blob: e8a510d935e55d2cdae348e532fbdd47bf22cd4d [file] [log] [blame]
Arjan van de Ven10274982009-09-12 07:53:05 +02001/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15#include "builtin.h"
16
17#include "util/util.h"
18
19#include "util/color.h"
20#include <linux/list.h>
21#include "util/cache.h"
22#include <linux/rbtree.h>
23#include "util/symbol.h"
24#include "util/string.h"
25#include "util/callchain.h"
26#include "util/strlist.h"
27
28#include "perf.h"
29#include "util/header.h"
30#include "util/parse-options.h"
31#include "util/parse-events.h"
32#include "util/svghelper.h"
33
34static char const *input_name = "perf.data";
35static char const *output_name = "output.svg";
36
37
38static unsigned long page_size;
39static unsigned long mmap_window = 32;
40static u64 sample_type;
41
42static unsigned int numcpus;
43static u64 min_freq; /* Lowest CPU frequency seen */
44static u64 max_freq; /* Highest CPU frequency seen */
45static u64 turbo_frequency;
46
47static u64 first_time, last_time;
48
Arjan van de Ven39a90a82009-09-24 15:40:13 +020049static int power_only;
50
Arjan van de Ven10274982009-09-12 07:53:05 +020051
52static struct perf_header *header;
53
54struct per_pid;
55struct per_pidcomm;
56
57struct cpu_sample;
58struct power_event;
59struct wake_event;
60
61struct sample_wrapper;
62
63/*
64 * Datastructure layout:
65 * We keep an list of "pid"s, matching the kernels notion of a task struct.
66 * Each "pid" entry, has a list of "comm"s.
67 * this is because we want to track different programs different, while
68 * exec will reuse the original pid (by design).
69 * Each comm has a list of samples that will be used to draw
70 * final graph.
71 */
72
73struct per_pid {
74 struct per_pid *next;
75
76 int pid;
77 int ppid;
78
79 u64 start_time;
80 u64 end_time;
81 u64 total_time;
82 int display;
83
84 struct per_pidcomm *all;
85 struct per_pidcomm *current;
86
87 int painted;
88};
89
90
91struct per_pidcomm {
92 struct per_pidcomm *next;
93
94 u64 start_time;
95 u64 end_time;
96 u64 total_time;
97
98 int Y;
99 int display;
100
101 long state;
102 u64 state_since;
103
104 char *comm;
105
106 struct cpu_sample *samples;
107};
108
109struct sample_wrapper {
110 struct sample_wrapper *next;
111
112 u64 timestamp;
113 unsigned char data[0];
114};
115
116#define TYPE_NONE 0
117#define TYPE_RUNNING 1
118#define TYPE_WAITING 2
119#define TYPE_BLOCKED 3
120
121struct cpu_sample {
122 struct cpu_sample *next;
123
124 u64 start_time;
125 u64 end_time;
126 int type;
127 int cpu;
128};
129
130static struct per_pid *all_data;
131
132#define CSTATE 1
133#define PSTATE 2
134
135struct power_event {
136 struct power_event *next;
137 int type;
138 int state;
139 u64 start_time;
140 u64 end_time;
141 int cpu;
142};
143
144struct wake_event {
145 struct wake_event *next;
146 int waker;
147 int wakee;
148 u64 time;
149};
150
151static struct power_event *power_events;
152static struct wake_event *wake_events;
153
154struct sample_wrapper *all_samples;
155
156static struct per_pid *find_create_pid(int pid)
157{
158 struct per_pid *cursor = all_data;
159
160 while (cursor) {
161 if (cursor->pid == pid)
162 return cursor;
163 cursor = cursor->next;
164 }
165 cursor = malloc(sizeof(struct per_pid));
166 assert(cursor != NULL);
167 memset(cursor, 0, sizeof(struct per_pid));
168 cursor->pid = pid;
169 cursor->next = all_data;
170 all_data = cursor;
171 return cursor;
172}
173
174static void pid_set_comm(int pid, char *comm)
175{
176 struct per_pid *p;
177 struct per_pidcomm *c;
178 p = find_create_pid(pid);
179 c = p->all;
180 while (c) {
181 if (c->comm && strcmp(c->comm, comm) == 0) {
182 p->current = c;
183 return;
184 }
185 if (!c->comm) {
186 c->comm = strdup(comm);
187 p->current = c;
188 return;
189 }
190 c = c->next;
191 }
192 c = malloc(sizeof(struct per_pidcomm));
193 assert(c != NULL);
194 memset(c, 0, sizeof(struct per_pidcomm));
195 c->comm = strdup(comm);
196 p->current = c;
197 c->next = p->all;
198 p->all = c;
199}
200
201static void pid_fork(int pid, int ppid, u64 timestamp)
202{
203 struct per_pid *p, *pp;
204 p = find_create_pid(pid);
205 pp = find_create_pid(ppid);
206 p->ppid = ppid;
207 if (pp->current && pp->current->comm && !p->current)
208 pid_set_comm(pid, pp->current->comm);
209
210 p->start_time = timestamp;
211 if (p->current) {
212 p->current->start_time = timestamp;
213 p->current->state_since = timestamp;
214 }
215}
216
217static void pid_exit(int pid, u64 timestamp)
218{
219 struct per_pid *p;
220 p = find_create_pid(pid);
221 p->end_time = timestamp;
222 if (p->current)
223 p->current->end_time = timestamp;
224}
225
226static void
227pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
228{
229 struct per_pid *p;
230 struct per_pidcomm *c;
231 struct cpu_sample *sample;
232
233 p = find_create_pid(pid);
234 c = p->current;
235 if (!c) {
236 c = malloc(sizeof(struct per_pidcomm));
237 assert(c != NULL);
238 memset(c, 0, sizeof(struct per_pidcomm));
239 p->current = c;
240 c->next = p->all;
241 p->all = c;
242 }
243
244 sample = malloc(sizeof(struct cpu_sample));
245 assert(sample != NULL);
246 memset(sample, 0, sizeof(struct cpu_sample));
247 sample->start_time = start;
248 sample->end_time = end;
249 sample->type = type;
250 sample->next = c->samples;
251 sample->cpu = cpu;
252 c->samples = sample;
253
254 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
255 c->total_time += (end-start);
256 p->total_time += (end-start);
257 }
258
259 if (c->start_time == 0 || c->start_time > start)
260 c->start_time = start;
261 if (p->start_time == 0 || p->start_time > start)
262 p->start_time = start;
263
264 if (cpu > numcpus)
265 numcpus = cpu;
266}
267
268#define MAX_CPUS 4096
269
270static u64 cpus_cstate_start_times[MAX_CPUS];
271static int cpus_cstate_state[MAX_CPUS];
272static u64 cpus_pstate_start_times[MAX_CPUS];
273static u64 cpus_pstate_state[MAX_CPUS];
274
275static int
276process_comm_event(event_t *event)
277{
278 pid_set_comm(event->comm.pid, event->comm.comm);
279 return 0;
280}
281static int
282process_fork_event(event_t *event)
283{
284 pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
285 return 0;
286}
287
288static int
289process_exit_event(event_t *event)
290{
291 pid_exit(event->fork.pid, event->fork.time);
292 return 0;
293}
294
295struct trace_entry {
296 u32 size;
297 unsigned short type;
298 unsigned char flags;
299 unsigned char preempt_count;
300 int pid;
301 int tgid;
302};
303
304struct power_entry {
305 struct trace_entry te;
306 s64 type;
307 s64 value;
308};
309
310#define TASK_COMM_LEN 16
311struct wakeup_entry {
312 struct trace_entry te;
313 char comm[TASK_COMM_LEN];
314 int pid;
315 int prio;
316 int success;
317};
318
319/*
320 * trace_flag_type is an enumeration that holds different
321 * states when a trace occurs. These are:
322 * IRQS_OFF - interrupts were disabled
323 * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags
324 * NEED_RESCED - reschedule is requested
325 * HARDIRQ - inside an interrupt handler
326 * SOFTIRQ - inside a softirq handler
327 */
328enum trace_flag_type {
329 TRACE_FLAG_IRQS_OFF = 0x01,
330 TRACE_FLAG_IRQS_NOSUPPORT = 0x02,
331 TRACE_FLAG_NEED_RESCHED = 0x04,
332 TRACE_FLAG_HARDIRQ = 0x08,
333 TRACE_FLAG_SOFTIRQ = 0x10,
334};
335
336
337
338struct sched_switch {
339 struct trace_entry te;
340 char prev_comm[TASK_COMM_LEN];
341 int prev_pid;
342 int prev_prio;
343 long prev_state; /* Arjan weeps. */
344 char next_comm[TASK_COMM_LEN];
345 int next_pid;
346 int next_prio;
347};
348
349static void c_state_start(int cpu, u64 timestamp, int state)
350{
351 cpus_cstate_start_times[cpu] = timestamp;
352 cpus_cstate_state[cpu] = state;
353}
354
355static void c_state_end(int cpu, u64 timestamp)
356{
357 struct power_event *pwr;
358 pwr = malloc(sizeof(struct power_event));
359 if (!pwr)
360 return;
361 memset(pwr, 0, sizeof(struct power_event));
362
363 pwr->state = cpus_cstate_state[cpu];
364 pwr->start_time = cpus_cstate_start_times[cpu];
365 pwr->end_time = timestamp;
366 pwr->cpu = cpu;
367 pwr->type = CSTATE;
368 pwr->next = power_events;
369
370 power_events = pwr;
371}
372
373static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
374{
375 struct power_event *pwr;
376 pwr = malloc(sizeof(struct power_event));
377
378 if (new_freq > 8000000) /* detect invalid data */
379 return;
380
381 if (!pwr)
382 return;
383 memset(pwr, 0, sizeof(struct power_event));
384
385 pwr->state = cpus_pstate_state[cpu];
386 pwr->start_time = cpus_pstate_start_times[cpu];
387 pwr->end_time = timestamp;
388 pwr->cpu = cpu;
389 pwr->type = PSTATE;
390 pwr->next = power_events;
391
392 if (!pwr->start_time)
393 pwr->start_time = first_time;
394
395 power_events = pwr;
396
397 cpus_pstate_state[cpu] = new_freq;
398 cpus_pstate_start_times[cpu] = timestamp;
399
400 if ((u64)new_freq > max_freq)
401 max_freq = new_freq;
402
403 if (new_freq < min_freq || min_freq == 0)
404 min_freq = new_freq;
405
406 if (new_freq == max_freq - 1000)
407 turbo_frequency = max_freq;
408}
409
410static void
411sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
412{
413 struct wake_event *we;
414 struct per_pid *p;
415 struct wakeup_entry *wake = (void *)te;
416
417 we = malloc(sizeof(struct wake_event));
418 if (!we)
419 return;
420
421 memset(we, 0, sizeof(struct wake_event));
422 we->time = timestamp;
423 we->waker = pid;
424
425 if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
426 we->waker = -1;
427
428 we->wakee = wake->pid;
429 we->next = wake_events;
430 wake_events = we;
431 p = find_create_pid(we->wakee);
432
433 if (p && p->current && p->current->state == TYPE_NONE) {
434 p->current->state_since = timestamp;
435 p->current->state = TYPE_WAITING;
436 }
437 if (p && p->current && p->current->state == TYPE_BLOCKED) {
438 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
439 p->current->state_since = timestamp;
440 p->current->state = TYPE_WAITING;
441 }
442}
443
444static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
445{
446 struct per_pid *p = NULL, *prev_p;
447 struct sched_switch *sw = (void *)te;
448
449
450 prev_p = find_create_pid(sw->prev_pid);
451
452 p = find_create_pid(sw->next_pid);
453
454 if (prev_p->current && prev_p->current->state != TYPE_NONE)
455 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
456 if (p && p->current) {
457 if (p->current->state != TYPE_NONE)
458 pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
459
460 p->current->state_since = timestamp;
461 p->current->state = TYPE_RUNNING;
462 }
463
464 if (prev_p->current) {
465 prev_p->current->state = TYPE_NONE;
466 prev_p->current->state_since = timestamp;
467 if (sw->prev_state & 2)
468 prev_p->current->state = TYPE_BLOCKED;
469 if (sw->prev_state == 0)
470 prev_p->current->state = TYPE_WAITING;
471 }
472}
473
474
475static int
476process_sample_event(event_t *event)
477{
478 int cursor = 0;
479 u64 addr = 0;
480 u64 stamp = 0;
481 u32 cpu = 0;
482 u32 pid = 0;
483 struct trace_entry *te;
484
485 if (sample_type & PERF_SAMPLE_IP)
486 cursor++;
487
488 if (sample_type & PERF_SAMPLE_TID) {
489 pid = event->sample.array[cursor]>>32;
490 cursor++;
491 }
492 if (sample_type & PERF_SAMPLE_TIME) {
493 stamp = event->sample.array[cursor++];
494
495 if (!first_time || first_time > stamp)
496 first_time = stamp;
497 if (last_time < stamp)
498 last_time = stamp;
499
500 }
501 if (sample_type & PERF_SAMPLE_ADDR)
502 addr = event->sample.array[cursor++];
503 if (sample_type & PERF_SAMPLE_ID)
504 cursor++;
505 if (sample_type & PERF_SAMPLE_STREAM_ID)
506 cursor++;
507 if (sample_type & PERF_SAMPLE_CPU)
508 cpu = event->sample.array[cursor++] & 0xFFFFFFFF;
509 if (sample_type & PERF_SAMPLE_PERIOD)
510 cursor++;
511
512 te = (void *)&event->sample.array[cursor];
513
514 if (sample_type & PERF_SAMPLE_RAW && te->size > 0) {
515 char *event_str;
516 struct power_entry *pe;
517
518 pe = (void *)te;
519
520 event_str = perf_header__find_event(te->type);
521
522 if (!event_str)
523 return 0;
524
525 if (strcmp(event_str, "power:power_start") == 0)
526 c_state_start(cpu, stamp, pe->value);
527
528 if (strcmp(event_str, "power:power_end") == 0)
529 c_state_end(cpu, stamp);
530
531 if (strcmp(event_str, "power:power_frequency") == 0)
532 p_state_change(cpu, stamp, pe->value);
533
534 if (strcmp(event_str, "sched:sched_wakeup") == 0)
535 sched_wakeup(cpu, stamp, pid, te);
536
537 if (strcmp(event_str, "sched:sched_switch") == 0)
538 sched_switch(cpu, stamp, te);
539 }
540 return 0;
541}
542
543/*
544 * After the last sample we need to wrap up the current C/P state
545 * and close out each CPU for these.
546 */
547static void end_sample_processing(void)
548{
549 u64 cpu;
550 struct power_event *pwr;
551
Arjan van de Ven39a90a82009-09-24 15:40:13 +0200552 for (cpu = 0; cpu <= numcpus; cpu++) {
Arjan van de Ven10274982009-09-12 07:53:05 +0200553 pwr = malloc(sizeof(struct power_event));
554 if (!pwr)
555 return;
556 memset(pwr, 0, sizeof(struct power_event));
557
558 /* C state */
559#if 0
560 pwr->state = cpus_cstate_state[cpu];
561 pwr->start_time = cpus_cstate_start_times[cpu];
562 pwr->end_time = last_time;
563 pwr->cpu = cpu;
564 pwr->type = CSTATE;
565 pwr->next = power_events;
566
567 power_events = pwr;
568#endif
569 /* P state */
570
571 pwr = malloc(sizeof(struct power_event));
572 if (!pwr)
573 return;
574 memset(pwr, 0, sizeof(struct power_event));
575
576 pwr->state = cpus_pstate_state[cpu];
577 pwr->start_time = cpus_pstate_start_times[cpu];
578 pwr->end_time = last_time;
579 pwr->cpu = cpu;
580 pwr->type = PSTATE;
581 pwr->next = power_events;
582
583 if (!pwr->start_time)
584 pwr->start_time = first_time;
585 if (!pwr->state)
586 pwr->state = min_freq;
587 power_events = pwr;
588 }
589}
590
591static u64 sample_time(event_t *event)
592{
593 int cursor;
594
595 cursor = 0;
596 if (sample_type & PERF_SAMPLE_IP)
597 cursor++;
598 if (sample_type & PERF_SAMPLE_TID)
599 cursor++;
600 if (sample_type & PERF_SAMPLE_TIME)
601 return event->sample.array[cursor];
602 return 0;
603}
604
605
606/*
607 * We first queue all events, sorted backwards by insertion.
608 * The order will get flipped later.
609 */
610static int
611queue_sample_event(event_t *event)
612{
613 struct sample_wrapper *copy, *prev;
614 int size;
615
616 size = event->sample.header.size + sizeof(struct sample_wrapper) + 8;
617
618 copy = malloc(size);
619 if (!copy)
620 return 1;
621
622 memset(copy, 0, size);
623
624 copy->next = NULL;
625 copy->timestamp = sample_time(event);
626
627 memcpy(&copy->data, event, event->sample.header.size);
628
629 /* insert in the right place in the list */
630
631 if (!all_samples) {
632 /* first sample ever */
633 all_samples = copy;
634 return 0;
635 }
636
637 if (all_samples->timestamp < copy->timestamp) {
638 /* insert at the head of the list */
639 copy->next = all_samples;
640 all_samples = copy;
641 return 0;
642 }
643
644 prev = all_samples;
645 while (prev->next) {
646 if (prev->next->timestamp < copy->timestamp) {
647 copy->next = prev->next;
648 prev->next = copy;
649 return 0;
650 }
651 prev = prev->next;
652 }
653 /* insert at the end of the list */
654 prev->next = copy;
655
656 return 0;
657}
658
659static void sort_queued_samples(void)
660{
661 struct sample_wrapper *cursor, *next;
662
663 cursor = all_samples;
664 all_samples = NULL;
665
666 while (cursor) {
667 next = cursor->next;
668 cursor->next = all_samples;
669 all_samples = cursor;
670 cursor = next;
671 }
672}
673
674/*
675 * Sort the pid datastructure
676 */
677static void sort_pids(void)
678{
679 struct per_pid *new_list, *p, *cursor, *prev;
680 /* sort by ppid first, then by pid, lowest to highest */
681
682 new_list = NULL;
683
684 while (all_data) {
685 p = all_data;
686 all_data = p->next;
687 p->next = NULL;
688
689 if (new_list == NULL) {
690 new_list = p;
691 p->next = NULL;
692 continue;
693 }
694 prev = NULL;
695 cursor = new_list;
696 while (cursor) {
697 if (cursor->ppid > p->ppid ||
698 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
699 /* must insert before */
700 if (prev) {
701 p->next = prev->next;
702 prev->next = p;
703 cursor = NULL;
704 continue;
705 } else {
706 p->next = new_list;
707 new_list = p;
708 cursor = NULL;
709 continue;
710 }
711 }
712
713 prev = cursor;
714 cursor = cursor->next;
715 if (!cursor)
716 prev->next = p;
717 }
718 }
719 all_data = new_list;
720}
721
722
723static void draw_c_p_states(void)
724{
725 struct power_event *pwr;
726 pwr = power_events;
727
728 /*
729 * two pass drawing so that the P state bars are on top of the C state blocks
730 */
731 while (pwr) {
732 if (pwr->type == CSTATE)
733 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
734 pwr = pwr->next;
735 }
736
737 pwr = power_events;
738 while (pwr) {
739 if (pwr->type == PSTATE) {
740 if (!pwr->state)
741 pwr->state = min_freq;
742 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
743 }
744 pwr = pwr->next;
745 }
746}
747
748static void draw_wakeups(void)
749{
750 struct wake_event *we;
751 struct per_pid *p;
752 struct per_pidcomm *c;
753
754 we = wake_events;
755 while (we) {
756 int from = 0, to = 0;
Arjan van de Ven4f1202c2009-09-20 18:13:28 +0200757 char *task_from = NULL, *task_to = NULL;
Arjan van de Ven10274982009-09-12 07:53:05 +0200758
759 /* locate the column of the waker and wakee */
760 p = all_data;
761 while (p) {
762 if (p->pid == we->waker || p->pid == we->wakee) {
763 c = p->all;
764 while (c) {
765 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
Arjan van de Ven4f1202c2009-09-20 18:13:28 +0200766 if (p->pid == we->waker) {
Arjan van de Ven10274982009-09-12 07:53:05 +0200767 from = c->Y;
Arjan van de Ven3bc2a392009-10-20 06:46:49 +0900768 task_from = strdup(c->comm);
Arjan van de Ven4f1202c2009-09-20 18:13:28 +0200769 }
770 if (p->pid == we->wakee) {
Arjan van de Ven10274982009-09-12 07:53:05 +0200771 to = c->Y;
Arjan van de Ven3bc2a392009-10-20 06:46:49 +0900772 task_to = strdup(c->comm);
Arjan van de Ven4f1202c2009-09-20 18:13:28 +0200773 }
Arjan van de Ven10274982009-09-12 07:53:05 +0200774 }
775 c = c->next;
776 }
Arjan van de Ven3bc2a392009-10-20 06:46:49 +0900777 c = p->all;
778 while (c) {
779 if (p->pid == we->waker && !from) {
780 from = c->Y;
781 task_from = strdup(c->comm);
782 }
783 if (p->pid == we->wakee && !to) {
784 to = c->Y;
785 task_to = strdup(c->comm);
786 }
787 c = c->next;
788 }
Arjan van de Ven10274982009-09-12 07:53:05 +0200789 }
790 p = p->next;
791 }
792
Arjan van de Ven3bc2a392009-10-20 06:46:49 +0900793 if (!task_from) {
794 task_from = malloc(40);
795 sprintf(task_from, "[%i]", we->waker);
796 }
797 if (!task_to) {
798 task_to = malloc(40);
799 sprintf(task_to, "[%i]", we->wakee);
800 }
801
Arjan van de Ven10274982009-09-12 07:53:05 +0200802 if (we->waker == -1)
803 svg_interrupt(we->time, to);
804 else if (from && to && abs(from - to) == 1)
805 svg_wakeline(we->time, from, to);
806 else
Arjan van de Ven4f1202c2009-09-20 18:13:28 +0200807 svg_partial_wakeline(we->time, from, task_from, to, task_to);
Arjan van de Ven10274982009-09-12 07:53:05 +0200808 we = we->next;
Arjan van de Ven3bc2a392009-10-20 06:46:49 +0900809
810 free(task_from);
811 free(task_to);
Arjan van de Ven10274982009-09-12 07:53:05 +0200812 }
813}
814
815static void draw_cpu_usage(void)
816{
817 struct per_pid *p;
818 struct per_pidcomm *c;
819 struct cpu_sample *sample;
820 p = all_data;
821 while (p) {
822 c = p->all;
823 while (c) {
824 sample = c->samples;
825 while (sample) {
826 if (sample->type == TYPE_RUNNING)
827 svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
828
829 sample = sample->next;
830 }
831 c = c->next;
832 }
833 p = p->next;
834 }
835}
836
837static void draw_process_bars(void)
838{
839 struct per_pid *p;
840 struct per_pidcomm *c;
841 struct cpu_sample *sample;
842 int Y = 0;
843
844 Y = 2 * numcpus + 2;
845
846 p = all_data;
847 while (p) {
848 c = p->all;
849 while (c) {
850 if (!c->display) {
851 c->Y = 0;
852 c = c->next;
853 continue;
854 }
855
Arjan van de Vena92fe7b2009-09-20 18:13:53 +0200856 svg_box(Y, c->start_time, c->end_time, "process");
Arjan van de Ven10274982009-09-12 07:53:05 +0200857 sample = c->samples;
858 while (sample) {
859 if (sample->type == TYPE_RUNNING)
Arjan van de Vena92fe7b2009-09-20 18:13:53 +0200860 svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
Arjan van de Ven10274982009-09-12 07:53:05 +0200861 if (sample->type == TYPE_BLOCKED)
862 svg_box(Y, sample->start_time, sample->end_time, "blocked");
863 if (sample->type == TYPE_WAITING)
Arjan van de Vena92fe7b2009-09-20 18:13:53 +0200864 svg_waiting(Y, sample->start_time, sample->end_time);
Arjan van de Ven10274982009-09-12 07:53:05 +0200865 sample = sample->next;
866 }
867
868 if (c->comm) {
869 char comm[256];
870 if (c->total_time > 5000000000) /* 5 seconds */
871 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
872 else
873 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
874
875 svg_text(Y, c->start_time, comm);
876 }
877 c->Y = Y;
878 Y++;
879 c = c->next;
880 }
881 p = p->next;
882 }
883}
884
885static int determine_display_tasks(u64 threshold)
886{
887 struct per_pid *p;
888 struct per_pidcomm *c;
889 int count = 0;
890
891 p = all_data;
892 while (p) {
893 p->display = 0;
894 if (p->start_time == 1)
895 p->start_time = first_time;
896
897 /* no exit marker, task kept running to the end */
898 if (p->end_time == 0)
899 p->end_time = last_time;
Arjan van de Ven39a90a82009-09-24 15:40:13 +0200900 if (p->total_time >= threshold && !power_only)
Arjan van de Ven10274982009-09-12 07:53:05 +0200901 p->display = 1;
902
903 c = p->all;
904
905 while (c) {
906 c->display = 0;
907
908 if (c->start_time == 1)
909 c->start_time = first_time;
910
Arjan van de Ven39a90a82009-09-24 15:40:13 +0200911 if (c->total_time >= threshold && !power_only) {
Arjan van de Ven10274982009-09-12 07:53:05 +0200912 c->display = 1;
913 count++;
914 }
915
916 if (c->end_time == 0)
917 c->end_time = last_time;
918
919 c = c->next;
920 }
921 p = p->next;
922 }
923 return count;
924}
925
926
927
928#define TIME_THRESH 10000000
929
930static void write_svg_file(const char *filename)
931{
932 u64 i;
933 int count;
934
935 numcpus++;
936
937
938 count = determine_display_tasks(TIME_THRESH);
939
940 /* We'd like to show at least 15 tasks; be less picky if we have fewer */
941 if (count < 15)
942 count = determine_display_tasks(TIME_THRESH / 10);
943
Arjan van de Ven5094b652009-09-20 18:14:16 +0200944 open_svg(filename, numcpus, count, first_time, last_time);
Arjan van de Ven10274982009-09-12 07:53:05 +0200945
Arjan van de Ven5094b652009-09-20 18:14:16 +0200946 svg_time_grid();
Arjan van de Ven10274982009-09-12 07:53:05 +0200947 svg_legenda();
948
949 for (i = 0; i < numcpus; i++)
950 svg_cpu_box(i, max_freq, turbo_frequency);
951
952 draw_cpu_usage();
953 draw_process_bars();
954 draw_c_p_states();
955 draw_wakeups();
956
957 svg_close();
958}
959
960static int
961process_event(event_t *event)
962{
963
964 switch (event->header.type) {
965
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200966 case PERF_RECORD_COMM:
Arjan van de Ven10274982009-09-12 07:53:05 +0200967 return process_comm_event(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200968 case PERF_RECORD_FORK:
Arjan van de Ven10274982009-09-12 07:53:05 +0200969 return process_fork_event(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200970 case PERF_RECORD_EXIT:
Arjan van de Ven10274982009-09-12 07:53:05 +0200971 return process_exit_event(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200972 case PERF_RECORD_SAMPLE:
Arjan van de Ven10274982009-09-12 07:53:05 +0200973 return queue_sample_event(event);
974
975 /*
976 * We dont process them right now but they are fine:
977 */
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200978 case PERF_RECORD_MMAP:
979 case PERF_RECORD_THROTTLE:
980 case PERF_RECORD_UNTHROTTLE:
Arjan van de Ven10274982009-09-12 07:53:05 +0200981 return 0;
982
983 default:
984 return -1;
985 }
986
987 return 0;
988}
989
990static void process_samples(void)
991{
992 struct sample_wrapper *cursor;
993 event_t *event;
994
995 sort_queued_samples();
996
997 cursor = all_samples;
998 while (cursor) {
999 event = (void *)&cursor->data;
1000 cursor = cursor->next;
1001 process_sample_event(event);
1002 }
1003}
1004
1005
1006static int __cmd_timechart(void)
1007{
1008 int ret, rc = EXIT_FAILURE;
1009 unsigned long offset = 0;
1010 unsigned long head, shift;
1011 struct stat statbuf;
1012 event_t *event;
1013 uint32_t size;
1014 char *buf;
1015 int input;
1016
1017 input = open(input_name, O_RDONLY);
1018 if (input < 0) {
1019 fprintf(stderr, " failed to open file: %s", input_name);
1020 if (!strcmp(input_name, "perf.data"))
1021 fprintf(stderr, " (try 'perf record' first)");
1022 fprintf(stderr, "\n");
1023 exit(-1);
1024 }
1025
1026 ret = fstat(input, &statbuf);
1027 if (ret < 0) {
1028 perror("failed to stat file");
1029 exit(-1);
1030 }
1031
1032 if (!statbuf.st_size) {
1033 fprintf(stderr, "zero-sized file, nothing to do!\n");
1034 exit(0);
1035 }
1036
1037 header = perf_header__read(input);
1038 head = header->data_offset;
1039
1040 sample_type = perf_header__sample_type(header);
1041
1042 shift = page_size * (head / page_size);
1043 offset += shift;
1044 head -= shift;
1045
1046remap:
1047 buf = (char *)mmap(NULL, page_size * mmap_window, PROT_READ,
1048 MAP_SHARED, input, offset);
1049 if (buf == MAP_FAILED) {
1050 perror("failed to mmap file");
1051 exit(-1);
1052 }
1053
1054more:
1055 event = (event_t *)(buf + head);
1056
1057 size = event->header.size;
1058 if (!size)
1059 size = 8;
1060
1061 if (head + event->header.size >= page_size * mmap_window) {
1062 int ret2;
1063
1064 shift = page_size * (head / page_size);
1065
1066 ret2 = munmap(buf, page_size * mmap_window);
1067 assert(ret2 == 0);
1068
1069 offset += shift;
1070 head -= shift;
1071 goto remap;
1072 }
1073
1074 size = event->header.size;
1075
1076 if (!size || process_event(event) < 0) {
1077
1078 printf("%p [%p]: skipping unknown header type: %d\n",
1079 (void *)(offset + head),
1080 (void *)(long)(event->header.size),
1081 event->header.type);
1082
1083 /*
1084 * assume we lost track of the stream, check alignment, and
1085 * increment a single u64 in the hope to catch on again 'soon'.
1086 */
1087
1088 if (unlikely(head & 7))
1089 head &= ~7ULL;
1090
1091 size = 8;
1092 }
1093
1094 head += size;
1095
1096 if (offset + head >= header->data_offset + header->data_size)
1097 goto done;
1098
1099 if (offset + head < (unsigned long)statbuf.st_size)
1100 goto more;
1101
1102done:
1103 rc = EXIT_SUCCESS;
1104 close(input);
1105
1106
1107 process_samples();
1108
1109 end_sample_processing();
1110
1111 sort_pids();
1112
1113 write_svg_file(output_name);
1114
1115 printf("Written %2.1f seconds of trace to %s.\n", (last_time - first_time) / 1000000000.0, output_name);
1116
1117 return rc;
1118}
1119
Arjan van de Ven3c09eeb2009-09-19 13:34:42 +02001120static const char * const timechart_usage[] = {
1121 "perf timechart [<options>] {record}",
Arjan van de Ven10274982009-09-12 07:53:05 +02001122 NULL
1123};
1124
Arjan van de Ven3c09eeb2009-09-19 13:34:42 +02001125static const char *record_args[] = {
1126 "record",
1127 "-a",
1128 "-R",
1129 "-M",
1130 "-f",
1131 "-c", "1",
1132 "-e", "power:power_start",
1133 "-e", "power:power_end",
1134 "-e", "power:power_frequency",
1135 "-e", "sched:sched_wakeup",
1136 "-e", "sched:sched_switch",
1137};
1138
1139static int __cmd_record(int argc, const char **argv)
1140{
1141 unsigned int rec_argc, i, j;
1142 const char **rec_argv;
1143
1144 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1145 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1146
1147 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1148 rec_argv[i] = strdup(record_args[i]);
1149
1150 for (j = 1; j < (unsigned int)argc; j++, i++)
1151 rec_argv[i] = argv[j];
1152
1153 return cmd_record(i, rec_argv, NULL);
1154}
1155
Arjan van de Ven10274982009-09-12 07:53:05 +02001156static const struct option options[] = {
1157 OPT_STRING('i', "input", &input_name, "file",
1158 "input file name"),
1159 OPT_STRING('o', "output", &output_name, "file",
1160 "output file name"),
Arjan van de Ven5094b652009-09-20 18:14:16 +02001161 OPT_INTEGER('w', "width", &svg_page_width,
1162 "page width"),
Arjan van de Ven39a90a82009-09-24 15:40:13 +02001163 OPT_BOOLEAN('p', "power-only", &power_only,
1164 "output power data only"),
Arjan van de Ven10274982009-09-12 07:53:05 +02001165 OPT_END()
1166};
1167
1168
1169int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1170{
1171 symbol__init();
1172
1173 page_size = getpagesize();
1174
Arjan van de Ven3c09eeb2009-09-19 13:34:42 +02001175 argc = parse_options(argc, argv, options, timechart_usage,
1176 PARSE_OPT_STOP_AT_NON_OPTION);
Arjan van de Ven10274982009-09-12 07:53:05 +02001177
Arjan van de Ven3c09eeb2009-09-19 13:34:42 +02001178 if (argc && !strncmp(argv[0], "rec", 3))
1179 return __cmd_record(argc, argv);
1180 else if (argc)
1181 usage_with_options(timechart_usage, options);
Arjan van de Ven10274982009-09-12 07:53:05 +02001182
1183 setup_pager();
1184
1185 return __cmd_timechart();
1186}