Mike Looijmans | 3044a86 | 2019-05-17 15:23:52 +0200 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Driver for Silicon Labs Si5341/Si5340 Clock generator |
| 4 | * Copyright (C) 2019 Topic Embedded Products |
| 5 | * Author: Mike Looijmans <mike.looijmans@topic.nl> |
| 6 | */ |
| 7 | |
| 8 | #include <linux/clk.h> |
| 9 | #include <linux/clk-provider.h> |
| 10 | #include <linux/delay.h> |
| 11 | #include <linux/gcd.h> |
| 12 | #include <linux/math64.h> |
| 13 | #include <linux/i2c.h> |
| 14 | #include <linux/module.h> |
| 15 | #include <linux/regmap.h> |
| 16 | #include <linux/slab.h> |
| 17 | #include <asm/unaligned.h> |
| 18 | |
| 19 | #define SI5341_MAX_NUM_OUTPUTS 10 |
| 20 | #define SI5340_MAX_NUM_OUTPUTS 4 |
| 21 | |
| 22 | #define SI5341_NUM_SYNTH 5 |
| 23 | #define SI5340_NUM_SYNTH 4 |
| 24 | |
| 25 | /* Range of the synthesizer fractional divider */ |
| 26 | #define SI5341_SYNTH_N_MIN 10 |
| 27 | #define SI5341_SYNTH_N_MAX 4095 |
| 28 | |
| 29 | /* The chip can get its input clock from 3 input pins or an XTAL */ |
| 30 | |
| 31 | /* There is one PLL running at 13500–14256 MHz */ |
| 32 | #define SI5341_PLL_VCO_MIN 13500000000ull |
| 33 | #define SI5341_PLL_VCO_MAX 14256000000ull |
| 34 | |
| 35 | /* The 5 frequency synthesizers obtain their input from the PLL */ |
| 36 | struct clk_si5341_synth { |
| 37 | struct clk_hw hw; |
| 38 | struct clk_si5341 *data; |
| 39 | u8 index; |
| 40 | }; |
| 41 | #define to_clk_si5341_synth(_hw) \ |
| 42 | container_of(_hw, struct clk_si5341_synth, hw) |
| 43 | |
| 44 | /* The output stages can be connected to any synth (full mux) */ |
| 45 | struct clk_si5341_output { |
| 46 | struct clk_hw hw; |
| 47 | struct clk_si5341 *data; |
| 48 | u8 index; |
| 49 | }; |
| 50 | #define to_clk_si5341_output(_hw) \ |
| 51 | container_of(_hw, struct clk_si5341_output, hw) |
| 52 | |
| 53 | struct clk_si5341 { |
| 54 | struct clk_hw hw; |
| 55 | struct regmap *regmap; |
| 56 | struct i2c_client *i2c_client; |
| 57 | struct clk_si5341_synth synth[SI5341_NUM_SYNTH]; |
| 58 | struct clk_si5341_output clk[SI5341_MAX_NUM_OUTPUTS]; |
| 59 | struct clk *pxtal; |
| 60 | const char *pxtal_name; |
| 61 | const u16 *reg_output_offset; |
| 62 | const u16 *reg_rdiv_offset; |
| 63 | u64 freq_vco; /* 13500–14256 MHz */ |
| 64 | u8 num_outputs; |
| 65 | u8 num_synth; |
| 66 | }; |
| 67 | #define to_clk_si5341(_hw) container_of(_hw, struct clk_si5341, hw) |
| 68 | |
| 69 | struct clk_si5341_output_config { |
| 70 | u8 out_format_drv_bits; |
| 71 | u8 out_cm_ampl_bits; |
| 72 | bool synth_master; |
| 73 | bool always_on; |
| 74 | }; |
| 75 | |
| 76 | #define SI5341_PAGE 0x0001 |
| 77 | #define SI5341_PN_BASE 0x0002 |
| 78 | #define SI5341_DEVICE_REV 0x0005 |
| 79 | #define SI5341_STATUS 0x000C |
| 80 | #define SI5341_SOFT_RST 0x001C |
| 81 | |
| 82 | /* Input dividers (48-bit) */ |
| 83 | #define SI5341_IN_PDIV(x) (0x0208 + ((x) * 10)) |
| 84 | #define SI5341_IN_PSET(x) (0x020E + ((x) * 10)) |
| 85 | |
| 86 | /* PLL configuration */ |
| 87 | #define SI5341_PLL_M_NUM 0x0235 |
| 88 | #define SI5341_PLL_M_DEN 0x023B |
| 89 | |
| 90 | /* Output configuration */ |
| 91 | #define SI5341_OUT_CONFIG(output) \ |
| 92 | ((output)->data->reg_output_offset[(output)->index]) |
| 93 | #define SI5341_OUT_FORMAT(output) (SI5341_OUT_CONFIG(output) + 1) |
| 94 | #define SI5341_OUT_CM(output) (SI5341_OUT_CONFIG(output) + 2) |
| 95 | #define SI5341_OUT_MUX_SEL(output) (SI5341_OUT_CONFIG(output) + 3) |
| 96 | #define SI5341_OUT_R_REG(output) \ |
| 97 | ((output)->data->reg_rdiv_offset[(output)->index]) |
| 98 | |
| 99 | /* Synthesize N divider */ |
| 100 | #define SI5341_SYNTH_N_NUM(x) (0x0302 + ((x) * 11)) |
| 101 | #define SI5341_SYNTH_N_DEN(x) (0x0308 + ((x) * 11)) |
| 102 | #define SI5341_SYNTH_N_UPD(x) (0x030C + ((x) * 11)) |
| 103 | |
| 104 | /* Synthesizer output enable, phase bypass, power mode */ |
| 105 | #define SI5341_SYNTH_N_CLK_TO_OUTX_EN 0x0A03 |
| 106 | #define SI5341_SYNTH_N_PIBYP 0x0A04 |
| 107 | #define SI5341_SYNTH_N_PDNB 0x0A05 |
| 108 | #define SI5341_SYNTH_N_CLK_DIS 0x0B4A |
| 109 | |
| 110 | #define SI5341_REGISTER_MAX 0xBFF |
| 111 | |
| 112 | /* SI5341_OUT_CONFIG bits */ |
| 113 | #define SI5341_OUT_CFG_PDN BIT(0) |
| 114 | #define SI5341_OUT_CFG_OE BIT(1) |
| 115 | #define SI5341_OUT_CFG_RDIV_FORCE2 BIT(2) |
| 116 | |
| 117 | /* Static configuration (to be moved to firmware) */ |
| 118 | struct si5341_reg_default { |
| 119 | u16 address; |
| 120 | u8 value; |
| 121 | }; |
| 122 | |
| 123 | /* Output configuration registers 0..9 are not quite logically organized */ |
| 124 | static const u16 si5341_reg_output_offset[] = { |
| 125 | 0x0108, |
| 126 | 0x010D, |
| 127 | 0x0112, |
| 128 | 0x0117, |
| 129 | 0x011C, |
| 130 | 0x0121, |
| 131 | 0x0126, |
| 132 | 0x012B, |
| 133 | 0x0130, |
| 134 | 0x013A, |
| 135 | }; |
| 136 | |
| 137 | static const u16 si5340_reg_output_offset[] = { |
| 138 | 0x0112, |
| 139 | 0x0117, |
| 140 | 0x0126, |
| 141 | 0x012B, |
| 142 | }; |
| 143 | |
| 144 | /* The location of the R divider registers */ |
| 145 | static const u16 si5341_reg_rdiv_offset[] = { |
| 146 | 0x024A, |
| 147 | 0x024D, |
| 148 | 0x0250, |
| 149 | 0x0253, |
| 150 | 0x0256, |
| 151 | 0x0259, |
| 152 | 0x025C, |
| 153 | 0x025F, |
| 154 | 0x0262, |
| 155 | 0x0268, |
| 156 | }; |
| 157 | static const u16 si5340_reg_rdiv_offset[] = { |
| 158 | 0x0250, |
| 159 | 0x0253, |
| 160 | 0x025C, |
| 161 | 0x025F, |
| 162 | }; |
| 163 | |
| 164 | /* |
| 165 | * Programming sequence from ClockBuilder, settings to initialize the system |
| 166 | * using only the XTAL input, without pre-divider. |
| 167 | * This also contains settings that aren't mentioned anywhere in the datasheet. |
| 168 | * The "known" settings like synth and output configuration are done later. |
| 169 | */ |
| 170 | static const struct si5341_reg_default si5341_reg_defaults[] = { |
| 171 | { 0x0017, 0x3A }, /* INT mask (disable interrupts) */ |
| 172 | { 0x0018, 0xFF }, /* INT mask */ |
| 173 | { 0x0021, 0x0F }, /* Select XTAL as input */ |
| 174 | { 0x0022, 0x00 }, /* Not in datasheet */ |
| 175 | { 0x002B, 0x02 }, /* SPI config */ |
| 176 | { 0x002C, 0x20 }, /* LOS enable for XTAL */ |
| 177 | { 0x002D, 0x00 }, /* LOS timing */ |
| 178 | { 0x002E, 0x00 }, |
| 179 | { 0x002F, 0x00 }, |
| 180 | { 0x0030, 0x00 }, |
| 181 | { 0x0031, 0x00 }, |
| 182 | { 0x0032, 0x00 }, |
| 183 | { 0x0033, 0x00 }, |
| 184 | { 0x0034, 0x00 }, |
| 185 | { 0x0035, 0x00 }, |
| 186 | { 0x0036, 0x00 }, |
| 187 | { 0x0037, 0x00 }, |
| 188 | { 0x0038, 0x00 }, /* LOS setting (thresholds) */ |
| 189 | { 0x0039, 0x00 }, |
| 190 | { 0x003A, 0x00 }, |
| 191 | { 0x003B, 0x00 }, |
| 192 | { 0x003C, 0x00 }, |
| 193 | { 0x003D, 0x00 }, /* LOS setting (thresholds) end */ |
| 194 | { 0x0041, 0x00 }, /* LOS0_DIV_SEL */ |
| 195 | { 0x0042, 0x00 }, /* LOS1_DIV_SEL */ |
| 196 | { 0x0043, 0x00 }, /* LOS2_DIV_SEL */ |
| 197 | { 0x0044, 0x00 }, /* LOS3_DIV_SEL */ |
| 198 | { 0x009E, 0x00 }, /* Not in datasheet */ |
| 199 | { 0x0102, 0x01 }, /* Enable outputs */ |
| 200 | { 0x013F, 0x00 }, /* Not in datasheet */ |
| 201 | { 0x0140, 0x00 }, /* Not in datasheet */ |
| 202 | { 0x0141, 0x40 }, /* OUT LOS */ |
| 203 | { 0x0202, 0x00 }, /* XAXB_FREQ_OFFSET (=0)*/ |
| 204 | { 0x0203, 0x00 }, |
| 205 | { 0x0204, 0x00 }, |
| 206 | { 0x0205, 0x00 }, |
| 207 | { 0x0206, 0x00 }, /* PXAXB (2^x) */ |
| 208 | { 0x0208, 0x00 }, /* Px divider setting (usually 0) */ |
| 209 | { 0x0209, 0x00 }, |
| 210 | { 0x020A, 0x00 }, |
| 211 | { 0x020B, 0x00 }, |
| 212 | { 0x020C, 0x00 }, |
| 213 | { 0x020D, 0x00 }, |
| 214 | { 0x020E, 0x00 }, |
| 215 | { 0x020F, 0x00 }, |
| 216 | { 0x0210, 0x00 }, |
| 217 | { 0x0211, 0x00 }, |
| 218 | { 0x0212, 0x00 }, |
| 219 | { 0x0213, 0x00 }, |
| 220 | { 0x0214, 0x00 }, |
| 221 | { 0x0215, 0x00 }, |
| 222 | { 0x0216, 0x00 }, |
| 223 | { 0x0217, 0x00 }, |
| 224 | { 0x0218, 0x00 }, |
| 225 | { 0x0219, 0x00 }, |
| 226 | { 0x021A, 0x00 }, |
| 227 | { 0x021B, 0x00 }, |
| 228 | { 0x021C, 0x00 }, |
| 229 | { 0x021D, 0x00 }, |
| 230 | { 0x021E, 0x00 }, |
| 231 | { 0x021F, 0x00 }, |
| 232 | { 0x0220, 0x00 }, |
| 233 | { 0x0221, 0x00 }, |
| 234 | { 0x0222, 0x00 }, |
| 235 | { 0x0223, 0x00 }, |
| 236 | { 0x0224, 0x00 }, |
| 237 | { 0x0225, 0x00 }, |
| 238 | { 0x0226, 0x00 }, |
| 239 | { 0x0227, 0x00 }, |
| 240 | { 0x0228, 0x00 }, |
| 241 | { 0x0229, 0x00 }, |
| 242 | { 0x022A, 0x00 }, |
| 243 | { 0x022B, 0x00 }, |
| 244 | { 0x022C, 0x00 }, |
| 245 | { 0x022D, 0x00 }, |
| 246 | { 0x022E, 0x00 }, |
| 247 | { 0x022F, 0x00 }, /* Px divider setting (usually 0) end */ |
| 248 | { 0x026B, 0x00 }, /* DESIGN_ID (ASCII string) */ |
| 249 | { 0x026C, 0x00 }, |
| 250 | { 0x026D, 0x00 }, |
| 251 | { 0x026E, 0x00 }, |
| 252 | { 0x026F, 0x00 }, |
| 253 | { 0x0270, 0x00 }, |
| 254 | { 0x0271, 0x00 }, |
| 255 | { 0x0272, 0x00 }, /* DESIGN_ID (ASCII string) end */ |
| 256 | { 0x0339, 0x1F }, /* N_FSTEP_MSK */ |
| 257 | { 0x033B, 0x00 }, /* Nx_FSTEPW (Frequency step) */ |
| 258 | { 0x033C, 0x00 }, |
| 259 | { 0x033D, 0x00 }, |
| 260 | { 0x033E, 0x00 }, |
| 261 | { 0x033F, 0x00 }, |
| 262 | { 0x0340, 0x00 }, |
| 263 | { 0x0341, 0x00 }, |
| 264 | { 0x0342, 0x00 }, |
| 265 | { 0x0343, 0x00 }, |
| 266 | { 0x0344, 0x00 }, |
| 267 | { 0x0345, 0x00 }, |
| 268 | { 0x0346, 0x00 }, |
| 269 | { 0x0347, 0x00 }, |
| 270 | { 0x0348, 0x00 }, |
| 271 | { 0x0349, 0x00 }, |
| 272 | { 0x034A, 0x00 }, |
| 273 | { 0x034B, 0x00 }, |
| 274 | { 0x034C, 0x00 }, |
| 275 | { 0x034D, 0x00 }, |
| 276 | { 0x034E, 0x00 }, |
| 277 | { 0x034F, 0x00 }, |
| 278 | { 0x0350, 0x00 }, |
| 279 | { 0x0351, 0x00 }, |
| 280 | { 0x0352, 0x00 }, |
| 281 | { 0x0353, 0x00 }, |
| 282 | { 0x0354, 0x00 }, |
| 283 | { 0x0355, 0x00 }, |
| 284 | { 0x0356, 0x00 }, |
| 285 | { 0x0357, 0x00 }, |
| 286 | { 0x0358, 0x00 }, /* Nx_FSTEPW (Frequency step) end */ |
| 287 | { 0x0359, 0x00 }, /* Nx_DELAY */ |
| 288 | { 0x035A, 0x00 }, |
| 289 | { 0x035B, 0x00 }, |
| 290 | { 0x035C, 0x00 }, |
| 291 | { 0x035D, 0x00 }, |
| 292 | { 0x035E, 0x00 }, |
| 293 | { 0x035F, 0x00 }, |
| 294 | { 0x0360, 0x00 }, |
| 295 | { 0x0361, 0x00 }, |
| 296 | { 0x0362, 0x00 }, /* Nx_DELAY end */ |
| 297 | { 0x0802, 0x00 }, /* Not in datasheet */ |
| 298 | { 0x0803, 0x00 }, /* Not in datasheet */ |
| 299 | { 0x0804, 0x00 }, /* Not in datasheet */ |
| 300 | { 0x090E, 0x02 }, /* XAXB_EXTCLK_EN=0 XAXB_PDNB=1 (use XTAL) */ |
| 301 | { 0x091C, 0x04 }, /* ZDM_EN=4 (Normal mode) */ |
| 302 | { 0x0943, 0x00 }, /* IO_VDD_SEL=0 (0=1v8, use 1=3v3) */ |
| 303 | { 0x0949, 0x00 }, /* IN_EN (disable input clocks) */ |
| 304 | { 0x094A, 0x00 }, /* INx_TO_PFD_EN (disabled) */ |
| 305 | { 0x0A02, 0x00 }, /* Not in datasheet */ |
| 306 | { 0x0B44, 0x0F }, /* PDIV_ENB (datasheet does not mention what it is) */ |
| 307 | }; |
| 308 | |
| 309 | /* Read and interpret a 44-bit followed by a 32-bit value in the regmap */ |
| 310 | static int si5341_decode_44_32(struct regmap *regmap, unsigned int reg, |
| 311 | u64 *val1, u32 *val2) |
| 312 | { |
| 313 | int err; |
| 314 | u8 r[10]; |
| 315 | |
| 316 | err = regmap_bulk_read(regmap, reg, r, 10); |
| 317 | if (err < 0) |
| 318 | return err; |
| 319 | |
| 320 | *val1 = ((u64)((r[5] & 0x0f) << 8 | r[4]) << 32) | |
| 321 | (get_unaligned_le32(r)); |
| 322 | *val2 = get_unaligned_le32(&r[6]); |
| 323 | |
| 324 | return 0; |
| 325 | } |
| 326 | |
| 327 | static int si5341_encode_44_32(struct regmap *regmap, unsigned int reg, |
| 328 | u64 n_num, u32 n_den) |
| 329 | { |
| 330 | u8 r[10]; |
| 331 | |
| 332 | /* Shift left as far as possible without overflowing */ |
| 333 | while (!(n_num & BIT_ULL(43)) && !(n_den & BIT(31))) { |
| 334 | n_num <<= 1; |
| 335 | n_den <<= 1; |
| 336 | } |
| 337 | |
| 338 | /* 44 bits (6 bytes) numerator */ |
| 339 | put_unaligned_le32(n_num, r); |
| 340 | r[4] = (n_num >> 32) & 0xff; |
| 341 | r[5] = (n_num >> 40) & 0x0f; |
| 342 | /* 32 bits denominator */ |
| 343 | put_unaligned_le32(n_den, &r[6]); |
| 344 | |
| 345 | /* Program the fraction */ |
| 346 | return regmap_bulk_write(regmap, reg, r, sizeof(r)); |
| 347 | } |
| 348 | |
| 349 | /* VCO, we assume it runs at a constant frequency */ |
| 350 | static unsigned long si5341_clk_recalc_rate(struct clk_hw *hw, |
| 351 | unsigned long parent_rate) |
| 352 | { |
| 353 | struct clk_si5341 *data = to_clk_si5341(hw); |
| 354 | int err; |
| 355 | u64 res; |
| 356 | u64 m_num; |
| 357 | u32 m_den; |
| 358 | unsigned int shift; |
| 359 | |
| 360 | /* Assume that PDIV is not being used, just read the PLL setting */ |
| 361 | err = si5341_decode_44_32(data->regmap, SI5341_PLL_M_NUM, |
| 362 | &m_num, &m_den); |
| 363 | if (err < 0) |
| 364 | return 0; |
| 365 | |
| 366 | if (!m_num || !m_den) |
| 367 | return 0; |
| 368 | |
| 369 | /* |
| 370 | * Though m_num is 64-bit, only the upper bits are actually used. While |
| 371 | * calculating m_num and m_den, they are shifted as far as possible to |
| 372 | * the left. To avoid 96-bit division here, we just shift them back so |
| 373 | * we can do with just 64 bits. |
| 374 | */ |
| 375 | shift = 0; |
| 376 | res = m_num; |
| 377 | while (res & 0xffff00000000ULL) { |
| 378 | ++shift; |
| 379 | res >>= 1; |
| 380 | } |
| 381 | res *= parent_rate; |
| 382 | do_div(res, (m_den >> shift)); |
| 383 | |
| 384 | /* We cannot return the actual frequency in 32 bit, store it locally */ |
| 385 | data->freq_vco = res; |
| 386 | |
| 387 | /* Report kHz since the value is out of range */ |
| 388 | do_div(res, 1000); |
| 389 | |
| 390 | return (unsigned long)res; |
| 391 | } |
| 392 | |
| 393 | static const struct clk_ops si5341_clk_ops = { |
| 394 | .recalc_rate = si5341_clk_recalc_rate, |
| 395 | }; |
| 396 | |
| 397 | /* Synthesizers, there are 5 synthesizers that connect to any of the outputs */ |
| 398 | |
| 399 | /* The synthesizer is on if all power and enable bits are set */ |
| 400 | static int si5341_synth_clk_is_on(struct clk_hw *hw) |
| 401 | { |
| 402 | struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); |
| 403 | int err; |
| 404 | u32 val; |
| 405 | u8 index = synth->index; |
| 406 | |
| 407 | err = regmap_read(synth->data->regmap, |
| 408 | SI5341_SYNTH_N_CLK_TO_OUTX_EN, &val); |
| 409 | if (err < 0) |
| 410 | return 0; |
| 411 | |
| 412 | if (!(val & BIT(index))) |
| 413 | return 0; |
| 414 | |
| 415 | err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_PDNB, &val); |
| 416 | if (err < 0) |
| 417 | return 0; |
| 418 | |
| 419 | if (!(val & BIT(index))) |
| 420 | return 0; |
| 421 | |
| 422 | /* This bit must be 0 for the synthesizer to receive clock input */ |
| 423 | err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_CLK_DIS, &val); |
| 424 | if (err < 0) |
| 425 | return 0; |
| 426 | |
| 427 | return !(val & BIT(index)); |
| 428 | } |
| 429 | |
| 430 | static void si5341_synth_clk_unprepare(struct clk_hw *hw) |
| 431 | { |
| 432 | struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); |
| 433 | u8 index = synth->index; /* In range 0..5 */ |
| 434 | u8 mask = BIT(index); |
| 435 | |
| 436 | /* Disable output */ |
| 437 | regmap_update_bits(synth->data->regmap, |
| 438 | SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, 0); |
| 439 | /* Power down */ |
| 440 | regmap_update_bits(synth->data->regmap, |
| 441 | SI5341_SYNTH_N_PDNB, mask, 0); |
| 442 | /* Disable clock input to synth (set to 1 to disable) */ |
| 443 | regmap_update_bits(synth->data->regmap, |
| 444 | SI5341_SYNTH_N_CLK_DIS, mask, mask); |
| 445 | } |
| 446 | |
| 447 | static int si5341_synth_clk_prepare(struct clk_hw *hw) |
| 448 | { |
| 449 | struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); |
| 450 | int err; |
| 451 | u8 index = synth->index; |
| 452 | u8 mask = BIT(index); |
| 453 | |
| 454 | /* Power up */ |
| 455 | err = regmap_update_bits(synth->data->regmap, |
| 456 | SI5341_SYNTH_N_PDNB, mask, mask); |
| 457 | if (err < 0) |
| 458 | return err; |
| 459 | |
| 460 | /* Enable clock input to synth (set bit to 0 to enable) */ |
| 461 | err = regmap_update_bits(synth->data->regmap, |
| 462 | SI5341_SYNTH_N_CLK_DIS, mask, 0); |
| 463 | if (err < 0) |
| 464 | return err; |
| 465 | |
| 466 | /* Enable output */ |
| 467 | return regmap_update_bits(synth->data->regmap, |
| 468 | SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, mask); |
| 469 | } |
| 470 | |
| 471 | /* Synth clock frequency: Fvco * n_den / n_den, with Fvco in 13500-14256 MHz */ |
| 472 | static unsigned long si5341_synth_clk_recalc_rate(struct clk_hw *hw, |
| 473 | unsigned long parent_rate) |
| 474 | { |
| 475 | struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); |
| 476 | u64 f; |
| 477 | u64 n_num; |
| 478 | u32 n_den; |
| 479 | int err; |
| 480 | |
| 481 | err = si5341_decode_44_32(synth->data->regmap, |
| 482 | SI5341_SYNTH_N_NUM(synth->index), &n_num, &n_den); |
| 483 | if (err < 0) |
| 484 | return err; |
| 485 | |
| 486 | /* |
| 487 | * n_num and n_den are shifted left as much as possible, so to prevent |
| 488 | * overflow in 64-bit math, we shift n_den 4 bits to the right |
| 489 | */ |
| 490 | f = synth->data->freq_vco; |
| 491 | f *= n_den >> 4; |
| 492 | |
| 493 | /* Now we need to to 64-bit division: f/n_num */ |
| 494 | /* And compensate for the 4 bits we dropped */ |
| 495 | f = div64_u64(f, (n_num >> 4)); |
| 496 | |
| 497 | return f; |
| 498 | } |
| 499 | |
| 500 | static long si5341_synth_clk_round_rate(struct clk_hw *hw, unsigned long rate, |
| 501 | unsigned long *parent_rate) |
| 502 | { |
| 503 | struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); |
| 504 | u64 f; |
| 505 | |
| 506 | /* The synthesizer accuracy is such that anything in range will work */ |
| 507 | f = synth->data->freq_vco; |
| 508 | do_div(f, SI5341_SYNTH_N_MAX); |
| 509 | if (rate < f) |
| 510 | return f; |
| 511 | |
| 512 | f = synth->data->freq_vco; |
| 513 | do_div(f, SI5341_SYNTH_N_MIN); |
| 514 | if (rate > f) |
| 515 | return f; |
| 516 | |
| 517 | return rate; |
| 518 | } |
| 519 | |
| 520 | static int si5341_synth_program(struct clk_si5341_synth *synth, |
| 521 | u64 n_num, u32 n_den, bool is_integer) |
| 522 | { |
| 523 | int err; |
| 524 | u8 index = synth->index; |
| 525 | |
| 526 | err = si5341_encode_44_32(synth->data->regmap, |
| 527 | SI5341_SYNTH_N_NUM(index), n_num, n_den); |
| 528 | |
| 529 | err = regmap_update_bits(synth->data->regmap, |
| 530 | SI5341_SYNTH_N_PIBYP, BIT(index), is_integer ? BIT(index) : 0); |
| 531 | if (err < 0) |
| 532 | return err; |
| 533 | |
| 534 | return regmap_write(synth->data->regmap, |
| 535 | SI5341_SYNTH_N_UPD(index), 0x01); |
| 536 | } |
| 537 | |
| 538 | |
| 539 | static int si5341_synth_clk_set_rate(struct clk_hw *hw, unsigned long rate, |
| 540 | unsigned long parent_rate) |
| 541 | { |
| 542 | struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); |
| 543 | u64 n_num; |
| 544 | u32 n_den; |
| 545 | u32 r; |
| 546 | u32 g; |
| 547 | bool is_integer; |
| 548 | |
| 549 | n_num = synth->data->freq_vco; |
Mike Looijmans | 3044a86 | 2019-05-17 15:23:52 +0200 | [diff] [blame] | 550 | |
| 551 | /* see if there's an integer solution */ |
| 552 | r = do_div(n_num, rate); |
| 553 | is_integer = (r == 0); |
| 554 | if (is_integer) { |
| 555 | /* Integer divider equal to n_num */ |
| 556 | n_den = 1; |
| 557 | } else { |
| 558 | /* Calculate a fractional solution */ |
| 559 | g = gcd(r, rate); |
| 560 | n_den = rate / g; |
| 561 | n_num *= n_den; |
| 562 | n_num += r / g; |
| 563 | } |
| 564 | |
| 565 | dev_dbg(&synth->data->i2c_client->dev, |
| 566 | "%s(%u): n=0x%llx d=0x%x %s\n", __func__, |
| 567 | synth->index, n_num, n_den, |
| 568 | is_integer ? "int" : "frac"); |
| 569 | |
| 570 | return si5341_synth_program(synth, n_num, n_den, is_integer); |
| 571 | } |
| 572 | |
| 573 | static const struct clk_ops si5341_synth_clk_ops = { |
| 574 | .is_prepared = si5341_synth_clk_is_on, |
| 575 | .prepare = si5341_synth_clk_prepare, |
| 576 | .unprepare = si5341_synth_clk_unprepare, |
| 577 | .recalc_rate = si5341_synth_clk_recalc_rate, |
| 578 | .round_rate = si5341_synth_clk_round_rate, |
| 579 | .set_rate = si5341_synth_clk_set_rate, |
| 580 | }; |
| 581 | |
| 582 | static int si5341_output_clk_is_on(struct clk_hw *hw) |
| 583 | { |
| 584 | struct clk_si5341_output *output = to_clk_si5341_output(hw); |
| 585 | int err; |
| 586 | u32 val; |
| 587 | |
| 588 | err = regmap_read(output->data->regmap, |
| 589 | SI5341_OUT_CONFIG(output), &val); |
| 590 | if (err < 0) |
| 591 | return err; |
| 592 | |
| 593 | /* Bit 0=PDN, 1=OE so only a value of 0x2 enables the output */ |
| 594 | return (val & 0x03) == SI5341_OUT_CFG_OE; |
| 595 | } |
| 596 | |
| 597 | /* Disables and then powers down the output */ |
| 598 | static void si5341_output_clk_unprepare(struct clk_hw *hw) |
| 599 | { |
| 600 | struct clk_si5341_output *output = to_clk_si5341_output(hw); |
| 601 | |
| 602 | regmap_update_bits(output->data->regmap, |
| 603 | SI5341_OUT_CONFIG(output), |
| 604 | SI5341_OUT_CFG_OE, 0); |
| 605 | regmap_update_bits(output->data->regmap, |
| 606 | SI5341_OUT_CONFIG(output), |
| 607 | SI5341_OUT_CFG_PDN, SI5341_OUT_CFG_PDN); |
| 608 | } |
| 609 | |
| 610 | /* Powers up and then enables the output */ |
| 611 | static int si5341_output_clk_prepare(struct clk_hw *hw) |
| 612 | { |
| 613 | struct clk_si5341_output *output = to_clk_si5341_output(hw); |
| 614 | int err; |
| 615 | |
| 616 | err = regmap_update_bits(output->data->regmap, |
| 617 | SI5341_OUT_CONFIG(output), |
| 618 | SI5341_OUT_CFG_PDN, 0); |
| 619 | if (err < 0) |
| 620 | return err; |
| 621 | |
| 622 | return regmap_update_bits(output->data->regmap, |
| 623 | SI5341_OUT_CONFIG(output), |
| 624 | SI5341_OUT_CFG_OE, SI5341_OUT_CFG_OE); |
| 625 | } |
| 626 | |
| 627 | static unsigned long si5341_output_clk_recalc_rate(struct clk_hw *hw, |
| 628 | unsigned long parent_rate) |
| 629 | { |
| 630 | struct clk_si5341_output *output = to_clk_si5341_output(hw); |
| 631 | int err; |
| 632 | u32 val; |
| 633 | u32 r_divider; |
| 634 | u8 r[3]; |
| 635 | |
| 636 | err = regmap_bulk_read(output->data->regmap, |
| 637 | SI5341_OUT_R_REG(output), r, 3); |
| 638 | if (err < 0) |
| 639 | return err; |
| 640 | |
| 641 | /* Calculate value as 24-bit integer*/ |
| 642 | r_divider = r[2] << 16 | r[1] << 8 | r[0]; |
| 643 | |
| 644 | /* If Rx_REG is zero, the divider is disabled, so return a "0" rate */ |
| 645 | if (!r_divider) |
| 646 | return 0; |
| 647 | |
| 648 | /* Divider is 2*(Rx_REG+1) */ |
| 649 | r_divider += 1; |
| 650 | r_divider <<= 1; |
| 651 | |
| 652 | err = regmap_read(output->data->regmap, |
| 653 | SI5341_OUT_CONFIG(output), &val); |
| 654 | if (err < 0) |
| 655 | return err; |
| 656 | |
| 657 | if (val & SI5341_OUT_CFG_RDIV_FORCE2) |
| 658 | r_divider = 2; |
| 659 | |
| 660 | return parent_rate / r_divider; |
| 661 | } |
| 662 | |
| 663 | static long si5341_output_clk_round_rate(struct clk_hw *hw, unsigned long rate, |
| 664 | unsigned long *parent_rate) |
| 665 | { |
| 666 | unsigned long r; |
| 667 | |
| 668 | r = *parent_rate >> 1; |
| 669 | |
| 670 | /* If rate is an even divisor, no changes to parent required */ |
| 671 | if (r && !(r % rate)) |
| 672 | return (long)rate; |
| 673 | |
| 674 | if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) { |
| 675 | if (rate > 200000000) { |
| 676 | /* minimum r-divider is 2 */ |
| 677 | r = 2; |
| 678 | } else { |
| 679 | /* Take a parent frequency near 400 MHz */ |
| 680 | r = (400000000u / rate) & ~1; |
| 681 | } |
| 682 | *parent_rate = r * rate; |
| 683 | } else { |
| 684 | /* We cannot change our parent's rate, report what we can do */ |
| 685 | r /= rate; |
| 686 | rate = *parent_rate / (r << 1); |
| 687 | } |
| 688 | |
| 689 | return rate; |
| 690 | } |
| 691 | |
| 692 | static int si5341_output_clk_set_rate(struct clk_hw *hw, unsigned long rate, |
| 693 | unsigned long parent_rate) |
| 694 | { |
| 695 | struct clk_si5341_output *output = to_clk_si5341_output(hw); |
| 696 | /* Frequency divider is (r_div + 1) * 2 */ |
| 697 | u32 r_div = (parent_rate / rate) >> 1; |
| 698 | int err; |
| 699 | u8 r[3]; |
| 700 | |
| 701 | if (r_div <= 1) |
| 702 | r_div = 0; |
| 703 | else if (r_div >= BIT(24)) |
| 704 | r_div = BIT(24) - 1; |
| 705 | else |
| 706 | --r_div; |
| 707 | |
| 708 | /* For a value of "2", we set the "OUT0_RDIV_FORCE2" bit */ |
| 709 | err = regmap_update_bits(output->data->regmap, |
| 710 | SI5341_OUT_CONFIG(output), |
| 711 | SI5341_OUT_CFG_RDIV_FORCE2, |
| 712 | (r_div == 0) ? SI5341_OUT_CFG_RDIV_FORCE2 : 0); |
| 713 | if (err < 0) |
| 714 | return err; |
| 715 | |
| 716 | /* Always write Rx_REG, because a zero value disables the divider */ |
| 717 | r[0] = r_div ? (r_div & 0xff) : 1; |
| 718 | r[1] = (r_div >> 8) & 0xff; |
| 719 | r[2] = (r_div >> 16) & 0xff; |
| 720 | err = regmap_bulk_write(output->data->regmap, |
| 721 | SI5341_OUT_R_REG(output), r, 3); |
| 722 | |
| 723 | return 0; |
| 724 | } |
| 725 | |
| 726 | static int si5341_output_reparent(struct clk_si5341_output *output, u8 index) |
| 727 | { |
| 728 | return regmap_update_bits(output->data->regmap, |
| 729 | SI5341_OUT_MUX_SEL(output), 0x07, index); |
| 730 | } |
| 731 | |
| 732 | static int si5341_output_set_parent(struct clk_hw *hw, u8 index) |
| 733 | { |
| 734 | struct clk_si5341_output *output = to_clk_si5341_output(hw); |
| 735 | |
| 736 | if (index >= output->data->num_synth) |
| 737 | return -EINVAL; |
| 738 | |
| 739 | return si5341_output_reparent(output, index); |
| 740 | } |
| 741 | |
| 742 | static u8 si5341_output_get_parent(struct clk_hw *hw) |
| 743 | { |
| 744 | struct clk_si5341_output *output = to_clk_si5341_output(hw); |
| 745 | int err; |
| 746 | u32 val; |
| 747 | |
| 748 | err = regmap_read(output->data->regmap, |
| 749 | SI5341_OUT_MUX_SEL(output), &val); |
| 750 | |
| 751 | return val & 0x7; |
| 752 | } |
| 753 | |
| 754 | static const struct clk_ops si5341_output_clk_ops = { |
| 755 | .is_prepared = si5341_output_clk_is_on, |
| 756 | .prepare = si5341_output_clk_prepare, |
| 757 | .unprepare = si5341_output_clk_unprepare, |
| 758 | .recalc_rate = si5341_output_clk_recalc_rate, |
| 759 | .round_rate = si5341_output_clk_round_rate, |
| 760 | .set_rate = si5341_output_clk_set_rate, |
| 761 | .set_parent = si5341_output_set_parent, |
| 762 | .get_parent = si5341_output_get_parent, |
| 763 | }; |
| 764 | |
| 765 | /* |
| 766 | * The chip can be bought in a pre-programmed version, or one can program the |
| 767 | * NVM in the chip to boot up in a preset mode. This routine tries to determine |
| 768 | * if that's the case, or if we need to reset and program everything from |
| 769 | * scratch. Returns negative error, or true/false. |
| 770 | */ |
| 771 | static int si5341_is_programmed_already(struct clk_si5341 *data) |
| 772 | { |
| 773 | int err; |
| 774 | u8 r[4]; |
| 775 | |
| 776 | /* Read the PLL divider value, it must have a non-zero value */ |
| 777 | err = regmap_bulk_read(data->regmap, SI5341_PLL_M_DEN, |
| 778 | r, ARRAY_SIZE(r)); |
| 779 | if (err < 0) |
| 780 | return err; |
| 781 | |
| 782 | return !!get_unaligned_le32(r); |
| 783 | } |
| 784 | |
| 785 | static struct clk_hw * |
| 786 | of_clk_si5341_get(struct of_phandle_args *clkspec, void *_data) |
| 787 | { |
| 788 | struct clk_si5341 *data = _data; |
| 789 | unsigned int idx = clkspec->args[1]; |
| 790 | unsigned int group = clkspec->args[0]; |
| 791 | |
| 792 | switch (group) { |
| 793 | case 0: |
| 794 | if (idx >= data->num_outputs) { |
| 795 | dev_err(&data->i2c_client->dev, |
| 796 | "invalid output index %u\n", idx); |
| 797 | return ERR_PTR(-EINVAL); |
| 798 | } |
| 799 | return &data->clk[idx].hw; |
| 800 | case 1: |
| 801 | if (idx >= data->num_synth) { |
| 802 | dev_err(&data->i2c_client->dev, |
| 803 | "invalid synthesizer index %u\n", idx); |
| 804 | return ERR_PTR(-EINVAL); |
| 805 | } |
| 806 | return &data->synth[idx].hw; |
| 807 | case 2: |
| 808 | if (idx > 0) { |
| 809 | dev_err(&data->i2c_client->dev, |
| 810 | "invalid PLL index %u\n", idx); |
| 811 | return ERR_PTR(-EINVAL); |
| 812 | } |
| 813 | return &data->hw; |
| 814 | default: |
| 815 | dev_err(&data->i2c_client->dev, "invalid group %u\n", group); |
| 816 | return ERR_PTR(-EINVAL); |
| 817 | } |
| 818 | } |
| 819 | |
| 820 | static int si5341_probe_chip_id(struct clk_si5341 *data) |
| 821 | { |
| 822 | int err; |
| 823 | u8 reg[4]; |
| 824 | u16 model; |
| 825 | |
| 826 | err = regmap_bulk_read(data->regmap, SI5341_PN_BASE, reg, |
| 827 | ARRAY_SIZE(reg)); |
| 828 | if (err < 0) { |
| 829 | dev_err(&data->i2c_client->dev, "Failed to read chip ID\n"); |
| 830 | return err; |
| 831 | } |
| 832 | |
| 833 | model = get_unaligned_le16(reg); |
| 834 | |
| 835 | dev_info(&data->i2c_client->dev, "Chip: %x Grade: %u Rev: %u\n", |
| 836 | model, reg[2], reg[3]); |
| 837 | |
| 838 | switch (model) { |
| 839 | case 0x5340: |
| 840 | data->num_outputs = SI5340_MAX_NUM_OUTPUTS; |
| 841 | data->num_synth = SI5340_NUM_SYNTH; |
| 842 | data->reg_output_offset = si5340_reg_output_offset; |
| 843 | data->reg_rdiv_offset = si5340_reg_rdiv_offset; |
| 844 | break; |
| 845 | case 0x5341: |
| 846 | data->num_outputs = SI5341_MAX_NUM_OUTPUTS; |
| 847 | data->num_synth = SI5341_NUM_SYNTH; |
| 848 | data->reg_output_offset = si5341_reg_output_offset; |
| 849 | data->reg_rdiv_offset = si5341_reg_rdiv_offset; |
| 850 | break; |
| 851 | default: |
| 852 | dev_err(&data->i2c_client->dev, "Model '%x' not supported\n", |
| 853 | model); |
| 854 | return -EINVAL; |
| 855 | } |
| 856 | |
| 857 | return 0; |
| 858 | } |
| 859 | |
| 860 | /* Read active settings into the regmap cache for later reference */ |
| 861 | static int si5341_read_settings(struct clk_si5341 *data) |
| 862 | { |
| 863 | int err; |
| 864 | u8 i; |
| 865 | u8 r[10]; |
| 866 | |
| 867 | err = regmap_bulk_read(data->regmap, SI5341_PLL_M_NUM, r, 10); |
| 868 | if (err < 0) |
| 869 | return err; |
| 870 | |
| 871 | err = regmap_bulk_read(data->regmap, |
| 872 | SI5341_SYNTH_N_CLK_TO_OUTX_EN, r, 3); |
| 873 | if (err < 0) |
| 874 | return err; |
| 875 | |
| 876 | err = regmap_bulk_read(data->regmap, |
| 877 | SI5341_SYNTH_N_CLK_DIS, r, 1); |
| 878 | if (err < 0) |
| 879 | return err; |
| 880 | |
| 881 | for (i = 0; i < data->num_synth; ++i) { |
| 882 | err = regmap_bulk_read(data->regmap, |
| 883 | SI5341_SYNTH_N_NUM(i), r, 10); |
| 884 | if (err < 0) |
| 885 | return err; |
| 886 | } |
| 887 | |
| 888 | for (i = 0; i < data->num_outputs; ++i) { |
| 889 | err = regmap_bulk_read(data->regmap, |
| 890 | data->reg_output_offset[i], r, 4); |
| 891 | if (err < 0) |
| 892 | return err; |
| 893 | |
| 894 | err = regmap_bulk_read(data->regmap, |
| 895 | data->reg_rdiv_offset[i], r, 3); |
| 896 | if (err < 0) |
| 897 | return err; |
| 898 | } |
| 899 | |
| 900 | return 0; |
| 901 | } |
| 902 | |
| 903 | static int si5341_write_multiple(struct clk_si5341 *data, |
| 904 | const struct si5341_reg_default *values, unsigned int num_values) |
| 905 | { |
| 906 | unsigned int i; |
| 907 | int res; |
| 908 | |
| 909 | for (i = 0; i < num_values; ++i) { |
| 910 | res = regmap_write(data->regmap, |
| 911 | values[i].address, values[i].value); |
| 912 | if (res < 0) { |
| 913 | dev_err(&data->i2c_client->dev, |
| 914 | "Failed to write %#x:%#x\n", |
| 915 | values[i].address, values[i].value); |
| 916 | return res; |
| 917 | } |
| 918 | } |
| 919 | |
| 920 | return 0; |
| 921 | } |
| 922 | |
| 923 | static const struct si5341_reg_default si5341_preamble[] = { |
| 924 | { 0x0B25, 0x00 }, |
| 925 | { 0x0502, 0x01 }, |
| 926 | { 0x0505, 0x03 }, |
| 927 | { 0x0957, 0x1F }, |
| 928 | { 0x0B4E, 0x1A }, |
| 929 | }; |
| 930 | |
| 931 | static int si5341_send_preamble(struct clk_si5341 *data) |
| 932 | { |
| 933 | int res; |
| 934 | u32 revision; |
| 935 | |
| 936 | /* For revision 2 and up, the values are slightly different */ |
| 937 | res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision); |
| 938 | if (res < 0) |
| 939 | return res; |
| 940 | |
| 941 | /* Write "preamble" as specified by datasheet */ |
| 942 | res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xD8 : 0xC0); |
| 943 | if (res < 0) |
| 944 | return res; |
| 945 | res = si5341_write_multiple(data, |
| 946 | si5341_preamble, ARRAY_SIZE(si5341_preamble)); |
| 947 | if (res < 0) |
| 948 | return res; |
| 949 | |
| 950 | /* Datasheet specifies a 300ms wait after sending the preamble */ |
| 951 | msleep(300); |
| 952 | |
| 953 | return 0; |
| 954 | } |
| 955 | |
| 956 | /* Perform a soft reset and write post-amble */ |
| 957 | static int si5341_finalize_defaults(struct clk_si5341 *data) |
| 958 | { |
| 959 | int res; |
| 960 | u32 revision; |
| 961 | |
| 962 | res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision); |
| 963 | if (res < 0) |
| 964 | return res; |
| 965 | |
| 966 | dev_dbg(&data->i2c_client->dev, "%s rev=%u\n", __func__, revision); |
| 967 | |
| 968 | res = regmap_write(data->regmap, SI5341_SOFT_RST, 0x01); |
| 969 | if (res < 0) |
| 970 | return res; |
| 971 | |
| 972 | /* Datasheet does not explain these nameless registers */ |
| 973 | res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xDB : 0xC3); |
| 974 | if (res < 0) |
| 975 | return res; |
| 976 | res = regmap_write(data->regmap, 0x0B25, 0x02); |
| 977 | if (res < 0) |
| 978 | return res; |
| 979 | |
| 980 | return 0; |
| 981 | } |
| 982 | |
| 983 | |
| 984 | static const struct regmap_range si5341_regmap_volatile_range[] = { |
| 985 | regmap_reg_range(0x000C, 0x0012), /* Status */ |
| 986 | regmap_reg_range(0x001C, 0x001E), /* reset, finc/fdec */ |
| 987 | regmap_reg_range(0x00E2, 0x00FE), /* NVM, interrupts, device ready */ |
| 988 | /* Update bits for synth config */ |
| 989 | regmap_reg_range(SI5341_SYNTH_N_UPD(0), SI5341_SYNTH_N_UPD(0)), |
| 990 | regmap_reg_range(SI5341_SYNTH_N_UPD(1), SI5341_SYNTH_N_UPD(1)), |
| 991 | regmap_reg_range(SI5341_SYNTH_N_UPD(2), SI5341_SYNTH_N_UPD(2)), |
| 992 | regmap_reg_range(SI5341_SYNTH_N_UPD(3), SI5341_SYNTH_N_UPD(3)), |
| 993 | regmap_reg_range(SI5341_SYNTH_N_UPD(4), SI5341_SYNTH_N_UPD(4)), |
| 994 | }; |
| 995 | |
| 996 | static const struct regmap_access_table si5341_regmap_volatile = { |
| 997 | .yes_ranges = si5341_regmap_volatile_range, |
| 998 | .n_yes_ranges = ARRAY_SIZE(si5341_regmap_volatile_range), |
| 999 | }; |
| 1000 | |
| 1001 | /* Pages 0, 1, 2, 3, 9, A, B are valid, so there are 12 pages */ |
| 1002 | static const struct regmap_range_cfg si5341_regmap_ranges[] = { |
| 1003 | { |
| 1004 | .range_min = 0, |
| 1005 | .range_max = SI5341_REGISTER_MAX, |
| 1006 | .selector_reg = SI5341_PAGE, |
| 1007 | .selector_mask = 0xff, |
| 1008 | .selector_shift = 0, |
| 1009 | .window_start = 0, |
| 1010 | .window_len = 256, |
| 1011 | }, |
| 1012 | }; |
| 1013 | |
| 1014 | static const struct regmap_config si5341_regmap_config = { |
| 1015 | .reg_bits = 8, |
| 1016 | .val_bits = 8, |
| 1017 | .cache_type = REGCACHE_RBTREE, |
| 1018 | .ranges = si5341_regmap_ranges, |
| 1019 | .num_ranges = ARRAY_SIZE(si5341_regmap_ranges), |
| 1020 | .max_register = SI5341_REGISTER_MAX, |
| 1021 | .volatile_table = &si5341_regmap_volatile, |
| 1022 | }; |
| 1023 | |
| 1024 | static int si5341_dt_parse_dt(struct i2c_client *client, |
| 1025 | struct clk_si5341_output_config *config) |
| 1026 | { |
| 1027 | struct device_node *child; |
| 1028 | struct device_node *np = client->dev.of_node; |
| 1029 | u32 num; |
| 1030 | u32 val; |
| 1031 | |
| 1032 | memset(config, 0, sizeof(struct clk_si5341_output_config) * |
| 1033 | SI5341_MAX_NUM_OUTPUTS); |
| 1034 | |
| 1035 | for_each_child_of_node(np, child) { |
| 1036 | if (of_property_read_u32(child, "reg", &num)) { |
| 1037 | dev_err(&client->dev, "missing reg property of %s\n", |
| 1038 | child->name); |
| 1039 | goto put_child; |
| 1040 | } |
| 1041 | |
| 1042 | if (num >= SI5341_MAX_NUM_OUTPUTS) { |
| 1043 | dev_err(&client->dev, "invalid clkout %d\n", num); |
| 1044 | goto put_child; |
| 1045 | } |
| 1046 | |
| 1047 | if (!of_property_read_u32(child, "silabs,format", &val)) { |
| 1048 | /* Set cm and ampl conservatively to 3v3 settings */ |
| 1049 | switch (val) { |
| 1050 | case 1: /* normal differential */ |
| 1051 | config[num].out_cm_ampl_bits = 0x33; |
| 1052 | break; |
| 1053 | case 2: /* low-power differential */ |
| 1054 | config[num].out_cm_ampl_bits = 0x13; |
| 1055 | break; |
| 1056 | case 4: /* LVCMOS */ |
| 1057 | config[num].out_cm_ampl_bits = 0x33; |
| 1058 | /* Set SI recommended impedance for LVCMOS */ |
| 1059 | config[num].out_format_drv_bits |= 0xc0; |
| 1060 | break; |
| 1061 | default: |
| 1062 | dev_err(&client->dev, |
| 1063 | "invalid silabs,format %u for %u\n", |
| 1064 | val, num); |
| 1065 | goto put_child; |
| 1066 | } |
| 1067 | config[num].out_format_drv_bits &= ~0x07; |
| 1068 | config[num].out_format_drv_bits |= val & 0x07; |
| 1069 | /* Always enable the SYNC feature */ |
| 1070 | config[num].out_format_drv_bits |= 0x08; |
| 1071 | } |
| 1072 | |
| 1073 | if (!of_property_read_u32(child, "silabs,common-mode", &val)) { |
| 1074 | if (val > 0xf) { |
| 1075 | dev_err(&client->dev, |
| 1076 | "invalid silabs,common-mode %u\n", |
| 1077 | val); |
| 1078 | goto put_child; |
| 1079 | } |
| 1080 | config[num].out_cm_ampl_bits &= 0xf0; |
| 1081 | config[num].out_cm_ampl_bits |= val & 0x0f; |
| 1082 | } |
| 1083 | |
| 1084 | if (!of_property_read_u32(child, "silabs,amplitude", &val)) { |
| 1085 | if (val > 0xf) { |
| 1086 | dev_err(&client->dev, |
| 1087 | "invalid silabs,amplitude %u\n", |
| 1088 | val); |
| 1089 | goto put_child; |
| 1090 | } |
| 1091 | config[num].out_cm_ampl_bits &= 0x0f; |
| 1092 | config[num].out_cm_ampl_bits |= (val << 4) & 0xf0; |
| 1093 | } |
| 1094 | |
| 1095 | if (of_property_read_bool(child, "silabs,disable-high")) |
| 1096 | config[num].out_format_drv_bits |= 0x10; |
| 1097 | |
| 1098 | config[num].synth_master = |
| 1099 | of_property_read_bool(child, "silabs,synth-master"); |
| 1100 | |
| 1101 | config[num].always_on = |
| 1102 | of_property_read_bool(child, "always-on"); |
| 1103 | } |
| 1104 | |
| 1105 | return 0; |
| 1106 | |
| 1107 | put_child: |
| 1108 | of_node_put(child); |
| 1109 | return -EINVAL; |
| 1110 | } |
| 1111 | |
| 1112 | /* |
| 1113 | * If not pre-configured, calculate and set the PLL configuration manually. |
| 1114 | * For low-jitter performance, the PLL should be set such that the synthesizers |
| 1115 | * only need integer division. |
| 1116 | * Without any user guidance, we'll set the PLL to 14GHz, which still allows |
| 1117 | * the chip to generate any frequency on its outputs, but jitter performance |
| 1118 | * may be sub-optimal. |
| 1119 | */ |
| 1120 | static int si5341_initialize_pll(struct clk_si5341 *data) |
| 1121 | { |
| 1122 | struct device_node *np = data->i2c_client->dev.of_node; |
| 1123 | u32 m_num = 0; |
| 1124 | u32 m_den = 0; |
| 1125 | |
| 1126 | if (of_property_read_u32(np, "silabs,pll-m-num", &m_num)) { |
| 1127 | dev_err(&data->i2c_client->dev, |
| 1128 | "PLL configuration requires silabs,pll-m-num\n"); |
| 1129 | } |
| 1130 | if (of_property_read_u32(np, "silabs,pll-m-den", &m_den)) { |
| 1131 | dev_err(&data->i2c_client->dev, |
| 1132 | "PLL configuration requires silabs,pll-m-den\n"); |
| 1133 | } |
| 1134 | |
| 1135 | if (!m_num || !m_den) { |
| 1136 | dev_err(&data->i2c_client->dev, |
| 1137 | "PLL configuration invalid, assume 14GHz\n"); |
| 1138 | m_den = clk_get_rate(data->pxtal) / 10; |
| 1139 | m_num = 1400000000; |
| 1140 | } |
| 1141 | |
| 1142 | return si5341_encode_44_32(data->regmap, |
| 1143 | SI5341_PLL_M_NUM, m_num, m_den); |
| 1144 | } |
| 1145 | |
| 1146 | static int si5341_probe(struct i2c_client *client, |
| 1147 | const struct i2c_device_id *id) |
| 1148 | { |
| 1149 | struct clk_si5341 *data; |
| 1150 | struct clk_init_data init; |
| 1151 | const char *root_clock_name; |
| 1152 | const char *synth_clock_names[SI5341_NUM_SYNTH]; |
| 1153 | int err; |
| 1154 | unsigned int i; |
| 1155 | struct clk_si5341_output_config config[SI5341_MAX_NUM_OUTPUTS]; |
| 1156 | bool initialization_required; |
| 1157 | |
| 1158 | data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL); |
| 1159 | if (!data) |
| 1160 | return -ENOMEM; |
| 1161 | |
| 1162 | data->i2c_client = client; |
| 1163 | |
| 1164 | data->pxtal = devm_clk_get(&client->dev, "xtal"); |
| 1165 | if (IS_ERR(data->pxtal)) { |
| 1166 | if (PTR_ERR(data->pxtal) == -EPROBE_DEFER) |
| 1167 | return -EPROBE_DEFER; |
| 1168 | |
| 1169 | dev_err(&client->dev, "Missing xtal clock input\n"); |
| 1170 | } |
| 1171 | |
| 1172 | err = si5341_dt_parse_dt(client, config); |
| 1173 | if (err) |
| 1174 | return err; |
| 1175 | |
| 1176 | if (of_property_read_string(client->dev.of_node, "clock-output-names", |
| 1177 | &init.name)) |
| 1178 | init.name = client->dev.of_node->name; |
| 1179 | root_clock_name = init.name; |
| 1180 | |
| 1181 | data->regmap = devm_regmap_init_i2c(client, &si5341_regmap_config); |
| 1182 | if (IS_ERR(data->regmap)) |
| 1183 | return PTR_ERR(data->regmap); |
| 1184 | |
| 1185 | i2c_set_clientdata(client, data); |
| 1186 | |
| 1187 | err = si5341_probe_chip_id(data); |
| 1188 | if (err < 0) |
| 1189 | return err; |
| 1190 | |
| 1191 | /* "Activate" the xtal (usually a fixed clock) */ |
| 1192 | clk_prepare_enable(data->pxtal); |
| 1193 | |
| 1194 | if (of_property_read_bool(client->dev.of_node, "silabs,reprogram")) { |
| 1195 | initialization_required = true; |
| 1196 | } else { |
| 1197 | err = si5341_is_programmed_already(data); |
| 1198 | if (err < 0) |
| 1199 | return err; |
| 1200 | |
| 1201 | initialization_required = !err; |
| 1202 | } |
| 1203 | |
| 1204 | if (initialization_required) { |
| 1205 | /* Populate the regmap cache in preparation for "cache only" */ |
| 1206 | err = si5341_read_settings(data); |
| 1207 | if (err < 0) |
| 1208 | return err; |
| 1209 | |
| 1210 | err = si5341_send_preamble(data); |
| 1211 | if (err < 0) |
| 1212 | return err; |
| 1213 | |
| 1214 | /* |
| 1215 | * We intend to send all 'final' register values in a single |
| 1216 | * transaction. So cache all register writes until we're done |
| 1217 | * configuring. |
| 1218 | */ |
| 1219 | regcache_cache_only(data->regmap, true); |
| 1220 | |
| 1221 | /* Write the configuration pairs from the firmware blob */ |
| 1222 | err = si5341_write_multiple(data, si5341_reg_defaults, |
| 1223 | ARRAY_SIZE(si5341_reg_defaults)); |
| 1224 | if (err < 0) |
| 1225 | return err; |
| 1226 | |
| 1227 | /* PLL configuration is required */ |
| 1228 | err = si5341_initialize_pll(data); |
| 1229 | if (err < 0) |
| 1230 | return err; |
| 1231 | } |
| 1232 | |
| 1233 | /* Register the PLL */ |
| 1234 | data->pxtal_name = __clk_get_name(data->pxtal); |
| 1235 | init.parent_names = &data->pxtal_name; |
| 1236 | init.num_parents = 1; /* For now, only XTAL input supported */ |
| 1237 | init.ops = &si5341_clk_ops; |
| 1238 | init.flags = 0; |
| 1239 | data->hw.init = &init; |
| 1240 | |
| 1241 | err = devm_clk_hw_register(&client->dev, &data->hw); |
| 1242 | if (err) { |
| 1243 | dev_err(&client->dev, "clock registration failed\n"); |
| 1244 | return err; |
| 1245 | } |
| 1246 | |
| 1247 | init.num_parents = 1; |
| 1248 | init.parent_names = &root_clock_name; |
| 1249 | init.ops = &si5341_synth_clk_ops; |
| 1250 | for (i = 0; i < data->num_synth; ++i) { |
| 1251 | synth_clock_names[i] = devm_kasprintf(&client->dev, GFP_KERNEL, |
| 1252 | "%s.N%u", client->dev.of_node->name, i); |
| 1253 | init.name = synth_clock_names[i]; |
| 1254 | data->synth[i].index = i; |
| 1255 | data->synth[i].data = data; |
| 1256 | data->synth[i].hw.init = &init; |
| 1257 | err = devm_clk_hw_register(&client->dev, &data->synth[i].hw); |
| 1258 | if (err) { |
| 1259 | dev_err(&client->dev, |
| 1260 | "synth N%u registration failed\n", i); |
| 1261 | } |
| 1262 | } |
| 1263 | |
| 1264 | init.num_parents = data->num_synth; |
| 1265 | init.parent_names = synth_clock_names; |
| 1266 | init.ops = &si5341_output_clk_ops; |
| 1267 | for (i = 0; i < data->num_outputs; ++i) { |
| 1268 | init.name = kasprintf(GFP_KERNEL, "%s.%d", |
| 1269 | client->dev.of_node->name, i); |
| 1270 | init.flags = config[i].synth_master ? CLK_SET_RATE_PARENT : 0; |
| 1271 | data->clk[i].index = i; |
| 1272 | data->clk[i].data = data; |
| 1273 | data->clk[i].hw.init = &init; |
| 1274 | if (config[i].out_format_drv_bits & 0x07) { |
| 1275 | regmap_write(data->regmap, |
| 1276 | SI5341_OUT_FORMAT(&data->clk[i]), |
| 1277 | config[i].out_format_drv_bits); |
| 1278 | regmap_write(data->regmap, |
| 1279 | SI5341_OUT_CM(&data->clk[i]), |
| 1280 | config[i].out_cm_ampl_bits); |
| 1281 | } |
| 1282 | err = devm_clk_hw_register(&client->dev, &data->clk[i].hw); |
| 1283 | kfree(init.name); /* clock framework made a copy of the name */ |
| 1284 | if (err) { |
| 1285 | dev_err(&client->dev, |
| 1286 | "output %u registration failed\n", i); |
| 1287 | return err; |
| 1288 | } |
| 1289 | if (config[i].always_on) |
| 1290 | clk_prepare(data->clk[i].hw.clk); |
| 1291 | } |
| 1292 | |
| 1293 | err = of_clk_add_hw_provider(client->dev.of_node, of_clk_si5341_get, |
| 1294 | data); |
| 1295 | if (err) { |
| 1296 | dev_err(&client->dev, "unable to add clk provider\n"); |
| 1297 | return err; |
| 1298 | } |
| 1299 | |
| 1300 | if (initialization_required) { |
| 1301 | /* Synchronize */ |
| 1302 | regcache_cache_only(data->regmap, false); |
| 1303 | err = regcache_sync(data->regmap); |
| 1304 | if (err < 0) |
| 1305 | return err; |
| 1306 | |
| 1307 | err = si5341_finalize_defaults(data); |
| 1308 | if (err < 0) |
| 1309 | return err; |
| 1310 | } |
| 1311 | |
| 1312 | /* Free the names, clk framework makes copies */ |
| 1313 | for (i = 0; i < data->num_synth; ++i) |
| 1314 | devm_kfree(&client->dev, (void *)synth_clock_names[i]); |
| 1315 | |
| 1316 | return 0; |
| 1317 | } |
| 1318 | |
| 1319 | static const struct i2c_device_id si5341_id[] = { |
| 1320 | { "si5340", 0 }, |
| 1321 | { "si5341", 1 }, |
| 1322 | { } |
| 1323 | }; |
| 1324 | MODULE_DEVICE_TABLE(i2c, si5341_id); |
| 1325 | |
| 1326 | static const struct of_device_id clk_si5341_of_match[] = { |
| 1327 | { .compatible = "silabs,si5340" }, |
| 1328 | { .compatible = "silabs,si5341" }, |
| 1329 | { } |
| 1330 | }; |
| 1331 | MODULE_DEVICE_TABLE(of, clk_si5341_of_match); |
| 1332 | |
| 1333 | static struct i2c_driver si5341_driver = { |
| 1334 | .driver = { |
| 1335 | .name = "si5341", |
| 1336 | .of_match_table = clk_si5341_of_match, |
| 1337 | }, |
| 1338 | .probe = si5341_probe, |
| 1339 | .id_table = si5341_id, |
| 1340 | }; |
| 1341 | module_i2c_driver(si5341_driver); |
| 1342 | |
| 1343 | MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>"); |
| 1344 | MODULE_DESCRIPTION("Si5341 driver"); |
| 1345 | MODULE_LICENSE("GPL"); |