode); |
| 494 | |
| 495 | /* |
| 496 | * Unmask the DVALID interrupt and enable the sensors conversions. |
| 497 | * Do the reverse procedure when conversion is done. |
| 498 | */ |
| 499 | pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0); |
| 500 | pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN); |
| 501 | |
| 502 | wait_for_completion(&cache->conversion); |
| 503 | |
| 504 | pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); |
| 505 | pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, |
| 506 | PVT_INTR_DVALID); |
| 507 | |
| 508 | data = READ_ONCE(cache->data); |
| 509 | |
| 510 | mutex_unlock(&pvt->iface_mtx); |
| 511 | |
| 512 | if (type == PVT_TEMP) |
| 513 | *val = pvt_calc_poly(&poly_N_to_temp, data); |
| 514 | else |
| 515 | *val = pvt_calc_poly(&poly_N_to_volt, data); |
| 516 | |
| 517 | return 0; |
| 518 | } |
| 519 | |
| 520 | static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type, |
| 521 | bool is_low, long *val) |
| 522 | { |
| 523 | return -EOPNOTSUPP; |
| 524 | } |
| 525 | |
| 526 | static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type, |
| 527 | bool is_low, long val) |
| 528 | { |
| 529 | return -EOPNOTSUPP; |
| 530 | } |
| 531 | |
| 532 | static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type, |
| 533 | bool is_low, long *val) |
| 534 | { |
| 535 | return -EOPNOTSUPP; |
| 536 | } |
| 537 | |
| 538 | static const struct hwmon_channel_info *pvt_channel_info[] = { |
| 539 | HWMON_CHANNEL_INFO(chip, |
| 540 | HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL), |
| 541 | HWMON_CHANNEL_INFO(temp, |
| 542 | HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL | |
| 543 | HWMON_T_OFFSET), |
| 544 | HWMON_CHANNEL_INFO(in, |
| 545 | HWMON_I_INPUT | HWMON_I_LABEL, |
| 546 | HWMON_I_INPUT | HWMON_I_LABEL, |
| 547 | HWMON_I_INPUT | HWMON_I_LABEL, |
| 548 | HWMON_I_INPUT | HWMON_I_LABEL), |
| 549 | NULL |
| 550 | }; |
| 551 | |
| 552 | #endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */ |
| 553 | |
| 554 | static inline bool pvt_hwmon_channel_is_valid(enum hwmon_sensor_types type, |
| 555 | int ch) |
| 556 | { |
| 557 | switch (type) { |
| 558 | case hwmon_temp: |
| 559 | if (ch < 0 || ch >= PVT_TEMP_CHS) |
| 560 | return false; |
| 561 | break; |
| 562 | case hwmon_in: |
| 563 | if (ch < 0 || ch >= PVT_VOLT_CHS) |
| 564 | return false; |
| 565 | break; |
| 566 | default: |
| 567 | break; |
| 568 | } |
| 569 | |
| 570 | /* The rest of the types are independent from the channel number. */ |
| 571 | return true; |
| 572 | } |
| 573 | |
| 574 | static umode_t pvt_hwmon_is_visible(const void *data, |
| 575 | enum hwmon_sensor_types type, |
| 576 | u32 attr, int ch) |
| 577 | { |
| 578 | if (!pvt_hwmon_channel_is_valid(type, ch)) |
| 579 | return 0; |
| 580 | |
| 581 | switch (type) { |
| 582 | case hwmon_chip: |
| 583 | switch (attr) { |
| 584 | case hwmon_chip_update_interval: |
| 585 | return 0644; |
| 586 | } |
| 587 | break; |
| 588 | case hwmon_temp: |
| 589 | switch (attr) { |
| 590 | case hwmon_temp_input: |
| 591 | case hwmon_temp_type: |
| 592 | case hwmon_temp_label: |
| 593 | return 0444; |
| 594 | case hwmon_temp_min: |
| 595 | case hwmon_temp_max: |
| 596 | return pvt_limit_is_visible(ch); |
| 597 | case hwmon_temp_min_alarm: |
| 598 | case hwmon_temp_max_alarm: |
| 599 | return pvt_alarm_is_visible(ch); |
| 600 | case hwmon_temp_offset: |
| 601 | return 0644; |
| 602 | } |
| 603 | break; |
| 604 | case hwmon_in: |
| 605 | switch (attr) { |
| 606 | case hwmon_in_input: |
| 607 | case hwmon_in_label: |
| 608 | return 0444; |
| 609 | case hwmon_in_min: |
| 610 | case hwmon_in_max: |
| 611 | return pvt_limit_is_visible(PVT_VOLT + ch); |
| 612 | case hwmon_in_min_alarm: |
| 613 | case hwmon_in_max_alarm: |
| 614 | return pvt_alarm_is_visible(PVT_VOLT + ch); |
| 615 | } |
| 616 | break; |
| 617 | default: |
| 618 | break; |
| 619 | } |
| 620 | |
| 621 | return 0; |
| 622 | } |
| 623 | |
| 624 | static int pvt_read_trim(struct pvt_hwmon *pvt, long *val) |
| 625 | { |
| 626 | u32 data; |
| 627 | |
| 628 | data = readl(pvt->regs + PVT_CTRL); |
| 629 | *val = FIELD_GET(PVT_CTRL_TRIM_MASK, data) * PVT_TRIM_STEP; |
| 630 | |
| 631 | return 0; |
| 632 | } |
| 633 | |
| 634 | static int pvt_write_trim(struct pvt_hwmon *pvt, long val) |
| 635 | { |
| 636 | u32 trim; |
| 637 | int ret; |
| 638 | |
| 639 | /* |
| 640 | * Serialize trim update, since a part of the register is changed and |
| 641 | * the controller is supposed to be disabled during this operation. |
| 642 | */ |
| 643 | ret = mutex_lock_interruptible(&pvt->iface_mtx); |
| 644 | if (ret) |
| 645 | return ret; |
| 646 | |
| 647 | trim = pvt_calc_trim(val); |
| 648 | pvt_set_trim(pvt, trim); |
| 649 | |
| 650 | mutex_unlock(&pvt->iface_mtx); |
| 651 | |
| 652 | return 0; |
| 653 | } |
| 654 | |
| 655 | static int pvt_read_timeout(struct pvt_hwmon *pvt, long *val) |
| 656 | { |
| 657 | unsigned long rate; |
| 658 | ktime_t kt; |
| 659 | u32 data; |
| 660 | |
| 661 | rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk); |
| 662 | if (!rate) |
| 663 | return -ENODEV; |
| 664 | |
| 665 | /* |
| 666 | * Don't bother with mutex here, since we just read data from MMIO. |
| 667 | * We also have to scale the ticks timeout up to compensate the |
| 668 | * ms-ns-data translations. |
| 669 | */ |
| 670 | data = readl(pvt->regs + PVT_TTIMEOUT) + 1; |
| 671 | |
| 672 | /* |
| 673 | * Calculate ref-clock based delay (Ttotal) between two consecutive |
| 674 | * data samples of the same sensor. So we first must calculate the |
| 675 | * delay introduced by the internal ref-clock timer (Tref * Fclk). |
| 676 | * Then add the constant timeout cuased by each conversion latency |
| 677 | * (Tmin). The basic formulae for each conversion is following: |
| 678 | * Ttotal = Tref * Fclk + Tmin |
| 679 | * Note if alarms are enabled the sensors are polled one after |
| 680 | * another, so in order to have the delay being applicable for each |
| 681 | * sensor the requested value must be equally redistirbuted. |
| 682 | */ |
| 683 | #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS) |
| 684 | kt = ktime_set(PVT_SENSORS_NUM * (u64)data, 0); |
| 685 | kt = ktime_divns(kt, rate); |
| 686 | kt = ktime_add_ns(kt, PVT_SENSORS_NUM * PVT_TOUT_MIN); |
| 687 | #else |
| 688 | kt = ktime_set(data, 0); |
| 689 | kt = ktime_divns(kt, rate); |
| 690 | kt = ktime_add_ns(kt, PVT_TOUT_MIN); |
| 691 | #endif |
| 692 | |
| 693 | /* Return the result in msec as hwmon sysfs interface requires. */ |
| 694 | *val = ktime_to_ms(kt); |
| 695 | |
| 696 | return 0; |
| 697 | } |
| 698 | |
| 699 | static int pvt_write_timeout(struct pvt_hwmon *pvt, long val) |
| 700 | { |
| 701 | unsigned long rate; |
| 702 | ktime_t kt; |
| 703 | u32 data; |
| 704 | int ret; |
| 705 | |
| 706 | rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk); |
| 707 | if (!rate) |
| 708 | return -ENODEV; |
| 709 | |
| 710 | /* |
| 711 | * If alarms are enabled, the requested timeout must be divided |
| 712 | * between all available sensors to have the requested delay |
| 713 | * applicable to each individual sensor. |
| 714 | */ |
| 715 | kt = ms_to_ktime(val); |
| 716 | #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS) |
| 717 | kt = ktime_divns(kt, PVT_SENSORS_NUM); |
| 718 | #endif |
| 719 | |
| 720 | /* |
| 721 | * Subtract a constant lag, which always persists due to the limited |
| 722 | * PVT sampling rate. Make sure the timeout is not negative. |
| 723 | */ |
| 724 | kt = ktime_sub_ns(kt, PVT_TOUT_MIN); |
| 725 | if (ktime_to_ns(kt) < 0) |
| 726 | kt = ktime_set(0, 0); |
| 727 | |
| 728 | /* |
| 729 | * Finally recalculate the timeout in terms of the reference clock |
| 730 | * period. |
| 731 | */ |
| 732 | data = ktime_divns(kt * rate, NSEC_PER_SEC); |
| 733 | |
| 734 | /* |
| 735 | * Update the measurements delay, but lock the interface first, since |
| 736 | * we have to disable PVT in order to have the new delay actually |
| 737 | * updated. |
| 738 | */ |
| 739 | ret = mutex_lock_interruptible(&pvt->iface_mtx); |
| 740 | if (ret) |
| 741 | return ret; |
| 742 | |
| 743 | pvt_set_tout(pvt, data); |
| 744 | |
| 745 | mutex_unlock(&pvt->iface_mtx); |
| 746 | |
| 747 | return 0; |
| 748 | } |
| 749 | |
| 750 | static int pvt_hwmon_read(struct device *dev, enum hwmon_sensor_types type, |
| 751 | u32 attr, int ch, long *val) |
| 752 | { |
| 753 | struct pvt_hwmon *pvt = dev_get_drvdata(dev); |
| 754 | |
| 755 | if (!pvt_hwmon_channel_is_valid(type, ch)) |
| 756 | return -EINVAL; |
| 757 | |
| 758 | switch (type) { |
| 759 | case hwmon_chip: |
| 760 | switch (attr) { |
| 761 | case hwmon_chip_update_interval: |
| 762 | return pvt_read_timeout(pvt, val); |
| 763 | } |
| 764 | break; |
| 765 | case hwmon_temp: |
| 766 | switch (attr) { |
| 767 | case hwmon_temp_input: |
| 768 | return pvt_read_data(pvt, ch, val); |
| 769 | case hwmon_temp_type: |
| 770 | *val = 1; |
| 771 | return 0; |
| 772 | case hwmon_temp_min: |
| 773 | return pvt_read_limit(pvt, ch, true, val); |
| 774 | case hwmon_temp_max: |
| 775 | return pvt_read_limit(pvt, ch, false, val); |
| 776 | case hwmon_temp_min_alarm: |
| 777 | return pvt_read_alarm(pvt, ch, true, val); |
| 778 | case hwmon_temp_max_alarm: |
| 779 | return pvt_read_alarm(pvt, ch, false, val); |
| 780 | case hwmon_temp_offset: |
| 781 | return pvt_read_trim(pvt, val); |
| 782 | } |
| 783 | break; |
| 784 | case hwmon_in: |
| 785 | switch (attr) { |
| 786 | case hwmon_in_input: |
| 787 | return pvt_read_data(pvt, PVT_VOLT + ch, val); |
| 788 | case hwmon_in_min: |
| 789 | return pvt_read_limit(pvt, PVT_VOLT + ch, true, val); |
| 790 | case hwmon_in_max: |
| 791 | return pvt_read_limit(pvt, PVT_VOLT + ch, false, val); |
| 792 | case hwmon_in_min_alarm: |
| 793 | return pvt_read_alarm(pvt, PVT_VOLT + ch, true, val); |
| 794 | case hwmon_in_max_alarm: |
| 795 | return pvt_read_alarm(pvt, PVT_VOLT + ch, false, val); |
| 796 | } |
| 797 | break; |
| 798 | default: |
| 799 | break; |
| 800 | } |
| 801 | |
| 802 | return -EOPNOTSUPP; |
| 803 | } |
| 804 | |
| 805 | static int pvt_hwmon_read_string(struct device *dev, |
| 806 | enum hwmon_sensor_types type, |
| 807 | u32 attr, int ch, const char **str) |
| 808 | { |
| 809 | if (!pvt_hwmon_channel_is_valid(type, ch)) |
| 810 | return -EINVAL; |
| 811 | |
| 812 | switch (type) { |
| 813 | case hwmon_temp: |
| 814 | switch (attr) { |
| 815 | case hwmon_temp_label: |
| 816 | *str = pvt_info[ch].label; |
| 817 | return 0; |
| 818 | } |
| 819 | break; |
| 820 | case hwmon_in: |
| 821 | switch (attr) { |
| 822 | case hwmon_in_label: |
| 823 | *str = pvt_info[PVT_VOLT + ch].label; |
| 824 | return 0; |
| 825 | } |
| 826 | break; |
| 827 | default: |
| 828 | break; |
| 829 | } |
| 830 | |
| 831 | return -EOPNOTSUPP; |
| 832 | } |
| 833 | |
| 834 | static int pvt_hwmon_write(struct device *dev, enum hwmon_sensor_types type, |
| 835 | u32 attr, int ch, long val) |
| 836 | { |
| 837 | struct pvt_hwmon *pvt = dev_get_drvdata(dev); |
| 838 | |
| 839 | if (!pvt_hwmon_channel_is_valid(type, ch)) |
| 840 | return -EINVAL; |
| 841 | |
| 842 | switch (type) { |
| 843 | case hwmon_chip: |
| 844 | switch (attr) { |
| 845 | case hwmon_chip_update_interval: |
| 846 | return pvt_write_timeout(pvt, val); |
| 847 | } |
| 848 | break; |
| 849 | case hwmon_temp: |
| 850 | switch (attr) { |
| 851 | case hwmon_temp_min: |
| 852 | return pvt_write_limit(pvt, ch, true, val); |
| 853 | case hwmon_temp_max: |
| 854 | return pvt_write_limit(pvt, ch, false, val); |
| 855 | case hwmon_temp_offset: |
| 856 | return pvt_write_trim(pvt, val); |
| 857 | } |
| 858 | break; |
| 859 | case hwmon_in: |
| 860 | switch (attr) { |
| 861 | case hwmon_in_min: |
| 862 | return pvt_write_limit(pvt, PVT_VOLT + ch, true, val); |
| 863 | case hwmon_in_max: |
| 864 | return pvt_write_limit(pvt, PVT_VOLT + ch, false, val); |
| 865 | } |
| 866 | break; |
| 867 | default: |
| 868 | break; |
| 869 | } |
| 870 | |
| 871 | return -EOPNOTSUPP; |
| 872 | } |
| 873 | |
| 874 | static const struct hwmon_ops pvt_hwmon_ops = { |
| 875 | .is_visible = pvt_hwmon_is_visible, |
| 876 | .read = pvt_hwmon_read, |
| 877 | .read_string = pvt_hwmon_read_string, |
| 878 | .write = pvt_hwmon_write |
| 879 | }; |
| 880 | |
| 881 | static const struct hwmon_chip_info pvt_hwmon_info = { |
| 882 | .ops = &pvt_hwmon_ops, |
| 883 | .info = pvt_channel_info |
| 884 | }; |
| 885 | |
| 886 | static void pvt_clear_data(void *data) |
| 887 | { |
| 888 | struct pvt_hwmon *pvt = data; |
| 889 | #if !defined(CONFIG_SENSORS_BT1_PVT_ALARMS) |
| 890 | int idx; |
| 891 | |
| 892 | for (idx = 0; idx < PVT_SENSORS_NUM; ++idx) |
| 893 | complete_all(&pvt->cache[idx].conversion); |
| 894 | #endif |
| 895 | |
| 896 | mutex_destroy(&pvt->iface_mtx); |
| 897 | } |
| 898 | |
| 899 | static struct pvt_hwmon *pvt_create_data(struct platform_device *pdev) |
| 900 | { |
| 901 | struct device *dev = &pdev->dev; |
| 902 | struct pvt_hwmon *pvt; |
| 903 | int ret, idx; |
| 904 | |
| 905 | pvt = devm_kzalloc(dev, sizeof(*pvt), GFP_KERNEL); |
| 906 | if (!pvt) |
| 907 | return ERR_PTR(-ENOMEM); |
| 908 | |
| 909 | ret = devm_add_action(dev, pvt_clear_data, pvt); |
| 910 | if (ret) { |
| 911 | dev_err(dev, "Can't add PVT data clear action\n"); |
| 912 | return ERR_PTR(ret); |
| 913 | } |
| 914 | |
| 915 | pvt->dev = dev; |
| 916 | pvt->sensor = PVT_SENSOR_FIRST; |
| 917 | mutex_init(&pvt->iface_mtx); |
| 918 | |
| 919 | #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS) |
| 920 | for (idx = 0; idx < PVT_SENSORS_NUM; ++idx) |
| 921 | seqlock_init(&pvt->cache[idx].data_seqlock); |
| 922 | #else |
| 923 | for (idx = 0; idx < PVT_SENSORS_NUM; ++idx) |
| 924 | init_completion(&pvt->cache[idx].conversion); |
| 925 | #endif |
| 926 | |
| 927 | return pvt; |
| 928 | } |
| 929 | |
| 930 | static int pvt_request_regs(struct pvt_hwmon *pvt) |
| 931 | { |
| 932 | struct platform_device *pdev = to_platform_device(pvt->dev); |
| 933 | struct resource *res; |
| 934 | |
| 935 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 936 | if (!res) { |
| 937 | dev_err(pvt->dev, "Couldn't find PVT memresource\n"); |
| 938 | return -EINVAL; |
| 939 | } |
| 940 | |
| 941 | pvt->regs = devm_ioremap_resource(pvt->dev, res); |
| 942 | if (IS_ERR(pvt->regs)) { |
| 943 | dev_err(pvt->dev, "Couldn't map PVT registers\n"); |
| 944 | return PTR_ERR(pvt->regs); |
| 945 | } |
| 946 | |
| 947 | return 0; |
| 948 | } |
| 949 | |
| 950 | static void pvt_disable_clks(void *data) |
| 951 | { |
| 952 | struct pvt_hwmon *pvt = data; |
| 953 | |
| 954 | clk_bulk_disable_unprepare(PVT_CLOCK_NUM, pvt->clks); |
| 955 | } |
| 956 | |
| 957 | static int pvt_request_clks(struct pvt_hwmon *pvt) |
| 958 | { |
| 959 | int ret; |
| 960 | |
| 961 | pvt->clks[PVT_CLOCK_APB].id = "pclk"; |
| 962 | pvt->clks[PVT_CLOCK_REF].id = "ref"; |
| 963 | |
| 964 | ret = devm_clk_bulk_get(pvt->dev, PVT_CLOCK_NUM, pvt->clks); |
| 965 | if (ret) { |
| 966 | dev_err(pvt->dev, "Couldn't get PVT clocks descriptors\n"); |
| 967 | return ret; |
| 968 | } |
| 969 | |
| 970 | ret = clk_bulk_prepare_enable(PVT_CLOCK_NUM, pvt->clks); |
| 971 | if (ret) { |
| 972 | dev_err(pvt->dev, "Couldn't enable the PVT clocks\n"); |
| 973 | return ret; |
| 974 | } |
| 975 | |
| 976 | ret = devm_add_action_or_reset(pvt->dev, pvt_disable_clks, pvt); |
| 977 | if (ret) { |
| 978 | dev_err(pvt->dev, "Can't add PVT clocks disable action\n"); |
| 979 | return ret; |
| 980 | } |
| 981 | |
| 982 | return 0; |
| 983 | } |
| 984 | |
| 985 | static void pvt_init_iface(struct pvt_hwmon *pvt) |
| 986 | { |
| 987 | u32 trim, temp; |
| 988 | |
| 989 | /* |
| 990 | * Make sure all interrupts and controller are disabled so not to |
| 991 | * accidentally have ISR executed before the driver data is fully |
| 992 | * initialized. Clear the IRQ status as well. |
| 993 | */ |
| 994 | pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_ALL, PVT_INTR_ALL); |
| 995 | pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); |
| 996 | readl(pvt->regs + PVT_CLR_INTR); |
| 997 | readl(pvt->regs + PVT_DATA); |
| 998 | |
| 999 | /* Setup default sensor mode, timeout and temperature trim. */ |
| 1000 | pvt_set_mode(pvt, pvt_info[pvt->sensor].mode); |
| 1001 | pvt_set_tout(pvt, PVT_TOUT_DEF); |
| 1002 | |
| 1003 | trim = PVT_TRIM_DEF; |
| 1004 | if (!of_property_read_u32(pvt->dev->of_node, |
| 1005 | "baikal,pvt-temp-offset-millicelsius", &temp)) |
| 1006 | trim = pvt_calc_trim(temp); |
| 1007 | |
| 1008 | pvt_set_trim(pvt, trim); |
| 1009 | } |
| 1010 | |
| 1011 | static int pvt_request_irq(struct pvt_hwmon *pvt) |
| 1012 | { |
| 1013 | struct platform_device *pdev = to_platform_device(pvt->dev); |
| 1014 | int ret; |
| 1015 | |
| 1016 | pvt->irq = platform_get_irq(pdev, 0); |
| 1017 | if (pvt->irq < 0) |
| 1018 | return pvt->irq; |
| 1019 | |
| 1020 | ret = devm_request_threaded_irq(pvt->dev, pvt->irq, |
| 1021 | pvt_hard_isr, pvt_soft_isr, |
| 1022 | #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS) |
| 1023 | IRQF_SHARED | IRQF_TRIGGER_HIGH | |
| 1024 | IRQF_ONESHOT, |
| 1025 | #else |
| 1026 | IRQF_SHARED | IRQF_TRIGGER_HIGH, |
| 1027 | #endif |
| 1028 | "pvt", pvt); |
| 1029 | if (ret) { |
| 1030 | dev_err(pvt->dev, "Couldn't request PVT IRQ\n"); |
| 1031 | return ret; |
| 1032 | } |
| 1033 | |
| 1034 | return 0; |
| 1035 | } |
| 1036 | |
| 1037 | static int pvt_create_hwmon(struct pvt_hwmon *pvt) |
| 1038 | { |
| 1039 | pvt->hwmon = devm_hwmon_device_register_with_info(pvt->dev, "pvt", pvt, |
| 1040 | &pvt_hwmon_info, NULL); |
| 1041 | if (IS_ERR(pvt->hwmon)) { |
| 1042 | dev_err(pvt->dev, "Couldn't create hwmon device\n"); |
| 1043 | return PTR_ERR(pvt->hwmon); |
| 1044 | } |
| 1045 | |
| 1046 | return 0; |
| 1047 | } |
| 1048 | |
| 1049 | #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS) |
| 1050 | |
| 1051 | static void pvt_disable_iface(void *data) |
| 1052 | { |
| 1053 | struct pvt_hwmon *pvt = data; |
| 1054 | |
| 1055 | mutex_lock(&pvt->iface_mtx); |
| 1056 | pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); |
| 1057 | pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, |
| 1058 | PVT_INTR_DVALID); |
| 1059 | mutex_unlock(&pvt->iface_mtx); |
| 1060 | } |
| 1061 | |
| 1062 | static int pvt_enable_iface(struct pvt_hwmon *pvt) |
| 1063 | { |
| 1064 | int ret; |
| 1065 | |
| 1066 | ret = devm_add_action(pvt->dev, pvt_disable_iface, pvt); |
| 1067 | if (ret) { |
| 1068 | dev_err(pvt->dev, "Can't add PVT disable interface action\n"); |
| 1069 | return ret; |
| 1070 | } |
| 1071 | |
| 1072 | /* |
| 1073 | * Enable sensors data conversion and IRQ. We need to lock the |
| 1074 | * interface mutex since hwmon has just been created and the |
| 1075 | * corresponding sysfs files are accessible from user-space, |
| 1076 | * which theoretically may cause races. |
| 1077 | */ |
| 1078 | mutex_lock(&pvt->iface_mtx); |
| 1079 | pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0); |
| 1080 | pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN); |
| 1081 | mutex_unlock(&pvt->iface_mtx); |
| 1082 | |
| 1083 | return 0; |
| 1084 | } |
| 1085 | |
| 1086 | #else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */ |
| 1087 | |
| 1088 | static int pvt_enable_iface(struct pvt_hwmon *pvt) |
| 1089 | { |
| 1090 | return 0; |
| 1091 | } |
| 1092 | |
| 1093 | #endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */ |
| 1094 | |
| 1095 | static int pvt_probe(struct platform_device *pdev) |
| 1096 | { |
| 1097 | struct pvt_hwmon *pvt; |
| 1098 | int ret; |
| 1099 | |
| 1100 | pvt = pvt_create_data(pdev); |
| 1101 | if (IS_ERR(pvt)) |
| 1102 | return PTR_ERR(pvt); |
| 1103 | |
| 1104 | ret = pvt_request_regs(pvt); |
| 1105 | if (ret) |
| 1106 | return ret; |
| 1107 | |
| 1108 | ret = pvt_request_clks(pvt); |
| 1109 | if (ret) |
| 1110 | return ret; |
| 1111 | |
| 1112 | pvt_init_iface(pvt); |
| 1113 | |
| 1114 | ret = pvt_request_irq(pvt); |
| 1115 | if (ret) |
| 1116 | return ret; |
| 1117 | |
| 1118 | ret = pvt_create_hwmon(pvt); |
| 1119 | if (ret) |
| 1120 | return ret; |
| 1121 | |
| 1122 | ret = pvt_enable_iface(pvt); |
| 1123 | if (ret) |
| 1124 | return ret; |
| 1125 | |
| 1126 | return 0; |
| 1127 | } |
| 1128 | |
| 1129 | static const struct of_device_id pvt_of_match[] = { |
| 1130 | { .compatible = "baikal,bt1-pvt" }, |
| 1131 | { } |
| 1132 | }; |
| 1133 | MODULE_DEVICE_TABLE(of, pvt_of_match); |
| 1134 | |
| 1135 | static struct platform_driver pvt_driver = { |
| 1136 | .probe = pvt_probe, |
| 1137 | .driver = { |
| 1138 | .name = "bt1-pvt", |
| 1139 | .of_match_table = pvt_of_match |
| 1140 | } |
| 1141 | }; |
| 1142 | module_platform_driver(pvt_driver); |
| 1143 | |
| 1144 | MODULE_AUTHOR("Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>"); |
| 1145 | MODULE_DESCRIPTION("Baikal-T1 PVT driver"); |
| 1146 | MODULE_LICENSE("GPL v2"); |