Yoshihiro Shimoda | 6028aa0 | 2008-10-14 21:23:26 +0900 | [diff] [blame] | 1 | /* |
| 2 | * SuperH FLCTL nand controller |
| 3 | * |
| 4 | * Copyright © 2008 Renesas Solutions Corp. |
| 5 | * Copyright © 2008 Atom Create Engineering Co., Ltd. |
| 6 | * |
| 7 | * Based on fsl_elbc_nand.c, Copyright © 2006-2007 Freescale Semiconductor |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or modify |
| 10 | * it under the terms of the GNU General Public License as published by |
| 11 | * the Free Software Foundation; version 2 of the License. |
| 12 | * |
| 13 | * This program is distributed in the hope that it will be useful, |
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 16 | * GNU General Public License for more details. |
| 17 | * |
| 18 | * You should have received a copy of the GNU General Public License |
| 19 | * along with this program; if not, write to the Free Software |
| 20 | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| 21 | * |
| 22 | */ |
| 23 | |
| 24 | #include <linux/module.h> |
| 25 | #include <linux/kernel.h> |
| 26 | #include <linux/delay.h> |
| 27 | #include <linux/io.h> |
| 28 | #include <linux/platform_device.h> |
| 29 | |
| 30 | #include <linux/mtd/mtd.h> |
| 31 | #include <linux/mtd/nand.h> |
| 32 | #include <linux/mtd/partitions.h> |
| 33 | #include <linux/mtd/sh_flctl.h> |
| 34 | |
| 35 | static struct nand_ecclayout flctl_4secc_oob_16 = { |
| 36 | .eccbytes = 10, |
| 37 | .eccpos = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, |
| 38 | .oobfree = { |
| 39 | {.offset = 12, |
| 40 | . length = 4} }, |
| 41 | }; |
| 42 | |
| 43 | static struct nand_ecclayout flctl_4secc_oob_64 = { |
| 44 | .eccbytes = 10, |
| 45 | .eccpos = {48, 49, 50, 51, 52, 53, 54, 55, 56, 57}, |
| 46 | .oobfree = { |
| 47 | {.offset = 60, |
| 48 | . length = 4} }, |
| 49 | }; |
| 50 | |
| 51 | static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; |
| 52 | |
| 53 | static struct nand_bbt_descr flctl_4secc_smallpage = { |
| 54 | .options = NAND_BBT_SCAN2NDPAGE, |
| 55 | .offs = 11, |
| 56 | .len = 1, |
| 57 | .pattern = scan_ff_pattern, |
| 58 | }; |
| 59 | |
| 60 | static struct nand_bbt_descr flctl_4secc_largepage = { |
| 61 | .options = 0, |
| 62 | .offs = 58, |
| 63 | .len = 2, |
| 64 | .pattern = scan_ff_pattern, |
| 65 | }; |
| 66 | |
| 67 | static void empty_fifo(struct sh_flctl *flctl) |
| 68 | { |
| 69 | writel(0x000c0000, FLINTDMACR(flctl)); /* FIFO Clear */ |
| 70 | writel(0x00000000, FLINTDMACR(flctl)); /* Clear Error flags */ |
| 71 | } |
| 72 | |
| 73 | static void start_translation(struct sh_flctl *flctl) |
| 74 | { |
| 75 | writeb(TRSTRT, FLTRCR(flctl)); |
| 76 | } |
| 77 | |
| 78 | static void wait_completion(struct sh_flctl *flctl) |
| 79 | { |
| 80 | uint32_t timeout = LOOP_TIMEOUT_MAX; |
| 81 | |
| 82 | while (timeout--) { |
| 83 | if (readb(FLTRCR(flctl)) & TREND) { |
| 84 | writeb(0x0, FLTRCR(flctl)); |
| 85 | return; |
| 86 | } |
| 87 | udelay(1); |
| 88 | } |
| 89 | |
| 90 | printk(KERN_ERR "wait_completion(): Timeout occured \n"); |
| 91 | writeb(0x0, FLTRCR(flctl)); |
| 92 | } |
| 93 | |
| 94 | static void set_addr(struct mtd_info *mtd, int column, int page_addr) |
| 95 | { |
| 96 | struct sh_flctl *flctl = mtd_to_flctl(mtd); |
| 97 | uint32_t addr = 0; |
| 98 | |
| 99 | if (column == -1) { |
| 100 | addr = page_addr; /* ERASE1 */ |
| 101 | } else if (page_addr != -1) { |
| 102 | /* SEQIN, READ0, etc.. */ |
| 103 | if (flctl->page_size) { |
| 104 | addr = column & 0x0FFF; |
| 105 | addr |= (page_addr & 0xff) << 16; |
| 106 | addr |= ((page_addr >> 8) & 0xff) << 24; |
| 107 | /* big than 128MB */ |
| 108 | if (flctl->rw_ADRCNT == ADRCNT2_E) { |
| 109 | uint32_t addr2; |
| 110 | addr2 = (page_addr >> 16) & 0xff; |
| 111 | writel(addr2, FLADR2(flctl)); |
| 112 | } |
| 113 | } else { |
| 114 | addr = column; |
| 115 | addr |= (page_addr & 0xff) << 8; |
| 116 | addr |= ((page_addr >> 8) & 0xff) << 16; |
| 117 | addr |= ((page_addr >> 16) & 0xff) << 24; |
| 118 | } |
| 119 | } |
| 120 | writel(addr, FLADR(flctl)); |
| 121 | } |
| 122 | |
| 123 | static void wait_rfifo_ready(struct sh_flctl *flctl) |
| 124 | { |
| 125 | uint32_t timeout = LOOP_TIMEOUT_MAX; |
| 126 | |
| 127 | while (timeout--) { |
| 128 | uint32_t val; |
| 129 | /* check FIFO */ |
| 130 | val = readl(FLDTCNTR(flctl)) >> 16; |
| 131 | if (val & 0xFF) |
| 132 | return; |
| 133 | udelay(1); |
| 134 | } |
| 135 | printk(KERN_ERR "wait_rfifo_ready(): Timeout occured \n"); |
| 136 | } |
| 137 | |
| 138 | static void wait_wfifo_ready(struct sh_flctl *flctl) |
| 139 | { |
| 140 | uint32_t len, timeout = LOOP_TIMEOUT_MAX; |
| 141 | |
| 142 | while (timeout--) { |
| 143 | /* check FIFO */ |
| 144 | len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF; |
| 145 | if (len >= 4) |
| 146 | return; |
| 147 | udelay(1); |
| 148 | } |
| 149 | printk(KERN_ERR "wait_wfifo_ready(): Timeout occured \n"); |
| 150 | } |
| 151 | |
| 152 | static int wait_recfifo_ready(struct sh_flctl *flctl) |
| 153 | { |
| 154 | uint32_t timeout = LOOP_TIMEOUT_MAX; |
| 155 | int checked[4]; |
| 156 | void __iomem *ecc_reg[4]; |
| 157 | int i; |
| 158 | uint32_t data, size; |
| 159 | |
| 160 | memset(checked, 0, sizeof(checked)); |
| 161 | |
| 162 | while (timeout--) { |
| 163 | size = readl(FLDTCNTR(flctl)) >> 24; |
| 164 | if (size & 0xFF) |
| 165 | return 0; /* success */ |
| 166 | |
| 167 | if (readl(FL4ECCCR(flctl)) & _4ECCFA) |
| 168 | return 1; /* can't correct */ |
| 169 | |
| 170 | udelay(1); |
| 171 | if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) |
| 172 | continue; |
| 173 | |
| 174 | /* start error correction */ |
| 175 | ecc_reg[0] = FL4ECCRESULT0(flctl); |
| 176 | ecc_reg[1] = FL4ECCRESULT1(flctl); |
| 177 | ecc_reg[2] = FL4ECCRESULT2(flctl); |
| 178 | ecc_reg[3] = FL4ECCRESULT3(flctl); |
| 179 | |
| 180 | for (i = 0; i < 3; i++) { |
| 181 | data = readl(ecc_reg[i]); |
| 182 | if (data != INIT_FL4ECCRESULT_VAL && !checked[i]) { |
| 183 | uint8_t org; |
| 184 | int index; |
| 185 | |
| 186 | index = data >> 16; |
| 187 | org = flctl->done_buff[index]; |
| 188 | flctl->done_buff[index] = org ^ (data & 0xFF); |
| 189 | checked[i] = 1; |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | writel(0, FL4ECCCR(flctl)); |
| 194 | } |
| 195 | |
| 196 | printk(KERN_ERR "wait_recfifo_ready(): Timeout occured \n"); |
| 197 | return 1; /* timeout */ |
| 198 | } |
| 199 | |
| 200 | static void wait_wecfifo_ready(struct sh_flctl *flctl) |
| 201 | { |
| 202 | uint32_t timeout = LOOP_TIMEOUT_MAX; |
| 203 | uint32_t len; |
| 204 | |
| 205 | while (timeout--) { |
| 206 | /* check FLECFIFO */ |
| 207 | len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF; |
| 208 | if (len >= 4) |
| 209 | return; |
| 210 | udelay(1); |
| 211 | } |
| 212 | printk(KERN_ERR "wait_wecfifo_ready(): Timeout occured \n"); |
| 213 | } |
| 214 | |
| 215 | static void read_datareg(struct sh_flctl *flctl, int offset) |
| 216 | { |
| 217 | unsigned long data; |
| 218 | unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; |
| 219 | |
| 220 | wait_completion(flctl); |
| 221 | |
| 222 | data = readl(FLDATAR(flctl)); |
| 223 | *buf = le32_to_cpu(data); |
| 224 | } |
| 225 | |
| 226 | static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset) |
| 227 | { |
| 228 | int i, len_4align; |
| 229 | unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; |
| 230 | void *fifo_addr = (void *)FLDTFIFO(flctl); |
| 231 | |
| 232 | len_4align = (rlen + 3) / 4; |
| 233 | |
| 234 | for (i = 0; i < len_4align; i++) { |
| 235 | wait_rfifo_ready(flctl); |
| 236 | buf[i] = readl(fifo_addr); |
| 237 | buf[i] = be32_to_cpu(buf[i]); |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | static int read_ecfiforeg(struct sh_flctl *flctl, uint8_t *buff) |
| 242 | { |
| 243 | int i; |
| 244 | unsigned long *ecc_buf = (unsigned long *)buff; |
| 245 | void *fifo_addr = (void *)FLECFIFO(flctl); |
| 246 | |
| 247 | for (i = 0; i < 4; i++) { |
| 248 | if (wait_recfifo_ready(flctl)) |
| 249 | return 1; |
| 250 | ecc_buf[i] = readl(fifo_addr); |
| 251 | ecc_buf[i] = be32_to_cpu(ecc_buf[i]); |
| 252 | } |
| 253 | |
| 254 | return 0; |
| 255 | } |
| 256 | |
| 257 | static void write_fiforeg(struct sh_flctl *flctl, int rlen, int offset) |
| 258 | { |
| 259 | int i, len_4align; |
| 260 | unsigned long *data = (unsigned long *)&flctl->done_buff[offset]; |
| 261 | void *fifo_addr = (void *)FLDTFIFO(flctl); |
| 262 | |
| 263 | len_4align = (rlen + 3) / 4; |
| 264 | for (i = 0; i < len_4align; i++) { |
| 265 | wait_wfifo_ready(flctl); |
| 266 | writel(cpu_to_be32(data[i]), fifo_addr); |
| 267 | } |
| 268 | } |
| 269 | |
| 270 | static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val) |
| 271 | { |
| 272 | struct sh_flctl *flctl = mtd_to_flctl(mtd); |
| 273 | uint32_t flcmncr_val = readl(FLCMNCR(flctl)); |
| 274 | uint32_t flcmdcr_val, addr_len_bytes = 0; |
| 275 | |
| 276 | /* Set SNAND bit if page size is 2048byte */ |
| 277 | if (flctl->page_size) |
| 278 | flcmncr_val |= SNAND_E; |
| 279 | else |
| 280 | flcmncr_val &= ~SNAND_E; |
| 281 | |
| 282 | /* default FLCMDCR val */ |
| 283 | flcmdcr_val = DOCMD1_E | DOADR_E; |
| 284 | |
| 285 | /* Set for FLCMDCR */ |
| 286 | switch (cmd) { |
| 287 | case NAND_CMD_ERASE1: |
| 288 | addr_len_bytes = flctl->erase_ADRCNT; |
| 289 | flcmdcr_val |= DOCMD2_E; |
| 290 | break; |
| 291 | case NAND_CMD_READ0: |
| 292 | case NAND_CMD_READOOB: |
| 293 | addr_len_bytes = flctl->rw_ADRCNT; |
| 294 | flcmdcr_val |= CDSRC_E; |
| 295 | break; |
| 296 | case NAND_CMD_SEQIN: |
| 297 | /* This case is that cmd is READ0 or READ1 or READ00 */ |
| 298 | flcmdcr_val &= ~DOADR_E; /* ONLY execute 1st cmd */ |
| 299 | break; |
| 300 | case NAND_CMD_PAGEPROG: |
| 301 | addr_len_bytes = flctl->rw_ADRCNT; |
Yoshihiro Shimoda | 35a3479 | 2008-10-20 17:17:44 +0900 | [diff] [blame^] | 302 | flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW; |
| 303 | break; |
| 304 | case NAND_CMD_READID: |
| 305 | flcmncr_val &= ~SNAND_E; |
| 306 | addr_len_bytes = ADRCNT_1; |
| 307 | break; |
| 308 | case NAND_CMD_STATUS: |
| 309 | case NAND_CMD_RESET: |
| 310 | flcmncr_val &= ~SNAND_E; |
| 311 | flcmdcr_val &= ~(DOADR_E | DOSR_E); |
| 312 | break; |
| 313 | default: |
| 314 | break; |
| 315 | } |
| 316 | |
| 317 | /* Set address bytes parameter */ |
| 318 | flcmdcr_val |= addr_len_bytes; |
| 319 | |
| 320 | /* Now actually write */ |
| 321 | writel(flcmncr_val, FLCMNCR(flctl)); |
| 322 | writel(flcmdcr_val, FLCMDCR(flctl)); |
| 323 | writel(flcmcdr_val, FLCMCDR(flctl)); |
| 324 | } |
| 325 | |
| 326 | static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, |
| 327 | uint8_t *buf) |
| 328 | { |
| 329 | int i, eccsize = chip->ecc.size; |
| 330 | int eccbytes = chip->ecc.bytes; |
| 331 | int eccsteps = chip->ecc.steps; |
| 332 | uint8_t *p = buf; |
| 333 | struct sh_flctl *flctl = mtd_to_flctl(mtd); |
| 334 | |
| 335 | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) |
| 336 | chip->read_buf(mtd, p, eccsize); |
| 337 | |
| 338 | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| 339 | if (flctl->hwecc_cant_correct[i]) |
| 340 | mtd->ecc_stats.failed++; |
| 341 | else |
| 342 | mtd->ecc_stats.corrected += 0; |
| 343 | } |
| 344 | |
| 345 | return 0; |
| 346 | } |
| 347 | |
| 348 | static void flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, |
| 349 | const uint8_t *buf) |
| 350 | { |
| 351 | int i, eccsize = chip->ecc.size; |
| 352 | int eccbytes = chip->ecc.bytes; |
| 353 | int eccsteps = chip->ecc.steps; |
| 354 | const uint8_t *p = buf; |
| 355 | |
| 356 | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) |
| 357 | chip->write_buf(mtd, p, eccsize); |
| 358 | } |
| 359 | |
| 360 | static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr) |
| 361 | { |
| 362 | struct sh_flctl *flctl = mtd_to_flctl(mtd); |
| 363 | int sector, page_sectors; |
| 364 | |
| 365 | if (flctl->page_size) |
| 366 | page_sectors = 4; |
| 367 | else |
| 368 | page_sectors = 1; |
| 369 | |
| 370 | writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT, |
| 371 | FLCMNCR(flctl)); |
| 372 | |
| 373 | set_cmd_regs(mtd, NAND_CMD_READ0, |
| 374 | (NAND_CMD_READSTART << 8) | NAND_CMD_READ0); |
| 375 | |
| 376 | for (sector = 0; sector < page_sectors; sector++) { |
| 377 | int ret; |
| 378 | |
| 379 | empty_fifo(flctl); |
| 380 | writel(readl(FLCMDCR(flctl)) | 1, FLCMDCR(flctl)); |
| 381 | writel(page_addr << 2 | sector, FLADR(flctl)); |
| 382 | |
| 383 | start_translation(flctl); |
| 384 | read_fiforeg(flctl, 512, 512 * sector); |
| 385 | |
| 386 | ret = read_ecfiforeg(flctl, |
| 387 | &flctl->done_buff[mtd->writesize + 16 * sector]); |
| 388 | |
| 389 | if (ret) |
| 390 | flctl->hwecc_cant_correct[sector] = 1; |
| 391 | |
| 392 | writel(0x0, FL4ECCCR(flctl)); |
| 393 | wait_completion(flctl); |
| 394 | } |
| 395 | writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT), |
| 396 | FLCMNCR(flctl)); |
| 397 | } |
| 398 | |
| 399 | static void execmd_read_oob(struct mtd_info *mtd, int page_addr) |
| 400 | { |
| 401 | struct sh_flctl *flctl = mtd_to_flctl(mtd); |
| 402 | |
| 403 | set_cmd_regs(mtd, NAND_CMD_READ0, |
| 404 | (NAND_CMD_READSTART << 8) | NAND_CMD_READ0); |
| 405 | |
| 406 | empty_fifo(flctl); |
| 407 | if (flctl->page_size) { |
| 408 | int i; |
| 409 | /* In case that the page size is 2k */ |
| 410 | for (i = 0; i < 16 * 3; i++) |
| 411 | flctl->done_buff[i] = 0xFF; |
| 412 | |
| 413 | set_addr(mtd, 3 * 528 + 512, page_addr); |
| 414 | writel(16, FLDTCNTR(flctl)); |
| 415 | |
| 416 | start_translation(flctl); |
| 417 | read_fiforeg(flctl, 16, 16 * 3); |
| 418 | wait_completion(flctl); |
| 419 | } else { |
| 420 | /* In case that the page size is 512b */ |
| 421 | set_addr(mtd, 512, page_addr); |
| 422 | writel(16, FLDTCNTR(flctl)); |
| 423 | |
| 424 | start_translation(flctl); |
| 425 | read_fiforeg(flctl, 16, 0); |
| 426 | wait_completion(flctl); |
| 427 | } |
| 428 | } |
| 429 | |
| 430 | static void execmd_write_page_sector(struct mtd_info *mtd) |
| 431 | { |
| 432 | struct sh_flctl *flctl = mtd_to_flctl(mtd); |
| 433 | int i, page_addr = flctl->seqin_page_addr; |
| 434 | int sector, page_sectors; |
| 435 | |
| 436 | if (flctl->page_size) |
| 437 | page_sectors = 4; |
| 438 | else |
| 439 | page_sectors = 1; |
| 440 | |
| 441 | writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl)); |
| 442 | |
| 443 | set_cmd_regs(mtd, NAND_CMD_PAGEPROG, |
| 444 | (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN); |
| 445 | |
| 446 | for (sector = 0; sector < page_sectors; sector++) { |
| 447 | empty_fifo(flctl); |
| 448 | writel(readl(FLCMDCR(flctl)) | 1, FLCMDCR(flctl)); |
| 449 | writel(page_addr << 2 | sector, FLADR(flctl)); |
| 450 | |
| 451 | start_translation(flctl); |
| 452 | write_fiforeg(flctl, 512, 512 * sector); |
| 453 | |
| 454 | for (i = 0; i < 4; i++) { |
| 455 | wait_wecfifo_ready(flctl); /* wait for write ready */ |
| 456 | writel(0xFFFFFFFF, FLECFIFO(flctl)); |
| 457 | } |
| 458 | wait_completion(flctl); |
| 459 | } |
| 460 | |
| 461 | writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl)); |
| 462 | } |
| 463 | |
| 464 | static void execmd_write_oob(struct mtd_info *mtd) |
| 465 | { |
| 466 | struct sh_flctl *flctl = mtd_to_flctl(mtd); |
| 467 | int page_addr = flctl->seqin_page_addr; |
| 468 | int sector, page_sectors; |
| 469 | |
| 470 | if (flctl->page_size) { |
| 471 | sector = 3; |
| 472 | page_sectors = 4; |
| 473 | } else { |
| 474 | sector = 0; |
| 475 | page_sectors = 1; |
| 476 | } |
| 477 | |
| 478 | set_cmd_regs(mtd, NAND_CMD_PAGEPROG, |
| 479 | (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN); |
| 480 | |
| 481 | for (; sector < page_sectors; sector++) { |
| 482 | empty_fifo(flctl); |
| 483 | set_addr(mtd, sector * 528 + 512, page_addr); |
| 484 | writel(16, FLDTCNTR(flctl)); /* set read size */ |
| 485 | |
| 486 | start_translation(flctl); |
| 487 | write_fiforeg(flctl, 16, 16 * sector); |
| 488 | wait_completion(flctl); |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command, |
| 493 | int column, int page_addr) |
| 494 | { |
| 495 | struct sh_flctl *flctl = mtd_to_flctl(mtd); |
| 496 | uint32_t read_cmd = 0; |
| 497 | |
| 498 | flctl->read_bytes = 0; |
| 499 | if (command != NAND_CMD_PAGEPROG) |
| 500 | flctl->index = 0; |
| 501 | |
| 502 | switch (command) { |
| 503 | case NAND_CMD_READ1: |
| 504 | case NAND_CMD_READ0: |
| 505 | if (flctl->hwecc) { |
| 506 | /* read page with hwecc */ |
| 507 | execmd_read_page_sector(mtd, page_addr); |
| 508 | break; |
| 509 | } |
| 510 | empty_fifo(flctl); |
| 511 | if (flctl->page_size) |
| 512 | set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8) |
| 513 | | command); |
| 514 | else |
| 515 | set_cmd_regs(mtd, command, command); |
| 516 | |
| 517 | set_addr(mtd, 0, page_addr); |
| 518 | |
| 519 | flctl->read_bytes = mtd->writesize + mtd->oobsize; |
| 520 | flctl->index += column; |
| 521 | goto read_normal_exit; |
| 522 | |
| 523 | case NAND_CMD_READOOB: |
| 524 | if (flctl->hwecc) { |
| 525 | /* read page with hwecc */ |
| 526 | execmd_read_oob(mtd, page_addr); |
| 527 | break; |
| 528 | } |
| 529 | |
| 530 | empty_fifo(flctl); |
| 531 | if (flctl->page_size) { |
| 532 | set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8) |
| 533 | | NAND_CMD_READ0); |
| 534 | set_addr(mtd, mtd->writesize, page_addr); |
| 535 | } else { |
| 536 | set_cmd_regs(mtd, command, command); |
| 537 | set_addr(mtd, 0, page_addr); |
| 538 | } |
| 539 | flctl->read_bytes = mtd->oobsize; |
| 540 | goto read_normal_exit; |
| 541 | |
| 542 | case NAND_CMD_READID: |
| 543 | empty_fifo(flctl); |
| 544 | set_cmd_regs(mtd, command, command); |
| 545 | set_addr(mtd, 0, 0); |
| 546 | |
| 547 | flctl->read_bytes = 4; |
| 548 | writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ |
| 549 | start_translation(flctl); |
| 550 | read_datareg(flctl, 0); /* read and end */ |
| 551 | break; |
| 552 | |
| 553 | case NAND_CMD_ERASE1: |
| 554 | flctl->erase1_page_addr = page_addr; |
| 555 | break; |
| 556 | |
| 557 | case NAND_CMD_ERASE2: |
| 558 | set_cmd_regs(mtd, NAND_CMD_ERASE1, |
| 559 | (command << 8) | NAND_CMD_ERASE1); |
| 560 | set_addr(mtd, -1, flctl->erase1_page_addr); |
| 561 | start_translation(flctl); |
| 562 | wait_completion(flctl); |
| 563 | break; |
| 564 | |
| 565 | case NAND_CMD_SEQIN: |
| 566 | if (!flctl->page_size) { |
| 567 | /* output read command */ |
| 568 | if (column >= mtd->writesize) { |
| 569 | column -= mtd->writesize; |
| 570 | read_cmd = NAND_CMD_READOOB; |
| 571 | } else if (column < 256) { |
| 572 | read_cmd = NAND_CMD_READ0; |
| 573 | } else { |
| 574 | column -= 256; |
| 575 | read_cmd = NAND_CMD_READ1; |
| 576 | } |
| 577 | } |
| 578 | flctl->seqin_column = column; |
| 579 | flctl->seqin_page_addr = page_addr; |
| 580 | flctl->seqin_read_cmd = read_cmd; |
| 581 | break; |
| 582 | |
| 583 | case NAND_CMD_PAGEPROG: |
| 584 | empty_fifo(flctl); |
| 585 | if (!flctl->page_size) { |
| 586 | set_cmd_regs(mtd, NAND_CMD_SEQIN, |
| 587 | flctl->seqin_read_cmd); |
| 588 | set_addr(mtd, -1, -1); |
| 589 | writel(0, FLDTCNTR(flctl)); /* set 0 size */ |
| 590 | start_translation(flctl); |
| 591 | wait_completion(flctl); |
| 592 | } |
| 593 | if (flctl->hwecc) { |
| 594 | /* write page with hwecc */ |
| 595 | if (flctl->seqin_column == mtd->writesize) |
| 596 | execmd_write_oob(mtd); |
| 597 | else if (!flctl->seqin_column) |
| 598 | execmd_write_page_sector(mtd); |
| 599 | else |
| 600 | printk(KERN_ERR "Invalid address !?\n"); |
| 601 | break; |
| 602 | } |
| 603 | set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN); |
| 604 | set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr); |
| 605 | writel(flctl->index, FLDTCNTR(flctl)); /* set write size */ |
| 606 | start_translation(flctl); |
| 607 | write_fiforeg(flctl, flctl->index, 0); |
| 608 | wait_completion(flctl); |
| 609 | break; |
| 610 | |
| 611 | case NAND_CMD_STATUS: |
| 612 | set_cmd_regs(mtd, command, command); |
| 613 | set_addr(mtd, -1, -1); |
| 614 | |
| 615 | flctl->read_bytes = 1; |
| 616 | writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ |
| 617 | start_translation(flctl); |
| 618 | read_datareg(flctl, 0); /* read and end */ |
| 619 | break; |
| 620 | |
| 621 | case NAND_CMD_RESET: |
| 622 | set_cmd_regs(mtd, command, command); |
| 623 | set_addr(mtd, -1, -1); |
| 624 | |
| 625 | writel(0, FLDTCNTR(flctl)); /* set 0 size */ |
| 626 | start_translation(flctl); |
| 627 | wait_completion(flctl); |
| 628 | break; |
| 629 | |
| 630 | default: |
| 631 | break; |
| 632 | } |
| 633 | return; |
| 634 | |
| 635 | read_normal_exit: |
| 636 | writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ |
| 637 | start_translation(flctl); |
| 638 | read_fiforeg(flctl, flctl->read_bytes, 0); |
| 639 | wait_completion(flctl); |
| 640 | return; |
| 641 | } |
| 642 | |
| 643 | static void flctl_select_chip(struct mtd_info *mtd, int chipnr) |
| 644 | { |
| 645 | struct sh_flctl *flctl = mtd_to_flctl(mtd); |
| 646 | uint32_t flcmncr_val = readl(FLCMNCR(flctl)); |
| 647 | |
| 648 | switch (chipnr) { |
| 649 | case -1: |
| 650 | flcmncr_val &= ~CE0_ENABLE; |
| 651 | writel(flcmncr_val, FLCMNCR(flctl)); |
| 652 | break; |
| 653 | case 0: |
| 654 | flcmncr_val |= CE0_ENABLE; |
| 655 | writel(flcmncr_val, FLCMNCR(flctl)); |
| 656 | break; |
| 657 | default: |
| 658 | BUG(); |
| 659 | } |
| 660 | } |
| 661 | |
| 662 | static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) |
| 663 | { |
| 664 | struct sh_flctl *flctl = mtd_to_flctl(mtd); |
| 665 | int i, index = flctl->index; |
| 666 | |
| 667 | for (i = 0; i < len; i++) |
| 668 | flctl->done_buff[index + i] = buf[i]; |
| 669 | flctl->index += len; |
| 670 | } |
| 671 | |
| 672 | static uint8_t flctl_read_byte(struct mtd_info *mtd) |
| 673 | { |
| 674 | struct sh_flctl *flctl = mtd_to_flctl(mtd); |
| 675 | int index = flctl->index; |
| 676 | uint8_t data; |
| 677 | |
| 678 | data = flctl->done_buff[index]; |
| 679 | flctl->index++; |
| 680 | return data; |
| 681 | } |
| 682 | |
| 683 | static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) |
| 684 | { |
| 685 | int i; |
| 686 | |
| 687 | for (i = 0; i < len; i++) |
| 688 | buf[i] = flctl_read_byte(mtd); |
| 689 | } |
| 690 | |
| 691 | static int flctl_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) |
| 692 | { |
| 693 | int i; |
| 694 | |
| 695 | for (i = 0; i < len; i++) |
| 696 | if (buf[i] != flctl_read_byte(mtd)) |
| 697 | return -EFAULT; |
| 698 | return 0; |
| 699 | } |
| 700 | |
| 701 | static void flctl_register_init(struct sh_flctl *flctl, unsigned long val) |
| 702 | { |
| 703 | writel(val, FLCMNCR(flctl)); |
| 704 | } |
| 705 | |
| 706 | static int flctl_chip_init_tail(struct mtd_info *mtd) |
| 707 | { |
| 708 | struct sh_flctl *flctl = mtd_to_flctl(mtd); |
| 709 | struct nand_chip *chip = &flctl->chip; |
| 710 | |
| 711 | if (mtd->writesize == 512) { |
| 712 | flctl->page_size = 0; |
| 713 | if (chip->chipsize > (32 << 20)) { |
| 714 | /* big than 32MB */ |
| 715 | flctl->rw_ADRCNT = ADRCNT_4; |
| 716 | flctl->erase_ADRCNT = ADRCNT_3; |
| 717 | } else if (chip->chipsize > (2 << 16)) { |
| 718 | /* big than 128KB */ |
| 719 | flctl->rw_ADRCNT = ADRCNT_3; |
| 720 | flctl->erase_ADRCNT = ADRCNT_2; |
| 721 | } else { |
| 722 | flctl->rw_ADRCNT = ADRCNT_2; |
| 723 | flctl->erase_ADRCNT = ADRCNT_1; |
| 724 | } |
| 725 | } else { |
| 726 | flctl->page_size = 1; |
| 727 | if (chip->chipsize > (128 << 20)) { |
| 728 | /* big than 128MB */ |
| 729 | flctl->rw_ADRCNT = ADRCNT2_E; |
| 730 | flctl->erase_ADRCNT = ADRCNT_3; |
| 731 | } else if (chip->chipsize > (8 << 16)) { |
| 732 | /* big than 512KB */ |
| 733 | flctl->rw_ADRCNT = ADRCNT_4; |
| 734 | flctl->erase_ADRCNT = ADRCNT_2; |
| 735 | } else { |
| 736 | flctl->rw_ADRCNT = ADRCNT_3; |
| 737 | flctl->erase_ADRCNT = ADRCNT_1; |
| 738 | } |
| 739 | } |
| 740 | |
| 741 | if (flctl->hwecc) { |
| 742 | if (mtd->writesize == 512) { |
| 743 | chip->ecc.layout = &flctl_4secc_oob_16; |
| 744 | chip->badblock_pattern = &flctl_4secc_smallpage; |
| 745 | } else { |
| 746 | chip->ecc.layout = &flctl_4secc_oob_64; |
| 747 | chip->badblock_pattern = &flctl_4secc_largepage; |
| 748 | } |
| 749 | |
| 750 | chip->ecc.size = 512; |
| 751 | chip->ecc.bytes = 10; |
| 752 | chip->ecc.read_page = flctl_read_page_hwecc; |
| 753 | chip->ecc.write_page = flctl_write_page_hwecc; |
| 754 | chip->ecc.mode = NAND_ECC_HW; |
| 755 | |
| 756 | /* 4 symbols ECC enabled */ |
| 757 | writel(readl(FLCMNCR(flctl)) | _4ECCEN | ECCPOS2 | ECCPOS_02, |
| 758 | FLCMNCR(flctl)); |
| 759 | } else { |
| 760 | chip->ecc.mode = NAND_ECC_SOFT; |
| 761 | } |
| 762 | |
| 763 | return 0; |
| 764 | } |
| 765 | |
| 766 | static int __init flctl_probe(struct platform_device *pdev) |
| 767 | { |
| 768 | struct resource *res; |
| 769 | struct sh_flctl *flctl; |
| 770 | struct mtd_info *flctl_mtd; |
| 771 | struct nand_chip *nand; |
| 772 | struct sh_flctl_platform_data *pdata; |
| 773 | int ret; |
| 774 | |
| 775 | pdata = pdev->dev.platform_data; |
| 776 | if (pdata == NULL) { |
| 777 | printk(KERN_ERR "sh_flctl platform_data not found.\n"); |
| 778 | return -ENODEV; |
| 779 | } |
| 780 | |
| 781 | flctl = kzalloc(sizeof(struct sh_flctl), GFP_KERNEL); |
| 782 | if (!flctl) { |
| 783 | printk(KERN_ERR "Unable to allocate NAND MTD dev structure.\n"); |
| 784 | return -ENOMEM; |
| 785 | } |
| 786 | |
| 787 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 788 | if (!res) { |
| 789 | printk(KERN_ERR "%s: resource not found.\n", __func__); |
| 790 | ret = -ENODEV; |
| 791 | goto err; |
| 792 | } |
| 793 | |
| 794 | flctl->reg = ioremap(res->start, res->end - res->start + 1); |
| 795 | if (flctl->reg == NULL) { |
| 796 | printk(KERN_ERR "%s: ioremap error.\n", __func__); |
| 797 | ret = -ENOMEM; |
| 798 | goto err; |
| 799 | } |
| 800 | |
| 801 | platform_set_drvdata(pdev, flctl); |
| 802 | flctl_mtd = &flctl->mtd; |
| 803 | nand = &flctl->chip; |
| 804 | flctl_mtd->priv = nand; |
| 805 | flctl->hwecc = pdata->has_hwecc; |
| 806 | |
| 807 | flctl_register_init(flctl, pdata->flcmncr_val); |
| 808 | |
| 809 | nand->options = NAND_NO_AUTOINCR; |
| 810 | |
| 811 | /* Set address of hardware control function */ |
| 812 | /* 20 us command delay time */ |
| 813 | nand->chip_delay = 20; |
| 814 | |
| 815 | nand->read_byte = flctl_read_byte; |
| 816 | nand->write_buf = flctl_write_buf; |
| 817 | nand->read_buf = flctl_read_buf; |
| 818 | nand->verify_buf = flctl_verify_buf; |
| 819 | nand->select_chip = flctl_select_chip; |
| 820 | nand->cmdfunc = flctl_cmdfunc; |
| 821 | |
| 822 | ret = nand_scan_ident(flctl_mtd, 1); |
| 823 | if (ret) |
| 824 | goto err; |
| 825 | |
| 826 | ret = flctl_chip_init_tail(flctl_mtd); |
| 827 | if (ret) |
| 828 | goto err; |
| 829 | |
| 830 | ret = nand_scan_tail(flctl_mtd); |
| 831 | if (ret) |
| 832 | goto err; |
| 833 | |
| 834 | add_mtd_partitions(flctl_mtd, pdata->parts, pdata->nr_parts); |
| 835 | |
| 836 | return 0; |
| 837 | |
| 838 | err: |
| 839 | kfree(flctl); |
| 840 | return ret; |
| 841 | } |
| 842 | |
| 843 | static int __exit flctl_remove(struct platform_device *pdev) |
| 844 | { |
| 845 | struct sh_flctl *flctl = platform_get_drvdata(pdev); |
| 846 | |
| 847 | nand_release(&flctl->mtd); |
| 848 | kfree(flctl); |
| 849 | |
| 850 | return 0; |
| 851 | } |
| 852 | |
| 853 | static struct platform_driver flctl_driver = { |
| 854 | .probe = flctl_probe, |
| 855 | .remove = flctl_remove, |
| 856 | .driver = { |
| 857 | .name = "sh_flctl", |
| 858 | .owner = THIS_MODULE, |
| 859 | }, |
| 860 | }; |
| 861 | |
| 862 | static int __init flctl_nand_init(void) |
| 863 | { |
| 864 | return platform_driver_register(&flctl_driver); |
| 865 | } |
| 866 | |
| 867 | static void __exit flctl_nand_cleanup(void) |
| 868 | { |
| 869 | platform_driver_unregister(&flctl_driver); |
| 870 | } |
| 871 | |
| 872 | module_init(flctl_nand_init); |
| 873 | module_exit(flctl_nand_cleanup); |
| 874 | |
| 875 | MODULE_LICENSE("GPL"); |
| 876 | MODULE_AUTHOR("Yoshihiro Shimoda"); |
| 877 | MODULE_DESCRIPTION("SuperH FLCTL driver"); |
| 878 | MODULE_ALIAS("platform:sh_flctl"); |