Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * General Purpose functions for the global management of the |
| 3 | * Communication Processor Module. |
| 4 | * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) |
| 5 | * |
| 6 | * In addition to the individual control of the communication |
| 7 | * channels, there are a few functions that globally affect the |
| 8 | * communication processor. |
| 9 | * |
| 10 | * Buffer descriptors must be allocated from the dual ported memory |
| 11 | * space. The allocator for that is here. When the communication |
| 12 | * process is reset, we reclaim the memory available. There is |
| 13 | * currently no deallocator for this memory. |
| 14 | * The amount of space available is platform dependent. On the |
| 15 | * MBX, the EPPC software loads additional microcode into the |
| 16 | * communication processor, and uses some of the DP ram for this |
| 17 | * purpose. Current, the first 512 bytes and the last 256 bytes of |
| 18 | * memory are used. Right now I am conservative and only use the |
| 19 | * memory that can never be used for microcode. If there are |
| 20 | * applications that require more DP ram, we can expand the boundaries |
| 21 | * but then we have to be careful of any downloaded microcode. |
| 22 | */ |
| 23 | #include <linux/errno.h> |
| 24 | #include <linux/sched.h> |
| 25 | #include <linux/kernel.h> |
| 26 | #include <linux/dma-mapping.h> |
| 27 | #include <linux/param.h> |
| 28 | #include <linux/string.h> |
| 29 | #include <linux/mm.h> |
| 30 | #include <linux/interrupt.h> |
| 31 | #include <linux/irq.h> |
| 32 | #include <linux/module.h> |
| 33 | #include <asm/mpc8xx.h> |
| 34 | #include <asm/page.h> |
| 35 | #include <asm/pgtable.h> |
| 36 | #include <asm/8xx_immap.h> |
| 37 | #include <asm/commproc.h> |
| 38 | #include <asm/io.h> |
| 39 | #include <asm/tlbflush.h> |
| 40 | #include <asm/rheap.h> |
| 41 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 42 | static void m8xx_cpm_dpinit(void); |
| 43 | static uint host_buffer; /* One page of host buffer */ |
| 44 | static uint host_end; /* end + 1 */ |
| 45 | cpm8xx_t *cpmp; /* Pointer to comm processor space */ |
| 46 | |
| 47 | /* CPM interrupt vector functions. |
| 48 | */ |
| 49 | struct cpm_action { |
| 50 | void (*handler)(void *, struct pt_regs * regs); |
| 51 | void *dev_id; |
| 52 | }; |
| 53 | static struct cpm_action cpm_vecs[CPMVEC_NR]; |
| 54 | static irqreturn_t cpm_interrupt(int irq, void * dev, struct pt_regs * regs); |
| 55 | static irqreturn_t cpm_error_interrupt(int irq, void *dev, struct pt_regs * regs); |
| 56 | static void alloc_host_memory(void); |
| 57 | /* Define a table of names to identify CPM interrupt handlers in |
| 58 | * /proc/interrupts. |
| 59 | */ |
| 60 | const char *cpm_int_name[] = |
| 61 | { "error", "PC4", "PC5", "SMC2", |
| 62 | "SMC1", "SPI", "PC6", "Timer 4", |
| 63 | "", "PC7", "PC8", "PC9", |
| 64 | "Timer 3", "", "PC10", "PC11", |
| 65 | "I2C", "RISC Timer", "Timer 2", "", |
| 66 | "IDMA2", "IDMA1", "SDMA error", "PC12", |
| 67 | "PC13", "Timer 1", "PC14", "SCC4", |
| 68 | "SCC3", "SCC2", "SCC1", "PC15" |
| 69 | }; |
| 70 | |
| 71 | static void |
| 72 | cpm_mask_irq(unsigned int irq) |
| 73 | { |
| 74 | int cpm_vec = irq - CPM_IRQ_OFFSET; |
| 75 | |
| 76 | ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr &= ~(1 << cpm_vec); |
| 77 | } |
| 78 | |
| 79 | static void |
| 80 | cpm_unmask_irq(unsigned int irq) |
| 81 | { |
| 82 | int cpm_vec = irq - CPM_IRQ_OFFSET; |
| 83 | |
| 84 | ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr |= (1 << cpm_vec); |
| 85 | } |
| 86 | |
| 87 | static void |
| 88 | cpm_ack(unsigned int irq) |
| 89 | { |
| 90 | /* We do not need to do anything here. */ |
| 91 | } |
| 92 | |
| 93 | static void |
| 94 | cpm_eoi(unsigned int irq) |
| 95 | { |
| 96 | int cpm_vec = irq - CPM_IRQ_OFFSET; |
| 97 | |
| 98 | ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cisr = (1 << cpm_vec); |
| 99 | } |
| 100 | |
| 101 | struct hw_interrupt_type cpm_pic = { |
| 102 | .typename = " CPM ", |
| 103 | .enable = cpm_unmask_irq, |
| 104 | .disable = cpm_mask_irq, |
| 105 | .ack = cpm_ack, |
| 106 | .end = cpm_eoi, |
| 107 | }; |
| 108 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 109 | void |
Marcelo Tosatti | 079da35 | 2005-08-07 09:42:47 -0700 | [diff] [blame] | 110 | m8xx_cpm_reset(void) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 111 | { |
| 112 | volatile immap_t *imp; |
| 113 | volatile cpm8xx_t *commproc; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 114 | |
| 115 | imp = (immap_t *)IMAP_ADDR; |
| 116 | commproc = (cpm8xx_t *)&imp->im_cpm; |
| 117 | |
| 118 | #ifdef CONFIG_UCODE_PATCH |
| 119 | /* Perform a reset. |
| 120 | */ |
| 121 | commproc->cp_cpcr = (CPM_CR_RST | CPM_CR_FLG); |
| 122 | |
| 123 | /* Wait for it. |
| 124 | */ |
| 125 | while (commproc->cp_cpcr & CPM_CR_FLG); |
| 126 | |
| 127 | cpm_load_patch(imp); |
| 128 | #endif |
| 129 | |
| 130 | /* Set SDMA Bus Request priority 5. |
| 131 | * On 860T, this also enables FEC priority 6. I am not sure |
| 132 | * this is what we realy want for some applications, but the |
| 133 | * manual recommends it. |
| 134 | * Bit 25, FAM can also be set to use FEC aggressive mode (860T). |
| 135 | */ |
| 136 | imp->im_siu_conf.sc_sdcr = 1; |
| 137 | |
| 138 | /* Reclaim the DP memory for our use. */ |
| 139 | m8xx_cpm_dpinit(); |
| 140 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 141 | /* Tell everyone where the comm processor resides. |
| 142 | */ |
| 143 | cpmp = (cpm8xx_t *)commproc; |
| 144 | } |
| 145 | |
| 146 | /* We used to do this earlier, but have to postpone as long as possible |
| 147 | * to ensure the kernel VM is now running. |
| 148 | */ |
| 149 | static void |
| 150 | alloc_host_memory(void) |
| 151 | { |
| 152 | dma_addr_t physaddr; |
| 153 | |
| 154 | /* Set the host page for allocation. |
| 155 | */ |
| 156 | host_buffer = (uint)dma_alloc_coherent(NULL, PAGE_SIZE, &physaddr, |
| 157 | GFP_KERNEL); |
| 158 | host_end = host_buffer + PAGE_SIZE; |
| 159 | } |
| 160 | |
| 161 | /* This is called during init_IRQ. We used to do it above, but this |
| 162 | * was too early since init_IRQ was not yet called. |
| 163 | */ |
| 164 | static struct irqaction cpm_error_irqaction = { |
| 165 | .handler = cpm_error_interrupt, |
| 166 | .mask = CPU_MASK_NONE, |
| 167 | }; |
| 168 | static struct irqaction cpm_interrupt_irqaction = { |
| 169 | .handler = cpm_interrupt, |
| 170 | .mask = CPU_MASK_NONE, |
| 171 | .name = "CPM cascade", |
| 172 | }; |
| 173 | |
| 174 | void |
| 175 | cpm_interrupt_init(void) |
| 176 | { |
| 177 | int i; |
| 178 | |
| 179 | /* Initialize the CPM interrupt controller. |
| 180 | */ |
| 181 | ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cicr = |
| 182 | (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) | |
| 183 | ((CPM_INTERRUPT/2) << 13) | CICR_HP_MASK; |
| 184 | ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr = 0; |
| 185 | |
| 186 | /* install the CPM interrupt controller routines for the CPM |
| 187 | * interrupt vectors |
| 188 | */ |
| 189 | for ( i = CPM_IRQ_OFFSET ; i < CPM_IRQ_OFFSET + NR_CPM_INTS ; i++ ) |
| 190 | irq_desc[i].handler = &cpm_pic; |
| 191 | |
| 192 | /* Set our interrupt handler with the core CPU. */ |
| 193 | if (setup_irq(CPM_INTERRUPT, &cpm_interrupt_irqaction)) |
| 194 | panic("Could not allocate CPM IRQ!"); |
| 195 | |
| 196 | /* Install our own error handler. */ |
| 197 | cpm_error_irqaction.name = cpm_int_name[CPMVEC_ERROR]; |
| 198 | if (setup_irq(CPM_IRQ_OFFSET + CPMVEC_ERROR, &cpm_error_irqaction)) |
| 199 | panic("Could not allocate CPM error IRQ!"); |
| 200 | |
| 201 | ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cicr |= CICR_IEN; |
| 202 | } |
| 203 | |
| 204 | /* |
| 205 | * Get the CPM interrupt vector. |
| 206 | */ |
| 207 | int |
| 208 | cpm_get_irq(struct pt_regs *regs) |
| 209 | { |
| 210 | int cpm_vec; |
| 211 | |
| 212 | /* Get the vector by setting the ACK bit and then reading |
| 213 | * the register. |
| 214 | */ |
| 215 | ((volatile immap_t *)IMAP_ADDR)->im_cpic.cpic_civr = 1; |
| 216 | cpm_vec = ((volatile immap_t *)IMAP_ADDR)->im_cpic.cpic_civr; |
| 217 | cpm_vec >>= 11; |
| 218 | |
| 219 | return cpm_vec; |
| 220 | } |
| 221 | |
| 222 | /* CPM interrupt controller cascade interrupt. |
| 223 | */ |
| 224 | static irqreturn_t |
| 225 | cpm_interrupt(int irq, void * dev, struct pt_regs * regs) |
| 226 | { |
| 227 | /* This interrupt handler never actually gets called. It is |
| 228 | * installed only to unmask the CPM cascade interrupt in the SIU |
| 229 | * and to make the CPM cascade interrupt visible in /proc/interrupts. |
| 230 | */ |
| 231 | return IRQ_HANDLED; |
| 232 | } |
| 233 | |
| 234 | /* The CPM can generate the error interrupt when there is a race condition |
| 235 | * between generating and masking interrupts. All we have to do is ACK it |
| 236 | * and return. This is a no-op function so we don't need any special |
| 237 | * tests in the interrupt handler. |
| 238 | */ |
| 239 | static irqreturn_t |
| 240 | cpm_error_interrupt(int irq, void *dev, struct pt_regs *regs) |
| 241 | { |
| 242 | return IRQ_HANDLED; |
| 243 | } |
| 244 | |
| 245 | /* A helper function to translate the handler prototype required by |
| 246 | * request_irq() to the handler prototype required by cpm_install_handler(). |
| 247 | */ |
| 248 | static irqreturn_t |
| 249 | cpm_handler_helper(int irq, void *dev_id, struct pt_regs *regs) |
| 250 | { |
| 251 | int cpm_vec = irq - CPM_IRQ_OFFSET; |
| 252 | |
| 253 | (*cpm_vecs[cpm_vec].handler)(dev_id, regs); |
| 254 | |
| 255 | return IRQ_HANDLED; |
| 256 | } |
| 257 | |
| 258 | /* Install a CPM interrupt handler. |
| 259 | * This routine accepts a CPM interrupt vector in the range 0 to 31. |
| 260 | * This routine is retained for backward compatibility. Rather than using |
| 261 | * this routine to install a CPM interrupt handler, you can now use |
| 262 | * request_irq() with an IRQ in the range CPM_IRQ_OFFSET to |
| 263 | * CPM_IRQ_OFFSET + NR_CPM_INTS - 1 (16 to 47). |
| 264 | * |
| 265 | * Notice that the prototype of the interrupt handler function must be |
| 266 | * different depending on whether you install the handler with |
| 267 | * request_irq() or cpm_install_handler(). |
| 268 | */ |
| 269 | void |
| 270 | cpm_install_handler(int cpm_vec, void (*handler)(void *, struct pt_regs *regs), |
| 271 | void *dev_id) |
| 272 | { |
| 273 | int err; |
| 274 | |
| 275 | /* If null handler, assume we are trying to free the IRQ. |
| 276 | */ |
| 277 | if (!handler) { |
| 278 | free_irq(CPM_IRQ_OFFSET + cpm_vec, dev_id); |
| 279 | return; |
| 280 | } |
| 281 | |
| 282 | if (cpm_vecs[cpm_vec].handler != 0) |
| 283 | printk(KERN_INFO "CPM interrupt %x replacing %x\n", |
| 284 | (uint)handler, (uint)cpm_vecs[cpm_vec].handler); |
| 285 | cpm_vecs[cpm_vec].handler = handler; |
| 286 | cpm_vecs[cpm_vec].dev_id = dev_id; |
| 287 | |
| 288 | if ((err = request_irq(CPM_IRQ_OFFSET + cpm_vec, cpm_handler_helper, |
| 289 | 0, cpm_int_name[cpm_vec], dev_id))) |
| 290 | printk(KERN_ERR "request_irq() returned %d for CPM vector %d\n", |
| 291 | err, cpm_vec); |
| 292 | } |
| 293 | |
| 294 | /* Free a CPM interrupt handler. |
| 295 | * This routine accepts a CPM interrupt vector in the range 0 to 31. |
| 296 | * This routine is retained for backward compatibility. |
| 297 | */ |
| 298 | void |
| 299 | cpm_free_handler(int cpm_vec) |
| 300 | { |
| 301 | request_irq(CPM_IRQ_OFFSET + cpm_vec, NULL, 0, 0, |
| 302 | cpm_vecs[cpm_vec].dev_id); |
| 303 | |
| 304 | cpm_vecs[cpm_vec].handler = NULL; |
| 305 | cpm_vecs[cpm_vec].dev_id = NULL; |
| 306 | } |
| 307 | |
| 308 | /* We also own one page of host buffer space for the allocation of |
| 309 | * UART "fifos" and the like. |
| 310 | */ |
| 311 | uint |
| 312 | m8xx_cpm_hostalloc(uint size) |
| 313 | { |
| 314 | uint retloc; |
| 315 | |
| 316 | if (host_buffer == 0) |
| 317 | alloc_host_memory(); |
| 318 | |
| 319 | if ((host_buffer + size) >= host_end) |
| 320 | return(0); |
| 321 | |
| 322 | retloc = host_buffer; |
| 323 | host_buffer += size; |
| 324 | |
| 325 | return(retloc); |
| 326 | } |
| 327 | |
| 328 | /* Set a baud rate generator. This needs lots of work. There are |
| 329 | * four BRGs, any of which can be wired to any channel. |
| 330 | * The internal baud rate clock is the system clock divided by 16. |
| 331 | * This assumes the baudrate is 16x oversampled by the uart. |
| 332 | */ |
| 333 | #define BRG_INT_CLK (((bd_t *)__res)->bi_intfreq) |
| 334 | #define BRG_UART_CLK (BRG_INT_CLK/16) |
| 335 | #define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16) |
| 336 | |
| 337 | void |
| 338 | cpm_setbrg(uint brg, uint rate) |
| 339 | { |
| 340 | volatile uint *bp; |
| 341 | |
| 342 | /* This is good enough to get SMCs running..... |
| 343 | */ |
| 344 | bp = (uint *)&cpmp->cp_brgc1; |
| 345 | bp += brg; |
| 346 | /* The BRG has a 12-bit counter. For really slow baud rates (or |
| 347 | * really fast processors), we may have to further divide by 16. |
| 348 | */ |
| 349 | if (((BRG_UART_CLK / rate) - 1) < 4096) |
| 350 | *bp = (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN; |
| 351 | else |
| 352 | *bp = (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) | |
| 353 | CPM_BRG_EN | CPM_BRG_DIV16; |
| 354 | } |
| 355 | |
| 356 | /* |
| 357 | * dpalloc / dpfree bits. |
| 358 | */ |
| 359 | static spinlock_t cpm_dpmem_lock; |
| 360 | /* |
| 361 | * 16 blocks should be enough to satisfy all requests |
| 362 | * until the memory subsystem goes up... |
| 363 | */ |
| 364 | static rh_block_t cpm_boot_dpmem_rh_block[16]; |
| 365 | static rh_info_t cpm_dpmem_info; |
| 366 | |
| 367 | #define CPM_DPMEM_ALIGNMENT 8 |
| 368 | |
| 369 | void m8xx_cpm_dpinit(void) |
| 370 | { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 371 | spin_lock_init(&cpm_dpmem_lock); |
| 372 | |
| 373 | /* Initialize the info header */ |
| 374 | rh_init(&cpm_dpmem_info, CPM_DPMEM_ALIGNMENT, |
| 375 | sizeof(cpm_boot_dpmem_rh_block) / |
| 376 | sizeof(cpm_boot_dpmem_rh_block[0]), |
| 377 | cpm_boot_dpmem_rh_block); |
| 378 | |
| 379 | /* |
| 380 | * Attach the usable dpmem area. |
| 381 | * XXX: This is actually crap. CPM_DATAONLY_BASE and |
| 382 | * CPM_DATAONLY_SIZE are a subset of the available dparm. It varies |
| 383 | * with the processor and the microcode patches applied / activated. |
| 384 | * But the following should be at least safe. |
| 385 | */ |
| 386 | rh_attach_region(&cpm_dpmem_info, (void *)CPM_DATAONLY_BASE, CPM_DATAONLY_SIZE); |
| 387 | } |
| 388 | |
| 389 | /* |
| 390 | * Allocate the requested size worth of DP memory. |
| 391 | * This function used to return an index into the DPRAM area. |
| 392 | * Now it returns the actuall physical address of that area. |
| 393 | * use m8xx_cpm_dpram_offset() to get the index |
| 394 | */ |
| 395 | uint cpm_dpalloc(uint size, uint align) |
| 396 | { |
| 397 | void *start; |
| 398 | unsigned long flags; |
| 399 | |
| 400 | spin_lock_irqsave(&cpm_dpmem_lock, flags); |
| 401 | cpm_dpmem_info.alignment = align; |
| 402 | start = rh_alloc(&cpm_dpmem_info, size, "commproc"); |
| 403 | spin_unlock_irqrestore(&cpm_dpmem_lock, flags); |
| 404 | |
| 405 | return (uint)start; |
| 406 | } |
| 407 | EXPORT_SYMBOL(cpm_dpalloc); |
| 408 | |
| 409 | int cpm_dpfree(uint offset) |
| 410 | { |
| 411 | int ret; |
| 412 | unsigned long flags; |
| 413 | |
| 414 | spin_lock_irqsave(&cpm_dpmem_lock, flags); |
| 415 | ret = rh_free(&cpm_dpmem_info, (void *)offset); |
| 416 | spin_unlock_irqrestore(&cpm_dpmem_lock, flags); |
| 417 | |
| 418 | return ret; |
| 419 | } |
| 420 | EXPORT_SYMBOL(cpm_dpfree); |
| 421 | |
| 422 | uint cpm_dpalloc_fixed(uint offset, uint size, uint align) |
| 423 | { |
| 424 | void *start; |
| 425 | unsigned long flags; |
| 426 | |
| 427 | spin_lock_irqsave(&cpm_dpmem_lock, flags); |
| 428 | cpm_dpmem_info.alignment = align; |
| 429 | start = rh_alloc_fixed(&cpm_dpmem_info, (void *)offset, size, "commproc"); |
| 430 | spin_unlock_irqrestore(&cpm_dpmem_lock, flags); |
| 431 | |
| 432 | return (uint)start; |
| 433 | } |
| 434 | EXPORT_SYMBOL(cpm_dpalloc_fixed); |
| 435 | |
| 436 | void cpm_dpdump(void) |
| 437 | { |
| 438 | rh_dump(&cpm_dpmem_info); |
| 439 | } |
| 440 | EXPORT_SYMBOL(cpm_dpdump); |
| 441 | |
| 442 | void *cpm_dpram_addr(uint offset) |
| 443 | { |
| 444 | return ((immap_t *)IMAP_ADDR)->im_cpm.cp_dpmem + offset; |
| 445 | } |
| 446 | EXPORT_SYMBOL(cpm_dpram_addr); |