blob: 43aae9b6bb20e3e86342fb4c67fca3c9aa86f411 [file] [log] [blame]
Kuninori Morimoto7c1d62e42018-07-25 22:36:04 -04001// SPDX-License-Identifier: GPL-2.0+
Kieran Bingham4710b752016-06-30 10:41:23 -03002/*
Wolfram Sang60829e62017-05-28 06:30:50 -03003 * Renesas R-Car Fine Display Processor
Kieran Bingham4710b752016-06-30 10:41:23 -03004 *
5 * Video format converter and frame deinterlacer device.
6 *
7 * Author: Kieran Bingham, <kieran@bingham.xyz>
8 * Copyright (c) 2016 Renesas Electronics Corporation.
9 *
10 * This code is developed and inspired from the vim2m, rcar_jpu,
11 * m2m-deinterlace, and vsp1 drivers.
Kieran Bingham4710b752016-06-30 10:41:23 -030012 */
13
14#include <linux/clk.h>
15#include <linux/delay.h>
16#include <linux/dma-mapping.h>
17#include <linux/fs.h>
18#include <linux/interrupt.h>
19#include <linux/module.h>
20#include <linux/of.h>
21#include <linux/of_device.h>
22#include <linux/platform_device.h>
23#include <linux/pm_runtime.h>
24#include <linux/sched.h>
25#include <linux/slab.h>
26#include <linux/timer.h>
27#include <media/rcar-fcp.h>
28#include <media/v4l2-ctrls.h>
29#include <media/v4l2-device.h>
30#include <media/v4l2-event.h>
31#include <media/v4l2-ioctl.h>
32#include <media/v4l2-mem2mem.h>
33#include <media/videobuf2-dma-contig.h>
34
35static unsigned int debug;
36module_param(debug, uint, 0644);
37MODULE_PARM_DESC(debug, "activate debug info");
38
39/* Minimum and maximum frame width/height */
40#define FDP1_MIN_W 80U
41#define FDP1_MIN_H 80U
42
43#define FDP1_MAX_W 3840U
44#define FDP1_MAX_H 2160U
45
46#define FDP1_MAX_PLANES 3U
47#define FDP1_MAX_STRIDE 8190U
48
49/* Flags that indicate a format can be used for capture/output */
50#define FDP1_CAPTURE BIT(0)
51#define FDP1_OUTPUT BIT(1)
52
53#define DRIVER_NAME "rcar_fdp1"
54
55/* Number of Job's to have available on the processing queue */
56#define FDP1_NUMBER_JOBS 8
57
58#define dprintk(fdp1, fmt, arg...) \
59 v4l2_dbg(1, debug, &fdp1->v4l2_dev, "%s: " fmt, __func__, ## arg)
60
61/*
62 * FDP1 registers and bits
63 */
64
65/* FDP1 start register - Imm */
66#define FD1_CTL_CMD 0x0000
67#define FD1_CTL_CMD_STRCMD BIT(0)
68
69/* Sync generator register - Imm */
70#define FD1_CTL_SGCMD 0x0004
71#define FD1_CTL_SGCMD_SGEN BIT(0)
72
73/* Register set end register - Imm */
74#define FD1_CTL_REGEND 0x0008
75#define FD1_CTL_REGEND_REGEND BIT(0)
76
77/* Channel activation register - Vupdt */
78#define FD1_CTL_CHACT 0x000c
79#define FD1_CTL_CHACT_SMW BIT(9)
80#define FD1_CTL_CHACT_WR BIT(8)
81#define FD1_CTL_CHACT_SMR BIT(3)
82#define FD1_CTL_CHACT_RD2 BIT(2)
83#define FD1_CTL_CHACT_RD1 BIT(1)
84#define FD1_CTL_CHACT_RD0 BIT(0)
85
86/* Operation Mode Register - Vupdt */
87#define FD1_CTL_OPMODE 0x0010
88#define FD1_CTL_OPMODE_PRG BIT(4)
89#define FD1_CTL_OPMODE_VIMD_INTERRUPT (0 << 0)
90#define FD1_CTL_OPMODE_VIMD_BESTEFFORT (1 << 0)
91#define FD1_CTL_OPMODE_VIMD_NOINTERRUPT (2 << 0)
92
93#define FD1_CTL_VPERIOD 0x0014
94#define FD1_CTL_CLKCTRL 0x0018
95#define FD1_CTL_CLKCTRL_CSTP_N BIT(0)
96
97/* Software reset register */
98#define FD1_CTL_SRESET 0x001c
99#define FD1_CTL_SRESET_SRST BIT(0)
100
101/* Control status register (V-update-status) */
102#define FD1_CTL_STATUS 0x0024
103#define FD1_CTL_STATUS_VINT_CNT_MASK GENMASK(31, 16)
104#define FD1_CTL_STATUS_VINT_CNT_SHIFT 16
105#define FD1_CTL_STATUS_SGREGSET BIT(10)
106#define FD1_CTL_STATUS_SGVERR BIT(9)
107#define FD1_CTL_STATUS_SGFREND BIT(8)
108#define FD1_CTL_STATUS_BSY BIT(0)
109
110#define FD1_CTL_VCYCLE_STAT 0x0028
111
112/* Interrupt enable register */
113#define FD1_CTL_IRQENB 0x0038
114/* Interrupt status register */
115#define FD1_CTL_IRQSTA 0x003c
116/* Interrupt control register */
117#define FD1_CTL_IRQFSET 0x0040
118
119/* Common IRQ Bit settings */
120#define FD1_CTL_IRQ_VERE BIT(16)
121#define FD1_CTL_IRQ_VINTE BIT(4)
122#define FD1_CTL_IRQ_FREE BIT(0)
123#define FD1_CTL_IRQ_MASK (FD1_CTL_IRQ_VERE | \
124 FD1_CTL_IRQ_VINTE | \
125 FD1_CTL_IRQ_FREE)
126
127/* RPF */
128#define FD1_RPF_SIZE 0x0060
129#define FD1_RPF_SIZE_MASK GENMASK(12, 0)
130#define FD1_RPF_SIZE_H_SHIFT 16
131#define FD1_RPF_SIZE_V_SHIFT 0
132
133#define FD1_RPF_FORMAT 0x0064
134#define FD1_RPF_FORMAT_CIPM BIT(16)
135#define FD1_RPF_FORMAT_RSPYCS BIT(13)
136#define FD1_RPF_FORMAT_RSPUVS BIT(12)
137#define FD1_RPF_FORMAT_CF BIT(8)
138
139#define FD1_RPF_PSTRIDE 0x0068
140#define FD1_RPF_PSTRIDE_Y_SHIFT 16
141#define FD1_RPF_PSTRIDE_C_SHIFT 0
142
143/* RPF0 Source Component Y Address register */
144#define FD1_RPF0_ADDR_Y 0x006c
145
146/* RPF1 Current Picture Registers */
147#define FD1_RPF1_ADDR_Y 0x0078
148#define FD1_RPF1_ADDR_C0 0x007c
149#define FD1_RPF1_ADDR_C1 0x0080
150
151/* RPF2 next picture register */
152#define FD1_RPF2_ADDR_Y 0x0084
153
154#define FD1_RPF_SMSK_ADDR 0x0090
155#define FD1_RPF_SWAP 0x0094
156
157/* WPF */
158#define FD1_WPF_FORMAT 0x00c0
159#define FD1_WPF_FORMAT_PDV_SHIFT 24
160#define FD1_WPF_FORMAT_FCNL BIT(20)
161#define FD1_WPF_FORMAT_WSPYCS BIT(15)
162#define FD1_WPF_FORMAT_WSPUVS BIT(14)
163#define FD1_WPF_FORMAT_WRTM_601_16 (0 << 9)
164#define FD1_WPF_FORMAT_WRTM_601_0 (1 << 9)
165#define FD1_WPF_FORMAT_WRTM_709_16 (2 << 9)
166#define FD1_WPF_FORMAT_CSC BIT(8)
167
168#define FD1_WPF_RNDCTL 0x00c4
169#define FD1_WPF_RNDCTL_CBRM BIT(28)
170#define FD1_WPF_RNDCTL_CLMD_NOCLIP (0 << 12)
171#define FD1_WPF_RNDCTL_CLMD_CLIP_16_235 (1 << 12)
172#define FD1_WPF_RNDCTL_CLMD_CLIP_1_254 (2 << 12)
173
174#define FD1_WPF_PSTRIDE 0x00c8
175#define FD1_WPF_PSTRIDE_Y_SHIFT 16
176#define FD1_WPF_PSTRIDE_C_SHIFT 0
177
178/* WPF Destination picture */
179#define FD1_WPF_ADDR_Y 0x00cc
180#define FD1_WPF_ADDR_C0 0x00d0
181#define FD1_WPF_ADDR_C1 0x00d4
182#define FD1_WPF_SWAP 0x00d8
183#define FD1_WPF_SWAP_OSWAP_SHIFT 0
184#define FD1_WPF_SWAP_SSWAP_SHIFT 4
185
186/* WPF/RPF Common */
187#define FD1_RWPF_SWAP_BYTE BIT(0)
188#define FD1_RWPF_SWAP_WORD BIT(1)
189#define FD1_RWPF_SWAP_LWRD BIT(2)
190#define FD1_RWPF_SWAP_LLWD BIT(3)
191
192/* IPC */
193#define FD1_IPC_MODE 0x0100
194#define FD1_IPC_MODE_DLI BIT(8)
195#define FD1_IPC_MODE_DIM_ADAPT2D3D (0 << 0)
196#define FD1_IPC_MODE_DIM_FIXED2D (1 << 0)
197#define FD1_IPC_MODE_DIM_FIXED3D (2 << 0)
198#define FD1_IPC_MODE_DIM_PREVFIELD (3 << 0)
199#define FD1_IPC_MODE_DIM_NEXTFIELD (4 << 0)
200
201#define FD1_IPC_SMSK_THRESH 0x0104
202#define FD1_IPC_SMSK_THRESH_CONST 0x00010002
203
204#define FD1_IPC_COMB_DET 0x0108
205#define FD1_IPC_COMB_DET_CONST 0x00200040
206
207#define FD1_IPC_MOTDEC 0x010c
208#define FD1_IPC_MOTDEC_CONST 0x00008020
209
210/* DLI registers */
211#define FD1_IPC_DLI_BLEND 0x0120
212#define FD1_IPC_DLI_BLEND_CONST 0x0080ff02
213
214#define FD1_IPC_DLI_HGAIN 0x0124
215#define FD1_IPC_DLI_HGAIN_CONST 0x001000ff
216
217#define FD1_IPC_DLI_SPRS 0x0128
218#define FD1_IPC_DLI_SPRS_CONST 0x009004ff
219
220#define FD1_IPC_DLI_ANGLE 0x012c
221#define FD1_IPC_DLI_ANGLE_CONST 0x0004080c
222
223#define FD1_IPC_DLI_ISOPIX0 0x0130
224#define FD1_IPC_DLI_ISOPIX0_CONST 0xff10ff10
225
226#define FD1_IPC_DLI_ISOPIX1 0x0134
227#define FD1_IPC_DLI_ISOPIX1_CONST 0x0000ff10
228
229/* Sensor registers */
230#define FD1_IPC_SENSOR_TH0 0x0140
231#define FD1_IPC_SENSOR_TH0_CONST 0x20208080
232
233#define FD1_IPC_SENSOR_TH1 0x0144
234#define FD1_IPC_SENSOR_TH1_CONST 0
235
236#define FD1_IPC_SENSOR_CTL0 0x0170
237#define FD1_IPC_SENSOR_CTL0_CONST 0x00002201
238
239#define FD1_IPC_SENSOR_CTL1 0x0174
240#define FD1_IPC_SENSOR_CTL1_CONST 0
241
242#define FD1_IPC_SENSOR_CTL2 0x0178
243#define FD1_IPC_SENSOR_CTL2_X_SHIFT 16
244#define FD1_IPC_SENSOR_CTL2_Y_SHIFT 0
245
246#define FD1_IPC_SENSOR_CTL3 0x017c
247#define FD1_IPC_SENSOR_CTL3_0_SHIFT 16
248#define FD1_IPC_SENSOR_CTL3_1_SHIFT 0
249
250/* Line memory pixel number register */
251#define FD1_IPC_LMEM 0x01e0
252#define FD1_IPC_LMEM_LINEAR 1024
253#define FD1_IPC_LMEM_TILE 960
254
255/* Internal Data (HW Version) */
256#define FD1_IP_INTDATA 0x0800
Kieran Bingham31165ad2017-06-12 07:30:16 -0300257#define FD1_IP_H3_ES1 0x02010101
Kieran Bingham4710b752016-06-30 10:41:23 -0300258#define FD1_IP_M3W 0x02010202
Kieran Bingham31165ad2017-06-12 07:30:16 -0300259#define FD1_IP_H3 0x02010203
Kieran Bingham4e8c1202019-05-15 11:39:12 -0400260#define FD1_IP_M3N 0x02010204
261#define FD1_IP_E3 0x02010205
Kieran Bingham4710b752016-06-30 10:41:23 -0300262
263/* LUTs */
264#define FD1_LUT_DIF_ADJ 0x1000
265#define FD1_LUT_SAD_ADJ 0x1400
266#define FD1_LUT_BLD_GAIN 0x1800
267#define FD1_LUT_DIF_GAIN 0x1c00
268#define FD1_LUT_MDET 0x2000
269
270/**
271 * struct fdp1_fmt - The FDP1 internal format data
272 * @fourcc: the fourcc code, to match the V4L2 API
273 * @bpp: bits per pixel per plane
274 * @num_planes: number of planes
275 * @hsub: horizontal subsampling factor
276 * @vsub: vertical subsampling factor
277 * @fmt: 7-bit format code for the fdp1 hardware
278 * @swap_yc: the Y and C components are swapped (Y comes before C)
279 * @swap_uv: the U and V components are swapped (V comes before U)
280 * @swap: swap register control
281 * @types: types of queue this format is applicable to
282 */
283struct fdp1_fmt {
284 u32 fourcc;
285 u8 bpp[3];
286 u8 num_planes;
287 u8 hsub;
288 u8 vsub;
289 u8 fmt;
290 bool swap_yc;
291 bool swap_uv;
292 u8 swap;
293 u8 types;
294};
295
296static const struct fdp1_fmt fdp1_formats[] = {
297 /* RGB formats are only supported by the Write Pixel Formatter */
298
299 { V4L2_PIX_FMT_RGB332, { 8, 0, 0 }, 1, 1, 1, 0x00, false, false,
300 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
301 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
302 FDP1_CAPTURE },
303 { V4L2_PIX_FMT_XRGB444, { 16, 0, 0 }, 1, 1, 1, 0x01, false, false,
304 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
305 FD1_RWPF_SWAP_WORD,
306 FDP1_CAPTURE },
307 { V4L2_PIX_FMT_XRGB555, { 16, 0, 0 }, 1, 1, 1, 0x04, false, false,
308 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
309 FD1_RWPF_SWAP_WORD,
310 FDP1_CAPTURE },
311 { V4L2_PIX_FMT_RGB565, { 16, 0, 0 }, 1, 1, 1, 0x06, false, false,
312 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
313 FD1_RWPF_SWAP_WORD,
314 FDP1_CAPTURE },
315 { V4L2_PIX_FMT_ABGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
316 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD,
317 FDP1_CAPTURE },
318 { V4L2_PIX_FMT_XBGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
319 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD,
320 FDP1_CAPTURE },
321 { V4L2_PIX_FMT_ARGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
322 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
323 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
324 FDP1_CAPTURE },
325 { V4L2_PIX_FMT_XRGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
326 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
327 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
328 FDP1_CAPTURE },
329 { V4L2_PIX_FMT_RGB24, { 24, 0, 0 }, 1, 1, 1, 0x15, false, false,
330 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
331 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
332 FDP1_CAPTURE },
333 { V4L2_PIX_FMT_BGR24, { 24, 0, 0 }, 1, 1, 1, 0x18, false, false,
334 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
335 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
336 FDP1_CAPTURE },
337 { V4L2_PIX_FMT_ARGB444, { 16, 0, 0 }, 1, 1, 1, 0x19, false, false,
338 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
339 FD1_RWPF_SWAP_WORD,
340 FDP1_CAPTURE },
341 { V4L2_PIX_FMT_ARGB555, { 16, 0, 0 }, 1, 1, 1, 0x1b, false, false,
342 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
343 FD1_RWPF_SWAP_WORD,
344 FDP1_CAPTURE },
345
346 /* YUV Formats are supported by Read and Write Pixel Formatters */
347
348 { V4L2_PIX_FMT_NV16M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, false,
349 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
350 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
351 FDP1_CAPTURE | FDP1_OUTPUT },
352 { V4L2_PIX_FMT_NV61M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, true,
353 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
354 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
355 FDP1_CAPTURE | FDP1_OUTPUT },
356 { V4L2_PIX_FMT_NV12M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, false,
357 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
358 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
359 FDP1_CAPTURE | FDP1_OUTPUT },
360 { V4L2_PIX_FMT_NV21M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, true,
361 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
362 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
363 FDP1_CAPTURE | FDP1_OUTPUT },
364 { V4L2_PIX_FMT_UYVY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, false,
365 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
366 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
367 FDP1_CAPTURE | FDP1_OUTPUT },
368 { V4L2_PIX_FMT_VYUY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, true,
369 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
370 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
371 FDP1_CAPTURE | FDP1_OUTPUT },
372 { V4L2_PIX_FMT_YUYV, { 16, 0, 0 }, 1, 2, 1, 0x47, true, false,
373 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
374 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
375 FDP1_CAPTURE | FDP1_OUTPUT },
376 { V4L2_PIX_FMT_YVYU, { 16, 0, 0 }, 1, 2, 1, 0x47, true, true,
377 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
378 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
379 FDP1_CAPTURE | FDP1_OUTPUT },
380 { V4L2_PIX_FMT_YUV444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, false,
381 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
382 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
383 FDP1_CAPTURE | FDP1_OUTPUT },
384 { V4L2_PIX_FMT_YVU444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, true,
385 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
386 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
387 FDP1_CAPTURE | FDP1_OUTPUT },
388 { V4L2_PIX_FMT_YUV422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, false,
389 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
390 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
391 FDP1_CAPTURE | FDP1_OUTPUT },
392 { V4L2_PIX_FMT_YVU422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, true,
393 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
394 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
395 FDP1_CAPTURE | FDP1_OUTPUT },
396 { V4L2_PIX_FMT_YUV420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, false,
397 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
398 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
399 FDP1_CAPTURE | FDP1_OUTPUT },
400 { V4L2_PIX_FMT_YVU420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, true,
401 FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
402 FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
403 FDP1_CAPTURE | FDP1_OUTPUT },
404};
405
406static int fdp1_fmt_is_rgb(const struct fdp1_fmt *fmt)
407{
408 return fmt->fmt <= 0x1b; /* Last RGB code */
409}
410
411/*
412 * FDP1 Lookup tables range from 0...255 only
413 *
414 * Each table must be less than 256 entries, and all tables
415 * are padded out to 256 entries by duplicating the last value.
416 */
417static const u8 fdp1_diff_adj[] = {
418 0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf,
419 0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3,
420 0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff,
421};
422
423static const u8 fdp1_sad_adj[] = {
424 0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf,
425 0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3,
426 0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff,
427};
428
429static const u8 fdp1_bld_gain[] = {
430 0x80,
431};
432
433static const u8 fdp1_dif_gain[] = {
434 0x80,
435};
436
437static const u8 fdp1_mdet[] = {
438 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
439 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
440 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
441 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
442 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
443 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
444 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
445 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
446 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
447 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
448 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
449 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
450 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
451 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
452 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
453 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
454 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
455 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
456 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
457 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
458 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
459 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
460 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
461 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
462 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
463 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
464 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
465 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
466 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
467 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
468 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
469 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
470};
471
472/* Per-queue, driver-specific private data */
473struct fdp1_q_data {
474 const struct fdp1_fmt *fmt;
475 struct v4l2_pix_format_mplane format;
476
477 unsigned int vsize;
478 unsigned int stride_y;
479 unsigned int stride_c;
480};
481
482static const struct fdp1_fmt *fdp1_find_format(u32 pixelformat)
483{
484 const struct fdp1_fmt *fmt;
485 unsigned int i;
486
487 for (i = 0; i < ARRAY_SIZE(fdp1_formats); i++) {
488 fmt = &fdp1_formats[i];
489 if (fmt->fourcc == pixelformat)
490 return fmt;
491 }
492
493 return NULL;
494}
495
496enum fdp1_deint_mode {
497 FDP1_PROGRESSIVE = 0, /* Must be zero when !deinterlacing */
498 FDP1_ADAPT2D3D,
499 FDP1_FIXED2D,
500 FDP1_FIXED3D,
501 FDP1_PREVFIELD,
502 FDP1_NEXTFIELD,
503};
504
505#define FDP1_DEINT_MODE_USES_NEXT(mode) \
506 (mode == FDP1_ADAPT2D3D || \
507 mode == FDP1_FIXED3D || \
508 mode == FDP1_NEXTFIELD)
509
510#define FDP1_DEINT_MODE_USES_PREV(mode) \
511 (mode == FDP1_ADAPT2D3D || \
512 mode == FDP1_FIXED3D || \
513 mode == FDP1_PREVFIELD)
514
515/*
516 * FDP1 operates on potentially 3 fields, which are tracked
517 * from the VB buffers using this context structure.
518 * Will always be a field or a full frame, never two fields.
519 */
520struct fdp1_field_buffer {
521 struct vb2_v4l2_buffer *vb;
522 dma_addr_t addrs[3];
523
524 /* Should be NONE:TOP:BOTTOM only */
525 enum v4l2_field field;
526
527 /* Flag to indicate this is the last field in the vb */
528 bool last_field;
529
530 /* Buffer queue lists */
531 struct list_head list;
532};
533
534struct fdp1_buffer {
535 struct v4l2_m2m_buffer m2m_buf;
536 struct fdp1_field_buffer fields[2];
537 unsigned int num_fields;
538};
539
540static inline struct fdp1_buffer *to_fdp1_buffer(struct vb2_v4l2_buffer *vb)
541{
542 return container_of(vb, struct fdp1_buffer, m2m_buf.vb);
543}
544
545struct fdp1_job {
546 struct fdp1_field_buffer *previous;
547 struct fdp1_field_buffer *active;
548 struct fdp1_field_buffer *next;
549 struct fdp1_field_buffer *dst;
550
551 /* A job can only be on one list at a time */
552 struct list_head list;
553};
554
555struct fdp1_dev {
556 struct v4l2_device v4l2_dev;
557 struct video_device vfd;
558
559 struct mutex dev_mutex;
560 spinlock_t irqlock;
561 spinlock_t device_process_lock;
562
563 void __iomem *regs;
564 unsigned int irq;
565 struct device *dev;
566
567 /* Job Queues */
568 struct fdp1_job jobs[FDP1_NUMBER_JOBS];
569 struct list_head free_job_list;
570 struct list_head queued_job_list;
571 struct list_head hw_job_list;
572
573 unsigned int clk_rate;
574
575 struct rcar_fcp_device *fcp;
576 struct v4l2_m2m_dev *m2m_dev;
577};
578
579struct fdp1_ctx {
580 struct v4l2_fh fh;
581 struct fdp1_dev *fdp1;
582
583 struct v4l2_ctrl_handler hdl;
584 unsigned int sequence;
585
586 /* Processed buffers in this transaction */
587 u8 num_processed;
588
589 /* Transaction length (i.e. how many buffers per transaction) */
590 u32 translen;
591
592 /* Abort requested by m2m */
593 int aborting;
594
595 /* Deinterlace processing mode */
596 enum fdp1_deint_mode deint_mode;
597
598 /*
599 * Adaptive 2D/3D mode uses a shared mask
600 * This is allocated at streamon, if the ADAPT2D3D mode
601 * is requested
602 */
603 unsigned int smsk_size;
604 dma_addr_t smsk_addr[2];
605 void *smsk_cpu;
606
607 /* Capture pipeline, can specify an alpha value
608 * for supported formats. 0-255 only
609 */
610 unsigned char alpha;
611
612 /* Source and destination queue data */
613 struct fdp1_q_data out_q; /* HW Source */
614 struct fdp1_q_data cap_q; /* HW Destination */
615
616 /*
617 * Field Queues
618 * Interlaced fields are used on 3 occasions, and tracked in this list.
619 *
620 * V4L2 Buffers are tracked inside the fdp1_buffer
621 * and released when the last 'field' completes
622 */
623 struct list_head fields_queue;
624 unsigned int buffers_queued;
625
626 /*
627 * For de-interlacing we need to track our previous buffer
628 * while preparing our job lists.
629 */
630 struct fdp1_field_buffer *previous;
631};
632
633static inline struct fdp1_ctx *fh_to_ctx(struct v4l2_fh *fh)
634{
635 return container_of(fh, struct fdp1_ctx, fh);
636}
637
638static struct fdp1_q_data *get_q_data(struct fdp1_ctx *ctx,
639 enum v4l2_buf_type type)
640{
641 if (V4L2_TYPE_IS_OUTPUT(type))
642 return &ctx->out_q;
643 else
644 return &ctx->cap_q;
645}
646
647/*
648 * list_remove_job: Take the first item off the specified job list
649 *
650 * Returns: pointer to a job, or NULL if the list is empty.
651 */
652static struct fdp1_job *list_remove_job(struct fdp1_dev *fdp1,
653 struct list_head *list)
654{
655 struct fdp1_job *job;
656 unsigned long flags;
657
658 spin_lock_irqsave(&fdp1->irqlock, flags);
659 job = list_first_entry_or_null(list, struct fdp1_job, list);
660 if (job)
661 list_del(&job->list);
662 spin_unlock_irqrestore(&fdp1->irqlock, flags);
663
664 return job;
665}
666
667/*
668 * list_add_job: Add a job to the specified job list
669 *
670 * Returns: void - always succeeds
671 */
672static void list_add_job(struct fdp1_dev *fdp1,
673 struct list_head *list,
674 struct fdp1_job *job)
675{
676 unsigned long flags;
677
678 spin_lock_irqsave(&fdp1->irqlock, flags);
679 list_add_tail(&job->list, list);
680 spin_unlock_irqrestore(&fdp1->irqlock, flags);
681}
682
683static struct fdp1_job *fdp1_job_alloc(struct fdp1_dev *fdp1)
684{
685 return list_remove_job(fdp1, &fdp1->free_job_list);
686}
687
688static void fdp1_job_free(struct fdp1_dev *fdp1, struct fdp1_job *job)
689{
690 /* Ensure that all residue from previous jobs is gone */
691 memset(job, 0, sizeof(struct fdp1_job));
692
693 list_add_job(fdp1, &fdp1->free_job_list, job);
694}
695
696static void queue_job(struct fdp1_dev *fdp1, struct fdp1_job *job)
697{
698 list_add_job(fdp1, &fdp1->queued_job_list, job);
699}
700
701static struct fdp1_job *get_queued_job(struct fdp1_dev *fdp1)
702{
703 return list_remove_job(fdp1, &fdp1->queued_job_list);
704}
705
706static void queue_hw_job(struct fdp1_dev *fdp1, struct fdp1_job *job)
707{
708 list_add_job(fdp1, &fdp1->hw_job_list, job);
709}
710
711static struct fdp1_job *get_hw_queued_job(struct fdp1_dev *fdp1)
712{
713 return list_remove_job(fdp1, &fdp1->hw_job_list);
714}
715
716/*
717 * Buffer lists handling
718 */
719static void fdp1_field_complete(struct fdp1_ctx *ctx,
720 struct fdp1_field_buffer *fbuf)
721{
722 /* job->previous may be on the first field */
723 if (!fbuf)
724 return;
725
726 if (fbuf->last_field)
727 v4l2_m2m_buf_done(fbuf->vb, VB2_BUF_STATE_DONE);
728}
729
730static void fdp1_queue_field(struct fdp1_ctx *ctx,
731 struct fdp1_field_buffer *fbuf)
732{
733 unsigned long flags;
734
735 spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
736 list_add_tail(&fbuf->list, &ctx->fields_queue);
737 spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
738
739 ctx->buffers_queued++;
740}
741
742static struct fdp1_field_buffer *fdp1_dequeue_field(struct fdp1_ctx *ctx)
743{
744 struct fdp1_field_buffer *fbuf;
745 unsigned long flags;
746
747 ctx->buffers_queued--;
748
749 spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
750 fbuf = list_first_entry_or_null(&ctx->fields_queue,
751 struct fdp1_field_buffer, list);
752 if (fbuf)
753 list_del(&fbuf->list);
754 spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
755
756 return fbuf;
757}
758
759/*
760 * Return the next field in the queue - or NULL,
761 * without removing the item from the list
762 */
763static struct fdp1_field_buffer *fdp1_peek_queued_field(struct fdp1_ctx *ctx)
764{
765 struct fdp1_field_buffer *fbuf;
766 unsigned long flags;
767
768 spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
769 fbuf = list_first_entry_or_null(&ctx->fields_queue,
770 struct fdp1_field_buffer, list);
771 spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
772
773 return fbuf;
774}
775
776static u32 fdp1_read(struct fdp1_dev *fdp1, unsigned int reg)
777{
778 u32 value = ioread32(fdp1->regs + reg);
779
780 if (debug >= 2)
781 dprintk(fdp1, "Read 0x%08x from 0x%04x\n", value, reg);
782
783 return value;
784}
785
786static void fdp1_write(struct fdp1_dev *fdp1, u32 val, unsigned int reg)
787{
788 if (debug >= 2)
789 dprintk(fdp1, "Write 0x%08x to 0x%04x\n", val, reg);
790
791 iowrite32(val, fdp1->regs + reg);
792}
793
794/* IPC registers are to be programmed with constant values */
795static void fdp1_set_ipc_dli(struct fdp1_ctx *ctx)
796{
797 struct fdp1_dev *fdp1 = ctx->fdp1;
798
799 fdp1_write(fdp1, FD1_IPC_SMSK_THRESH_CONST, FD1_IPC_SMSK_THRESH);
800 fdp1_write(fdp1, FD1_IPC_COMB_DET_CONST, FD1_IPC_COMB_DET);
801 fdp1_write(fdp1, FD1_IPC_MOTDEC_CONST, FD1_IPC_MOTDEC);
802
803 fdp1_write(fdp1, FD1_IPC_DLI_BLEND_CONST, FD1_IPC_DLI_BLEND);
804 fdp1_write(fdp1, FD1_IPC_DLI_HGAIN_CONST, FD1_IPC_DLI_HGAIN);
805 fdp1_write(fdp1, FD1_IPC_DLI_SPRS_CONST, FD1_IPC_DLI_SPRS);
806 fdp1_write(fdp1, FD1_IPC_DLI_ANGLE_CONST, FD1_IPC_DLI_ANGLE);
807 fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX0_CONST, FD1_IPC_DLI_ISOPIX0);
808 fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX1_CONST, FD1_IPC_DLI_ISOPIX1);
809}
810
811
812static void fdp1_set_ipc_sensor(struct fdp1_ctx *ctx)
813{
814 struct fdp1_dev *fdp1 = ctx->fdp1;
815 struct fdp1_q_data *src_q_data = &ctx->out_q;
816 unsigned int x0, x1;
817 unsigned int hsize = src_q_data->format.width;
818 unsigned int vsize = src_q_data->format.height;
819
820 x0 = hsize / 3;
821 x1 = 2 * hsize / 3;
822
823 fdp1_write(fdp1, FD1_IPC_SENSOR_TH0_CONST, FD1_IPC_SENSOR_TH0);
824 fdp1_write(fdp1, FD1_IPC_SENSOR_TH1_CONST, FD1_IPC_SENSOR_TH1);
825 fdp1_write(fdp1, FD1_IPC_SENSOR_CTL0_CONST, FD1_IPC_SENSOR_CTL0);
826 fdp1_write(fdp1, FD1_IPC_SENSOR_CTL1_CONST, FD1_IPC_SENSOR_CTL1);
827
828 fdp1_write(fdp1, ((hsize - 1) << FD1_IPC_SENSOR_CTL2_X_SHIFT) |
829 ((vsize - 1) << FD1_IPC_SENSOR_CTL2_Y_SHIFT),
830 FD1_IPC_SENSOR_CTL2);
831
832 fdp1_write(fdp1, (x0 << FD1_IPC_SENSOR_CTL3_0_SHIFT) |
833 (x1 << FD1_IPC_SENSOR_CTL3_1_SHIFT),
834 FD1_IPC_SENSOR_CTL3);
835}
836
837/*
838 * fdp1_write_lut: Write a padded LUT to the hw
839 *
840 * FDP1 uses constant data for de-interlacing processing,
841 * with large tables. These hardware tables are all 256 bytes
842 * long, however they often contain repeated data at the end.
843 *
844 * The last byte of the table is written to all remaining entries.
845 */
846static void fdp1_write_lut(struct fdp1_dev *fdp1, const u8 *lut,
847 unsigned int len, unsigned int base)
848{
849 unsigned int i;
850 u8 pad;
851
852 /* Tables larger than the hw are clipped */
853 len = min(len, 256u);
854
855 for (i = 0; i < len; i++)
856 fdp1_write(fdp1, lut[i], base + (i*4));
857
858 /* Tables are padded with the last entry */
859 pad = lut[i-1];
860
861 for (; i < 256; i++)
862 fdp1_write(fdp1, pad, base + (i*4));
863}
864
865static void fdp1_set_lut(struct fdp1_dev *fdp1)
866{
867 fdp1_write_lut(fdp1, fdp1_diff_adj, ARRAY_SIZE(fdp1_diff_adj),
868 FD1_LUT_DIF_ADJ);
869 fdp1_write_lut(fdp1, fdp1_sad_adj, ARRAY_SIZE(fdp1_sad_adj),
870 FD1_LUT_SAD_ADJ);
871 fdp1_write_lut(fdp1, fdp1_bld_gain, ARRAY_SIZE(fdp1_bld_gain),
872 FD1_LUT_BLD_GAIN);
873 fdp1_write_lut(fdp1, fdp1_dif_gain, ARRAY_SIZE(fdp1_dif_gain),
874 FD1_LUT_DIF_GAIN);
875 fdp1_write_lut(fdp1, fdp1_mdet, ARRAY_SIZE(fdp1_mdet),
876 FD1_LUT_MDET);
877}
878
879static void fdp1_configure_rpf(struct fdp1_ctx *ctx,
880 struct fdp1_job *job)
881{
882 struct fdp1_dev *fdp1 = ctx->fdp1;
883 u32 picture_size;
884 u32 pstride;
885 u32 format;
886 u32 smsk_addr;
887
888 struct fdp1_q_data *q_data = &ctx->out_q;
889
890 /* Picture size is common to Source and Destination frames */
891 picture_size = (q_data->format.width << FD1_RPF_SIZE_H_SHIFT)
892 | (q_data->vsize << FD1_RPF_SIZE_V_SHIFT);
893
894 /* Strides */
895 pstride = q_data->stride_y << FD1_RPF_PSTRIDE_Y_SHIFT;
896 if (q_data->format.num_planes > 1)
897 pstride |= q_data->stride_c << FD1_RPF_PSTRIDE_C_SHIFT;
898
899 /* Format control */
900 format = q_data->fmt->fmt;
901 if (q_data->fmt->swap_yc)
902 format |= FD1_RPF_FORMAT_RSPYCS;
903
904 if (q_data->fmt->swap_uv)
905 format |= FD1_RPF_FORMAT_RSPUVS;
906
907 if (job->active->field == V4L2_FIELD_BOTTOM) {
908 format |= FD1_RPF_FORMAT_CF; /* Set for Bottom field */
909 smsk_addr = ctx->smsk_addr[0];
910 } else {
911 smsk_addr = ctx->smsk_addr[1];
912 }
913
914 /* Deint mode is non-zero when deinterlacing */
915 if (ctx->deint_mode)
916 format |= FD1_RPF_FORMAT_CIPM;
917
918 fdp1_write(fdp1, format, FD1_RPF_FORMAT);
919 fdp1_write(fdp1, q_data->fmt->swap, FD1_RPF_SWAP);
920 fdp1_write(fdp1, picture_size, FD1_RPF_SIZE);
921 fdp1_write(fdp1, pstride, FD1_RPF_PSTRIDE);
922 fdp1_write(fdp1, smsk_addr, FD1_RPF_SMSK_ADDR);
923
924 /* Previous Field Channel (CH0) */
925 if (job->previous)
926 fdp1_write(fdp1, job->previous->addrs[0], FD1_RPF0_ADDR_Y);
927
928 /* Current Field Channel (CH1) */
929 fdp1_write(fdp1, job->active->addrs[0], FD1_RPF1_ADDR_Y);
930 fdp1_write(fdp1, job->active->addrs[1], FD1_RPF1_ADDR_C0);
931 fdp1_write(fdp1, job->active->addrs[2], FD1_RPF1_ADDR_C1);
932
933 /* Next Field Channel (CH2) */
934 if (job->next)
935 fdp1_write(fdp1, job->next->addrs[0], FD1_RPF2_ADDR_Y);
936}
937
938static void fdp1_configure_wpf(struct fdp1_ctx *ctx,
939 struct fdp1_job *job)
940{
941 struct fdp1_dev *fdp1 = ctx->fdp1;
942 struct fdp1_q_data *src_q_data = &ctx->out_q;
943 struct fdp1_q_data *q_data = &ctx->cap_q;
944 u32 pstride;
945 u32 format;
946 u32 swap;
947 u32 rndctl;
948
949 pstride = q_data->format.plane_fmt[0].bytesperline
Laurent Pinchart149e31e2018-04-22 04:00:08 -0400950 << FD1_WPF_PSTRIDE_Y_SHIFT;
Kieran Bingham4710b752016-06-30 10:41:23 -0300951
952 if (q_data->format.num_planes > 1)
953 pstride |= q_data->format.plane_fmt[1].bytesperline
954 << FD1_WPF_PSTRIDE_C_SHIFT;
955
956 format = q_data->fmt->fmt; /* Output Format Code */
957
958 if (q_data->fmt->swap_yc)
959 format |= FD1_WPF_FORMAT_WSPYCS;
960
961 if (q_data->fmt->swap_uv)
962 format |= FD1_WPF_FORMAT_WSPUVS;
963
964 if (fdp1_fmt_is_rgb(q_data->fmt)) {
965 /* Enable Colour Space conversion */
966 format |= FD1_WPF_FORMAT_CSC;
967
968 /* Set WRTM */
969 if (src_q_data->format.ycbcr_enc == V4L2_YCBCR_ENC_709)
970 format |= FD1_WPF_FORMAT_WRTM_709_16;
971 else if (src_q_data->format.quantization ==
972 V4L2_QUANTIZATION_FULL_RANGE)
973 format |= FD1_WPF_FORMAT_WRTM_601_0;
974 else
975 format |= FD1_WPF_FORMAT_WRTM_601_16;
976 }
977
978 /* Set an alpha value into the Pad Value */
979 format |= ctx->alpha << FD1_WPF_FORMAT_PDV_SHIFT;
980
981 /* Determine picture rounding and clipping */
982 rndctl = FD1_WPF_RNDCTL_CBRM; /* Rounding Off */
983 rndctl |= FD1_WPF_RNDCTL_CLMD_NOCLIP;
984
985 /* WPF Swap needs both ISWAP and OSWAP setting */
986 swap = q_data->fmt->swap << FD1_WPF_SWAP_OSWAP_SHIFT;
987 swap |= src_q_data->fmt->swap << FD1_WPF_SWAP_SSWAP_SHIFT;
988
989 fdp1_write(fdp1, format, FD1_WPF_FORMAT);
990 fdp1_write(fdp1, rndctl, FD1_WPF_RNDCTL);
991 fdp1_write(fdp1, swap, FD1_WPF_SWAP);
992 fdp1_write(fdp1, pstride, FD1_WPF_PSTRIDE);
993
994 fdp1_write(fdp1, job->dst->addrs[0], FD1_WPF_ADDR_Y);
995 fdp1_write(fdp1, job->dst->addrs[1], FD1_WPF_ADDR_C0);
996 fdp1_write(fdp1, job->dst->addrs[2], FD1_WPF_ADDR_C1);
997}
998
999static void fdp1_configure_deint_mode(struct fdp1_ctx *ctx,
1000 struct fdp1_job *job)
1001{
1002 struct fdp1_dev *fdp1 = ctx->fdp1;
1003 u32 opmode = FD1_CTL_OPMODE_VIMD_NOINTERRUPT;
1004 u32 ipcmode = FD1_IPC_MODE_DLI; /* Always set */
1005 u32 channels = FD1_CTL_CHACT_WR | FD1_CTL_CHACT_RD1; /* Always on */
1006
1007 /* De-interlacing Mode */
1008 switch (ctx->deint_mode) {
1009 default:
1010 case FDP1_PROGRESSIVE:
1011 dprintk(fdp1, "Progressive Mode\n");
1012 opmode |= FD1_CTL_OPMODE_PRG;
1013 ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
1014 break;
1015 case FDP1_ADAPT2D3D:
1016 dprintk(fdp1, "Adapt2D3D Mode\n");
1017 if (ctx->sequence == 0 || ctx->aborting)
1018 ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
1019 else
1020 ipcmode |= FD1_IPC_MODE_DIM_ADAPT2D3D;
1021
1022 if (ctx->sequence > 1) {
1023 channels |= FD1_CTL_CHACT_SMW;
1024 channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2;
1025 }
1026
1027 if (ctx->sequence > 2)
1028 channels |= FD1_CTL_CHACT_SMR;
1029
1030 break;
1031 case FDP1_FIXED3D:
1032 dprintk(fdp1, "Fixed 3D Mode\n");
1033 ipcmode |= FD1_IPC_MODE_DIM_FIXED3D;
1034 /* Except for first and last frame, enable all channels */
1035 if (!(ctx->sequence == 0 || ctx->aborting))
1036 channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2;
1037 break;
1038 case FDP1_FIXED2D:
1039 dprintk(fdp1, "Fixed 2D Mode\n");
1040 ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
1041 /* No extra channels enabled */
1042 break;
1043 case FDP1_PREVFIELD:
1044 dprintk(fdp1, "Previous Field Mode\n");
1045 ipcmode |= FD1_IPC_MODE_DIM_PREVFIELD;
1046 channels |= FD1_CTL_CHACT_RD0; /* Previous */
1047 break;
1048 case FDP1_NEXTFIELD:
1049 dprintk(fdp1, "Next Field Mode\n");
1050 ipcmode |= FD1_IPC_MODE_DIM_NEXTFIELD;
1051 channels |= FD1_CTL_CHACT_RD2; /* Next */
1052 break;
1053 }
1054
1055 fdp1_write(fdp1, channels, FD1_CTL_CHACT);
1056 fdp1_write(fdp1, opmode, FD1_CTL_OPMODE);
1057 fdp1_write(fdp1, ipcmode, FD1_IPC_MODE);
1058}
1059
1060/*
1061 * fdp1_device_process() - Run the hardware
1062 *
1063 * Configure and start the hardware to generate a single frame
1064 * of output given our input parameters.
1065 */
1066static int fdp1_device_process(struct fdp1_ctx *ctx)
1067
1068{
1069 struct fdp1_dev *fdp1 = ctx->fdp1;
1070 struct fdp1_job *job;
1071 unsigned long flags;
1072
1073 spin_lock_irqsave(&fdp1->device_process_lock, flags);
1074
1075 /* Get a job to process */
1076 job = get_queued_job(fdp1);
1077 if (!job) {
1078 /*
1079 * VINT can call us to see if we can queue another job.
1080 * If we have no work to do, we simply return.
1081 */
1082 spin_unlock_irqrestore(&fdp1->device_process_lock, flags);
1083 return 0;
1084 }
1085
1086 /* First Frame only? ... */
1087 fdp1_write(fdp1, FD1_CTL_CLKCTRL_CSTP_N, FD1_CTL_CLKCTRL);
1088
1089 /* Set the mode, and configuration */
1090 fdp1_configure_deint_mode(ctx, job);
1091
1092 /* DLI Static Configuration */
1093 fdp1_set_ipc_dli(ctx);
1094
1095 /* Sensor Configuration */
1096 fdp1_set_ipc_sensor(ctx);
1097
1098 /* Setup the source picture */
1099 fdp1_configure_rpf(ctx, job);
1100
1101 /* Setup the destination picture */
1102 fdp1_configure_wpf(ctx, job);
1103
1104 /* Line Memory Pixel Number Register for linear access */
1105 fdp1_write(fdp1, FD1_IPC_LMEM_LINEAR, FD1_IPC_LMEM);
1106
1107 /* Enable Interrupts */
1108 fdp1_write(fdp1, FD1_CTL_IRQ_MASK, FD1_CTL_IRQENB);
1109
1110 /* Finally, the Immediate Registers */
1111
1112 /* This job is now in the HW queue */
1113 queue_hw_job(fdp1, job);
1114
1115 /* Start the command */
1116 fdp1_write(fdp1, FD1_CTL_CMD_STRCMD, FD1_CTL_CMD);
1117
1118 /* Registers will update to HW at next VINT */
1119 fdp1_write(fdp1, FD1_CTL_REGEND_REGEND, FD1_CTL_REGEND);
1120
1121 /* Enable VINT Generator */
1122 fdp1_write(fdp1, FD1_CTL_SGCMD_SGEN, FD1_CTL_SGCMD);
1123
1124 spin_unlock_irqrestore(&fdp1->device_process_lock, flags);
1125
1126 return 0;
1127}
1128
1129/*
1130 * mem2mem callbacks
1131 */
1132
Mauro Carvalho Chehabcba862d2017-11-29 08:33:45 -05001133/*
Kieran Bingham4710b752016-06-30 10:41:23 -03001134 * job_ready() - check whether an instance is ready to be scheduled to run
1135 */
1136static int fdp1_m2m_job_ready(void *priv)
1137{
1138 struct fdp1_ctx *ctx = priv;
1139 struct fdp1_q_data *src_q_data = &ctx->out_q;
1140 int srcbufs = 1;
1141 int dstbufs = 1;
1142
1143 dprintk(ctx->fdp1, "+ Src: %d : Dst: %d\n",
Laurent Pinchart149e31e2018-04-22 04:00:08 -04001144 v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx),
1145 v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx));
Kieran Bingham4710b752016-06-30 10:41:23 -03001146
1147 /* One output buffer is required for each field */
1148 if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field))
1149 dstbufs = 2;
1150
1151 if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) < srcbufs
1152 || v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) < dstbufs) {
1153 dprintk(ctx->fdp1, "Not enough buffers available\n");
1154 return 0;
1155 }
1156
1157 return 1;
1158}
1159
1160static void fdp1_m2m_job_abort(void *priv)
1161{
1162 struct fdp1_ctx *ctx = priv;
1163
1164 dprintk(ctx->fdp1, "+\n");
1165
1166 /* Will cancel the transaction in the next interrupt handler */
1167 ctx->aborting = 1;
1168
1169 /* Immediate abort sequence */
1170 fdp1_write(ctx->fdp1, 0, FD1_CTL_SGCMD);
1171 fdp1_write(ctx->fdp1, FD1_CTL_SRESET_SRST, FD1_CTL_SRESET);
1172}
1173
1174/*
1175 * fdp1_prepare_job: Prepare and queue a new job for a single action of work
1176 *
1177 * Prepare the next field, (or frame in progressive) and an output
1178 * buffer for the hardware to perform a single operation.
1179 */
1180static struct fdp1_job *fdp1_prepare_job(struct fdp1_ctx *ctx)
1181{
1182 struct vb2_v4l2_buffer *vbuf;
1183 struct fdp1_buffer *fbuf;
1184 struct fdp1_dev *fdp1 = ctx->fdp1;
1185 struct fdp1_job *job;
1186 unsigned int buffers_required = 1;
1187
1188 dprintk(fdp1, "+\n");
1189
1190 if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode))
1191 buffers_required = 2;
1192
1193 if (ctx->buffers_queued < buffers_required)
1194 return NULL;
1195
1196 job = fdp1_job_alloc(fdp1);
1197 if (!job) {
1198 dprintk(fdp1, "No free jobs currently available\n");
1199 return NULL;
1200 }
1201
1202 job->active = fdp1_dequeue_field(ctx);
1203 if (!job->active) {
1204 /* Buffer check should prevent this ever happening */
1205 dprintk(fdp1, "No input buffers currently available\n");
1206
1207 fdp1_job_free(fdp1, job);
1208 return NULL;
1209 }
1210
1211 dprintk(fdp1, "+ Buffer en-route...\n");
1212
1213 /* Source buffers have been prepared on our buffer_queue
1214 * Prepare our Output buffer
1215 */
1216 vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
1217 fbuf = to_fdp1_buffer(vbuf);
1218 job->dst = &fbuf->fields[0];
1219
1220 job->active->vb->sequence = ctx->sequence;
1221 job->dst->vb->sequence = ctx->sequence;
1222 ctx->sequence++;
1223
1224 if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode)) {
1225 job->previous = ctx->previous;
1226
1227 /* Active buffer becomes the next job's previous buffer */
1228 ctx->previous = job->active;
1229 }
1230
1231 if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode)) {
1232 /* Must be called after 'active' is dequeued */
1233 job->next = fdp1_peek_queued_field(ctx);
1234 }
1235
1236 /* Transfer timestamps and flags from src->dst */
1237
1238 job->dst->vb->vb2_buf.timestamp = job->active->vb->vb2_buf.timestamp;
1239
1240 job->dst->vb->flags = job->active->vb->flags &
1241 V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
1242
1243 /* Ideally, the frame-end function will just 'check' to see
1244 * if there are more jobs instead
1245 */
1246 ctx->translen++;
1247
1248 /* Finally, Put this job on the processing queue */
1249 queue_job(fdp1, job);
1250
1251 dprintk(fdp1, "Job Queued translen = %d\n", ctx->translen);
1252
1253 return job;
1254}
1255
1256/* fdp1_m2m_device_run() - prepares and starts the device for an M2M task
1257 *
1258 * A single input buffer is taken and serialised into our fdp1_buffer
1259 * queue. The queue is then processed to create as many jobs as possible
1260 * from our available input.
1261 */
1262static void fdp1_m2m_device_run(void *priv)
1263{
1264 struct fdp1_ctx *ctx = priv;
1265 struct fdp1_dev *fdp1 = ctx->fdp1;
1266 struct vb2_v4l2_buffer *src_vb;
1267 struct fdp1_buffer *buf;
1268 unsigned int i;
1269
1270 dprintk(fdp1, "+\n");
1271
1272 ctx->translen = 0;
1273
1274 /* Get our incoming buffer of either one or two fields, or one frame */
1275 src_vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1276 buf = to_fdp1_buffer(src_vb);
1277
1278 for (i = 0; i < buf->num_fields; i++) {
1279 struct fdp1_field_buffer *fbuf = &buf->fields[i];
1280
1281 fdp1_queue_field(ctx, fbuf);
1282 dprintk(fdp1, "Queued Buffer [%d] last_field:%d\n",
Laurent Pinchart149e31e2018-04-22 04:00:08 -04001283 i, fbuf->last_field);
Kieran Bingham4710b752016-06-30 10:41:23 -03001284 }
1285
1286 /* Queue as many jobs as our data provides for */
1287 while (fdp1_prepare_job(ctx))
1288 ;
1289
1290 if (ctx->translen == 0) {
1291 dprintk(fdp1, "No jobs were processed. M2M action complete\n");
1292 v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx);
1293 return;
1294 }
1295
1296 /* Kick the job processing action */
1297 fdp1_device_process(ctx);
1298}
1299
1300/*
1301 * device_frame_end:
1302 *
1303 * Handles the M2M level after a buffer completion event.
1304 */
1305static void device_frame_end(struct fdp1_dev *fdp1,
1306 enum vb2_buffer_state state)
1307{
1308 struct fdp1_ctx *ctx;
1309 unsigned long flags;
1310 struct fdp1_job *job = get_hw_queued_job(fdp1);
1311
1312 dprintk(fdp1, "+\n");
1313
1314 ctx = v4l2_m2m_get_curr_priv(fdp1->m2m_dev);
1315
1316 if (ctx == NULL) {
1317 v4l2_err(&fdp1->v4l2_dev,
1318 "Instance released before the end of transaction\n");
1319 return;
1320 }
1321
1322 ctx->num_processed++;
1323
1324 /*
1325 * fdp1_field_complete will call buf_done only when the last vb2_buffer
1326 * reference is complete
1327 */
1328 if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode))
1329 fdp1_field_complete(ctx, job->previous);
1330 else
1331 fdp1_field_complete(ctx, job->active);
1332
1333 spin_lock_irqsave(&fdp1->irqlock, flags);
1334 v4l2_m2m_buf_done(job->dst->vb, state);
1335 job->dst = NULL;
1336 spin_unlock_irqrestore(&fdp1->irqlock, flags);
1337
1338 /* Move this job back to the free job list */
1339 fdp1_job_free(fdp1, job);
1340
1341 dprintk(fdp1, "curr_ctx->num_processed %d curr_ctx->translen %d\n",
Laurent Pinchart149e31e2018-04-22 04:00:08 -04001342 ctx->num_processed, ctx->translen);
Kieran Bingham4710b752016-06-30 10:41:23 -03001343
1344 if (ctx->num_processed == ctx->translen ||
1345 ctx->aborting) {
1346 dprintk(ctx->fdp1, "Finishing transaction\n");
1347 ctx->num_processed = 0;
1348 v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx);
1349 } else {
1350 /*
1351 * For pipelined performance support, this would
1352 * be called from a VINT handler
1353 */
1354 fdp1_device_process(ctx);
1355 }
1356}
1357
1358/*
1359 * video ioctls
1360 */
1361static int fdp1_vidioc_querycap(struct file *file, void *priv,
1362 struct v4l2_capability *cap)
1363{
Mauro Carvalho Chehabc0decac2018-09-10 08:19:14 -04001364 strscpy(cap->driver, DRIVER_NAME, sizeof(cap->driver));
1365 strscpy(cap->card, DRIVER_NAME, sizeof(cap->card));
Kieran Bingham4710b752016-06-30 10:41:23 -03001366 snprintf(cap->bus_info, sizeof(cap->bus_info),
Laurent Pinchart149e31e2018-04-22 04:00:08 -04001367 "platform:%s", DRIVER_NAME);
Kieran Bingham4710b752016-06-30 10:41:23 -03001368 return 0;
1369}
1370
1371static int fdp1_enum_fmt(struct v4l2_fmtdesc *f, u32 type)
1372{
1373 unsigned int i, num;
1374
1375 num = 0;
1376
1377 for (i = 0; i < ARRAY_SIZE(fdp1_formats); ++i) {
1378 if (fdp1_formats[i].types & type) {
1379 if (num == f->index)
1380 break;
1381 ++num;
1382 }
1383 }
1384
1385 /* Format not found */
1386 if (i >= ARRAY_SIZE(fdp1_formats))
1387 return -EINVAL;
1388
1389 /* Format found */
1390 f->pixelformat = fdp1_formats[i].fourcc;
1391
1392 return 0;
1393}
1394
1395static int fdp1_enum_fmt_vid_cap(struct file *file, void *priv,
1396 struct v4l2_fmtdesc *f)
1397{
1398 return fdp1_enum_fmt(f, FDP1_CAPTURE);
1399}
1400
1401static int fdp1_enum_fmt_vid_out(struct file *file, void *priv,
1402 struct v4l2_fmtdesc *f)
1403{
1404 return fdp1_enum_fmt(f, FDP1_OUTPUT);
1405}
1406
1407static int fdp1_g_fmt(struct file *file, void *priv, struct v4l2_format *f)
1408{
1409 struct fdp1_q_data *q_data;
1410 struct fdp1_ctx *ctx = fh_to_ctx(priv);
1411
1412 if (!v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type))
1413 return -EINVAL;
1414
1415 q_data = get_q_data(ctx, f->type);
1416 f->fmt.pix_mp = q_data->format;
1417
1418 return 0;
1419}
1420
1421static void fdp1_compute_stride(struct v4l2_pix_format_mplane *pix,
1422 const struct fdp1_fmt *fmt)
1423{
1424 unsigned int i;
1425
1426 /* Compute and clamp the stride and image size. */
1427 for (i = 0; i < min_t(unsigned int, fmt->num_planes, 2U); ++i) {
1428 unsigned int hsub = i > 0 ? fmt->hsub : 1;
1429 unsigned int vsub = i > 0 ? fmt->vsub : 1;
1430 /* From VSP : TODO: Confirm alignment limits for FDP1 */
1431 unsigned int align = 128;
1432 unsigned int bpl;
1433
1434 bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
1435 pix->width / hsub * fmt->bpp[i] / 8,
1436 round_down(FDP1_MAX_STRIDE, align));
1437
1438 pix->plane_fmt[i].bytesperline = round_up(bpl, align);
1439 pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
1440 * pix->height / vsub;
1441
1442 memset(pix->plane_fmt[i].reserved, 0,
1443 sizeof(pix->plane_fmt[i].reserved));
1444 }
1445
1446 if (fmt->num_planes == 3) {
1447 /* The two chroma planes must have the same stride. */
1448 pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
1449 pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
1450
1451 memset(pix->plane_fmt[2].reserved, 0,
1452 sizeof(pix->plane_fmt[2].reserved));
1453 }
1454}
1455
1456static void fdp1_try_fmt_output(struct fdp1_ctx *ctx,
1457 const struct fdp1_fmt **fmtinfo,
1458 struct v4l2_pix_format_mplane *pix)
1459{
1460 const struct fdp1_fmt *fmt;
1461 unsigned int width;
1462 unsigned int height;
1463
1464 /* Validate the pixel format to ensure the output queue supports it. */
1465 fmt = fdp1_find_format(pix->pixelformat);
1466 if (!fmt || !(fmt->types & FDP1_OUTPUT))
1467 fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV);
1468
1469 if (fmtinfo)
1470 *fmtinfo = fmt;
1471
1472 pix->pixelformat = fmt->fourcc;
1473 pix->num_planes = fmt->num_planes;
1474
1475 /*
1476 * Progressive video and all interlaced field orders are acceptable.
1477 * Default to V4L2_FIELD_INTERLACED.
1478 */
1479 if (pix->field != V4L2_FIELD_NONE &&
1480 pix->field != V4L2_FIELD_ALTERNATE &&
1481 !V4L2_FIELD_HAS_BOTH(pix->field))
1482 pix->field = V4L2_FIELD_INTERLACED;
1483
1484 /*
1485 * The deinterlacer doesn't care about the colorspace, accept all values
1486 * and default to V4L2_COLORSPACE_SMPTE170M. The YUV to RGB conversion
1487 * at the output of the deinterlacer supports a subset of encodings and
1488 * quantization methods and will only be available when the colorspace
1489 * allows it.
1490 */
1491 if (pix->colorspace == V4L2_COLORSPACE_DEFAULT)
1492 pix->colorspace = V4L2_COLORSPACE_SMPTE170M;
1493
1494 /*
1495 * Align the width and height for YUV 4:2:2 and 4:2:0 formats and clamp
1496 * them to the supported frame size range. The height boundary are
1497 * related to the full frame, divide them by two when the format passes
1498 * fields in separate buffers.
1499 */
1500 width = round_down(pix->width, fmt->hsub);
1501 pix->width = clamp(width, FDP1_MIN_W, FDP1_MAX_W);
1502
1503 height = round_down(pix->height, fmt->vsub);
1504 if (pix->field == V4L2_FIELD_ALTERNATE)
1505 pix->height = clamp(height, FDP1_MIN_H / 2, FDP1_MAX_H / 2);
1506 else
1507 pix->height = clamp(height, FDP1_MIN_H, FDP1_MAX_H);
1508
1509 fdp1_compute_stride(pix, fmt);
1510}
1511
1512static void fdp1_try_fmt_capture(struct fdp1_ctx *ctx,
1513 const struct fdp1_fmt **fmtinfo,
1514 struct v4l2_pix_format_mplane *pix)
1515{
1516 struct fdp1_q_data *src_data = &ctx->out_q;
1517 enum v4l2_colorspace colorspace;
1518 enum v4l2_ycbcr_encoding ycbcr_enc;
1519 enum v4l2_quantization quantization;
1520 const struct fdp1_fmt *fmt;
1521 bool allow_rgb;
1522
1523 /*
1524 * Validate the pixel format. We can only accept RGB output formats if
1525 * the input encoding and quantization are compatible with the format
1526 * conversions supported by the hardware. The supported combinations are
1527 *
1528 * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_LIM_RANGE
1529 * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_FULL_RANGE
1530 * V4L2_YCBCR_ENC_709 + V4L2_QUANTIZATION_LIM_RANGE
1531 */
1532 colorspace = src_data->format.colorspace;
1533
1534 ycbcr_enc = src_data->format.ycbcr_enc;
1535 if (ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT)
1536 ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(colorspace);
1537
1538 quantization = src_data->format.quantization;
1539 if (quantization == V4L2_QUANTIZATION_DEFAULT)
1540 quantization = V4L2_MAP_QUANTIZATION_DEFAULT(false, colorspace,
1541 ycbcr_enc);
1542
1543 allow_rgb = ycbcr_enc == V4L2_YCBCR_ENC_601 ||
1544 (ycbcr_enc == V4L2_YCBCR_ENC_709 &&
1545 quantization == V4L2_QUANTIZATION_LIM_RANGE);
1546
1547 fmt = fdp1_find_format(pix->pixelformat);
1548 if (!fmt || (!allow_rgb && fdp1_fmt_is_rgb(fmt)))
1549 fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV);
1550
1551 if (fmtinfo)
1552 *fmtinfo = fmt;
1553
1554 pix->pixelformat = fmt->fourcc;
1555 pix->num_planes = fmt->num_planes;
1556 pix->field = V4L2_FIELD_NONE;
1557
1558 /*
1559 * The colorspace on the capture queue is copied from the output queue
1560 * as the hardware can't change the colorspace. It can convert YCbCr to
1561 * RGB though, in which case the encoding and quantization are set to
1562 * default values as anything else wouldn't make sense.
1563 */
1564 pix->colorspace = src_data->format.colorspace;
1565 pix->xfer_func = src_data->format.xfer_func;
1566
1567 if (fdp1_fmt_is_rgb(fmt)) {
1568 pix->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
1569 pix->quantization = V4L2_QUANTIZATION_DEFAULT;
1570 } else {
1571 pix->ycbcr_enc = src_data->format.ycbcr_enc;
1572 pix->quantization = src_data->format.quantization;
1573 }
1574
1575 /*
1576 * The frame width is identical to the output queue, and the height is
1577 * either doubled or identical depending on whether the output queue
1578 * field order contains one or two fields per frame.
1579 */
1580 pix->width = src_data->format.width;
1581 if (src_data->format.field == V4L2_FIELD_ALTERNATE)
1582 pix->height = 2 * src_data->format.height;
1583 else
1584 pix->height = src_data->format.height;
1585
1586 fdp1_compute_stride(pix, fmt);
1587}
1588
1589static int fdp1_try_fmt(struct file *file, void *priv, struct v4l2_format *f)
1590{
1591 struct fdp1_ctx *ctx = fh_to_ctx(priv);
1592
1593 if (f->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
1594 fdp1_try_fmt_output(ctx, NULL, &f->fmt.pix_mp);
1595 else
1596 fdp1_try_fmt_capture(ctx, NULL, &f->fmt.pix_mp);
1597
Nicolas Iooss4c171636b2016-12-26 11:31:39 -02001598 dprintk(ctx->fdp1, "Try %s format: %4.4s (0x%08x) %ux%u field %u\n",
Kieran Bingham4710b752016-06-30 10:41:23 -03001599 V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture",
1600 (char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat,
1601 f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field);
1602
1603 return 0;
1604}
1605
1606static void fdp1_set_format(struct fdp1_ctx *ctx,
1607 struct v4l2_pix_format_mplane *pix,
1608 enum v4l2_buf_type type)
1609{
1610 struct fdp1_q_data *q_data = get_q_data(ctx, type);
1611 const struct fdp1_fmt *fmtinfo;
1612
1613 if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
1614 fdp1_try_fmt_output(ctx, &fmtinfo, pix);
1615 else
1616 fdp1_try_fmt_capture(ctx, &fmtinfo, pix);
1617
1618 q_data->fmt = fmtinfo;
1619 q_data->format = *pix;
1620
1621 q_data->vsize = pix->height;
1622 if (pix->field != V4L2_FIELD_NONE)
1623 q_data->vsize /= 2;
1624
1625 q_data->stride_y = pix->plane_fmt[0].bytesperline;
1626 q_data->stride_c = pix->plane_fmt[1].bytesperline;
1627
1628 /* Adjust strides for interleaved buffers */
1629 if (pix->field == V4L2_FIELD_INTERLACED ||
1630 pix->field == V4L2_FIELD_INTERLACED_TB ||
1631 pix->field == V4L2_FIELD_INTERLACED_BT) {
1632 q_data->stride_y *= 2;
1633 q_data->stride_c *= 2;
1634 }
1635
1636 /* Propagate the format from the output node to the capture node. */
1637 if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) {
1638 struct fdp1_q_data *dst_data = &ctx->cap_q;
1639
1640 /*
1641 * Copy the format, clear the per-plane bytes per line and image
1642 * size, override the field and double the height if needed.
1643 */
1644 dst_data->format = q_data->format;
1645 memset(dst_data->format.plane_fmt, 0,
1646 sizeof(dst_data->format.plane_fmt));
1647
1648 dst_data->format.field = V4L2_FIELD_NONE;
1649 if (pix->field == V4L2_FIELD_ALTERNATE)
1650 dst_data->format.height *= 2;
1651
1652 fdp1_try_fmt_capture(ctx, &dst_data->fmt, &dst_data->format);
1653
1654 dst_data->vsize = dst_data->format.height;
1655 dst_data->stride_y = dst_data->format.plane_fmt[0].bytesperline;
1656 dst_data->stride_c = dst_data->format.plane_fmt[1].bytesperline;
1657 }
1658}
1659
1660static int fdp1_s_fmt(struct file *file, void *priv, struct v4l2_format *f)
1661{
1662 struct fdp1_ctx *ctx = fh_to_ctx(priv);
1663 struct v4l2_m2m_ctx *m2m_ctx = ctx->fh.m2m_ctx;
1664 struct vb2_queue *vq = v4l2_m2m_get_vq(m2m_ctx, f->type);
1665
1666 if (vb2_is_busy(vq)) {
1667 v4l2_err(&ctx->fdp1->v4l2_dev, "%s queue busy\n", __func__);
1668 return -EBUSY;
1669 }
1670
1671 fdp1_set_format(ctx, &f->fmt.pix_mp, f->type);
1672
Nicolas Iooss4c171636b2016-12-26 11:31:39 -02001673 dprintk(ctx->fdp1, "Set %s format: %4.4s (0x%08x) %ux%u field %u\n",
Kieran Bingham4710b752016-06-30 10:41:23 -03001674 V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture",
1675 (char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat,
1676 f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field);
1677
1678 return 0;
1679}
1680
1681static int fdp1_g_ctrl(struct v4l2_ctrl *ctrl)
1682{
1683 struct fdp1_ctx *ctx =
1684 container_of(ctrl->handler, struct fdp1_ctx, hdl);
1685 struct fdp1_q_data *src_q_data = &ctx->out_q;
1686
1687 switch (ctrl->id) {
1688 case V4L2_CID_MIN_BUFFERS_FOR_CAPTURE:
1689 if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field))
1690 ctrl->val = 2;
1691 else
1692 ctrl->val = 1;
1693 return 0;
1694 }
1695
1696 return 1;
1697}
1698
1699static int fdp1_s_ctrl(struct v4l2_ctrl *ctrl)
1700{
1701 struct fdp1_ctx *ctx =
1702 container_of(ctrl->handler, struct fdp1_ctx, hdl);
1703
1704 switch (ctrl->id) {
1705 case V4L2_CID_ALPHA_COMPONENT:
1706 ctx->alpha = ctrl->val;
1707 break;
1708
1709 case V4L2_CID_DEINTERLACING_MODE:
1710 ctx->deint_mode = ctrl->val;
1711 break;
1712 }
1713
1714 return 0;
1715}
1716
1717static const struct v4l2_ctrl_ops fdp1_ctrl_ops = {
1718 .s_ctrl = fdp1_s_ctrl,
1719 .g_volatile_ctrl = fdp1_g_ctrl,
1720};
1721
1722static const char * const fdp1_ctrl_deint_menu[] = {
1723 "Progressive",
1724 "Adaptive 2D/3D",
1725 "Fixed 2D",
1726 "Fixed 3D",
1727 "Previous field",
1728 "Next field",
1729 NULL
1730};
1731
1732static const struct v4l2_ioctl_ops fdp1_ioctl_ops = {
1733 .vidioc_querycap = fdp1_vidioc_querycap,
1734
Boris Brezillon7e98b7b2019-06-04 03:06:25 -04001735 .vidioc_enum_fmt_vid_cap = fdp1_enum_fmt_vid_cap,
1736 .vidioc_enum_fmt_vid_out = fdp1_enum_fmt_vid_out,
Kieran Bingham4710b752016-06-30 10:41:23 -03001737 .vidioc_g_fmt_vid_cap_mplane = fdp1_g_fmt,
1738 .vidioc_g_fmt_vid_out_mplane = fdp1_g_fmt,
1739 .vidioc_try_fmt_vid_cap_mplane = fdp1_try_fmt,
1740 .vidioc_try_fmt_vid_out_mplane = fdp1_try_fmt,
1741 .vidioc_s_fmt_vid_cap_mplane = fdp1_s_fmt,
1742 .vidioc_s_fmt_vid_out_mplane = fdp1_s_fmt,
1743
1744 .vidioc_reqbufs = v4l2_m2m_ioctl_reqbufs,
1745 .vidioc_querybuf = v4l2_m2m_ioctl_querybuf,
1746 .vidioc_qbuf = v4l2_m2m_ioctl_qbuf,
1747 .vidioc_dqbuf = v4l2_m2m_ioctl_dqbuf,
1748 .vidioc_prepare_buf = v4l2_m2m_ioctl_prepare_buf,
1749 .vidioc_create_bufs = v4l2_m2m_ioctl_create_bufs,
1750 .vidioc_expbuf = v4l2_m2m_ioctl_expbuf,
1751
1752 .vidioc_streamon = v4l2_m2m_ioctl_streamon,
1753 .vidioc_streamoff = v4l2_m2m_ioctl_streamoff,
1754
1755 .vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
1756 .vidioc_unsubscribe_event = v4l2_event_unsubscribe,
1757};
1758
1759/*
1760 * Queue operations
1761 */
1762
1763static int fdp1_queue_setup(struct vb2_queue *vq,
1764 unsigned int *nbuffers, unsigned int *nplanes,
1765 unsigned int sizes[],
1766 struct device *alloc_ctxs[])
1767{
1768 struct fdp1_ctx *ctx = vb2_get_drv_priv(vq);
1769 struct fdp1_q_data *q_data;
1770 unsigned int i;
1771
1772 q_data = get_q_data(ctx, vq->type);
1773
1774 if (*nplanes) {
1775 if (*nplanes > FDP1_MAX_PLANES)
1776 return -EINVAL;
1777
1778 return 0;
1779 }
1780
1781 *nplanes = q_data->format.num_planes;
1782
1783 for (i = 0; i < *nplanes; i++)
1784 sizes[i] = q_data->format.plane_fmt[i].sizeimage;
1785
1786 return 0;
1787}
1788
1789static void fdp1_buf_prepare_field(struct fdp1_q_data *q_data,
1790 struct vb2_v4l2_buffer *vbuf,
1791 unsigned int field_num)
1792{
1793 struct fdp1_buffer *buf = to_fdp1_buffer(vbuf);
1794 struct fdp1_field_buffer *fbuf = &buf->fields[field_num];
1795 unsigned int num_fields;
1796 unsigned int i;
1797
1798 num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1;
1799
1800 fbuf->vb = vbuf;
1801 fbuf->last_field = (field_num + 1) == num_fields;
1802
1803 for (i = 0; i < vbuf->vb2_buf.num_planes; ++i)
1804 fbuf->addrs[i] = vb2_dma_contig_plane_dma_addr(&vbuf->vb2_buf, i);
1805
1806 switch (vbuf->field) {
1807 case V4L2_FIELD_INTERLACED:
1808 /*
1809 * Interlaced means bottom-top for 60Hz TV standards (NTSC) and
1810 * top-bottom for 50Hz. As TV standards are not applicable to
1811 * the mem-to-mem API, use the height as a heuristic.
1812 */
1813 fbuf->field = (q_data->format.height < 576) == field_num
1814 ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM;
1815 break;
1816 case V4L2_FIELD_INTERLACED_TB:
1817 case V4L2_FIELD_SEQ_TB:
1818 fbuf->field = field_num ? V4L2_FIELD_BOTTOM : V4L2_FIELD_TOP;
1819 break;
1820 case V4L2_FIELD_INTERLACED_BT:
1821 case V4L2_FIELD_SEQ_BT:
1822 fbuf->field = field_num ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM;
1823 break;
1824 default:
1825 fbuf->field = vbuf->field;
1826 break;
1827 }
1828
1829 /* Buffer is completed */
1830 if (!field_num)
1831 return;
1832
1833 /* Adjust buffer addresses for second field */
1834 switch (vbuf->field) {
1835 case V4L2_FIELD_INTERLACED:
1836 case V4L2_FIELD_INTERLACED_TB:
1837 case V4L2_FIELD_INTERLACED_BT:
1838 for (i = 0; i < vbuf->vb2_buf.num_planes; i++)
1839 fbuf->addrs[i] +=
1840 (i == 0 ? q_data->stride_y : q_data->stride_c);
1841 break;
1842 case V4L2_FIELD_SEQ_TB:
1843 case V4L2_FIELD_SEQ_BT:
1844 for (i = 0; i < vbuf->vb2_buf.num_planes; i++)
1845 fbuf->addrs[i] += q_data->vsize *
1846 (i == 0 ? q_data->stride_y : q_data->stride_c);
1847 break;
1848 }
1849}
1850
1851static int fdp1_buf_prepare(struct vb2_buffer *vb)
1852{
1853 struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
1854 struct fdp1_q_data *q_data = get_q_data(ctx, vb->vb2_queue->type);
1855 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1856 struct fdp1_buffer *buf = to_fdp1_buffer(vbuf);
1857 unsigned int i;
1858
1859 if (V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type)) {
1860 bool field_valid = true;
1861
1862 /* Validate the buffer field. */
1863 switch (q_data->format.field) {
1864 case V4L2_FIELD_NONE:
1865 if (vbuf->field != V4L2_FIELD_NONE)
1866 field_valid = false;
1867 break;
1868
1869 case V4L2_FIELD_ALTERNATE:
1870 if (vbuf->field != V4L2_FIELD_TOP &&
1871 vbuf->field != V4L2_FIELD_BOTTOM)
1872 field_valid = false;
1873 break;
1874
1875 case V4L2_FIELD_INTERLACED:
1876 case V4L2_FIELD_SEQ_TB:
1877 case V4L2_FIELD_SEQ_BT:
1878 case V4L2_FIELD_INTERLACED_TB:
1879 case V4L2_FIELD_INTERLACED_BT:
1880 if (vbuf->field != q_data->format.field)
1881 field_valid = false;
1882 break;
1883 }
1884
1885 if (!field_valid) {
1886 dprintk(ctx->fdp1,
1887 "buffer field %u invalid for format field %u\n",
1888 vbuf->field, q_data->format.field);
1889 return -EINVAL;
1890 }
1891 } else {
1892 vbuf->field = V4L2_FIELD_NONE;
1893 }
1894
1895 /* Validate the planes sizes. */
1896 for (i = 0; i < q_data->format.num_planes; i++) {
1897 unsigned long size = q_data->format.plane_fmt[i].sizeimage;
1898
1899 if (vb2_plane_size(vb, i) < size) {
1900 dprintk(ctx->fdp1,
1901 "data will not fit into plane [%u/%u] (%lu < %lu)\n",
1902 i, q_data->format.num_planes,
1903 vb2_plane_size(vb, i), size);
1904 return -EINVAL;
1905 }
1906
1907 /* We have known size formats all around */
1908 vb2_set_plane_payload(vb, i, size);
1909 }
1910
1911 buf->num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1;
1912 for (i = 0; i < buf->num_fields; ++i)
1913 fdp1_buf_prepare_field(q_data, vbuf, i);
1914
1915 return 0;
1916}
1917
1918static void fdp1_buf_queue(struct vb2_buffer *vb)
1919{
1920 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1921 struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
1922
1923 v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
1924}
1925
1926static int fdp1_start_streaming(struct vb2_queue *q, unsigned int count)
1927{
1928 struct fdp1_ctx *ctx = vb2_get_drv_priv(q);
1929 struct fdp1_q_data *q_data = get_q_data(ctx, q->type);
1930
1931 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
1932 /*
1933 * Force our deint_mode when we are progressive,
1934 * ignoring any setting on the device from the user,
1935 * Otherwise, lock in the requested de-interlace mode.
1936 */
1937 if (q_data->format.field == V4L2_FIELD_NONE)
1938 ctx->deint_mode = FDP1_PROGRESSIVE;
1939
1940 if (ctx->deint_mode == FDP1_ADAPT2D3D) {
1941 u32 stride;
1942 dma_addr_t smsk_base;
1943 const u32 bpp = 2; /* bytes per pixel */
1944
1945 stride = round_up(q_data->format.width, 8);
1946
1947 ctx->smsk_size = bpp * stride * q_data->vsize;
1948
1949 ctx->smsk_cpu = dma_alloc_coherent(ctx->fdp1->dev,
1950 ctx->smsk_size, &smsk_base, GFP_KERNEL);
1951
1952 if (ctx->smsk_cpu == NULL) {
1953 dprintk(ctx->fdp1, "Failed to alloc smsk\n");
1954 return -ENOMEM;
1955 }
1956
1957 ctx->smsk_addr[0] = smsk_base;
1958 ctx->smsk_addr[1] = smsk_base + (ctx->smsk_size/2);
1959 }
1960 }
1961
1962 return 0;
1963}
1964
1965static void fdp1_stop_streaming(struct vb2_queue *q)
1966{
1967 struct fdp1_ctx *ctx = vb2_get_drv_priv(q);
1968 struct vb2_v4l2_buffer *vbuf;
1969 unsigned long flags;
1970
1971 while (1) {
1972 if (V4L2_TYPE_IS_OUTPUT(q->type))
1973 vbuf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1974 else
1975 vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
1976 if (vbuf == NULL)
1977 break;
1978 spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
1979 v4l2_m2m_buf_done(vbuf, VB2_BUF_STATE_ERROR);
1980 spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
1981 }
1982
1983 /* Empty Output queues */
1984 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
1985 /* Empty our internal queues */
1986 struct fdp1_field_buffer *fbuf;
1987
1988 /* Free any queued buffers */
1989 fbuf = fdp1_dequeue_field(ctx);
1990 while (fbuf != NULL) {
1991 fdp1_field_complete(ctx, fbuf);
1992 fbuf = fdp1_dequeue_field(ctx);
1993 }
1994
1995 /* Free smsk_data */
1996 if (ctx->smsk_cpu) {
1997 dma_free_coherent(ctx->fdp1->dev, ctx->smsk_size,
Laurent Pinchart149e31e2018-04-22 04:00:08 -04001998 ctx->smsk_cpu, ctx->smsk_addr[0]);
Kieran Bingham4710b752016-06-30 10:41:23 -03001999 ctx->smsk_addr[0] = ctx->smsk_addr[1] = 0;
2000 ctx->smsk_cpu = NULL;
2001 }
2002
2003 WARN(!list_empty(&ctx->fields_queue),
Laurent Pinchart149e31e2018-04-22 04:00:08 -04002004 "Buffer queue not empty");
Kieran Bingham4710b752016-06-30 10:41:23 -03002005 } else {
2006 /* Empty Capture queues (Jobs) */
2007 struct fdp1_job *job;
2008
2009 job = get_queued_job(ctx->fdp1);
2010 while (job) {
2011 if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode))
2012 fdp1_field_complete(ctx, job->previous);
2013 else
2014 fdp1_field_complete(ctx, job->active);
2015
2016 v4l2_m2m_buf_done(job->dst->vb, VB2_BUF_STATE_ERROR);
2017 job->dst = NULL;
2018
2019 job = get_queued_job(ctx->fdp1);
2020 }
2021
2022 /* Free any held buffer in the ctx */
2023 fdp1_field_complete(ctx, ctx->previous);
2024
2025 WARN(!list_empty(&ctx->fdp1->queued_job_list),
Laurent Pinchart149e31e2018-04-22 04:00:08 -04002026 "Queued Job List not empty");
Kieran Bingham4710b752016-06-30 10:41:23 -03002027
2028 WARN(!list_empty(&ctx->fdp1->hw_job_list),
Laurent Pinchart149e31e2018-04-22 04:00:08 -04002029 "HW Job list not empty");
Kieran Bingham4710b752016-06-30 10:41:23 -03002030 }
2031}
2032
Gustavo A. R. Silva0169dae2017-07-06 16:25:32 -04002033static const struct vb2_ops fdp1_qops = {
Kieran Bingham4710b752016-06-30 10:41:23 -03002034 .queue_setup = fdp1_queue_setup,
2035 .buf_prepare = fdp1_buf_prepare,
2036 .buf_queue = fdp1_buf_queue,
2037 .start_streaming = fdp1_start_streaming,
2038 .stop_streaming = fdp1_stop_streaming,
2039 .wait_prepare = vb2_ops_wait_prepare,
2040 .wait_finish = vb2_ops_wait_finish,
2041};
2042
2043static int queue_init(void *priv, struct vb2_queue *src_vq,
2044 struct vb2_queue *dst_vq)
2045{
2046 struct fdp1_ctx *ctx = priv;
2047 int ret;
2048
2049 src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
2050 src_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
2051 src_vq->drv_priv = ctx;
2052 src_vq->buf_struct_size = sizeof(struct fdp1_buffer);
2053 src_vq->ops = &fdp1_qops;
2054 src_vq->mem_ops = &vb2_dma_contig_memops;
2055 src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
2056 src_vq->lock = &ctx->fdp1->dev_mutex;
2057 src_vq->dev = ctx->fdp1->dev;
2058
2059 ret = vb2_queue_init(src_vq);
2060 if (ret)
2061 return ret;
2062
2063 dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
2064 dst_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
2065 dst_vq->drv_priv = ctx;
2066 dst_vq->buf_struct_size = sizeof(struct fdp1_buffer);
2067 dst_vq->ops = &fdp1_qops;
2068 dst_vq->mem_ops = &vb2_dma_contig_memops;
2069 dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
2070 dst_vq->lock = &ctx->fdp1->dev_mutex;
2071 dst_vq->dev = ctx->fdp1->dev;
2072
2073 return vb2_queue_init(dst_vq);
2074}
2075
2076/*
2077 * File operations
2078 */
2079static int fdp1_open(struct file *file)
2080{
2081 struct fdp1_dev *fdp1 = video_drvdata(file);
2082 struct v4l2_pix_format_mplane format;
2083 struct fdp1_ctx *ctx = NULL;
2084 struct v4l2_ctrl *ctrl;
2085 int ret = 0;
2086
2087 if (mutex_lock_interruptible(&fdp1->dev_mutex))
2088 return -ERESTARTSYS;
2089
2090 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2091 if (!ctx) {
2092 ret = -ENOMEM;
2093 goto done;
2094 }
2095
2096 v4l2_fh_init(&ctx->fh, video_devdata(file));
2097 file->private_data = &ctx->fh;
2098 ctx->fdp1 = fdp1;
2099
2100 /* Initialise Queues */
2101 INIT_LIST_HEAD(&ctx->fields_queue);
2102
2103 ctx->translen = 1;
2104 ctx->sequence = 0;
2105
2106 /* Initialise controls */
2107
2108 v4l2_ctrl_handler_init(&ctx->hdl, 3);
2109 v4l2_ctrl_new_std_menu_items(&ctx->hdl, &fdp1_ctrl_ops,
2110 V4L2_CID_DEINTERLACING_MODE,
2111 FDP1_NEXTFIELD, BIT(0), FDP1_FIXED3D,
2112 fdp1_ctrl_deint_menu);
2113
2114 ctrl = v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops,
Laurent Pinchart149e31e2018-04-22 04:00:08 -04002115 V4L2_CID_MIN_BUFFERS_FOR_CAPTURE, 1, 2, 1, 1);
Kieran Bingham4710b752016-06-30 10:41:23 -03002116 if (ctrl)
2117 ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
2118
2119 v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops,
2120 V4L2_CID_ALPHA_COMPONENT, 0, 255, 1, 255);
2121
2122 if (ctx->hdl.error) {
2123 ret = ctx->hdl.error;
2124 v4l2_ctrl_handler_free(&ctx->hdl);
2125 goto done;
2126 }
2127
2128 ctx->fh.ctrl_handler = &ctx->hdl;
2129 v4l2_ctrl_handler_setup(&ctx->hdl);
2130
2131 /* Configure default parameters. */
2132 memset(&format, 0, sizeof(format));
2133 fdp1_set_format(ctx, &format, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
2134
2135 ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(fdp1->m2m_dev, ctx, &queue_init);
2136
2137 if (IS_ERR(ctx->fh.m2m_ctx)) {
2138 ret = PTR_ERR(ctx->fh.m2m_ctx);
2139
2140 v4l2_ctrl_handler_free(&ctx->hdl);
2141 kfree(ctx);
2142 goto done;
2143 }
2144
2145 /* Perform any power management required */
2146 pm_runtime_get_sync(fdp1->dev);
2147
2148 v4l2_fh_add(&ctx->fh);
2149
2150 dprintk(fdp1, "Created instance: %p, m2m_ctx: %p\n",
2151 ctx, ctx->fh.m2m_ctx);
2152
2153done:
2154 mutex_unlock(&fdp1->dev_mutex);
2155 return ret;
2156}
2157
2158static int fdp1_release(struct file *file)
2159{
2160 struct fdp1_dev *fdp1 = video_drvdata(file);
2161 struct fdp1_ctx *ctx = fh_to_ctx(file->private_data);
2162
2163 dprintk(fdp1, "Releasing instance %p\n", ctx);
2164
2165 v4l2_fh_del(&ctx->fh);
2166 v4l2_fh_exit(&ctx->fh);
2167 v4l2_ctrl_handler_free(&ctx->hdl);
2168 mutex_lock(&fdp1->dev_mutex);
2169 v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
2170 mutex_unlock(&fdp1->dev_mutex);
2171 kfree(ctx);
2172
2173 pm_runtime_put(fdp1->dev);
2174
2175 return 0;
2176}
2177
2178static const struct v4l2_file_operations fdp1_fops = {
2179 .owner = THIS_MODULE,
2180 .open = fdp1_open,
2181 .release = fdp1_release,
2182 .poll = v4l2_m2m_fop_poll,
2183 .unlocked_ioctl = video_ioctl2,
2184 .mmap = v4l2_m2m_fop_mmap,
2185};
2186
2187static const struct video_device fdp1_videodev = {
2188 .name = DRIVER_NAME,
2189 .vfl_dir = VFL_DIR_M2M,
2190 .fops = &fdp1_fops,
2191 .device_caps = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING,
2192 .ioctl_ops = &fdp1_ioctl_ops,
2193 .minor = -1,
2194 .release = video_device_release_empty,
2195};
2196
2197static const struct v4l2_m2m_ops m2m_ops = {
2198 .device_run = fdp1_m2m_device_run,
2199 .job_ready = fdp1_m2m_job_ready,
2200 .job_abort = fdp1_m2m_job_abort,
2201};
2202
2203static irqreturn_t fdp1_irq_handler(int irq, void *dev_id)
2204{
2205 struct fdp1_dev *fdp1 = dev_id;
2206 u32 int_status;
2207 u32 ctl_status;
2208 u32 vint_cnt;
2209 u32 cycles;
2210
2211 int_status = fdp1_read(fdp1, FD1_CTL_IRQSTA);
2212 cycles = fdp1_read(fdp1, FD1_CTL_VCYCLE_STAT);
2213 ctl_status = fdp1_read(fdp1, FD1_CTL_STATUS);
2214 vint_cnt = (ctl_status & FD1_CTL_STATUS_VINT_CNT_MASK) >>
2215 FD1_CTL_STATUS_VINT_CNT_SHIFT;
2216
2217 /* Clear interrupts */
2218 fdp1_write(fdp1, ~(int_status) & FD1_CTL_IRQ_MASK, FD1_CTL_IRQSTA);
2219
2220 if (debug >= 2) {
2221 dprintk(fdp1, "IRQ: 0x%x %s%s%s\n", int_status,
2222 int_status & FD1_CTL_IRQ_VERE ? "[Error]" : "[!E]",
2223 int_status & FD1_CTL_IRQ_VINTE ? "[VSync]" : "[!V]",
2224 int_status & FD1_CTL_IRQ_FREE ? "[FrameEnd]" : "[!F]");
2225
2226 dprintk(fdp1, "CycleStatus = %d (%dms)\n",
2227 cycles, cycles/(fdp1->clk_rate/1000));
2228
2229 dprintk(fdp1,
2230 "Control Status = 0x%08x : VINT_CNT = %d %s:%s:%s:%s\n",
2231 ctl_status, vint_cnt,
2232 ctl_status & FD1_CTL_STATUS_SGREGSET ? "RegSet" : "",
2233 ctl_status & FD1_CTL_STATUS_SGVERR ? "Vsync Error" : "",
2234 ctl_status & FD1_CTL_STATUS_SGFREND ? "FrameEnd" : "",
2235 ctl_status & FD1_CTL_STATUS_BSY ? "Busy" : "");
2236 dprintk(fdp1, "***********************************\n");
2237 }
2238
2239 /* Spurious interrupt */
2240 if (!(FD1_CTL_IRQ_MASK & int_status))
2241 return IRQ_NONE;
2242
2243 /* Work completed, release the frame */
2244 if (FD1_CTL_IRQ_VERE & int_status)
2245 device_frame_end(fdp1, VB2_BUF_STATE_ERROR);
2246 else if (FD1_CTL_IRQ_FREE & int_status)
2247 device_frame_end(fdp1, VB2_BUF_STATE_DONE);
2248
2249 return IRQ_HANDLED;
2250}
2251
2252static int fdp1_probe(struct platform_device *pdev)
2253{
2254 struct fdp1_dev *fdp1;
2255 struct video_device *vfd;
2256 struct device_node *fcp_node;
2257 struct resource *res;
2258 struct clk *clk;
2259 unsigned int i;
2260
2261 int ret;
2262 int hw_version;
2263
2264 fdp1 = devm_kzalloc(&pdev->dev, sizeof(*fdp1), GFP_KERNEL);
2265 if (!fdp1)
2266 return -ENOMEM;
2267
2268 INIT_LIST_HEAD(&fdp1->free_job_list);
2269 INIT_LIST_HEAD(&fdp1->queued_job_list);
2270 INIT_LIST_HEAD(&fdp1->hw_job_list);
2271
2272 /* Initialise the jobs on the free list */
2273 for (i = 0; i < ARRAY_SIZE(fdp1->jobs); i++)
2274 list_add(&fdp1->jobs[i].list, &fdp1->free_job_list);
2275
2276 mutex_init(&fdp1->dev_mutex);
2277
2278 spin_lock_init(&fdp1->irqlock);
2279 spin_lock_init(&fdp1->device_process_lock);
2280 fdp1->dev = &pdev->dev;
2281 platform_set_drvdata(pdev, fdp1);
2282
2283 /* Memory-mapped registers */
2284 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2285 fdp1->regs = devm_ioremap_resource(&pdev->dev, res);
2286 if (IS_ERR(fdp1->regs))
2287 return PTR_ERR(fdp1->regs);
2288
2289 /* Interrupt service routine registration */
2290 fdp1->irq = ret = platform_get_irq(pdev, 0);
2291 if (ret < 0) {
2292 dev_err(&pdev->dev, "cannot find IRQ\n");
2293 return ret;
2294 }
2295
2296 ret = devm_request_irq(&pdev->dev, fdp1->irq, fdp1_irq_handler, 0,
2297 dev_name(&pdev->dev), fdp1);
2298 if (ret) {
2299 dev_err(&pdev->dev, "cannot claim IRQ %d\n", fdp1->irq);
2300 return ret;
2301 }
2302
2303 /* FCP */
2304 fcp_node = of_parse_phandle(pdev->dev.of_node, "renesas,fcp", 0);
2305 if (fcp_node) {
2306 fdp1->fcp = rcar_fcp_get(fcp_node);
2307 of_node_put(fcp_node);
2308 if (IS_ERR(fdp1->fcp)) {
2309 dev_err(&pdev->dev, "FCP not found (%ld)\n",
2310 PTR_ERR(fdp1->fcp));
2311 return PTR_ERR(fdp1->fcp);
2312 }
2313 }
2314
2315 /* Determine our clock rate */
2316 clk = clk_get(&pdev->dev, NULL);
2317 if (IS_ERR(clk))
2318 return PTR_ERR(clk);
2319
2320 fdp1->clk_rate = clk_get_rate(clk);
2321 clk_put(clk);
2322
2323 /* V4L2 device registration */
2324 ret = v4l2_device_register(&pdev->dev, &fdp1->v4l2_dev);
2325 if (ret) {
2326 v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n");
2327 return ret;
2328 }
2329
2330 /* M2M registration */
2331 fdp1->m2m_dev = v4l2_m2m_init(&m2m_ops);
2332 if (IS_ERR(fdp1->m2m_dev)) {
2333 v4l2_err(&fdp1->v4l2_dev, "Failed to init mem2mem device\n");
2334 ret = PTR_ERR(fdp1->m2m_dev);
2335 goto unreg_dev;
2336 }
2337
2338 /* Video registration */
2339 fdp1->vfd = fdp1_videodev;
2340 vfd = &fdp1->vfd;
2341 vfd->lock = &fdp1->dev_mutex;
2342 vfd->v4l2_dev = &fdp1->v4l2_dev;
2343 video_set_drvdata(vfd, fdp1);
Mauro Carvalho Chehabc0decac2018-09-10 08:19:14 -04002344 strscpy(vfd->name, fdp1_videodev.name, sizeof(vfd->name));
Kieran Bingham4710b752016-06-30 10:41:23 -03002345
2346 ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0);
2347 if (ret) {
2348 v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n");
2349 goto release_m2m;
2350 }
2351
Laurent Pinchart149e31e2018-04-22 04:00:08 -04002352 v4l2_info(&fdp1->v4l2_dev, "Device registered as /dev/video%d\n",
2353 vfd->num);
Kieran Bingham4710b752016-06-30 10:41:23 -03002354
2355 /* Power up the cells to read HW */
2356 pm_runtime_enable(&pdev->dev);
2357 pm_runtime_get_sync(fdp1->dev);
2358
2359 hw_version = fdp1_read(fdp1, FD1_IP_INTDATA);
2360 switch (hw_version) {
Kieran Bingham31165ad2017-06-12 07:30:16 -03002361 case FD1_IP_H3_ES1:
2362 dprintk(fdp1, "FDP1 Version R-Car H3 ES1\n");
Kieran Bingham4710b752016-06-30 10:41:23 -03002363 break;
2364 case FD1_IP_M3W:
2365 dprintk(fdp1, "FDP1 Version R-Car M3-W\n");
2366 break;
Kieran Bingham31165ad2017-06-12 07:30:16 -03002367 case FD1_IP_H3:
2368 dprintk(fdp1, "FDP1 Version R-Car H3\n");
2369 break;
Kieran Bingham4e8c1202019-05-15 11:39:12 -04002370 case FD1_IP_M3N:
2371 dprintk(fdp1, "FDP1 Version R-Car M3N\n");
2372 break;
2373 case FD1_IP_E3:
2374 dprintk(fdp1, "FDP1 Version R-Car E3\n");
2375 break;
Kieran Bingham4710b752016-06-30 10:41:23 -03002376 default:
2377 dev_err(fdp1->dev, "FDP1 Unidentifiable (0x%08x)\n",
Laurent Pinchart149e31e2018-04-22 04:00:08 -04002378 hw_version);
Kieran Bingham4710b752016-06-30 10:41:23 -03002379 }
2380
2381 /* Allow the hw to sleep until an open call puts it to use */
2382 pm_runtime_put(fdp1->dev);
2383
2384 return 0;
2385
2386release_m2m:
2387 v4l2_m2m_release(fdp1->m2m_dev);
2388
2389unreg_dev:
2390 v4l2_device_unregister(&fdp1->v4l2_dev);
2391
2392 return ret;
2393}
2394
2395static int fdp1_remove(struct platform_device *pdev)
2396{
2397 struct fdp1_dev *fdp1 = platform_get_drvdata(pdev);
2398
2399 v4l2_m2m_release(fdp1->m2m_dev);
2400 video_unregister_device(&fdp1->vfd);
2401 v4l2_device_unregister(&fdp1->v4l2_dev);
2402 pm_runtime_disable(&pdev->dev);
2403
2404 return 0;
2405}
2406
Arnd Bergmannfa4a2fd2016-11-18 14:16:04 -02002407static int __maybe_unused fdp1_pm_runtime_suspend(struct device *dev)
Kieran Bingham4710b752016-06-30 10:41:23 -03002408{
2409 struct fdp1_dev *fdp1 = dev_get_drvdata(dev);
2410
2411 rcar_fcp_disable(fdp1->fcp);
2412
2413 return 0;
2414}
2415
Arnd Bergmannfa4a2fd2016-11-18 14:16:04 -02002416static int __maybe_unused fdp1_pm_runtime_resume(struct device *dev)
Kieran Bingham4710b752016-06-30 10:41:23 -03002417{
2418 struct fdp1_dev *fdp1 = dev_get_drvdata(dev);
2419
2420 /* Program in the static LUTs */
2421 fdp1_set_lut(fdp1);
2422
2423 return rcar_fcp_enable(fdp1->fcp);
2424}
2425
2426static const struct dev_pm_ops fdp1_pm_ops = {
2427 SET_RUNTIME_PM_OPS(fdp1_pm_runtime_suspend,
2428 fdp1_pm_runtime_resume,
2429 NULL)
2430};
2431
2432static const struct of_device_id fdp1_dt_ids[] = {
2433 { .compatible = "renesas,fdp1" },
2434 { },
2435};
2436MODULE_DEVICE_TABLE(of, fdp1_dt_ids);
2437
2438static struct platform_driver fdp1_pdrv = {
2439 .probe = fdp1_probe,
2440 .remove = fdp1_remove,
2441 .driver = {
2442 .name = DRIVER_NAME,
2443 .of_match_table = fdp1_dt_ids,
2444 .pm = &fdp1_pm_ops,
2445 },
2446};
2447
2448module_platform_driver(fdp1_pdrv);
2449
2450MODULE_DESCRIPTION("Renesas R-Car Fine Display Processor Driver");
2451MODULE_AUTHOR("Kieran Bingham <kieran@bingham.xyz>");
2452MODULE_LICENSE("GPL");
2453MODULE_ALIAS("platform:" DRIVER_NAME);