blob: 11726e2a4ec85c2b015d264e7486af6e1f752a8e [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * General Purpose functions for the global management of the
3 * Communication Processor Module.
4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 *
6 * In addition to the individual control of the communication
7 * channels, there are a few functions that globally affect the
8 * communication processor.
9 *
10 * Buffer descriptors must be allocated from the dual ported memory
11 * space. The allocator for that is here. When the communication
12 * process is reset, we reclaim the memory available. There is
13 * currently no deallocator for this memory.
14 * The amount of space available is platform dependent. On the
15 * MBX, the EPPC software loads additional microcode into the
16 * communication processor, and uses some of the DP ram for this
17 * purpose. Current, the first 512 bytes and the last 256 bytes of
18 * memory are used. Right now I am conservative and only use the
19 * memory that can never be used for microcode. If there are
20 * applications that require more DP ram, we can expand the boundaries
21 * but then we have to be careful of any downloaded microcode.
22 */
23#include <linux/errno.h>
24#include <linux/sched.h>
25#include <linux/kernel.h>
26#include <linux/dma-mapping.h>
27#include <linux/param.h>
28#include <linux/string.h>
29#include <linux/mm.h>
30#include <linux/interrupt.h>
31#include <linux/irq.h>
32#include <linux/module.h>
33#include <asm/mpc8xx.h>
34#include <asm/page.h>
35#include <asm/pgtable.h>
36#include <asm/8xx_immap.h>
37#include <asm/commproc.h>
38#include <asm/io.h>
39#include <asm/tlbflush.h>
40#include <asm/rheap.h>
41
Linus Torvalds1da177e2005-04-16 15:20:36 -070042static void m8xx_cpm_dpinit(void);
43static uint host_buffer; /* One page of host buffer */
44static uint host_end; /* end + 1 */
45cpm8xx_t *cpmp; /* Pointer to comm processor space */
46
47/* CPM interrupt vector functions.
48*/
49struct cpm_action {
50 void (*handler)(void *, struct pt_regs * regs);
51 void *dev_id;
52};
53static struct cpm_action cpm_vecs[CPMVEC_NR];
54static irqreturn_t cpm_interrupt(int irq, void * dev, struct pt_regs * regs);
55static irqreturn_t cpm_error_interrupt(int irq, void *dev, struct pt_regs * regs);
56static void alloc_host_memory(void);
57/* Define a table of names to identify CPM interrupt handlers in
58 * /proc/interrupts.
59 */
60const char *cpm_int_name[] =
61 { "error", "PC4", "PC5", "SMC2",
62 "SMC1", "SPI", "PC6", "Timer 4",
63 "", "PC7", "PC8", "PC9",
64 "Timer 3", "", "PC10", "PC11",
65 "I2C", "RISC Timer", "Timer 2", "",
66 "IDMA2", "IDMA1", "SDMA error", "PC12",
67 "PC13", "Timer 1", "PC14", "SCC4",
68 "SCC3", "SCC2", "SCC1", "PC15"
69 };
70
71static void
72cpm_mask_irq(unsigned int irq)
73{
74 int cpm_vec = irq - CPM_IRQ_OFFSET;
75
76 ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr &= ~(1 << cpm_vec);
77}
78
79static void
80cpm_unmask_irq(unsigned int irq)
81{
82 int cpm_vec = irq - CPM_IRQ_OFFSET;
83
84 ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr |= (1 << cpm_vec);
85}
86
87static void
88cpm_ack(unsigned int irq)
89{
90 /* We do not need to do anything here. */
91}
92
93static void
94cpm_eoi(unsigned int irq)
95{
96 int cpm_vec = irq - CPM_IRQ_OFFSET;
97
98 ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cisr = (1 << cpm_vec);
99}
100
101struct hw_interrupt_type cpm_pic = {
102 .typename = " CPM ",
103 .enable = cpm_unmask_irq,
104 .disable = cpm_mask_irq,
105 .ack = cpm_ack,
106 .end = cpm_eoi,
107};
108
Linus Torvalds1da177e2005-04-16 15:20:36 -0700109void
Marcelo Tosatti079da352005-08-07 09:42:47 -0700110m8xx_cpm_reset(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700111{
112 volatile immap_t *imp;
113 volatile cpm8xx_t *commproc;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700114
115 imp = (immap_t *)IMAP_ADDR;
116 commproc = (cpm8xx_t *)&imp->im_cpm;
117
118#ifdef CONFIG_UCODE_PATCH
119 /* Perform a reset.
120 */
121 commproc->cp_cpcr = (CPM_CR_RST | CPM_CR_FLG);
122
123 /* Wait for it.
124 */
125 while (commproc->cp_cpcr & CPM_CR_FLG);
126
127 cpm_load_patch(imp);
128#endif
129
130 /* Set SDMA Bus Request priority 5.
131 * On 860T, this also enables FEC priority 6. I am not sure
132 * this is what we realy want for some applications, but the
133 * manual recommends it.
134 * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
135 */
136 imp->im_siu_conf.sc_sdcr = 1;
137
138 /* Reclaim the DP memory for our use. */
139 m8xx_cpm_dpinit();
140
Linus Torvalds1da177e2005-04-16 15:20:36 -0700141 /* Tell everyone where the comm processor resides.
142 */
143 cpmp = (cpm8xx_t *)commproc;
144}
145
146/* We used to do this earlier, but have to postpone as long as possible
147 * to ensure the kernel VM is now running.
148 */
149static void
150alloc_host_memory(void)
151{
152 dma_addr_t physaddr;
153
154 /* Set the host page for allocation.
155 */
156 host_buffer = (uint)dma_alloc_coherent(NULL, PAGE_SIZE, &physaddr,
157 GFP_KERNEL);
158 host_end = host_buffer + PAGE_SIZE;
159}
160
161/* This is called during init_IRQ. We used to do it above, but this
162 * was too early since init_IRQ was not yet called.
163 */
164static struct irqaction cpm_error_irqaction = {
165 .handler = cpm_error_interrupt,
166 .mask = CPU_MASK_NONE,
167};
168static struct irqaction cpm_interrupt_irqaction = {
169 .handler = cpm_interrupt,
170 .mask = CPU_MASK_NONE,
171 .name = "CPM cascade",
172};
173
174void
175cpm_interrupt_init(void)
176{
177 int i;
178
179 /* Initialize the CPM interrupt controller.
180 */
181 ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cicr =
182 (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
183 ((CPM_INTERRUPT/2) << 13) | CICR_HP_MASK;
184 ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr = 0;
185
186 /* install the CPM interrupt controller routines for the CPM
187 * interrupt vectors
188 */
189 for ( i = CPM_IRQ_OFFSET ; i < CPM_IRQ_OFFSET + NR_CPM_INTS ; i++ )
190 irq_desc[i].handler = &cpm_pic;
191
192 /* Set our interrupt handler with the core CPU. */
193 if (setup_irq(CPM_INTERRUPT, &cpm_interrupt_irqaction))
194 panic("Could not allocate CPM IRQ!");
195
196 /* Install our own error handler. */
197 cpm_error_irqaction.name = cpm_int_name[CPMVEC_ERROR];
198 if (setup_irq(CPM_IRQ_OFFSET + CPMVEC_ERROR, &cpm_error_irqaction))
199 panic("Could not allocate CPM error IRQ!");
200
201 ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cicr |= CICR_IEN;
202}
203
204/*
205 * Get the CPM interrupt vector.
206 */
207int
208cpm_get_irq(struct pt_regs *regs)
209{
210 int cpm_vec;
211
212 /* Get the vector by setting the ACK bit and then reading
213 * the register.
214 */
215 ((volatile immap_t *)IMAP_ADDR)->im_cpic.cpic_civr = 1;
216 cpm_vec = ((volatile immap_t *)IMAP_ADDR)->im_cpic.cpic_civr;
217 cpm_vec >>= 11;
218
219 return cpm_vec;
220}
221
222/* CPM interrupt controller cascade interrupt.
223*/
224static irqreturn_t
225cpm_interrupt(int irq, void * dev, struct pt_regs * regs)
226{
227 /* This interrupt handler never actually gets called. It is
228 * installed only to unmask the CPM cascade interrupt in the SIU
229 * and to make the CPM cascade interrupt visible in /proc/interrupts.
230 */
231 return IRQ_HANDLED;
232}
233
234/* The CPM can generate the error interrupt when there is a race condition
235 * between generating and masking interrupts. All we have to do is ACK it
236 * and return. This is a no-op function so we don't need any special
237 * tests in the interrupt handler.
238 */
239static irqreturn_t
240cpm_error_interrupt(int irq, void *dev, struct pt_regs *regs)
241{
242 return IRQ_HANDLED;
243}
244
245/* A helper function to translate the handler prototype required by
246 * request_irq() to the handler prototype required by cpm_install_handler().
247 */
248static irqreturn_t
249cpm_handler_helper(int irq, void *dev_id, struct pt_regs *regs)
250{
251 int cpm_vec = irq - CPM_IRQ_OFFSET;
252
253 (*cpm_vecs[cpm_vec].handler)(dev_id, regs);
254
255 return IRQ_HANDLED;
256}
257
258/* Install a CPM interrupt handler.
259 * This routine accepts a CPM interrupt vector in the range 0 to 31.
260 * This routine is retained for backward compatibility. Rather than using
261 * this routine to install a CPM interrupt handler, you can now use
262 * request_irq() with an IRQ in the range CPM_IRQ_OFFSET to
263 * CPM_IRQ_OFFSET + NR_CPM_INTS - 1 (16 to 47).
264 *
265 * Notice that the prototype of the interrupt handler function must be
266 * different depending on whether you install the handler with
267 * request_irq() or cpm_install_handler().
268 */
269void
270cpm_install_handler(int cpm_vec, void (*handler)(void *, struct pt_regs *regs),
271 void *dev_id)
272{
273 int err;
274
275 /* If null handler, assume we are trying to free the IRQ.
276 */
277 if (!handler) {
278 free_irq(CPM_IRQ_OFFSET + cpm_vec, dev_id);
279 return;
280 }
281
282 if (cpm_vecs[cpm_vec].handler != 0)
283 printk(KERN_INFO "CPM interrupt %x replacing %x\n",
284 (uint)handler, (uint)cpm_vecs[cpm_vec].handler);
285 cpm_vecs[cpm_vec].handler = handler;
286 cpm_vecs[cpm_vec].dev_id = dev_id;
287
288 if ((err = request_irq(CPM_IRQ_OFFSET + cpm_vec, cpm_handler_helper,
289 0, cpm_int_name[cpm_vec], dev_id)))
290 printk(KERN_ERR "request_irq() returned %d for CPM vector %d\n",
291 err, cpm_vec);
292}
293
294/* Free a CPM interrupt handler.
295 * This routine accepts a CPM interrupt vector in the range 0 to 31.
296 * This routine is retained for backward compatibility.
297 */
298void
299cpm_free_handler(int cpm_vec)
300{
301 request_irq(CPM_IRQ_OFFSET + cpm_vec, NULL, 0, 0,
302 cpm_vecs[cpm_vec].dev_id);
303
304 cpm_vecs[cpm_vec].handler = NULL;
305 cpm_vecs[cpm_vec].dev_id = NULL;
306}
307
308/* We also own one page of host buffer space for the allocation of
309 * UART "fifos" and the like.
310 */
311uint
312m8xx_cpm_hostalloc(uint size)
313{
314 uint retloc;
315
316 if (host_buffer == 0)
317 alloc_host_memory();
318
319 if ((host_buffer + size) >= host_end)
320 return(0);
321
322 retloc = host_buffer;
323 host_buffer += size;
324
325 return(retloc);
326}
327
328/* Set a baud rate generator. This needs lots of work. There are
329 * four BRGs, any of which can be wired to any channel.
330 * The internal baud rate clock is the system clock divided by 16.
331 * This assumes the baudrate is 16x oversampled by the uart.
332 */
333#define BRG_INT_CLK (((bd_t *)__res)->bi_intfreq)
334#define BRG_UART_CLK (BRG_INT_CLK/16)
335#define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16)
336
337void
338cpm_setbrg(uint brg, uint rate)
339{
340 volatile uint *bp;
341
342 /* This is good enough to get SMCs running.....
343 */
344 bp = (uint *)&cpmp->cp_brgc1;
345 bp += brg;
346 /* The BRG has a 12-bit counter. For really slow baud rates (or
347 * really fast processors), we may have to further divide by 16.
348 */
349 if (((BRG_UART_CLK / rate) - 1) < 4096)
350 *bp = (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN;
351 else
352 *bp = (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
353 CPM_BRG_EN | CPM_BRG_DIV16;
354}
355
356/*
357 * dpalloc / dpfree bits.
358 */
359static spinlock_t cpm_dpmem_lock;
360/*
361 * 16 blocks should be enough to satisfy all requests
362 * until the memory subsystem goes up...
363 */
364static rh_block_t cpm_boot_dpmem_rh_block[16];
365static rh_info_t cpm_dpmem_info;
366
367#define CPM_DPMEM_ALIGNMENT 8
368
369void m8xx_cpm_dpinit(void)
370{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700371 spin_lock_init(&cpm_dpmem_lock);
372
373 /* Initialize the info header */
374 rh_init(&cpm_dpmem_info, CPM_DPMEM_ALIGNMENT,
375 sizeof(cpm_boot_dpmem_rh_block) /
376 sizeof(cpm_boot_dpmem_rh_block[0]),
377 cpm_boot_dpmem_rh_block);
378
379 /*
380 * Attach the usable dpmem area.
381 * XXX: This is actually crap. CPM_DATAONLY_BASE and
382 * CPM_DATAONLY_SIZE are a subset of the available dparm. It varies
383 * with the processor and the microcode patches applied / activated.
384 * But the following should be at least safe.
385 */
386 rh_attach_region(&cpm_dpmem_info, (void *)CPM_DATAONLY_BASE, CPM_DATAONLY_SIZE);
387}
388
389/*
390 * Allocate the requested size worth of DP memory.
391 * This function used to return an index into the DPRAM area.
392 * Now it returns the actuall physical address of that area.
393 * use m8xx_cpm_dpram_offset() to get the index
394 */
395uint cpm_dpalloc(uint size, uint align)
396{
397 void *start;
398 unsigned long flags;
399
400 spin_lock_irqsave(&cpm_dpmem_lock, flags);
401 cpm_dpmem_info.alignment = align;
402 start = rh_alloc(&cpm_dpmem_info, size, "commproc");
403 spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
404
405 return (uint)start;
406}
407EXPORT_SYMBOL(cpm_dpalloc);
408
409int cpm_dpfree(uint offset)
410{
411 int ret;
412 unsigned long flags;
413
414 spin_lock_irqsave(&cpm_dpmem_lock, flags);
415 ret = rh_free(&cpm_dpmem_info, (void *)offset);
416 spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
417
418 return ret;
419}
420EXPORT_SYMBOL(cpm_dpfree);
421
422uint cpm_dpalloc_fixed(uint offset, uint size, uint align)
423{
424 void *start;
425 unsigned long flags;
426
427 spin_lock_irqsave(&cpm_dpmem_lock, flags);
428 cpm_dpmem_info.alignment = align;
429 start = rh_alloc_fixed(&cpm_dpmem_info, (void *)offset, size, "commproc");
430 spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
431
432 return (uint)start;
433}
434EXPORT_SYMBOL(cpm_dpalloc_fixed);
435
436void cpm_dpdump(void)
437{
438 rh_dump(&cpm_dpmem_info);
439}
440EXPORT_SYMBOL(cpm_dpdump);
441
442void *cpm_dpram_addr(uint offset)
443{
444 return ((immap_t *)IMAP_ADDR)->im_cpm.cp_dpmem + offset;
445}
446EXPORT_SYMBOL(cpm_dpram_addr);