Jaegeuk Kim | 0a8165d | 2012-11-29 13:28:09 +0900 | [diff] [blame] | 1 | /* |
Jaegeuk Kim | e05df3b | 2012-11-02 17:08:50 +0900 | [diff] [blame] | 2 | * fs/f2fs/node.c |
| 3 | * |
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| 5 | * http://www.samsung.com/ |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License version 2 as |
| 9 | * published by the Free Software Foundation. |
| 10 | */ |
| 11 | #include <linux/fs.h> |
| 12 | #include <linux/f2fs_fs.h> |
| 13 | #include <linux/mpage.h> |
| 14 | #include <linux/backing-dev.h> |
| 15 | #include <linux/blkdev.h> |
| 16 | #include <linux/pagevec.h> |
| 17 | #include <linux/swap.h> |
| 18 | |
| 19 | #include "f2fs.h" |
| 20 | #include "node.h" |
| 21 | #include "segment.h" |
| 22 | |
| 23 | static struct kmem_cache *nat_entry_slab; |
| 24 | static struct kmem_cache *free_nid_slab; |
| 25 | |
| 26 | static void clear_node_page_dirty(struct page *page) |
| 27 | { |
| 28 | struct address_space *mapping = page->mapping; |
| 29 | struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); |
| 30 | unsigned int long flags; |
| 31 | |
| 32 | if (PageDirty(page)) { |
| 33 | spin_lock_irqsave(&mapping->tree_lock, flags); |
| 34 | radix_tree_tag_clear(&mapping->page_tree, |
| 35 | page_index(page), |
| 36 | PAGECACHE_TAG_DIRTY); |
| 37 | spin_unlock_irqrestore(&mapping->tree_lock, flags); |
| 38 | |
| 39 | clear_page_dirty_for_io(page); |
| 40 | dec_page_count(sbi, F2FS_DIRTY_NODES); |
| 41 | } |
| 42 | ClearPageUptodate(page); |
| 43 | } |
| 44 | |
| 45 | static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) |
| 46 | { |
| 47 | pgoff_t index = current_nat_addr(sbi, nid); |
| 48 | return get_meta_page(sbi, index); |
| 49 | } |
| 50 | |
| 51 | static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) |
| 52 | { |
| 53 | struct page *src_page; |
| 54 | struct page *dst_page; |
| 55 | pgoff_t src_off; |
| 56 | pgoff_t dst_off; |
| 57 | void *src_addr; |
| 58 | void *dst_addr; |
| 59 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 60 | |
| 61 | src_off = current_nat_addr(sbi, nid); |
| 62 | dst_off = next_nat_addr(sbi, src_off); |
| 63 | |
| 64 | /* get current nat block page with lock */ |
| 65 | src_page = get_meta_page(sbi, src_off); |
| 66 | |
| 67 | /* Dirty src_page means that it is already the new target NAT page. */ |
| 68 | if (PageDirty(src_page)) |
| 69 | return src_page; |
| 70 | |
| 71 | dst_page = grab_meta_page(sbi, dst_off); |
| 72 | |
| 73 | src_addr = page_address(src_page); |
| 74 | dst_addr = page_address(dst_page); |
| 75 | memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); |
| 76 | set_page_dirty(dst_page); |
| 77 | f2fs_put_page(src_page, 1); |
| 78 | |
| 79 | set_to_next_nat(nm_i, nid); |
| 80 | |
| 81 | return dst_page; |
| 82 | } |
| 83 | |
Jaegeuk Kim | 0a8165d | 2012-11-29 13:28:09 +0900 | [diff] [blame] | 84 | /* |
Jaegeuk Kim | e05df3b | 2012-11-02 17:08:50 +0900 | [diff] [blame] | 85 | * Readahead NAT pages |
| 86 | */ |
| 87 | static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid) |
| 88 | { |
| 89 | struct address_space *mapping = sbi->meta_inode->i_mapping; |
| 90 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 91 | struct page *page; |
| 92 | pgoff_t index; |
| 93 | int i; |
| 94 | |
| 95 | for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) { |
| 96 | if (nid >= nm_i->max_nid) |
| 97 | nid = 0; |
| 98 | index = current_nat_addr(sbi, nid); |
| 99 | |
| 100 | page = grab_cache_page(mapping, index); |
| 101 | if (!page) |
| 102 | continue; |
| 103 | if (f2fs_readpage(sbi, page, index, READ)) { |
| 104 | f2fs_put_page(page, 1); |
| 105 | continue; |
| 106 | } |
| 107 | page_cache_release(page); |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) |
| 112 | { |
| 113 | return radix_tree_lookup(&nm_i->nat_root, n); |
| 114 | } |
| 115 | |
| 116 | static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, |
| 117 | nid_t start, unsigned int nr, struct nat_entry **ep) |
| 118 | { |
| 119 | return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); |
| 120 | } |
| 121 | |
| 122 | static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) |
| 123 | { |
| 124 | list_del(&e->list); |
| 125 | radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); |
| 126 | nm_i->nat_cnt--; |
| 127 | kmem_cache_free(nat_entry_slab, e); |
| 128 | } |
| 129 | |
| 130 | int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) |
| 131 | { |
| 132 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 133 | struct nat_entry *e; |
| 134 | int is_cp = 1; |
| 135 | |
| 136 | read_lock(&nm_i->nat_tree_lock); |
| 137 | e = __lookup_nat_cache(nm_i, nid); |
| 138 | if (e && !e->checkpointed) |
| 139 | is_cp = 0; |
| 140 | read_unlock(&nm_i->nat_tree_lock); |
| 141 | return is_cp; |
| 142 | } |
| 143 | |
| 144 | static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid) |
| 145 | { |
| 146 | struct nat_entry *new; |
| 147 | |
| 148 | new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC); |
| 149 | if (!new) |
| 150 | return NULL; |
| 151 | if (radix_tree_insert(&nm_i->nat_root, nid, new)) { |
| 152 | kmem_cache_free(nat_entry_slab, new); |
| 153 | return NULL; |
| 154 | } |
| 155 | memset(new, 0, sizeof(struct nat_entry)); |
| 156 | nat_set_nid(new, nid); |
| 157 | list_add_tail(&new->list, &nm_i->nat_entries); |
| 158 | nm_i->nat_cnt++; |
| 159 | return new; |
| 160 | } |
| 161 | |
| 162 | static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid, |
| 163 | struct f2fs_nat_entry *ne) |
| 164 | { |
| 165 | struct nat_entry *e; |
| 166 | retry: |
| 167 | write_lock(&nm_i->nat_tree_lock); |
| 168 | e = __lookup_nat_cache(nm_i, nid); |
| 169 | if (!e) { |
| 170 | e = grab_nat_entry(nm_i, nid); |
| 171 | if (!e) { |
| 172 | write_unlock(&nm_i->nat_tree_lock); |
| 173 | goto retry; |
| 174 | } |
| 175 | nat_set_blkaddr(e, le32_to_cpu(ne->block_addr)); |
| 176 | nat_set_ino(e, le32_to_cpu(ne->ino)); |
| 177 | nat_set_version(e, ne->version); |
| 178 | e->checkpointed = true; |
| 179 | } |
| 180 | write_unlock(&nm_i->nat_tree_lock); |
| 181 | } |
| 182 | |
| 183 | static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, |
| 184 | block_t new_blkaddr) |
| 185 | { |
| 186 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 187 | struct nat_entry *e; |
| 188 | retry: |
| 189 | write_lock(&nm_i->nat_tree_lock); |
| 190 | e = __lookup_nat_cache(nm_i, ni->nid); |
| 191 | if (!e) { |
| 192 | e = grab_nat_entry(nm_i, ni->nid); |
| 193 | if (!e) { |
| 194 | write_unlock(&nm_i->nat_tree_lock); |
| 195 | goto retry; |
| 196 | } |
| 197 | e->ni = *ni; |
| 198 | e->checkpointed = true; |
| 199 | BUG_ON(ni->blk_addr == NEW_ADDR); |
| 200 | } else if (new_blkaddr == NEW_ADDR) { |
| 201 | /* |
| 202 | * when nid is reallocated, |
| 203 | * previous nat entry can be remained in nat cache. |
| 204 | * So, reinitialize it with new information. |
| 205 | */ |
| 206 | e->ni = *ni; |
| 207 | BUG_ON(ni->blk_addr != NULL_ADDR); |
| 208 | } |
| 209 | |
| 210 | if (new_blkaddr == NEW_ADDR) |
| 211 | e->checkpointed = false; |
| 212 | |
| 213 | /* sanity check */ |
| 214 | BUG_ON(nat_get_blkaddr(e) != ni->blk_addr); |
| 215 | BUG_ON(nat_get_blkaddr(e) == NULL_ADDR && |
| 216 | new_blkaddr == NULL_ADDR); |
| 217 | BUG_ON(nat_get_blkaddr(e) == NEW_ADDR && |
| 218 | new_blkaddr == NEW_ADDR); |
| 219 | BUG_ON(nat_get_blkaddr(e) != NEW_ADDR && |
| 220 | nat_get_blkaddr(e) != NULL_ADDR && |
| 221 | new_blkaddr == NEW_ADDR); |
| 222 | |
| 223 | /* increament version no as node is removed */ |
| 224 | if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { |
| 225 | unsigned char version = nat_get_version(e); |
| 226 | nat_set_version(e, inc_node_version(version)); |
| 227 | } |
| 228 | |
| 229 | /* change address */ |
| 230 | nat_set_blkaddr(e, new_blkaddr); |
| 231 | __set_nat_cache_dirty(nm_i, e); |
| 232 | write_unlock(&nm_i->nat_tree_lock); |
| 233 | } |
| 234 | |
| 235 | static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) |
| 236 | { |
| 237 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 238 | |
| 239 | if (nm_i->nat_cnt < 2 * NM_WOUT_THRESHOLD) |
| 240 | return 0; |
| 241 | |
| 242 | write_lock(&nm_i->nat_tree_lock); |
| 243 | while (nr_shrink && !list_empty(&nm_i->nat_entries)) { |
| 244 | struct nat_entry *ne; |
| 245 | ne = list_first_entry(&nm_i->nat_entries, |
| 246 | struct nat_entry, list); |
| 247 | __del_from_nat_cache(nm_i, ne); |
| 248 | nr_shrink--; |
| 249 | } |
| 250 | write_unlock(&nm_i->nat_tree_lock); |
| 251 | return nr_shrink; |
| 252 | } |
| 253 | |
Jaegeuk Kim | 0a8165d | 2012-11-29 13:28:09 +0900 | [diff] [blame] | 254 | /* |
Jaegeuk Kim | e05df3b | 2012-11-02 17:08:50 +0900 | [diff] [blame] | 255 | * This function returns always success |
| 256 | */ |
| 257 | void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) |
| 258 | { |
| 259 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 260 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| 261 | struct f2fs_summary_block *sum = curseg->sum_blk; |
| 262 | nid_t start_nid = START_NID(nid); |
| 263 | struct f2fs_nat_block *nat_blk; |
| 264 | struct page *page = NULL; |
| 265 | struct f2fs_nat_entry ne; |
| 266 | struct nat_entry *e; |
| 267 | int i; |
| 268 | |
Namjae Jeon | be4124f | 2012-12-01 10:55:12 +0900 | [diff] [blame] | 269 | memset(&ne, 0, sizeof(struct f2fs_nat_entry)); |
Jaegeuk Kim | e05df3b | 2012-11-02 17:08:50 +0900 | [diff] [blame] | 270 | ni->nid = nid; |
| 271 | |
| 272 | /* Check nat cache */ |
| 273 | read_lock(&nm_i->nat_tree_lock); |
| 274 | e = __lookup_nat_cache(nm_i, nid); |
| 275 | if (e) { |
| 276 | ni->ino = nat_get_ino(e); |
| 277 | ni->blk_addr = nat_get_blkaddr(e); |
| 278 | ni->version = nat_get_version(e); |
| 279 | } |
| 280 | read_unlock(&nm_i->nat_tree_lock); |
| 281 | if (e) |
| 282 | return; |
| 283 | |
| 284 | /* Check current segment summary */ |
| 285 | mutex_lock(&curseg->curseg_mutex); |
| 286 | i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0); |
| 287 | if (i >= 0) { |
| 288 | ne = nat_in_journal(sum, i); |
| 289 | node_info_from_raw_nat(ni, &ne); |
| 290 | } |
| 291 | mutex_unlock(&curseg->curseg_mutex); |
| 292 | if (i >= 0) |
| 293 | goto cache; |
| 294 | |
| 295 | /* Fill node_info from nat page */ |
| 296 | page = get_current_nat_page(sbi, start_nid); |
| 297 | nat_blk = (struct f2fs_nat_block *)page_address(page); |
| 298 | ne = nat_blk->entries[nid - start_nid]; |
| 299 | node_info_from_raw_nat(ni, &ne); |
| 300 | f2fs_put_page(page, 1); |
| 301 | cache: |
| 302 | /* cache nat entry */ |
| 303 | cache_nat_entry(NM_I(sbi), nid, &ne); |
| 304 | } |
| 305 | |
Jaegeuk Kim | 0a8165d | 2012-11-29 13:28:09 +0900 | [diff] [blame] | 306 | /* |
Jaegeuk Kim | e05df3b | 2012-11-02 17:08:50 +0900 | [diff] [blame] | 307 | * The maximum depth is four. |
| 308 | * Offset[0] will have raw inode offset. |
| 309 | */ |
| 310 | static int get_node_path(long block, int offset[4], unsigned int noffset[4]) |
| 311 | { |
| 312 | const long direct_index = ADDRS_PER_INODE; |
| 313 | const long direct_blks = ADDRS_PER_BLOCK; |
| 314 | const long dptrs_per_blk = NIDS_PER_BLOCK; |
| 315 | const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; |
| 316 | const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; |
| 317 | int n = 0; |
| 318 | int level = 0; |
| 319 | |
| 320 | noffset[0] = 0; |
| 321 | |
| 322 | if (block < direct_index) { |
| 323 | offset[n++] = block; |
| 324 | level = 0; |
| 325 | goto got; |
| 326 | } |
| 327 | block -= direct_index; |
| 328 | if (block < direct_blks) { |
| 329 | offset[n++] = NODE_DIR1_BLOCK; |
| 330 | noffset[n] = 1; |
| 331 | offset[n++] = block; |
| 332 | level = 1; |
| 333 | goto got; |
| 334 | } |
| 335 | block -= direct_blks; |
| 336 | if (block < direct_blks) { |
| 337 | offset[n++] = NODE_DIR2_BLOCK; |
| 338 | noffset[n] = 2; |
| 339 | offset[n++] = block; |
| 340 | level = 1; |
| 341 | goto got; |
| 342 | } |
| 343 | block -= direct_blks; |
| 344 | if (block < indirect_blks) { |
| 345 | offset[n++] = NODE_IND1_BLOCK; |
| 346 | noffset[n] = 3; |
| 347 | offset[n++] = block / direct_blks; |
| 348 | noffset[n] = 4 + offset[n - 1]; |
| 349 | offset[n++] = block % direct_blks; |
| 350 | level = 2; |
| 351 | goto got; |
| 352 | } |
| 353 | block -= indirect_blks; |
| 354 | if (block < indirect_blks) { |
| 355 | offset[n++] = NODE_IND2_BLOCK; |
| 356 | noffset[n] = 4 + dptrs_per_blk; |
| 357 | offset[n++] = block / direct_blks; |
| 358 | noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; |
| 359 | offset[n++] = block % direct_blks; |
| 360 | level = 2; |
| 361 | goto got; |
| 362 | } |
| 363 | block -= indirect_blks; |
| 364 | if (block < dindirect_blks) { |
| 365 | offset[n++] = NODE_DIND_BLOCK; |
| 366 | noffset[n] = 5 + (dptrs_per_blk * 2); |
| 367 | offset[n++] = block / indirect_blks; |
| 368 | noffset[n] = 6 + (dptrs_per_blk * 2) + |
| 369 | offset[n - 1] * (dptrs_per_blk + 1); |
| 370 | offset[n++] = (block / direct_blks) % dptrs_per_blk; |
| 371 | noffset[n] = 7 + (dptrs_per_blk * 2) + |
| 372 | offset[n - 2] * (dptrs_per_blk + 1) + |
| 373 | offset[n - 1]; |
| 374 | offset[n++] = block % direct_blks; |
| 375 | level = 3; |
| 376 | goto got; |
| 377 | } else { |
| 378 | BUG(); |
| 379 | } |
| 380 | got: |
| 381 | return level; |
| 382 | } |
| 383 | |
| 384 | /* |
| 385 | * Caller should call f2fs_put_dnode(dn). |
| 386 | */ |
| 387 | int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int ro) |
| 388 | { |
| 389 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); |
| 390 | struct page *npage[4]; |
| 391 | struct page *parent; |
| 392 | int offset[4]; |
| 393 | unsigned int noffset[4]; |
| 394 | nid_t nids[4]; |
| 395 | int level, i; |
| 396 | int err = 0; |
| 397 | |
| 398 | level = get_node_path(index, offset, noffset); |
| 399 | |
| 400 | nids[0] = dn->inode->i_ino; |
| 401 | npage[0] = get_node_page(sbi, nids[0]); |
| 402 | if (IS_ERR(npage[0])) |
| 403 | return PTR_ERR(npage[0]); |
| 404 | |
| 405 | parent = npage[0]; |
| 406 | nids[1] = get_nid(parent, offset[0], true); |
| 407 | dn->inode_page = npage[0]; |
| 408 | dn->inode_page_locked = true; |
| 409 | |
| 410 | /* get indirect or direct nodes */ |
| 411 | for (i = 1; i <= level; i++) { |
| 412 | bool done = false; |
| 413 | |
| 414 | if (!nids[i] && !ro) { |
| 415 | mutex_lock_op(sbi, NODE_NEW); |
| 416 | |
| 417 | /* alloc new node */ |
| 418 | if (!alloc_nid(sbi, &(nids[i]))) { |
| 419 | mutex_unlock_op(sbi, NODE_NEW); |
| 420 | err = -ENOSPC; |
| 421 | goto release_pages; |
| 422 | } |
| 423 | |
| 424 | dn->nid = nids[i]; |
| 425 | npage[i] = new_node_page(dn, noffset[i]); |
| 426 | if (IS_ERR(npage[i])) { |
| 427 | alloc_nid_failed(sbi, nids[i]); |
| 428 | mutex_unlock_op(sbi, NODE_NEW); |
| 429 | err = PTR_ERR(npage[i]); |
| 430 | goto release_pages; |
| 431 | } |
| 432 | |
| 433 | set_nid(parent, offset[i - 1], nids[i], i == 1); |
| 434 | alloc_nid_done(sbi, nids[i]); |
| 435 | mutex_unlock_op(sbi, NODE_NEW); |
| 436 | done = true; |
| 437 | } else if (ro && i == level && level > 1) { |
| 438 | npage[i] = get_node_page_ra(parent, offset[i - 1]); |
| 439 | if (IS_ERR(npage[i])) { |
| 440 | err = PTR_ERR(npage[i]); |
| 441 | goto release_pages; |
| 442 | } |
| 443 | done = true; |
| 444 | } |
| 445 | if (i == 1) { |
| 446 | dn->inode_page_locked = false; |
| 447 | unlock_page(parent); |
| 448 | } else { |
| 449 | f2fs_put_page(parent, 1); |
| 450 | } |
| 451 | |
| 452 | if (!done) { |
| 453 | npage[i] = get_node_page(sbi, nids[i]); |
| 454 | if (IS_ERR(npage[i])) { |
| 455 | err = PTR_ERR(npage[i]); |
| 456 | f2fs_put_page(npage[0], 0); |
| 457 | goto release_out; |
| 458 | } |
| 459 | } |
| 460 | if (i < level) { |
| 461 | parent = npage[i]; |
| 462 | nids[i + 1] = get_nid(parent, offset[i], false); |
| 463 | } |
| 464 | } |
| 465 | dn->nid = nids[level]; |
| 466 | dn->ofs_in_node = offset[level]; |
| 467 | dn->node_page = npage[level]; |
| 468 | dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); |
| 469 | return 0; |
| 470 | |
| 471 | release_pages: |
| 472 | f2fs_put_page(parent, 1); |
| 473 | if (i > 1) |
| 474 | f2fs_put_page(npage[0], 0); |
| 475 | release_out: |
| 476 | dn->inode_page = NULL; |
| 477 | dn->node_page = NULL; |
| 478 | return err; |
| 479 | } |
| 480 | |
| 481 | static void truncate_node(struct dnode_of_data *dn) |
| 482 | { |
| 483 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); |
| 484 | struct node_info ni; |
| 485 | |
| 486 | get_node_info(sbi, dn->nid, &ni); |
| 487 | BUG_ON(ni.blk_addr == NULL_ADDR); |
| 488 | |
| 489 | if (ni.blk_addr != NULL_ADDR) |
| 490 | invalidate_blocks(sbi, ni.blk_addr); |
| 491 | |
| 492 | /* Deallocate node address */ |
| 493 | dec_valid_node_count(sbi, dn->inode, 1); |
| 494 | set_node_addr(sbi, &ni, NULL_ADDR); |
| 495 | |
| 496 | if (dn->nid == dn->inode->i_ino) { |
| 497 | remove_orphan_inode(sbi, dn->nid); |
| 498 | dec_valid_inode_count(sbi); |
| 499 | } else { |
| 500 | sync_inode_page(dn); |
| 501 | } |
| 502 | |
| 503 | clear_node_page_dirty(dn->node_page); |
| 504 | F2FS_SET_SB_DIRT(sbi); |
| 505 | |
| 506 | f2fs_put_page(dn->node_page, 1); |
| 507 | dn->node_page = NULL; |
| 508 | } |
| 509 | |
| 510 | static int truncate_dnode(struct dnode_of_data *dn) |
| 511 | { |
| 512 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); |
| 513 | struct page *page; |
| 514 | |
| 515 | if (dn->nid == 0) |
| 516 | return 1; |
| 517 | |
| 518 | /* get direct node */ |
| 519 | page = get_node_page(sbi, dn->nid); |
| 520 | if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) |
| 521 | return 1; |
| 522 | else if (IS_ERR(page)) |
| 523 | return PTR_ERR(page); |
| 524 | |
| 525 | /* Make dnode_of_data for parameter */ |
| 526 | dn->node_page = page; |
| 527 | dn->ofs_in_node = 0; |
| 528 | truncate_data_blocks(dn); |
| 529 | truncate_node(dn); |
| 530 | return 1; |
| 531 | } |
| 532 | |
| 533 | static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, |
| 534 | int ofs, int depth) |
| 535 | { |
| 536 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); |
| 537 | struct dnode_of_data rdn = *dn; |
| 538 | struct page *page; |
| 539 | struct f2fs_node *rn; |
| 540 | nid_t child_nid; |
| 541 | unsigned int child_nofs; |
| 542 | int freed = 0; |
| 543 | int i, ret; |
| 544 | |
| 545 | if (dn->nid == 0) |
| 546 | return NIDS_PER_BLOCK + 1; |
| 547 | |
| 548 | page = get_node_page(sbi, dn->nid); |
| 549 | if (IS_ERR(page)) |
| 550 | return PTR_ERR(page); |
| 551 | |
| 552 | rn = (struct f2fs_node *)page_address(page); |
| 553 | if (depth < 3) { |
| 554 | for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { |
| 555 | child_nid = le32_to_cpu(rn->in.nid[i]); |
| 556 | if (child_nid == 0) |
| 557 | continue; |
| 558 | rdn.nid = child_nid; |
| 559 | ret = truncate_dnode(&rdn); |
| 560 | if (ret < 0) |
| 561 | goto out_err; |
| 562 | set_nid(page, i, 0, false); |
| 563 | } |
| 564 | } else { |
| 565 | child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; |
| 566 | for (i = ofs; i < NIDS_PER_BLOCK; i++) { |
| 567 | child_nid = le32_to_cpu(rn->in.nid[i]); |
| 568 | if (child_nid == 0) { |
| 569 | child_nofs += NIDS_PER_BLOCK + 1; |
| 570 | continue; |
| 571 | } |
| 572 | rdn.nid = child_nid; |
| 573 | ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); |
| 574 | if (ret == (NIDS_PER_BLOCK + 1)) { |
| 575 | set_nid(page, i, 0, false); |
| 576 | child_nofs += ret; |
| 577 | } else if (ret < 0 && ret != -ENOENT) { |
| 578 | goto out_err; |
| 579 | } |
| 580 | } |
| 581 | freed = child_nofs; |
| 582 | } |
| 583 | |
| 584 | if (!ofs) { |
| 585 | /* remove current indirect node */ |
| 586 | dn->node_page = page; |
| 587 | truncate_node(dn); |
| 588 | freed++; |
| 589 | } else { |
| 590 | f2fs_put_page(page, 1); |
| 591 | } |
| 592 | return freed; |
| 593 | |
| 594 | out_err: |
| 595 | f2fs_put_page(page, 1); |
| 596 | return ret; |
| 597 | } |
| 598 | |
| 599 | static int truncate_partial_nodes(struct dnode_of_data *dn, |
| 600 | struct f2fs_inode *ri, int *offset, int depth) |
| 601 | { |
| 602 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); |
| 603 | struct page *pages[2]; |
| 604 | nid_t nid[3]; |
| 605 | nid_t child_nid; |
| 606 | int err = 0; |
| 607 | int i; |
| 608 | int idx = depth - 2; |
| 609 | |
| 610 | nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); |
| 611 | if (!nid[0]) |
| 612 | return 0; |
| 613 | |
| 614 | /* get indirect nodes in the path */ |
| 615 | for (i = 0; i < depth - 1; i++) { |
| 616 | /* refernece count'll be increased */ |
| 617 | pages[i] = get_node_page(sbi, nid[i]); |
| 618 | if (IS_ERR(pages[i])) { |
| 619 | depth = i + 1; |
| 620 | err = PTR_ERR(pages[i]); |
| 621 | goto fail; |
| 622 | } |
| 623 | nid[i + 1] = get_nid(pages[i], offset[i + 1], false); |
| 624 | } |
| 625 | |
| 626 | /* free direct nodes linked to a partial indirect node */ |
| 627 | for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) { |
| 628 | child_nid = get_nid(pages[idx], i, false); |
| 629 | if (!child_nid) |
| 630 | continue; |
| 631 | dn->nid = child_nid; |
| 632 | err = truncate_dnode(dn); |
| 633 | if (err < 0) |
| 634 | goto fail; |
| 635 | set_nid(pages[idx], i, 0, false); |
| 636 | } |
| 637 | |
| 638 | if (offset[depth - 1] == 0) { |
| 639 | dn->node_page = pages[idx]; |
| 640 | dn->nid = nid[idx]; |
| 641 | truncate_node(dn); |
| 642 | } else { |
| 643 | f2fs_put_page(pages[idx], 1); |
| 644 | } |
| 645 | offset[idx]++; |
| 646 | offset[depth - 1] = 0; |
| 647 | fail: |
| 648 | for (i = depth - 3; i >= 0; i--) |
| 649 | f2fs_put_page(pages[i], 1); |
| 650 | return err; |
| 651 | } |
| 652 | |
Jaegeuk Kim | 0a8165d | 2012-11-29 13:28:09 +0900 | [diff] [blame] | 653 | /* |
Jaegeuk Kim | e05df3b | 2012-11-02 17:08:50 +0900 | [diff] [blame] | 654 | * All the block addresses of data and nodes should be nullified. |
| 655 | */ |
| 656 | int truncate_inode_blocks(struct inode *inode, pgoff_t from) |
| 657 | { |
| 658 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); |
| 659 | int err = 0, cont = 1; |
| 660 | int level, offset[4], noffset[4]; |
| 661 | unsigned int nofs; |
| 662 | struct f2fs_node *rn; |
| 663 | struct dnode_of_data dn; |
| 664 | struct page *page; |
| 665 | |
| 666 | level = get_node_path(from, offset, noffset); |
| 667 | |
| 668 | page = get_node_page(sbi, inode->i_ino); |
| 669 | if (IS_ERR(page)) |
| 670 | return PTR_ERR(page); |
| 671 | |
| 672 | set_new_dnode(&dn, inode, page, NULL, 0); |
| 673 | unlock_page(page); |
| 674 | |
| 675 | rn = page_address(page); |
| 676 | switch (level) { |
| 677 | case 0: |
| 678 | case 1: |
| 679 | nofs = noffset[1]; |
| 680 | break; |
| 681 | case 2: |
| 682 | nofs = noffset[1]; |
| 683 | if (!offset[level - 1]) |
| 684 | goto skip_partial; |
| 685 | err = truncate_partial_nodes(&dn, &rn->i, offset, level); |
| 686 | if (err < 0 && err != -ENOENT) |
| 687 | goto fail; |
| 688 | nofs += 1 + NIDS_PER_BLOCK; |
| 689 | break; |
| 690 | case 3: |
| 691 | nofs = 5 + 2 * NIDS_PER_BLOCK; |
| 692 | if (!offset[level - 1]) |
| 693 | goto skip_partial; |
| 694 | err = truncate_partial_nodes(&dn, &rn->i, offset, level); |
| 695 | if (err < 0 && err != -ENOENT) |
| 696 | goto fail; |
| 697 | break; |
| 698 | default: |
| 699 | BUG(); |
| 700 | } |
| 701 | |
| 702 | skip_partial: |
| 703 | while (cont) { |
| 704 | dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]); |
| 705 | switch (offset[0]) { |
| 706 | case NODE_DIR1_BLOCK: |
| 707 | case NODE_DIR2_BLOCK: |
| 708 | err = truncate_dnode(&dn); |
| 709 | break; |
| 710 | |
| 711 | case NODE_IND1_BLOCK: |
| 712 | case NODE_IND2_BLOCK: |
| 713 | err = truncate_nodes(&dn, nofs, offset[1], 2); |
| 714 | break; |
| 715 | |
| 716 | case NODE_DIND_BLOCK: |
| 717 | err = truncate_nodes(&dn, nofs, offset[1], 3); |
| 718 | cont = 0; |
| 719 | break; |
| 720 | |
| 721 | default: |
| 722 | BUG(); |
| 723 | } |
| 724 | if (err < 0 && err != -ENOENT) |
| 725 | goto fail; |
| 726 | if (offset[1] == 0 && |
| 727 | rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) { |
| 728 | lock_page(page); |
| 729 | wait_on_page_writeback(page); |
| 730 | rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; |
| 731 | set_page_dirty(page); |
| 732 | unlock_page(page); |
| 733 | } |
| 734 | offset[1] = 0; |
| 735 | offset[0]++; |
| 736 | nofs += err; |
| 737 | } |
| 738 | fail: |
| 739 | f2fs_put_page(page, 0); |
| 740 | return err > 0 ? 0 : err; |
| 741 | } |
| 742 | |
| 743 | int remove_inode_page(struct inode *inode) |
| 744 | { |
| 745 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); |
| 746 | struct page *page; |
| 747 | nid_t ino = inode->i_ino; |
| 748 | struct dnode_of_data dn; |
| 749 | |
| 750 | mutex_lock_op(sbi, NODE_TRUNC); |
| 751 | page = get_node_page(sbi, ino); |
| 752 | if (IS_ERR(page)) { |
| 753 | mutex_unlock_op(sbi, NODE_TRUNC); |
| 754 | return PTR_ERR(page); |
| 755 | } |
| 756 | |
| 757 | if (F2FS_I(inode)->i_xattr_nid) { |
| 758 | nid_t nid = F2FS_I(inode)->i_xattr_nid; |
| 759 | struct page *npage = get_node_page(sbi, nid); |
| 760 | |
| 761 | if (IS_ERR(npage)) { |
| 762 | mutex_unlock_op(sbi, NODE_TRUNC); |
| 763 | return PTR_ERR(npage); |
| 764 | } |
| 765 | |
| 766 | F2FS_I(inode)->i_xattr_nid = 0; |
| 767 | set_new_dnode(&dn, inode, page, npage, nid); |
| 768 | dn.inode_page_locked = 1; |
| 769 | truncate_node(&dn); |
| 770 | } |
| 771 | if (inode->i_blocks == 1) { |
| 772 | /* inernally call f2fs_put_page() */ |
| 773 | set_new_dnode(&dn, inode, page, page, ino); |
| 774 | truncate_node(&dn); |
| 775 | } else if (inode->i_blocks == 0) { |
| 776 | struct node_info ni; |
| 777 | get_node_info(sbi, inode->i_ino, &ni); |
| 778 | |
| 779 | /* called after f2fs_new_inode() is failed */ |
| 780 | BUG_ON(ni.blk_addr != NULL_ADDR); |
| 781 | f2fs_put_page(page, 1); |
| 782 | } else { |
| 783 | BUG(); |
| 784 | } |
| 785 | mutex_unlock_op(sbi, NODE_TRUNC); |
| 786 | return 0; |
| 787 | } |
| 788 | |
| 789 | int new_inode_page(struct inode *inode, struct dentry *dentry) |
| 790 | { |
| 791 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); |
| 792 | struct page *page; |
| 793 | struct dnode_of_data dn; |
| 794 | |
| 795 | /* allocate inode page for new inode */ |
| 796 | set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); |
| 797 | mutex_lock_op(sbi, NODE_NEW); |
| 798 | page = new_node_page(&dn, 0); |
| 799 | init_dent_inode(dentry, page); |
| 800 | mutex_unlock_op(sbi, NODE_NEW); |
| 801 | if (IS_ERR(page)) |
| 802 | return PTR_ERR(page); |
| 803 | f2fs_put_page(page, 1); |
| 804 | return 0; |
| 805 | } |
| 806 | |
| 807 | struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs) |
| 808 | { |
| 809 | struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); |
| 810 | struct address_space *mapping = sbi->node_inode->i_mapping; |
| 811 | struct node_info old_ni, new_ni; |
| 812 | struct page *page; |
| 813 | int err; |
| 814 | |
| 815 | if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)) |
| 816 | return ERR_PTR(-EPERM); |
| 817 | |
| 818 | page = grab_cache_page(mapping, dn->nid); |
| 819 | if (!page) |
| 820 | return ERR_PTR(-ENOMEM); |
| 821 | |
| 822 | get_node_info(sbi, dn->nid, &old_ni); |
| 823 | |
| 824 | SetPageUptodate(page); |
| 825 | fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); |
| 826 | |
| 827 | /* Reinitialize old_ni with new node page */ |
| 828 | BUG_ON(old_ni.blk_addr != NULL_ADDR); |
| 829 | new_ni = old_ni; |
| 830 | new_ni.ino = dn->inode->i_ino; |
| 831 | |
| 832 | if (!inc_valid_node_count(sbi, dn->inode, 1)) { |
| 833 | err = -ENOSPC; |
| 834 | goto fail; |
| 835 | } |
| 836 | set_node_addr(sbi, &new_ni, NEW_ADDR); |
Jaegeuk Kim | 398b1ac | 2012-12-19 15:28:39 +0900 | [diff] [blame^] | 837 | set_cold_node(dn->inode, page); |
Jaegeuk Kim | e05df3b | 2012-11-02 17:08:50 +0900 | [diff] [blame] | 838 | |
| 839 | dn->node_page = page; |
| 840 | sync_inode_page(dn); |
| 841 | set_page_dirty(page); |
Jaegeuk Kim | e05df3b | 2012-11-02 17:08:50 +0900 | [diff] [blame] | 842 | if (ofs == 0) |
| 843 | inc_valid_inode_count(sbi); |
| 844 | |
| 845 | return page; |
| 846 | |
| 847 | fail: |
| 848 | f2fs_put_page(page, 1); |
| 849 | return ERR_PTR(err); |
| 850 | } |
| 851 | |
| 852 | static int read_node_page(struct page *page, int type) |
| 853 | { |
| 854 | struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); |
| 855 | struct node_info ni; |
| 856 | |
| 857 | get_node_info(sbi, page->index, &ni); |
| 858 | |
| 859 | if (ni.blk_addr == NULL_ADDR) |
| 860 | return -ENOENT; |
| 861 | return f2fs_readpage(sbi, page, ni.blk_addr, type); |
| 862 | } |
| 863 | |
Jaegeuk Kim | 0a8165d | 2012-11-29 13:28:09 +0900 | [diff] [blame] | 864 | /* |
Jaegeuk Kim | e05df3b | 2012-11-02 17:08:50 +0900 | [diff] [blame] | 865 | * Readahead a node page |
| 866 | */ |
| 867 | void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) |
| 868 | { |
| 869 | struct address_space *mapping = sbi->node_inode->i_mapping; |
| 870 | struct page *apage; |
| 871 | |
| 872 | apage = find_get_page(mapping, nid); |
| 873 | if (apage && PageUptodate(apage)) |
| 874 | goto release_out; |
| 875 | f2fs_put_page(apage, 0); |
| 876 | |
| 877 | apage = grab_cache_page(mapping, nid); |
| 878 | if (!apage) |
| 879 | return; |
| 880 | |
| 881 | if (read_node_page(apage, READA)) |
| 882 | goto unlock_out; |
| 883 | |
| 884 | page_cache_release(apage); |
| 885 | return; |
| 886 | |
| 887 | unlock_out: |
| 888 | unlock_page(apage); |
| 889 | release_out: |
| 890 | page_cache_release(apage); |
| 891 | } |
| 892 | |
| 893 | struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) |
| 894 | { |
| 895 | int err; |
| 896 | struct page *page; |
| 897 | struct address_space *mapping = sbi->node_inode->i_mapping; |
| 898 | |
| 899 | page = grab_cache_page(mapping, nid); |
| 900 | if (!page) |
| 901 | return ERR_PTR(-ENOMEM); |
| 902 | |
| 903 | err = read_node_page(page, READ_SYNC); |
| 904 | if (err) { |
| 905 | f2fs_put_page(page, 1); |
| 906 | return ERR_PTR(err); |
| 907 | } |
| 908 | |
| 909 | BUG_ON(nid != nid_of_node(page)); |
| 910 | mark_page_accessed(page); |
| 911 | return page; |
| 912 | } |
| 913 | |
Jaegeuk Kim | 0a8165d | 2012-11-29 13:28:09 +0900 | [diff] [blame] | 914 | /* |
Jaegeuk Kim | e05df3b | 2012-11-02 17:08:50 +0900 | [diff] [blame] | 915 | * Return a locked page for the desired node page. |
| 916 | * And, readahead MAX_RA_NODE number of node pages. |
| 917 | */ |
| 918 | struct page *get_node_page_ra(struct page *parent, int start) |
| 919 | { |
| 920 | struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb); |
| 921 | struct address_space *mapping = sbi->node_inode->i_mapping; |
| 922 | int i, end; |
| 923 | int err = 0; |
| 924 | nid_t nid; |
| 925 | struct page *page; |
| 926 | |
| 927 | /* First, try getting the desired direct node. */ |
| 928 | nid = get_nid(parent, start, false); |
| 929 | if (!nid) |
| 930 | return ERR_PTR(-ENOENT); |
| 931 | |
| 932 | page = find_get_page(mapping, nid); |
| 933 | if (page && PageUptodate(page)) |
| 934 | goto page_hit; |
| 935 | f2fs_put_page(page, 0); |
| 936 | |
| 937 | repeat: |
| 938 | page = grab_cache_page(mapping, nid); |
| 939 | if (!page) |
| 940 | return ERR_PTR(-ENOMEM); |
| 941 | |
| 942 | err = read_node_page(page, READA); |
| 943 | if (err) { |
| 944 | f2fs_put_page(page, 1); |
| 945 | return ERR_PTR(err); |
| 946 | } |
| 947 | |
| 948 | /* Then, try readahead for siblings of the desired node */ |
| 949 | end = start + MAX_RA_NODE; |
| 950 | end = min(end, NIDS_PER_BLOCK); |
| 951 | for (i = start + 1; i < end; i++) { |
| 952 | nid = get_nid(parent, i, false); |
| 953 | if (!nid) |
| 954 | continue; |
| 955 | ra_node_page(sbi, nid); |
| 956 | } |
| 957 | |
| 958 | page_hit: |
| 959 | lock_page(page); |
| 960 | if (PageError(page)) { |
| 961 | f2fs_put_page(page, 1); |
| 962 | return ERR_PTR(-EIO); |
| 963 | } |
| 964 | |
| 965 | /* Has the page been truncated? */ |
| 966 | if (page->mapping != mapping) { |
| 967 | f2fs_put_page(page, 1); |
| 968 | goto repeat; |
| 969 | } |
| 970 | return page; |
| 971 | } |
| 972 | |
| 973 | void sync_inode_page(struct dnode_of_data *dn) |
| 974 | { |
| 975 | if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) { |
| 976 | update_inode(dn->inode, dn->node_page); |
| 977 | } else if (dn->inode_page) { |
| 978 | if (!dn->inode_page_locked) |
| 979 | lock_page(dn->inode_page); |
| 980 | update_inode(dn->inode, dn->inode_page); |
| 981 | if (!dn->inode_page_locked) |
| 982 | unlock_page(dn->inode_page); |
| 983 | } else { |
| 984 | f2fs_write_inode(dn->inode, NULL); |
| 985 | } |
| 986 | } |
| 987 | |
| 988 | int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino, |
| 989 | struct writeback_control *wbc) |
| 990 | { |
| 991 | struct address_space *mapping = sbi->node_inode->i_mapping; |
| 992 | pgoff_t index, end; |
| 993 | struct pagevec pvec; |
| 994 | int step = ino ? 2 : 0; |
| 995 | int nwritten = 0, wrote = 0; |
| 996 | |
| 997 | pagevec_init(&pvec, 0); |
| 998 | |
| 999 | next_step: |
| 1000 | index = 0; |
| 1001 | end = LONG_MAX; |
| 1002 | |
| 1003 | while (index <= end) { |
| 1004 | int i, nr_pages; |
| 1005 | nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, |
| 1006 | PAGECACHE_TAG_DIRTY, |
| 1007 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); |
| 1008 | if (nr_pages == 0) |
| 1009 | break; |
| 1010 | |
| 1011 | for (i = 0; i < nr_pages; i++) { |
| 1012 | struct page *page = pvec.pages[i]; |
| 1013 | |
| 1014 | /* |
| 1015 | * flushing sequence with step: |
| 1016 | * 0. indirect nodes |
| 1017 | * 1. dentry dnodes |
| 1018 | * 2. file dnodes |
| 1019 | */ |
| 1020 | if (step == 0 && IS_DNODE(page)) |
| 1021 | continue; |
| 1022 | if (step == 1 && (!IS_DNODE(page) || |
| 1023 | is_cold_node(page))) |
| 1024 | continue; |
| 1025 | if (step == 2 && (!IS_DNODE(page) || |
| 1026 | !is_cold_node(page))) |
| 1027 | continue; |
| 1028 | |
| 1029 | /* |
| 1030 | * If an fsync mode, |
| 1031 | * we should not skip writing node pages. |
| 1032 | */ |
| 1033 | if (ino && ino_of_node(page) == ino) |
| 1034 | lock_page(page); |
| 1035 | else if (!trylock_page(page)) |
| 1036 | continue; |
| 1037 | |
| 1038 | if (unlikely(page->mapping != mapping)) { |
| 1039 | continue_unlock: |
| 1040 | unlock_page(page); |
| 1041 | continue; |
| 1042 | } |
| 1043 | if (ino && ino_of_node(page) != ino) |
| 1044 | goto continue_unlock; |
| 1045 | |
| 1046 | if (!PageDirty(page)) { |
| 1047 | /* someone wrote it for us */ |
| 1048 | goto continue_unlock; |
| 1049 | } |
| 1050 | |
| 1051 | if (!clear_page_dirty_for_io(page)) |
| 1052 | goto continue_unlock; |
| 1053 | |
| 1054 | /* called by fsync() */ |
| 1055 | if (ino && IS_DNODE(page)) { |
| 1056 | int mark = !is_checkpointed_node(sbi, ino); |
| 1057 | set_fsync_mark(page, 1); |
| 1058 | if (IS_INODE(page)) |
| 1059 | set_dentry_mark(page, mark); |
| 1060 | nwritten++; |
| 1061 | } else { |
| 1062 | set_fsync_mark(page, 0); |
| 1063 | set_dentry_mark(page, 0); |
| 1064 | } |
| 1065 | mapping->a_ops->writepage(page, wbc); |
| 1066 | wrote++; |
| 1067 | |
| 1068 | if (--wbc->nr_to_write == 0) |
| 1069 | break; |
| 1070 | } |
| 1071 | pagevec_release(&pvec); |
| 1072 | cond_resched(); |
| 1073 | |
| 1074 | if (wbc->nr_to_write == 0) { |
| 1075 | step = 2; |
| 1076 | break; |
| 1077 | } |
| 1078 | } |
| 1079 | |
| 1080 | if (step < 2) { |
| 1081 | step++; |
| 1082 | goto next_step; |
| 1083 | } |
| 1084 | |
| 1085 | if (wrote) |
| 1086 | f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL); |
| 1087 | |
| 1088 | return nwritten; |
| 1089 | } |
| 1090 | |
| 1091 | static int f2fs_write_node_page(struct page *page, |
| 1092 | struct writeback_control *wbc) |
| 1093 | { |
| 1094 | struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); |
| 1095 | nid_t nid; |
| 1096 | unsigned int nofs; |
| 1097 | block_t new_addr; |
| 1098 | struct node_info ni; |
| 1099 | |
| 1100 | if (wbc->for_reclaim) { |
| 1101 | dec_page_count(sbi, F2FS_DIRTY_NODES); |
| 1102 | wbc->pages_skipped++; |
| 1103 | set_page_dirty(page); |
| 1104 | return AOP_WRITEPAGE_ACTIVATE; |
| 1105 | } |
| 1106 | |
| 1107 | wait_on_page_writeback(page); |
| 1108 | |
| 1109 | mutex_lock_op(sbi, NODE_WRITE); |
| 1110 | |
| 1111 | /* get old block addr of this node page */ |
| 1112 | nid = nid_of_node(page); |
| 1113 | nofs = ofs_of_node(page); |
| 1114 | BUG_ON(page->index != nid); |
| 1115 | |
| 1116 | get_node_info(sbi, nid, &ni); |
| 1117 | |
| 1118 | /* This page is already truncated */ |
| 1119 | if (ni.blk_addr == NULL_ADDR) |
| 1120 | return 0; |
| 1121 | |
| 1122 | set_page_writeback(page); |
| 1123 | |
| 1124 | /* insert node offset */ |
| 1125 | write_node_page(sbi, page, nid, ni.blk_addr, &new_addr); |
| 1126 | set_node_addr(sbi, &ni, new_addr); |
| 1127 | dec_page_count(sbi, F2FS_DIRTY_NODES); |
| 1128 | |
| 1129 | mutex_unlock_op(sbi, NODE_WRITE); |
| 1130 | unlock_page(page); |
| 1131 | return 0; |
| 1132 | } |
| 1133 | |
| 1134 | static int f2fs_write_node_pages(struct address_space *mapping, |
| 1135 | struct writeback_control *wbc) |
| 1136 | { |
| 1137 | struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); |
| 1138 | struct block_device *bdev = sbi->sb->s_bdev; |
| 1139 | long nr_to_write = wbc->nr_to_write; |
| 1140 | |
| 1141 | if (wbc->for_kupdate) |
| 1142 | return 0; |
| 1143 | |
| 1144 | if (get_pages(sbi, F2FS_DIRTY_NODES) == 0) |
| 1145 | return 0; |
| 1146 | |
| 1147 | if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) { |
| 1148 | write_checkpoint(sbi, false, false); |
| 1149 | return 0; |
| 1150 | } |
| 1151 | |
| 1152 | /* if mounting is failed, skip writing node pages */ |
| 1153 | wbc->nr_to_write = bio_get_nr_vecs(bdev); |
| 1154 | sync_node_pages(sbi, 0, wbc); |
| 1155 | wbc->nr_to_write = nr_to_write - |
| 1156 | (bio_get_nr_vecs(bdev) - wbc->nr_to_write); |
| 1157 | return 0; |
| 1158 | } |
| 1159 | |
| 1160 | static int f2fs_set_node_page_dirty(struct page *page) |
| 1161 | { |
| 1162 | struct address_space *mapping = page->mapping; |
| 1163 | struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); |
| 1164 | |
| 1165 | SetPageUptodate(page); |
| 1166 | if (!PageDirty(page)) { |
| 1167 | __set_page_dirty_nobuffers(page); |
| 1168 | inc_page_count(sbi, F2FS_DIRTY_NODES); |
| 1169 | SetPagePrivate(page); |
| 1170 | return 1; |
| 1171 | } |
| 1172 | return 0; |
| 1173 | } |
| 1174 | |
| 1175 | static void f2fs_invalidate_node_page(struct page *page, unsigned long offset) |
| 1176 | { |
| 1177 | struct inode *inode = page->mapping->host; |
| 1178 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); |
| 1179 | if (PageDirty(page)) |
| 1180 | dec_page_count(sbi, F2FS_DIRTY_NODES); |
| 1181 | ClearPagePrivate(page); |
| 1182 | } |
| 1183 | |
| 1184 | static int f2fs_release_node_page(struct page *page, gfp_t wait) |
| 1185 | { |
| 1186 | ClearPagePrivate(page); |
| 1187 | return 0; |
| 1188 | } |
| 1189 | |
Jaegeuk Kim | 0a8165d | 2012-11-29 13:28:09 +0900 | [diff] [blame] | 1190 | /* |
Jaegeuk Kim | e05df3b | 2012-11-02 17:08:50 +0900 | [diff] [blame] | 1191 | * Structure of the f2fs node operations |
| 1192 | */ |
| 1193 | const struct address_space_operations f2fs_node_aops = { |
| 1194 | .writepage = f2fs_write_node_page, |
| 1195 | .writepages = f2fs_write_node_pages, |
| 1196 | .set_page_dirty = f2fs_set_node_page_dirty, |
| 1197 | .invalidatepage = f2fs_invalidate_node_page, |
| 1198 | .releasepage = f2fs_release_node_page, |
| 1199 | }; |
| 1200 | |
| 1201 | static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head) |
| 1202 | { |
| 1203 | struct list_head *this; |
| 1204 | struct free_nid *i = NULL; |
| 1205 | list_for_each(this, head) { |
| 1206 | i = list_entry(this, struct free_nid, list); |
| 1207 | if (i->nid == n) |
| 1208 | break; |
| 1209 | i = NULL; |
| 1210 | } |
| 1211 | return i; |
| 1212 | } |
| 1213 | |
| 1214 | static void __del_from_free_nid_list(struct free_nid *i) |
| 1215 | { |
| 1216 | list_del(&i->list); |
| 1217 | kmem_cache_free(free_nid_slab, i); |
| 1218 | } |
| 1219 | |
| 1220 | static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) |
| 1221 | { |
| 1222 | struct free_nid *i; |
| 1223 | |
| 1224 | if (nm_i->fcnt > 2 * MAX_FREE_NIDS) |
| 1225 | return 0; |
| 1226 | retry: |
| 1227 | i = kmem_cache_alloc(free_nid_slab, GFP_NOFS); |
| 1228 | if (!i) { |
| 1229 | cond_resched(); |
| 1230 | goto retry; |
| 1231 | } |
| 1232 | i->nid = nid; |
| 1233 | i->state = NID_NEW; |
| 1234 | |
| 1235 | spin_lock(&nm_i->free_nid_list_lock); |
| 1236 | if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) { |
| 1237 | spin_unlock(&nm_i->free_nid_list_lock); |
| 1238 | kmem_cache_free(free_nid_slab, i); |
| 1239 | return 0; |
| 1240 | } |
| 1241 | list_add_tail(&i->list, &nm_i->free_nid_list); |
| 1242 | nm_i->fcnt++; |
| 1243 | spin_unlock(&nm_i->free_nid_list_lock); |
| 1244 | return 1; |
| 1245 | } |
| 1246 | |
| 1247 | static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) |
| 1248 | { |
| 1249 | struct free_nid *i; |
| 1250 | spin_lock(&nm_i->free_nid_list_lock); |
| 1251 | i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); |
| 1252 | if (i && i->state == NID_NEW) { |
| 1253 | __del_from_free_nid_list(i); |
| 1254 | nm_i->fcnt--; |
| 1255 | } |
| 1256 | spin_unlock(&nm_i->free_nid_list_lock); |
| 1257 | } |
| 1258 | |
| 1259 | static int scan_nat_page(struct f2fs_nm_info *nm_i, |
| 1260 | struct page *nat_page, nid_t start_nid) |
| 1261 | { |
| 1262 | struct f2fs_nat_block *nat_blk = page_address(nat_page); |
| 1263 | block_t blk_addr; |
| 1264 | int fcnt = 0; |
| 1265 | int i; |
| 1266 | |
| 1267 | /* 0 nid should not be used */ |
| 1268 | if (start_nid == 0) |
| 1269 | ++start_nid; |
| 1270 | |
| 1271 | i = start_nid % NAT_ENTRY_PER_BLOCK; |
| 1272 | |
| 1273 | for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { |
| 1274 | blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); |
| 1275 | BUG_ON(blk_addr == NEW_ADDR); |
| 1276 | if (blk_addr == NULL_ADDR) |
| 1277 | fcnt += add_free_nid(nm_i, start_nid); |
| 1278 | } |
| 1279 | return fcnt; |
| 1280 | } |
| 1281 | |
| 1282 | static void build_free_nids(struct f2fs_sb_info *sbi) |
| 1283 | { |
| 1284 | struct free_nid *fnid, *next_fnid; |
| 1285 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 1286 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| 1287 | struct f2fs_summary_block *sum = curseg->sum_blk; |
| 1288 | nid_t nid = 0; |
| 1289 | bool is_cycled = false; |
| 1290 | int fcnt = 0; |
| 1291 | int i; |
| 1292 | |
| 1293 | nid = nm_i->next_scan_nid; |
| 1294 | nm_i->init_scan_nid = nid; |
| 1295 | |
| 1296 | ra_nat_pages(sbi, nid); |
| 1297 | |
| 1298 | while (1) { |
| 1299 | struct page *page = get_current_nat_page(sbi, nid); |
| 1300 | |
| 1301 | fcnt += scan_nat_page(nm_i, page, nid); |
| 1302 | f2fs_put_page(page, 1); |
| 1303 | |
| 1304 | nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); |
| 1305 | |
| 1306 | if (nid >= nm_i->max_nid) { |
| 1307 | nid = 0; |
| 1308 | is_cycled = true; |
| 1309 | } |
| 1310 | if (fcnt > MAX_FREE_NIDS) |
| 1311 | break; |
| 1312 | if (is_cycled && nm_i->init_scan_nid <= nid) |
| 1313 | break; |
| 1314 | } |
| 1315 | |
| 1316 | nm_i->next_scan_nid = nid; |
| 1317 | |
| 1318 | /* find free nids from current sum_pages */ |
| 1319 | mutex_lock(&curseg->curseg_mutex); |
| 1320 | for (i = 0; i < nats_in_cursum(sum); i++) { |
| 1321 | block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr); |
| 1322 | nid = le32_to_cpu(nid_in_journal(sum, i)); |
| 1323 | if (addr == NULL_ADDR) |
| 1324 | add_free_nid(nm_i, nid); |
| 1325 | else |
| 1326 | remove_free_nid(nm_i, nid); |
| 1327 | } |
| 1328 | mutex_unlock(&curseg->curseg_mutex); |
| 1329 | |
| 1330 | /* remove the free nids from current allocated nids */ |
| 1331 | list_for_each_entry_safe(fnid, next_fnid, &nm_i->free_nid_list, list) { |
| 1332 | struct nat_entry *ne; |
| 1333 | |
| 1334 | read_lock(&nm_i->nat_tree_lock); |
| 1335 | ne = __lookup_nat_cache(nm_i, fnid->nid); |
| 1336 | if (ne && nat_get_blkaddr(ne) != NULL_ADDR) |
| 1337 | remove_free_nid(nm_i, fnid->nid); |
| 1338 | read_unlock(&nm_i->nat_tree_lock); |
| 1339 | } |
| 1340 | } |
| 1341 | |
| 1342 | /* |
| 1343 | * If this function returns success, caller can obtain a new nid |
| 1344 | * from second parameter of this function. |
| 1345 | * The returned nid could be used ino as well as nid when inode is created. |
| 1346 | */ |
| 1347 | bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) |
| 1348 | { |
| 1349 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 1350 | struct free_nid *i = NULL; |
| 1351 | struct list_head *this; |
| 1352 | retry: |
| 1353 | mutex_lock(&nm_i->build_lock); |
| 1354 | if (!nm_i->fcnt) { |
| 1355 | /* scan NAT in order to build free nid list */ |
| 1356 | build_free_nids(sbi); |
| 1357 | if (!nm_i->fcnt) { |
| 1358 | mutex_unlock(&nm_i->build_lock); |
| 1359 | return false; |
| 1360 | } |
| 1361 | } |
| 1362 | mutex_unlock(&nm_i->build_lock); |
| 1363 | |
| 1364 | /* |
| 1365 | * We check fcnt again since previous check is racy as |
| 1366 | * we didn't hold free_nid_list_lock. So other thread |
| 1367 | * could consume all of free nids. |
| 1368 | */ |
| 1369 | spin_lock(&nm_i->free_nid_list_lock); |
| 1370 | if (!nm_i->fcnt) { |
| 1371 | spin_unlock(&nm_i->free_nid_list_lock); |
| 1372 | goto retry; |
| 1373 | } |
| 1374 | |
| 1375 | BUG_ON(list_empty(&nm_i->free_nid_list)); |
| 1376 | list_for_each(this, &nm_i->free_nid_list) { |
| 1377 | i = list_entry(this, struct free_nid, list); |
| 1378 | if (i->state == NID_NEW) |
| 1379 | break; |
| 1380 | } |
| 1381 | |
| 1382 | BUG_ON(i->state != NID_NEW); |
| 1383 | *nid = i->nid; |
| 1384 | i->state = NID_ALLOC; |
| 1385 | nm_i->fcnt--; |
| 1386 | spin_unlock(&nm_i->free_nid_list_lock); |
| 1387 | return true; |
| 1388 | } |
| 1389 | |
Jaegeuk Kim | 0a8165d | 2012-11-29 13:28:09 +0900 | [diff] [blame] | 1390 | /* |
Jaegeuk Kim | e05df3b | 2012-11-02 17:08:50 +0900 | [diff] [blame] | 1391 | * alloc_nid() should be called prior to this function. |
| 1392 | */ |
| 1393 | void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) |
| 1394 | { |
| 1395 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 1396 | struct free_nid *i; |
| 1397 | |
| 1398 | spin_lock(&nm_i->free_nid_list_lock); |
| 1399 | i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); |
| 1400 | if (i) { |
| 1401 | BUG_ON(i->state != NID_ALLOC); |
| 1402 | __del_from_free_nid_list(i); |
| 1403 | } |
| 1404 | spin_unlock(&nm_i->free_nid_list_lock); |
| 1405 | } |
| 1406 | |
Jaegeuk Kim | 0a8165d | 2012-11-29 13:28:09 +0900 | [diff] [blame] | 1407 | /* |
Jaegeuk Kim | e05df3b | 2012-11-02 17:08:50 +0900 | [diff] [blame] | 1408 | * alloc_nid() should be called prior to this function. |
| 1409 | */ |
| 1410 | void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) |
| 1411 | { |
| 1412 | alloc_nid_done(sbi, nid); |
| 1413 | add_free_nid(NM_I(sbi), nid); |
| 1414 | } |
| 1415 | |
| 1416 | void recover_node_page(struct f2fs_sb_info *sbi, struct page *page, |
| 1417 | struct f2fs_summary *sum, struct node_info *ni, |
| 1418 | block_t new_blkaddr) |
| 1419 | { |
| 1420 | rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr); |
| 1421 | set_node_addr(sbi, ni, new_blkaddr); |
| 1422 | clear_node_page_dirty(page); |
| 1423 | } |
| 1424 | |
| 1425 | int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) |
| 1426 | { |
| 1427 | struct address_space *mapping = sbi->node_inode->i_mapping; |
| 1428 | struct f2fs_node *src, *dst; |
| 1429 | nid_t ino = ino_of_node(page); |
| 1430 | struct node_info old_ni, new_ni; |
| 1431 | struct page *ipage; |
| 1432 | |
| 1433 | ipage = grab_cache_page(mapping, ino); |
| 1434 | if (!ipage) |
| 1435 | return -ENOMEM; |
| 1436 | |
| 1437 | /* Should not use this inode from free nid list */ |
| 1438 | remove_free_nid(NM_I(sbi), ino); |
| 1439 | |
| 1440 | get_node_info(sbi, ino, &old_ni); |
| 1441 | SetPageUptodate(ipage); |
| 1442 | fill_node_footer(ipage, ino, ino, 0, true); |
| 1443 | |
| 1444 | src = (struct f2fs_node *)page_address(page); |
| 1445 | dst = (struct f2fs_node *)page_address(ipage); |
| 1446 | |
| 1447 | memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i); |
| 1448 | dst->i.i_size = 0; |
Jaegeuk Kim | 25ca923 | 2012-11-28 16:12:41 +0900 | [diff] [blame] | 1449 | dst->i.i_blocks = cpu_to_le64(1); |
| 1450 | dst->i.i_links = cpu_to_le32(1); |
Jaegeuk Kim | e05df3b | 2012-11-02 17:08:50 +0900 | [diff] [blame] | 1451 | dst->i.i_xattr_nid = 0; |
| 1452 | |
| 1453 | new_ni = old_ni; |
| 1454 | new_ni.ino = ino; |
| 1455 | |
| 1456 | set_node_addr(sbi, &new_ni, NEW_ADDR); |
| 1457 | inc_valid_inode_count(sbi); |
| 1458 | |
| 1459 | f2fs_put_page(ipage, 1); |
| 1460 | return 0; |
| 1461 | } |
| 1462 | |
| 1463 | int restore_node_summary(struct f2fs_sb_info *sbi, |
| 1464 | unsigned int segno, struct f2fs_summary_block *sum) |
| 1465 | { |
| 1466 | struct f2fs_node *rn; |
| 1467 | struct f2fs_summary *sum_entry; |
| 1468 | struct page *page; |
| 1469 | block_t addr; |
| 1470 | int i, last_offset; |
| 1471 | |
| 1472 | /* alloc temporal page for read node */ |
| 1473 | page = alloc_page(GFP_NOFS | __GFP_ZERO); |
| 1474 | if (IS_ERR(page)) |
| 1475 | return PTR_ERR(page); |
| 1476 | lock_page(page); |
| 1477 | |
| 1478 | /* scan the node segment */ |
| 1479 | last_offset = sbi->blocks_per_seg; |
| 1480 | addr = START_BLOCK(sbi, segno); |
| 1481 | sum_entry = &sum->entries[0]; |
| 1482 | |
| 1483 | for (i = 0; i < last_offset; i++, sum_entry++) { |
| 1484 | if (f2fs_readpage(sbi, page, addr, READ_SYNC)) |
| 1485 | goto out; |
| 1486 | |
| 1487 | rn = (struct f2fs_node *)page_address(page); |
| 1488 | sum_entry->nid = rn->footer.nid; |
| 1489 | sum_entry->version = 0; |
| 1490 | sum_entry->ofs_in_node = 0; |
| 1491 | addr++; |
| 1492 | |
| 1493 | /* |
| 1494 | * In order to read next node page, |
| 1495 | * we must clear PageUptodate flag. |
| 1496 | */ |
| 1497 | ClearPageUptodate(page); |
| 1498 | } |
| 1499 | out: |
| 1500 | unlock_page(page); |
| 1501 | __free_pages(page, 0); |
| 1502 | return 0; |
| 1503 | } |
| 1504 | |
| 1505 | static bool flush_nats_in_journal(struct f2fs_sb_info *sbi) |
| 1506 | { |
| 1507 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 1508 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| 1509 | struct f2fs_summary_block *sum = curseg->sum_blk; |
| 1510 | int i; |
| 1511 | |
| 1512 | mutex_lock(&curseg->curseg_mutex); |
| 1513 | |
| 1514 | if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) { |
| 1515 | mutex_unlock(&curseg->curseg_mutex); |
| 1516 | return false; |
| 1517 | } |
| 1518 | |
| 1519 | for (i = 0; i < nats_in_cursum(sum); i++) { |
| 1520 | struct nat_entry *ne; |
| 1521 | struct f2fs_nat_entry raw_ne; |
| 1522 | nid_t nid = le32_to_cpu(nid_in_journal(sum, i)); |
| 1523 | |
| 1524 | raw_ne = nat_in_journal(sum, i); |
| 1525 | retry: |
| 1526 | write_lock(&nm_i->nat_tree_lock); |
| 1527 | ne = __lookup_nat_cache(nm_i, nid); |
| 1528 | if (ne) { |
| 1529 | __set_nat_cache_dirty(nm_i, ne); |
| 1530 | write_unlock(&nm_i->nat_tree_lock); |
| 1531 | continue; |
| 1532 | } |
| 1533 | ne = grab_nat_entry(nm_i, nid); |
| 1534 | if (!ne) { |
| 1535 | write_unlock(&nm_i->nat_tree_lock); |
| 1536 | goto retry; |
| 1537 | } |
| 1538 | nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr)); |
| 1539 | nat_set_ino(ne, le32_to_cpu(raw_ne.ino)); |
| 1540 | nat_set_version(ne, raw_ne.version); |
| 1541 | __set_nat_cache_dirty(nm_i, ne); |
| 1542 | write_unlock(&nm_i->nat_tree_lock); |
| 1543 | } |
| 1544 | update_nats_in_cursum(sum, -i); |
| 1545 | mutex_unlock(&curseg->curseg_mutex); |
| 1546 | return true; |
| 1547 | } |
| 1548 | |
Jaegeuk Kim | 0a8165d | 2012-11-29 13:28:09 +0900 | [diff] [blame] | 1549 | /* |
Jaegeuk Kim | e05df3b | 2012-11-02 17:08:50 +0900 | [diff] [blame] | 1550 | * This function is called during the checkpointing process. |
| 1551 | */ |
| 1552 | void flush_nat_entries(struct f2fs_sb_info *sbi) |
| 1553 | { |
| 1554 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 1555 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| 1556 | struct f2fs_summary_block *sum = curseg->sum_blk; |
| 1557 | struct list_head *cur, *n; |
| 1558 | struct page *page = NULL; |
| 1559 | struct f2fs_nat_block *nat_blk = NULL; |
| 1560 | nid_t start_nid = 0, end_nid = 0; |
| 1561 | bool flushed; |
| 1562 | |
| 1563 | flushed = flush_nats_in_journal(sbi); |
| 1564 | |
| 1565 | if (!flushed) |
| 1566 | mutex_lock(&curseg->curseg_mutex); |
| 1567 | |
| 1568 | /* 1) flush dirty nat caches */ |
| 1569 | list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) { |
| 1570 | struct nat_entry *ne; |
| 1571 | nid_t nid; |
| 1572 | struct f2fs_nat_entry raw_ne; |
| 1573 | int offset = -1; |
| 1574 | block_t old_blkaddr, new_blkaddr; |
| 1575 | |
| 1576 | ne = list_entry(cur, struct nat_entry, list); |
| 1577 | nid = nat_get_nid(ne); |
| 1578 | |
| 1579 | if (nat_get_blkaddr(ne) == NEW_ADDR) |
| 1580 | continue; |
| 1581 | if (flushed) |
| 1582 | goto to_nat_page; |
| 1583 | |
| 1584 | /* if there is room for nat enries in curseg->sumpage */ |
| 1585 | offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1); |
| 1586 | if (offset >= 0) { |
| 1587 | raw_ne = nat_in_journal(sum, offset); |
| 1588 | old_blkaddr = le32_to_cpu(raw_ne.block_addr); |
| 1589 | goto flush_now; |
| 1590 | } |
| 1591 | to_nat_page: |
| 1592 | if (!page || (start_nid > nid || nid > end_nid)) { |
| 1593 | if (page) { |
| 1594 | f2fs_put_page(page, 1); |
| 1595 | page = NULL; |
| 1596 | } |
| 1597 | start_nid = START_NID(nid); |
| 1598 | end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1; |
| 1599 | |
| 1600 | /* |
| 1601 | * get nat block with dirty flag, increased reference |
| 1602 | * count, mapped and lock |
| 1603 | */ |
| 1604 | page = get_next_nat_page(sbi, start_nid); |
| 1605 | nat_blk = page_address(page); |
| 1606 | } |
| 1607 | |
| 1608 | BUG_ON(!nat_blk); |
| 1609 | raw_ne = nat_blk->entries[nid - start_nid]; |
| 1610 | old_blkaddr = le32_to_cpu(raw_ne.block_addr); |
| 1611 | flush_now: |
| 1612 | new_blkaddr = nat_get_blkaddr(ne); |
| 1613 | |
| 1614 | raw_ne.ino = cpu_to_le32(nat_get_ino(ne)); |
| 1615 | raw_ne.block_addr = cpu_to_le32(new_blkaddr); |
| 1616 | raw_ne.version = nat_get_version(ne); |
| 1617 | |
| 1618 | if (offset < 0) { |
| 1619 | nat_blk->entries[nid - start_nid] = raw_ne; |
| 1620 | } else { |
| 1621 | nat_in_journal(sum, offset) = raw_ne; |
| 1622 | nid_in_journal(sum, offset) = cpu_to_le32(nid); |
| 1623 | } |
| 1624 | |
| 1625 | if (nat_get_blkaddr(ne) == NULL_ADDR) { |
| 1626 | write_lock(&nm_i->nat_tree_lock); |
| 1627 | __del_from_nat_cache(nm_i, ne); |
| 1628 | write_unlock(&nm_i->nat_tree_lock); |
| 1629 | |
| 1630 | /* We can reuse this freed nid at this point */ |
| 1631 | add_free_nid(NM_I(sbi), nid); |
| 1632 | } else { |
| 1633 | write_lock(&nm_i->nat_tree_lock); |
| 1634 | __clear_nat_cache_dirty(nm_i, ne); |
| 1635 | ne->checkpointed = true; |
| 1636 | write_unlock(&nm_i->nat_tree_lock); |
| 1637 | } |
| 1638 | } |
| 1639 | if (!flushed) |
| 1640 | mutex_unlock(&curseg->curseg_mutex); |
| 1641 | f2fs_put_page(page, 1); |
| 1642 | |
| 1643 | /* 2) shrink nat caches if necessary */ |
| 1644 | try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD); |
| 1645 | } |
| 1646 | |
| 1647 | static int init_node_manager(struct f2fs_sb_info *sbi) |
| 1648 | { |
| 1649 | struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); |
| 1650 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 1651 | unsigned char *version_bitmap; |
| 1652 | unsigned int nat_segs, nat_blocks; |
| 1653 | |
| 1654 | nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); |
| 1655 | |
| 1656 | /* segment_count_nat includes pair segment so divide to 2. */ |
| 1657 | nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; |
| 1658 | nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); |
| 1659 | nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks; |
| 1660 | nm_i->fcnt = 0; |
| 1661 | nm_i->nat_cnt = 0; |
| 1662 | |
| 1663 | INIT_LIST_HEAD(&nm_i->free_nid_list); |
| 1664 | INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC); |
| 1665 | INIT_LIST_HEAD(&nm_i->nat_entries); |
| 1666 | INIT_LIST_HEAD(&nm_i->dirty_nat_entries); |
| 1667 | |
| 1668 | mutex_init(&nm_i->build_lock); |
| 1669 | spin_lock_init(&nm_i->free_nid_list_lock); |
| 1670 | rwlock_init(&nm_i->nat_tree_lock); |
| 1671 | |
| 1672 | nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); |
| 1673 | nm_i->init_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); |
| 1674 | nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); |
| 1675 | |
| 1676 | nm_i->nat_bitmap = kzalloc(nm_i->bitmap_size, GFP_KERNEL); |
| 1677 | if (!nm_i->nat_bitmap) |
| 1678 | return -ENOMEM; |
| 1679 | version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); |
| 1680 | if (!version_bitmap) |
| 1681 | return -EFAULT; |
| 1682 | |
| 1683 | /* copy version bitmap */ |
| 1684 | memcpy(nm_i->nat_bitmap, version_bitmap, nm_i->bitmap_size); |
| 1685 | return 0; |
| 1686 | } |
| 1687 | |
| 1688 | int build_node_manager(struct f2fs_sb_info *sbi) |
| 1689 | { |
| 1690 | int err; |
| 1691 | |
| 1692 | sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); |
| 1693 | if (!sbi->nm_info) |
| 1694 | return -ENOMEM; |
| 1695 | |
| 1696 | err = init_node_manager(sbi); |
| 1697 | if (err) |
| 1698 | return err; |
| 1699 | |
| 1700 | build_free_nids(sbi); |
| 1701 | return 0; |
| 1702 | } |
| 1703 | |
| 1704 | void destroy_node_manager(struct f2fs_sb_info *sbi) |
| 1705 | { |
| 1706 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 1707 | struct free_nid *i, *next_i; |
| 1708 | struct nat_entry *natvec[NATVEC_SIZE]; |
| 1709 | nid_t nid = 0; |
| 1710 | unsigned int found; |
| 1711 | |
| 1712 | if (!nm_i) |
| 1713 | return; |
| 1714 | |
| 1715 | /* destroy free nid list */ |
| 1716 | spin_lock(&nm_i->free_nid_list_lock); |
| 1717 | list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { |
| 1718 | BUG_ON(i->state == NID_ALLOC); |
| 1719 | __del_from_free_nid_list(i); |
| 1720 | nm_i->fcnt--; |
| 1721 | } |
| 1722 | BUG_ON(nm_i->fcnt); |
| 1723 | spin_unlock(&nm_i->free_nid_list_lock); |
| 1724 | |
| 1725 | /* destroy nat cache */ |
| 1726 | write_lock(&nm_i->nat_tree_lock); |
| 1727 | while ((found = __gang_lookup_nat_cache(nm_i, |
| 1728 | nid, NATVEC_SIZE, natvec))) { |
| 1729 | unsigned idx; |
| 1730 | for (idx = 0; idx < found; idx++) { |
| 1731 | struct nat_entry *e = natvec[idx]; |
| 1732 | nid = nat_get_nid(e) + 1; |
| 1733 | __del_from_nat_cache(nm_i, e); |
| 1734 | } |
| 1735 | } |
| 1736 | BUG_ON(nm_i->nat_cnt); |
| 1737 | write_unlock(&nm_i->nat_tree_lock); |
| 1738 | |
| 1739 | kfree(nm_i->nat_bitmap); |
| 1740 | sbi->nm_info = NULL; |
| 1741 | kfree(nm_i); |
| 1742 | } |
| 1743 | |
| 1744 | int create_node_manager_caches(void) |
| 1745 | { |
| 1746 | nat_entry_slab = f2fs_kmem_cache_create("nat_entry", |
| 1747 | sizeof(struct nat_entry), NULL); |
| 1748 | if (!nat_entry_slab) |
| 1749 | return -ENOMEM; |
| 1750 | |
| 1751 | free_nid_slab = f2fs_kmem_cache_create("free_nid", |
| 1752 | sizeof(struct free_nid), NULL); |
| 1753 | if (!free_nid_slab) { |
| 1754 | kmem_cache_destroy(nat_entry_slab); |
| 1755 | return -ENOMEM; |
| 1756 | } |
| 1757 | return 0; |
| 1758 | } |
| 1759 | |
| 1760 | void destroy_node_manager_caches(void) |
| 1761 | { |
| 1762 | kmem_cache_destroy(free_nid_slab); |
| 1763 | kmem_cache_destroy(nat_entry_slab); |
| 1764 | } |