Andrii Nakryiko | 351131b | 2019-05-24 11:59:03 -0700 | [diff] [blame^] | 1 | // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) |
| 2 | |
| 3 | /* |
| 4 | * BTF-to-C type converter. |
| 5 | * |
| 6 | * Copyright (c) 2019 Facebook |
| 7 | */ |
| 8 | |
| 9 | #include <stdbool.h> |
| 10 | #include <stddef.h> |
| 11 | #include <stdlib.h> |
| 12 | #include <string.h> |
| 13 | #include <errno.h> |
| 14 | #include <linux/err.h> |
| 15 | #include <linux/btf.h> |
| 16 | #include "btf.h" |
| 17 | #include "hashmap.h" |
| 18 | #include "libbpf.h" |
| 19 | #include "libbpf_internal.h" |
| 20 | |
| 21 | #define min(x, y) ((x) < (y) ? (x) : (y)) |
| 22 | #define max(x, y) ((x) < (y) ? (y) : (x)) |
| 23 | |
| 24 | static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t"; |
| 25 | static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1; |
| 26 | |
| 27 | static const char *pfx(int lvl) |
| 28 | { |
| 29 | return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl]; |
| 30 | } |
| 31 | |
| 32 | enum btf_dump_type_order_state { |
| 33 | NOT_ORDERED, |
| 34 | ORDERING, |
| 35 | ORDERED, |
| 36 | }; |
| 37 | |
| 38 | enum btf_dump_type_emit_state { |
| 39 | NOT_EMITTED, |
| 40 | EMITTING, |
| 41 | EMITTED, |
| 42 | }; |
| 43 | |
| 44 | /* per-type auxiliary state */ |
| 45 | struct btf_dump_type_aux_state { |
| 46 | /* topological sorting state */ |
| 47 | enum btf_dump_type_order_state order_state: 2; |
| 48 | /* emitting state used to determine the need for forward declaration */ |
| 49 | enum btf_dump_type_emit_state emit_state: 2; |
| 50 | /* whether forward declaration was already emitted */ |
| 51 | __u8 fwd_emitted: 1; |
| 52 | /* whether unique non-duplicate name was already assigned */ |
| 53 | __u8 name_resolved: 1; |
| 54 | }; |
| 55 | |
| 56 | struct btf_dump { |
| 57 | const struct btf *btf; |
| 58 | const struct btf_ext *btf_ext; |
| 59 | btf_dump_printf_fn_t printf_fn; |
| 60 | struct btf_dump_opts opts; |
| 61 | |
| 62 | /* per-type auxiliary state */ |
| 63 | struct btf_dump_type_aux_state *type_states; |
| 64 | /* per-type optional cached unique name, must be freed, if present */ |
| 65 | const char **cached_names; |
| 66 | |
| 67 | /* topo-sorted list of dependent type definitions */ |
| 68 | __u32 *emit_queue; |
| 69 | int emit_queue_cap; |
| 70 | int emit_queue_cnt; |
| 71 | |
| 72 | /* |
| 73 | * stack of type declarations (e.g., chain of modifiers, arrays, |
| 74 | * funcs, etc) |
| 75 | */ |
| 76 | __u32 *decl_stack; |
| 77 | int decl_stack_cap; |
| 78 | int decl_stack_cnt; |
| 79 | |
| 80 | /* maps struct/union/enum name to a number of name occurrences */ |
| 81 | struct hashmap *type_names; |
| 82 | /* |
| 83 | * maps typedef identifiers and enum value names to a number of such |
| 84 | * name occurrences |
| 85 | */ |
| 86 | struct hashmap *ident_names; |
| 87 | }; |
| 88 | |
| 89 | static size_t str_hash_fn(const void *key, void *ctx) |
| 90 | { |
| 91 | const char *s = key; |
| 92 | size_t h = 0; |
| 93 | |
| 94 | while (*s) { |
| 95 | h = h * 31 + *s; |
| 96 | s++; |
| 97 | } |
| 98 | return h; |
| 99 | } |
| 100 | |
| 101 | static bool str_equal_fn(const void *a, const void *b, void *ctx) |
| 102 | { |
| 103 | return strcmp(a, b) == 0; |
| 104 | } |
| 105 | |
| 106 | static __u16 btf_kind_of(const struct btf_type *t) |
| 107 | { |
| 108 | return BTF_INFO_KIND(t->info); |
| 109 | } |
| 110 | |
| 111 | static __u16 btf_vlen_of(const struct btf_type *t) |
| 112 | { |
| 113 | return BTF_INFO_VLEN(t->info); |
| 114 | } |
| 115 | |
| 116 | static bool btf_kflag_of(const struct btf_type *t) |
| 117 | { |
| 118 | return BTF_INFO_KFLAG(t->info); |
| 119 | } |
| 120 | |
| 121 | static const char *btf_name_of(const struct btf_dump *d, __u32 name_off) |
| 122 | { |
| 123 | return btf__name_by_offset(d->btf, name_off); |
| 124 | } |
| 125 | |
| 126 | static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...) |
| 127 | { |
| 128 | va_list args; |
| 129 | |
| 130 | va_start(args, fmt); |
| 131 | d->printf_fn(d->opts.ctx, fmt, args); |
| 132 | va_end(args); |
| 133 | } |
| 134 | |
| 135 | struct btf_dump *btf_dump__new(const struct btf *btf, |
| 136 | const struct btf_ext *btf_ext, |
| 137 | const struct btf_dump_opts *opts, |
| 138 | btf_dump_printf_fn_t printf_fn) |
| 139 | { |
| 140 | struct btf_dump *d; |
| 141 | int err; |
| 142 | |
| 143 | d = calloc(1, sizeof(struct btf_dump)); |
| 144 | if (!d) |
| 145 | return ERR_PTR(-ENOMEM); |
| 146 | |
| 147 | d->btf = btf; |
| 148 | d->btf_ext = btf_ext; |
| 149 | d->printf_fn = printf_fn; |
| 150 | d->opts.ctx = opts ? opts->ctx : NULL; |
| 151 | |
| 152 | d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); |
| 153 | if (IS_ERR(d->type_names)) { |
| 154 | err = PTR_ERR(d->type_names); |
| 155 | d->type_names = NULL; |
| 156 | btf_dump__free(d); |
| 157 | return ERR_PTR(err); |
| 158 | } |
| 159 | d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); |
| 160 | if (IS_ERR(d->ident_names)) { |
| 161 | err = PTR_ERR(d->ident_names); |
| 162 | d->ident_names = NULL; |
| 163 | btf_dump__free(d); |
| 164 | return ERR_PTR(err); |
| 165 | } |
| 166 | |
| 167 | return d; |
| 168 | } |
| 169 | |
| 170 | void btf_dump__free(struct btf_dump *d) |
| 171 | { |
| 172 | int i, cnt; |
| 173 | |
| 174 | if (!d) |
| 175 | return; |
| 176 | |
| 177 | free(d->type_states); |
| 178 | if (d->cached_names) { |
| 179 | /* any set cached name is owned by us and should be freed */ |
| 180 | for (i = 0, cnt = btf__get_nr_types(d->btf); i <= cnt; i++) { |
| 181 | if (d->cached_names[i]) |
| 182 | free((void *)d->cached_names[i]); |
| 183 | } |
| 184 | } |
| 185 | free(d->cached_names); |
| 186 | free(d->emit_queue); |
| 187 | free(d->decl_stack); |
| 188 | hashmap__free(d->type_names); |
| 189 | hashmap__free(d->ident_names); |
| 190 | |
| 191 | free(d); |
| 192 | } |
| 193 | |
| 194 | static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr); |
| 195 | static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id); |
| 196 | |
| 197 | /* |
| 198 | * Dump BTF type in a compilable C syntax, including all the necessary |
| 199 | * dependent types, necessary for compilation. If some of the dependent types |
| 200 | * were already emitted as part of previous btf_dump__dump_type() invocation |
| 201 | * for another type, they won't be emitted again. This API allows callers to |
| 202 | * filter out BTF types according to user-defined criterias and emitted only |
| 203 | * minimal subset of types, necessary to compile everything. Full struct/union |
| 204 | * definitions will still be emitted, even if the only usage is through |
| 205 | * pointer and could be satisfied with just a forward declaration. |
| 206 | * |
| 207 | * Dumping is done in two high-level passes: |
| 208 | * 1. Topologically sort type definitions to satisfy C rules of compilation. |
| 209 | * 2. Emit type definitions in C syntax. |
| 210 | * |
| 211 | * Returns 0 on success; <0, otherwise. |
| 212 | */ |
| 213 | int btf_dump__dump_type(struct btf_dump *d, __u32 id) |
| 214 | { |
| 215 | int err, i; |
| 216 | |
| 217 | if (id > btf__get_nr_types(d->btf)) |
| 218 | return -EINVAL; |
| 219 | |
| 220 | /* type states are lazily allocated, as they might not be needed */ |
| 221 | if (!d->type_states) { |
| 222 | d->type_states = calloc(1 + btf__get_nr_types(d->btf), |
| 223 | sizeof(d->type_states[0])); |
| 224 | if (!d->type_states) |
| 225 | return -ENOMEM; |
| 226 | d->cached_names = calloc(1 + btf__get_nr_types(d->btf), |
| 227 | sizeof(d->cached_names[0])); |
| 228 | if (!d->cached_names) |
| 229 | return -ENOMEM; |
| 230 | |
| 231 | /* VOID is special */ |
| 232 | d->type_states[0].order_state = ORDERED; |
| 233 | d->type_states[0].emit_state = EMITTED; |
| 234 | } |
| 235 | |
| 236 | d->emit_queue_cnt = 0; |
| 237 | err = btf_dump_order_type(d, id, false); |
| 238 | if (err < 0) |
| 239 | return err; |
| 240 | |
| 241 | for (i = 0; i < d->emit_queue_cnt; i++) |
| 242 | btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/); |
| 243 | |
| 244 | return 0; |
| 245 | } |
| 246 | |
| 247 | static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id) |
| 248 | { |
| 249 | __u32 *new_queue; |
| 250 | size_t new_cap; |
| 251 | |
| 252 | if (d->emit_queue_cnt >= d->emit_queue_cap) { |
| 253 | new_cap = max(16, d->emit_queue_cap * 3 / 2); |
| 254 | new_queue = realloc(d->emit_queue, |
| 255 | new_cap * sizeof(new_queue[0])); |
| 256 | if (!new_queue) |
| 257 | return -ENOMEM; |
| 258 | d->emit_queue = new_queue; |
| 259 | d->emit_queue_cap = new_cap; |
| 260 | } |
| 261 | |
| 262 | d->emit_queue[d->emit_queue_cnt++] = id; |
| 263 | return 0; |
| 264 | } |
| 265 | |
| 266 | /* |
| 267 | * Determine order of emitting dependent types and specified type to satisfy |
| 268 | * C compilation rules. This is done through topological sorting with an |
| 269 | * additional complication which comes from C rules. The main idea for C is |
| 270 | * that if some type is "embedded" into a struct/union, it's size needs to be |
| 271 | * known at the time of definition of containing type. E.g., for: |
| 272 | * |
| 273 | * struct A {}; |
| 274 | * struct B { struct A x; } |
| 275 | * |
| 276 | * struct A *HAS* to be defined before struct B, because it's "embedded", |
| 277 | * i.e., it is part of struct B layout. But in the following case: |
| 278 | * |
| 279 | * struct A; |
| 280 | * struct B { struct A *x; } |
| 281 | * struct A {}; |
| 282 | * |
| 283 | * it's enough to just have a forward declaration of struct A at the time of |
| 284 | * struct B definition, as struct B has a pointer to struct A, so the size of |
| 285 | * field x is known without knowing struct A size: it's sizeof(void *). |
| 286 | * |
| 287 | * Unfortunately, there are some trickier cases we need to handle, e.g.: |
| 288 | * |
| 289 | * struct A {}; // if this was forward-declaration: compilation error |
| 290 | * struct B { |
| 291 | * struct { // anonymous struct |
| 292 | * struct A y; |
| 293 | * } *x; |
| 294 | * }; |
| 295 | * |
| 296 | * In this case, struct B's field x is a pointer, so it's size is known |
| 297 | * regardless of the size of (anonymous) struct it points to. But because this |
| 298 | * struct is anonymous and thus defined inline inside struct B, *and* it |
| 299 | * embeds struct A, compiler requires full definition of struct A to be known |
| 300 | * before struct B can be defined. This creates a transitive dependency |
| 301 | * between struct A and struct B. If struct A was forward-declared before |
| 302 | * struct B definition and fully defined after struct B definition, that would |
| 303 | * trigger compilation error. |
| 304 | * |
| 305 | * All this means that while we are doing topological sorting on BTF type |
| 306 | * graph, we need to determine relationships between different types (graph |
| 307 | * nodes): |
| 308 | * - weak link (relationship) between X and Y, if Y *CAN* be |
| 309 | * forward-declared at the point of X definition; |
| 310 | * - strong link, if Y *HAS* to be fully-defined before X can be defined. |
| 311 | * |
| 312 | * The rule is as follows. Given a chain of BTF types from X to Y, if there is |
| 313 | * BTF_KIND_PTR type in the chain and at least one non-anonymous type |
| 314 | * Z (excluding X, including Y), then link is weak. Otherwise, it's strong. |
| 315 | * Weak/strong relationship is determined recursively during DFS traversal and |
| 316 | * is returned as a result from btf_dump_order_type(). |
| 317 | * |
| 318 | * btf_dump_order_type() is trying to avoid unnecessary forward declarations, |
| 319 | * but it is not guaranteeing that no extraneous forward declarations will be |
| 320 | * emitted. |
| 321 | * |
| 322 | * To avoid extra work, algorithm marks some of BTF types as ORDERED, when |
| 323 | * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT, |
| 324 | * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the |
| 325 | * entire graph path, so depending where from one came to that BTF type, it |
| 326 | * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM, |
| 327 | * once they are processed, there is no need to do it again, so they are |
| 328 | * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces |
| 329 | * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But |
| 330 | * in any case, once those are processed, no need to do it again, as the |
| 331 | * result won't change. |
| 332 | * |
| 333 | * Returns: |
| 334 | * - 1, if type is part of strong link (so there is strong topological |
| 335 | * ordering requirements); |
| 336 | * - 0, if type is part of weak link (so can be satisfied through forward |
| 337 | * declaration); |
| 338 | * - <0, on error (e.g., unsatisfiable type loop detected). |
| 339 | */ |
| 340 | static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr) |
| 341 | { |
| 342 | /* |
| 343 | * Order state is used to detect strong link cycles, but only for BTF |
| 344 | * kinds that are or could be an independent definition (i.e., |
| 345 | * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays, |
| 346 | * func_protos, modifiers are just means to get to these definitions. |
| 347 | * Int/void don't need definitions, they are assumed to be always |
| 348 | * properly defined. We also ignore datasec, var, and funcs for now. |
| 349 | * So for all non-defining kinds, we never even set ordering state, |
| 350 | * for defining kinds we set ORDERING and subsequently ORDERED if it |
| 351 | * forms a strong link. |
| 352 | */ |
| 353 | struct btf_dump_type_aux_state *tstate = &d->type_states[id]; |
| 354 | const struct btf_type *t; |
| 355 | __u16 kind, vlen; |
| 356 | int err, i; |
| 357 | |
| 358 | /* return true, letting typedefs know that it's ok to be emitted */ |
| 359 | if (tstate->order_state == ORDERED) |
| 360 | return 1; |
| 361 | |
| 362 | t = btf__type_by_id(d->btf, id); |
| 363 | kind = btf_kind_of(t); |
| 364 | |
| 365 | if (tstate->order_state == ORDERING) { |
| 366 | /* type loop, but resolvable through fwd declaration */ |
| 367 | if ((kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION) && |
| 368 | through_ptr && t->name_off != 0) |
| 369 | return 0; |
| 370 | pr_warning("unsatisfiable type cycle, id:[%u]\n", id); |
| 371 | return -ELOOP; |
| 372 | } |
| 373 | |
| 374 | switch (kind) { |
| 375 | case BTF_KIND_INT: |
| 376 | tstate->order_state = ORDERED; |
| 377 | return 0; |
| 378 | |
| 379 | case BTF_KIND_PTR: |
| 380 | err = btf_dump_order_type(d, t->type, true); |
| 381 | tstate->order_state = ORDERED; |
| 382 | return err; |
| 383 | |
| 384 | case BTF_KIND_ARRAY: { |
| 385 | const struct btf_array *a = (void *)(t + 1); |
| 386 | |
| 387 | return btf_dump_order_type(d, a->type, through_ptr); |
| 388 | } |
| 389 | case BTF_KIND_STRUCT: |
| 390 | case BTF_KIND_UNION: { |
| 391 | const struct btf_member *m = (void *)(t + 1); |
| 392 | /* |
| 393 | * struct/union is part of strong link, only if it's embedded |
| 394 | * (so no ptr in a path) or it's anonymous (so has to be |
| 395 | * defined inline, even if declared through ptr) |
| 396 | */ |
| 397 | if (through_ptr && t->name_off != 0) |
| 398 | return 0; |
| 399 | |
| 400 | tstate->order_state = ORDERING; |
| 401 | |
| 402 | vlen = btf_vlen_of(t); |
| 403 | for (i = 0; i < vlen; i++, m++) { |
| 404 | err = btf_dump_order_type(d, m->type, false); |
| 405 | if (err < 0) |
| 406 | return err; |
| 407 | } |
| 408 | |
| 409 | if (t->name_off != 0) { |
| 410 | err = btf_dump_add_emit_queue_id(d, id); |
| 411 | if (err < 0) |
| 412 | return err; |
| 413 | } |
| 414 | |
| 415 | tstate->order_state = ORDERED; |
| 416 | return 1; |
| 417 | } |
| 418 | case BTF_KIND_ENUM: |
| 419 | case BTF_KIND_FWD: |
| 420 | if (t->name_off != 0) { |
| 421 | err = btf_dump_add_emit_queue_id(d, id); |
| 422 | if (err) |
| 423 | return err; |
| 424 | } |
| 425 | tstate->order_state = ORDERED; |
| 426 | return 1; |
| 427 | |
| 428 | case BTF_KIND_TYPEDEF: { |
| 429 | int is_strong; |
| 430 | |
| 431 | is_strong = btf_dump_order_type(d, t->type, through_ptr); |
| 432 | if (is_strong < 0) |
| 433 | return is_strong; |
| 434 | |
| 435 | /* typedef is similar to struct/union w.r.t. fwd-decls */ |
| 436 | if (through_ptr && !is_strong) |
| 437 | return 0; |
| 438 | |
| 439 | /* typedef is always a named definition */ |
| 440 | err = btf_dump_add_emit_queue_id(d, id); |
| 441 | if (err) |
| 442 | return err; |
| 443 | |
| 444 | d->type_states[id].order_state = ORDERED; |
| 445 | return 1; |
| 446 | } |
| 447 | case BTF_KIND_VOLATILE: |
| 448 | case BTF_KIND_CONST: |
| 449 | case BTF_KIND_RESTRICT: |
| 450 | return btf_dump_order_type(d, t->type, through_ptr); |
| 451 | |
| 452 | case BTF_KIND_FUNC_PROTO: { |
| 453 | const struct btf_param *p = (void *)(t + 1); |
| 454 | bool is_strong; |
| 455 | |
| 456 | err = btf_dump_order_type(d, t->type, through_ptr); |
| 457 | if (err < 0) |
| 458 | return err; |
| 459 | is_strong = err > 0; |
| 460 | |
| 461 | vlen = btf_vlen_of(t); |
| 462 | for (i = 0; i < vlen; i++, p++) { |
| 463 | err = btf_dump_order_type(d, p->type, through_ptr); |
| 464 | if (err < 0) |
| 465 | return err; |
| 466 | if (err > 0) |
| 467 | is_strong = true; |
| 468 | } |
| 469 | return is_strong; |
| 470 | } |
| 471 | case BTF_KIND_FUNC: |
| 472 | case BTF_KIND_VAR: |
| 473 | case BTF_KIND_DATASEC: |
| 474 | d->type_states[id].order_state = ORDERED; |
| 475 | return 0; |
| 476 | |
| 477 | default: |
| 478 | return -EINVAL; |
| 479 | } |
| 480 | } |
| 481 | |
| 482 | static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, |
| 483 | const struct btf_type *t); |
| 484 | static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id, |
| 485 | const struct btf_type *t, int lvl); |
| 486 | |
| 487 | static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, |
| 488 | const struct btf_type *t); |
| 489 | static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, |
| 490 | const struct btf_type *t, int lvl); |
| 491 | |
| 492 | static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, |
| 493 | const struct btf_type *t); |
| 494 | |
| 495 | static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, |
| 496 | const struct btf_type *t, int lvl); |
| 497 | |
| 498 | /* a local view into a shared stack */ |
| 499 | struct id_stack { |
| 500 | const __u32 *ids; |
| 501 | int cnt; |
| 502 | }; |
| 503 | |
| 504 | static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, |
| 505 | const char *fname, int lvl); |
| 506 | static void btf_dump_emit_type_chain(struct btf_dump *d, |
| 507 | struct id_stack *decl_stack, |
| 508 | const char *fname, int lvl); |
| 509 | |
| 510 | static const char *btf_dump_type_name(struct btf_dump *d, __u32 id); |
| 511 | static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id); |
| 512 | static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, |
| 513 | const char *orig_name); |
| 514 | |
| 515 | static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id) |
| 516 | { |
| 517 | const struct btf_type *t = btf__type_by_id(d->btf, id); |
| 518 | |
| 519 | /* __builtin_va_list is a compiler built-in, which causes compilation |
| 520 | * errors, when compiling w/ different compiler, then used to compile |
| 521 | * original code (e.g., GCC to compile kernel, Clang to use generated |
| 522 | * C header from BTF). As it is built-in, it should be already defined |
| 523 | * properly internally in compiler. |
| 524 | */ |
| 525 | if (t->name_off == 0) |
| 526 | return false; |
| 527 | return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0; |
| 528 | } |
| 529 | |
| 530 | /* |
| 531 | * Emit C-syntax definitions of types from chains of BTF types. |
| 532 | * |
| 533 | * High-level handling of determining necessary forward declarations are handled |
| 534 | * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type |
| 535 | * declarations/definitions in C syntax are handled by a combo of |
| 536 | * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to |
| 537 | * corresponding btf_dump_emit_*_{def,fwd}() functions. |
| 538 | * |
| 539 | * We also keep track of "containing struct/union type ID" to determine when |
| 540 | * we reference it from inside and thus can avoid emitting unnecessary forward |
| 541 | * declaration. |
| 542 | * |
| 543 | * This algorithm is designed in such a way, that even if some error occurs |
| 544 | * (either technical, e.g., out of memory, or logical, i.e., malformed BTF |
| 545 | * that doesn't comply to C rules completely), algorithm will try to proceed |
| 546 | * and produce as much meaningful output as possible. |
| 547 | */ |
| 548 | static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id) |
| 549 | { |
| 550 | struct btf_dump_type_aux_state *tstate = &d->type_states[id]; |
| 551 | bool top_level_def = cont_id == 0; |
| 552 | const struct btf_type *t; |
| 553 | __u16 kind; |
| 554 | |
| 555 | if (tstate->emit_state == EMITTED) |
| 556 | return; |
| 557 | |
| 558 | t = btf__type_by_id(d->btf, id); |
| 559 | kind = btf_kind_of(t); |
| 560 | |
| 561 | if (top_level_def && t->name_off == 0) { |
| 562 | pr_warning("unexpected nameless definition, id:[%u]\n", id); |
| 563 | return; |
| 564 | } |
| 565 | |
| 566 | if (tstate->emit_state == EMITTING) { |
| 567 | if (tstate->fwd_emitted) |
| 568 | return; |
| 569 | |
| 570 | switch (kind) { |
| 571 | case BTF_KIND_STRUCT: |
| 572 | case BTF_KIND_UNION: |
| 573 | /* |
| 574 | * if we are referencing a struct/union that we are |
| 575 | * part of - then no need for fwd declaration |
| 576 | */ |
| 577 | if (id == cont_id) |
| 578 | return; |
| 579 | if (t->name_off == 0) { |
| 580 | pr_warning("anonymous struct/union loop, id:[%u]\n", |
| 581 | id); |
| 582 | return; |
| 583 | } |
| 584 | btf_dump_emit_struct_fwd(d, id, t); |
| 585 | btf_dump_printf(d, ";\n\n"); |
| 586 | tstate->fwd_emitted = 1; |
| 587 | break; |
| 588 | case BTF_KIND_TYPEDEF: |
| 589 | /* |
| 590 | * for typedef fwd_emitted means typedef definition |
| 591 | * was emitted, but it can be used only for "weak" |
| 592 | * references through pointer only, not for embedding |
| 593 | */ |
| 594 | if (!btf_dump_is_blacklisted(d, id)) { |
| 595 | btf_dump_emit_typedef_def(d, id, t, 0); |
| 596 | btf_dump_printf(d, ";\n\n"); |
| 597 | }; |
| 598 | tstate->fwd_emitted = 1; |
| 599 | break; |
| 600 | default: |
| 601 | break; |
| 602 | } |
| 603 | |
| 604 | return; |
| 605 | } |
| 606 | |
| 607 | switch (kind) { |
| 608 | case BTF_KIND_INT: |
| 609 | tstate->emit_state = EMITTED; |
| 610 | break; |
| 611 | case BTF_KIND_ENUM: |
| 612 | if (top_level_def) { |
| 613 | btf_dump_emit_enum_def(d, id, t, 0); |
| 614 | btf_dump_printf(d, ";\n\n"); |
| 615 | } |
| 616 | tstate->emit_state = EMITTED; |
| 617 | break; |
| 618 | case BTF_KIND_PTR: |
| 619 | case BTF_KIND_VOLATILE: |
| 620 | case BTF_KIND_CONST: |
| 621 | case BTF_KIND_RESTRICT: |
| 622 | btf_dump_emit_type(d, t->type, cont_id); |
| 623 | break; |
| 624 | case BTF_KIND_ARRAY: { |
| 625 | const struct btf_array *a = (void *)(t + 1); |
| 626 | |
| 627 | btf_dump_emit_type(d, a->type, cont_id); |
| 628 | break; |
| 629 | } |
| 630 | case BTF_KIND_FWD: |
| 631 | btf_dump_emit_fwd_def(d, id, t); |
| 632 | btf_dump_printf(d, ";\n\n"); |
| 633 | tstate->emit_state = EMITTED; |
| 634 | break; |
| 635 | case BTF_KIND_TYPEDEF: |
| 636 | tstate->emit_state = EMITTING; |
| 637 | btf_dump_emit_type(d, t->type, id); |
| 638 | /* |
| 639 | * typedef can server as both definition and forward |
| 640 | * declaration; at this stage someone depends on |
| 641 | * typedef as a forward declaration (refers to it |
| 642 | * through pointer), so unless we already did it, |
| 643 | * emit typedef as a forward declaration |
| 644 | */ |
| 645 | if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) { |
| 646 | btf_dump_emit_typedef_def(d, id, t, 0); |
| 647 | btf_dump_printf(d, ";\n\n"); |
| 648 | } |
| 649 | tstate->emit_state = EMITTED; |
| 650 | break; |
| 651 | case BTF_KIND_STRUCT: |
| 652 | case BTF_KIND_UNION: |
| 653 | tstate->emit_state = EMITTING; |
| 654 | /* if it's a top-level struct/union definition or struct/union |
| 655 | * is anonymous, then in C we'll be emitting all fields and |
| 656 | * their types (as opposed to just `struct X`), so we need to |
| 657 | * make sure that all types, referenced from struct/union |
| 658 | * members have necessary forward-declarations, where |
| 659 | * applicable |
| 660 | */ |
| 661 | if (top_level_def || t->name_off == 0) { |
| 662 | const struct btf_member *m = (void *)(t + 1); |
| 663 | __u16 vlen = btf_vlen_of(t); |
| 664 | int i, new_cont_id; |
| 665 | |
| 666 | new_cont_id = t->name_off == 0 ? cont_id : id; |
| 667 | for (i = 0; i < vlen; i++, m++) |
| 668 | btf_dump_emit_type(d, m->type, new_cont_id); |
| 669 | } else if (!tstate->fwd_emitted && id != cont_id) { |
| 670 | btf_dump_emit_struct_fwd(d, id, t); |
| 671 | btf_dump_printf(d, ";\n\n"); |
| 672 | tstate->fwd_emitted = 1; |
| 673 | } |
| 674 | |
| 675 | if (top_level_def) { |
| 676 | btf_dump_emit_struct_def(d, id, t, 0); |
| 677 | btf_dump_printf(d, ";\n\n"); |
| 678 | tstate->emit_state = EMITTED; |
| 679 | } else { |
| 680 | tstate->emit_state = NOT_EMITTED; |
| 681 | } |
| 682 | break; |
| 683 | case BTF_KIND_FUNC_PROTO: { |
| 684 | const struct btf_param *p = (void *)(t + 1); |
| 685 | __u16 vlen = btf_vlen_of(t); |
| 686 | int i; |
| 687 | |
| 688 | btf_dump_emit_type(d, t->type, cont_id); |
| 689 | for (i = 0; i < vlen; i++, p++) |
| 690 | btf_dump_emit_type(d, p->type, cont_id); |
| 691 | |
| 692 | break; |
| 693 | } |
| 694 | default: |
| 695 | break; |
| 696 | } |
| 697 | } |
| 698 | |
| 699 | static int btf_align_of(const struct btf *btf, __u32 id) |
| 700 | { |
| 701 | const struct btf_type *t = btf__type_by_id(btf, id); |
| 702 | __u16 kind = btf_kind_of(t); |
| 703 | |
| 704 | switch (kind) { |
| 705 | case BTF_KIND_INT: |
| 706 | case BTF_KIND_ENUM: |
| 707 | return min(sizeof(void *), t->size); |
| 708 | case BTF_KIND_PTR: |
| 709 | return sizeof(void *); |
| 710 | case BTF_KIND_TYPEDEF: |
| 711 | case BTF_KIND_VOLATILE: |
| 712 | case BTF_KIND_CONST: |
| 713 | case BTF_KIND_RESTRICT: |
| 714 | return btf_align_of(btf, t->type); |
| 715 | case BTF_KIND_ARRAY: { |
| 716 | const struct btf_array *a = (void *)(t + 1); |
| 717 | |
| 718 | return btf_align_of(btf, a->type); |
| 719 | } |
| 720 | case BTF_KIND_STRUCT: |
| 721 | case BTF_KIND_UNION: { |
| 722 | const struct btf_member *m = (void *)(t + 1); |
| 723 | __u16 vlen = btf_vlen_of(t); |
| 724 | int i, align = 1; |
| 725 | |
| 726 | for (i = 0; i < vlen; i++, m++) |
| 727 | align = max(align, btf_align_of(btf, m->type)); |
| 728 | |
| 729 | return align; |
| 730 | } |
| 731 | default: |
| 732 | pr_warning("unsupported BTF_KIND:%u\n", btf_kind_of(t)); |
| 733 | return 1; |
| 734 | } |
| 735 | } |
| 736 | |
| 737 | static bool btf_is_struct_packed(const struct btf *btf, __u32 id, |
| 738 | const struct btf_type *t) |
| 739 | { |
| 740 | const struct btf_member *m; |
| 741 | int align, i, bit_sz; |
| 742 | __u16 vlen; |
| 743 | bool kflag; |
| 744 | |
| 745 | align = btf_align_of(btf, id); |
| 746 | /* size of a non-packed struct has to be a multiple of its alignment*/ |
| 747 | if (t->size % align) |
| 748 | return true; |
| 749 | |
| 750 | m = (void *)(t + 1); |
| 751 | kflag = btf_kflag_of(t); |
| 752 | vlen = btf_vlen_of(t); |
| 753 | /* all non-bitfield fields have to be naturally aligned */ |
| 754 | for (i = 0; i < vlen; i++, m++) { |
| 755 | align = btf_align_of(btf, m->type); |
| 756 | bit_sz = kflag ? BTF_MEMBER_BITFIELD_SIZE(m->offset) : 0; |
| 757 | if (bit_sz == 0 && m->offset % (8 * align) != 0) |
| 758 | return true; |
| 759 | } |
| 760 | |
| 761 | /* |
| 762 | * if original struct was marked as packed, but its layout is |
| 763 | * naturally aligned, we'll detect that it's not packed |
| 764 | */ |
| 765 | return false; |
| 766 | } |
| 767 | |
| 768 | static int chip_away_bits(int total, int at_most) |
| 769 | { |
| 770 | return total % at_most ? : at_most; |
| 771 | } |
| 772 | |
| 773 | static void btf_dump_emit_bit_padding(const struct btf_dump *d, |
| 774 | int cur_off, int m_off, int m_bit_sz, |
| 775 | int align, int lvl) |
| 776 | { |
| 777 | int off_diff = m_off - cur_off; |
| 778 | int ptr_bits = sizeof(void *) * 8; |
| 779 | |
| 780 | if (off_diff <= 0) |
| 781 | /* no gap */ |
| 782 | return; |
| 783 | if (m_bit_sz == 0 && off_diff < align * 8) |
| 784 | /* natural padding will take care of a gap */ |
| 785 | return; |
| 786 | |
| 787 | while (off_diff > 0) { |
| 788 | const char *pad_type; |
| 789 | int pad_bits; |
| 790 | |
| 791 | if (ptr_bits > 32 && off_diff > 32) { |
| 792 | pad_type = "long"; |
| 793 | pad_bits = chip_away_bits(off_diff, ptr_bits); |
| 794 | } else if (off_diff > 16) { |
| 795 | pad_type = "int"; |
| 796 | pad_bits = chip_away_bits(off_diff, 32); |
| 797 | } else if (off_diff > 8) { |
| 798 | pad_type = "short"; |
| 799 | pad_bits = chip_away_bits(off_diff, 16); |
| 800 | } else { |
| 801 | pad_type = "char"; |
| 802 | pad_bits = chip_away_bits(off_diff, 8); |
| 803 | } |
| 804 | btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits); |
| 805 | off_diff -= pad_bits; |
| 806 | } |
| 807 | } |
| 808 | |
| 809 | static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, |
| 810 | const struct btf_type *t) |
| 811 | { |
| 812 | btf_dump_printf(d, "%s %s", |
| 813 | btf_kind_of(t) == BTF_KIND_STRUCT ? "struct" : "union", |
| 814 | btf_dump_type_name(d, id)); |
| 815 | } |
| 816 | |
| 817 | static void btf_dump_emit_struct_def(struct btf_dump *d, |
| 818 | __u32 id, |
| 819 | const struct btf_type *t, |
| 820 | int lvl) |
| 821 | { |
| 822 | const struct btf_member *m = (void *)(t + 1); |
| 823 | bool kflag = btf_kflag_of(t), is_struct; |
| 824 | int align, i, packed, off = 0; |
| 825 | __u16 vlen = btf_vlen_of(t); |
| 826 | |
| 827 | is_struct = btf_kind_of(t) == BTF_KIND_STRUCT; |
| 828 | packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0; |
| 829 | align = packed ? 1 : btf_align_of(d->btf, id); |
| 830 | |
| 831 | btf_dump_printf(d, "%s%s%s {", |
| 832 | is_struct ? "struct" : "union", |
| 833 | t->name_off ? " " : "", |
| 834 | btf_dump_type_name(d, id)); |
| 835 | |
| 836 | for (i = 0; i < vlen; i++, m++) { |
| 837 | const char *fname; |
| 838 | int m_off, m_sz; |
| 839 | |
| 840 | fname = btf_name_of(d, m->name_off); |
| 841 | m_sz = kflag ? BTF_MEMBER_BITFIELD_SIZE(m->offset) : 0; |
| 842 | m_off = kflag ? BTF_MEMBER_BIT_OFFSET(m->offset) : m->offset; |
| 843 | align = packed ? 1 : btf_align_of(d->btf, m->type); |
| 844 | |
| 845 | btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1); |
| 846 | btf_dump_printf(d, "\n%s", pfx(lvl + 1)); |
| 847 | btf_dump_emit_type_decl(d, m->type, fname, lvl + 1); |
| 848 | |
| 849 | if (m_sz) { |
| 850 | btf_dump_printf(d, ": %d", m_sz); |
| 851 | off = m_off + m_sz; |
| 852 | } else { |
| 853 | m_sz = max(0, btf__resolve_size(d->btf, m->type)); |
| 854 | off = m_off + m_sz * 8; |
| 855 | } |
| 856 | btf_dump_printf(d, ";"); |
| 857 | } |
| 858 | |
| 859 | if (vlen) |
| 860 | btf_dump_printf(d, "\n"); |
| 861 | btf_dump_printf(d, "%s}", pfx(lvl)); |
| 862 | if (packed) |
| 863 | btf_dump_printf(d, " __attribute__((packed))"); |
| 864 | } |
| 865 | |
| 866 | static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, |
| 867 | const struct btf_type *t) |
| 868 | { |
| 869 | btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id)); |
| 870 | } |
| 871 | |
| 872 | static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, |
| 873 | const struct btf_type *t, |
| 874 | int lvl) |
| 875 | { |
| 876 | const struct btf_enum *v = (void *)(t+1); |
| 877 | __u16 vlen = btf_vlen_of(t); |
| 878 | const char *name; |
| 879 | size_t dup_cnt; |
| 880 | int i; |
| 881 | |
| 882 | btf_dump_printf(d, "enum%s%s", |
| 883 | t->name_off ? " " : "", |
| 884 | btf_dump_type_name(d, id)); |
| 885 | |
| 886 | if (vlen) { |
| 887 | btf_dump_printf(d, " {"); |
| 888 | for (i = 0; i < vlen; i++, v++) { |
| 889 | name = btf_name_of(d, v->name_off); |
| 890 | /* enumerators share namespace with typedef idents */ |
| 891 | dup_cnt = btf_dump_name_dups(d, d->ident_names, name); |
| 892 | if (dup_cnt > 1) { |
| 893 | btf_dump_printf(d, "\n%s%s___%zu = %d,", |
| 894 | pfx(lvl + 1), name, dup_cnt, |
| 895 | (__s32)v->val); |
| 896 | } else { |
| 897 | btf_dump_printf(d, "\n%s%s = %d,", |
| 898 | pfx(lvl + 1), name, |
| 899 | (__s32)v->val); |
| 900 | } |
| 901 | } |
| 902 | btf_dump_printf(d, "\n%s}", pfx(lvl)); |
| 903 | } |
| 904 | } |
| 905 | |
| 906 | static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, |
| 907 | const struct btf_type *t) |
| 908 | { |
| 909 | const char *name = btf_dump_type_name(d, id); |
| 910 | |
| 911 | if (btf_kflag_of(t)) |
| 912 | btf_dump_printf(d, "union %s", name); |
| 913 | else |
| 914 | btf_dump_printf(d, "struct %s", name); |
| 915 | } |
| 916 | |
| 917 | static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, |
| 918 | const struct btf_type *t, int lvl) |
| 919 | { |
| 920 | const char *name = btf_dump_ident_name(d, id); |
| 921 | |
| 922 | btf_dump_printf(d, "typedef "); |
| 923 | btf_dump_emit_type_decl(d, t->type, name, lvl); |
| 924 | } |
| 925 | |
| 926 | static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id) |
| 927 | { |
| 928 | __u32 *new_stack; |
| 929 | size_t new_cap; |
| 930 | |
| 931 | if (d->decl_stack_cnt >= d->decl_stack_cap) { |
| 932 | new_cap = max(16, d->decl_stack_cap * 3 / 2); |
| 933 | new_stack = realloc(d->decl_stack, |
| 934 | new_cap * sizeof(new_stack[0])); |
| 935 | if (!new_stack) |
| 936 | return -ENOMEM; |
| 937 | d->decl_stack = new_stack; |
| 938 | d->decl_stack_cap = new_cap; |
| 939 | } |
| 940 | |
| 941 | d->decl_stack[d->decl_stack_cnt++] = id; |
| 942 | |
| 943 | return 0; |
| 944 | } |
| 945 | |
| 946 | /* |
| 947 | * Emit type declaration (e.g., field type declaration in a struct or argument |
| 948 | * declaration in function prototype) in correct C syntax. |
| 949 | * |
| 950 | * For most types it's trivial, but there are few quirky type declaration |
| 951 | * cases worth mentioning: |
| 952 | * - function prototypes (especially nesting of function prototypes); |
| 953 | * - arrays; |
| 954 | * - const/volatile/restrict for pointers vs other types. |
| 955 | * |
| 956 | * For a good discussion of *PARSING* C syntax (as a human), see |
| 957 | * Peter van der Linden's "Expert C Programming: Deep C Secrets", |
| 958 | * Ch.3 "Unscrambling Declarations in C". |
| 959 | * |
| 960 | * It won't help with BTF to C conversion much, though, as it's an opposite |
| 961 | * problem. So we came up with this algorithm in reverse to van der Linden's |
| 962 | * parsing algorithm. It goes from structured BTF representation of type |
| 963 | * declaration to a valid compilable C syntax. |
| 964 | * |
| 965 | * For instance, consider this C typedef: |
| 966 | * typedef const int * const * arr[10] arr_t; |
| 967 | * It will be represented in BTF with this chain of BTF types: |
| 968 | * [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int] |
| 969 | * |
| 970 | * Notice how [const] modifier always goes before type it modifies in BTF type |
| 971 | * graph, but in C syntax, const/volatile/restrict modifiers are written to |
| 972 | * the right of pointers, but to the left of other types. There are also other |
| 973 | * quirks, like function pointers, arrays of them, functions returning other |
| 974 | * functions, etc. |
| 975 | * |
| 976 | * We handle that by pushing all the types to a stack, until we hit "terminal" |
| 977 | * type (int/enum/struct/union/fwd). Then depending on the kind of a type on |
| 978 | * top of a stack, modifiers are handled differently. Array/function pointers |
| 979 | * have also wildly different syntax and how nesting of them are done. See |
| 980 | * code for authoritative definition. |
| 981 | * |
| 982 | * To avoid allocating new stack for each independent chain of BTF types, we |
| 983 | * share one bigger stack, with each chain working only on its own local view |
| 984 | * of a stack frame. Some care is required to "pop" stack frames after |
| 985 | * processing type declaration chain. |
| 986 | */ |
| 987 | static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, |
| 988 | const char *fname, int lvl) |
| 989 | { |
| 990 | struct id_stack decl_stack; |
| 991 | const struct btf_type *t; |
| 992 | int err, stack_start; |
| 993 | __u16 kind; |
| 994 | |
| 995 | stack_start = d->decl_stack_cnt; |
| 996 | for (;;) { |
| 997 | err = btf_dump_push_decl_stack_id(d, id); |
| 998 | if (err < 0) { |
| 999 | /* |
| 1000 | * if we don't have enough memory for entire type decl |
| 1001 | * chain, restore stack, emit warning, and try to |
| 1002 | * proceed nevertheless |
| 1003 | */ |
| 1004 | pr_warning("not enough memory for decl stack:%d", err); |
| 1005 | d->decl_stack_cnt = stack_start; |
| 1006 | return; |
| 1007 | } |
| 1008 | |
| 1009 | /* VOID */ |
| 1010 | if (id == 0) |
| 1011 | break; |
| 1012 | |
| 1013 | t = btf__type_by_id(d->btf, id); |
| 1014 | kind = btf_kind_of(t); |
| 1015 | switch (kind) { |
| 1016 | case BTF_KIND_PTR: |
| 1017 | case BTF_KIND_VOLATILE: |
| 1018 | case BTF_KIND_CONST: |
| 1019 | case BTF_KIND_RESTRICT: |
| 1020 | case BTF_KIND_FUNC_PROTO: |
| 1021 | id = t->type; |
| 1022 | break; |
| 1023 | case BTF_KIND_ARRAY: { |
| 1024 | const struct btf_array *a = (void *)(t + 1); |
| 1025 | |
| 1026 | id = a->type; |
| 1027 | break; |
| 1028 | } |
| 1029 | case BTF_KIND_INT: |
| 1030 | case BTF_KIND_ENUM: |
| 1031 | case BTF_KIND_FWD: |
| 1032 | case BTF_KIND_STRUCT: |
| 1033 | case BTF_KIND_UNION: |
| 1034 | case BTF_KIND_TYPEDEF: |
| 1035 | goto done; |
| 1036 | default: |
| 1037 | pr_warning("unexpected type in decl chain, kind:%u, id:[%u]\n", |
| 1038 | kind, id); |
| 1039 | goto done; |
| 1040 | } |
| 1041 | } |
| 1042 | done: |
| 1043 | /* |
| 1044 | * We might be inside a chain of declarations (e.g., array of function |
| 1045 | * pointers returning anonymous (so inlined) structs, having another |
| 1046 | * array field). Each of those needs its own "stack frame" to handle |
| 1047 | * emitting of declarations. Those stack frames are non-overlapping |
| 1048 | * portions of shared btf_dump->decl_stack. To make it a bit nicer to |
| 1049 | * handle this set of nested stacks, we create a view corresponding to |
| 1050 | * our own "stack frame" and work with it as an independent stack. |
| 1051 | * We'll need to clean up after emit_type_chain() returns, though. |
| 1052 | */ |
| 1053 | decl_stack.ids = d->decl_stack + stack_start; |
| 1054 | decl_stack.cnt = d->decl_stack_cnt - stack_start; |
| 1055 | btf_dump_emit_type_chain(d, &decl_stack, fname, lvl); |
| 1056 | /* |
| 1057 | * emit_type_chain() guarantees that it will pop its entire decl_stack |
| 1058 | * frame before returning. But it works with a read-only view into |
| 1059 | * decl_stack, so it doesn't actually pop anything from the |
| 1060 | * perspective of shared btf_dump->decl_stack, per se. We need to |
| 1061 | * reset decl_stack state to how it was before us to avoid it growing |
| 1062 | * all the time. |
| 1063 | */ |
| 1064 | d->decl_stack_cnt = stack_start; |
| 1065 | } |
| 1066 | |
| 1067 | static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack) |
| 1068 | { |
| 1069 | const struct btf_type *t; |
| 1070 | __u32 id; |
| 1071 | |
| 1072 | while (decl_stack->cnt) { |
| 1073 | id = decl_stack->ids[decl_stack->cnt - 1]; |
| 1074 | t = btf__type_by_id(d->btf, id); |
| 1075 | |
| 1076 | switch (btf_kind_of(t)) { |
| 1077 | case BTF_KIND_VOLATILE: |
| 1078 | btf_dump_printf(d, "volatile "); |
| 1079 | break; |
| 1080 | case BTF_KIND_CONST: |
| 1081 | btf_dump_printf(d, "const "); |
| 1082 | break; |
| 1083 | case BTF_KIND_RESTRICT: |
| 1084 | btf_dump_printf(d, "restrict "); |
| 1085 | break; |
| 1086 | default: |
| 1087 | return; |
| 1088 | } |
| 1089 | decl_stack->cnt--; |
| 1090 | } |
| 1091 | } |
| 1092 | |
| 1093 | static bool btf_is_mod_kind(const struct btf *btf, __u32 id) |
| 1094 | { |
| 1095 | const struct btf_type *t = btf__type_by_id(btf, id); |
| 1096 | |
| 1097 | switch (btf_kind_of(t)) { |
| 1098 | case BTF_KIND_VOLATILE: |
| 1099 | case BTF_KIND_CONST: |
| 1100 | case BTF_KIND_RESTRICT: |
| 1101 | return true; |
| 1102 | default: |
| 1103 | return false; |
| 1104 | } |
| 1105 | } |
| 1106 | |
| 1107 | static void btf_dump_emit_name(const struct btf_dump *d, |
| 1108 | const char *name, bool last_was_ptr) |
| 1109 | { |
| 1110 | bool separate = name[0] && !last_was_ptr; |
| 1111 | |
| 1112 | btf_dump_printf(d, "%s%s", separate ? " " : "", name); |
| 1113 | } |
| 1114 | |
| 1115 | static void btf_dump_emit_type_chain(struct btf_dump *d, |
| 1116 | struct id_stack *decls, |
| 1117 | const char *fname, int lvl) |
| 1118 | { |
| 1119 | /* |
| 1120 | * last_was_ptr is used to determine if we need to separate pointer |
| 1121 | * asterisk (*) from previous part of type signature with space, so |
| 1122 | * that we get `int ***`, instead of `int * * *`. We default to true |
| 1123 | * for cases where we have single pointer in a chain. E.g., in ptr -> |
| 1124 | * func_proto case. func_proto will start a new emit_type_chain call |
| 1125 | * with just ptr, which should be emitted as (*) or (*<fname>), so we |
| 1126 | * don't want to prepend space for that last pointer. |
| 1127 | */ |
| 1128 | bool last_was_ptr = true; |
| 1129 | const struct btf_type *t; |
| 1130 | const char *name; |
| 1131 | __u16 kind; |
| 1132 | __u32 id; |
| 1133 | |
| 1134 | while (decls->cnt) { |
| 1135 | id = decls->ids[--decls->cnt]; |
| 1136 | if (id == 0) { |
| 1137 | /* VOID is a special snowflake */ |
| 1138 | btf_dump_emit_mods(d, decls); |
| 1139 | btf_dump_printf(d, "void"); |
| 1140 | last_was_ptr = false; |
| 1141 | continue; |
| 1142 | } |
| 1143 | |
| 1144 | t = btf__type_by_id(d->btf, id); |
| 1145 | kind = btf_kind_of(t); |
| 1146 | |
| 1147 | switch (kind) { |
| 1148 | case BTF_KIND_INT: |
| 1149 | btf_dump_emit_mods(d, decls); |
| 1150 | name = btf_name_of(d, t->name_off); |
| 1151 | btf_dump_printf(d, "%s", name); |
| 1152 | break; |
| 1153 | case BTF_KIND_STRUCT: |
| 1154 | case BTF_KIND_UNION: |
| 1155 | btf_dump_emit_mods(d, decls); |
| 1156 | /* inline anonymous struct/union */ |
| 1157 | if (t->name_off == 0) |
| 1158 | btf_dump_emit_struct_def(d, id, t, lvl); |
| 1159 | else |
| 1160 | btf_dump_emit_struct_fwd(d, id, t); |
| 1161 | break; |
| 1162 | case BTF_KIND_ENUM: |
| 1163 | btf_dump_emit_mods(d, decls); |
| 1164 | /* inline anonymous enum */ |
| 1165 | if (t->name_off == 0) |
| 1166 | btf_dump_emit_enum_def(d, id, t, lvl); |
| 1167 | else |
| 1168 | btf_dump_emit_enum_fwd(d, id, t); |
| 1169 | break; |
| 1170 | case BTF_KIND_FWD: |
| 1171 | btf_dump_emit_mods(d, decls); |
| 1172 | btf_dump_emit_fwd_def(d, id, t); |
| 1173 | break; |
| 1174 | case BTF_KIND_TYPEDEF: |
| 1175 | btf_dump_emit_mods(d, decls); |
| 1176 | btf_dump_printf(d, "%s", btf_dump_ident_name(d, id)); |
| 1177 | break; |
| 1178 | case BTF_KIND_PTR: |
| 1179 | btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *"); |
| 1180 | break; |
| 1181 | case BTF_KIND_VOLATILE: |
| 1182 | btf_dump_printf(d, " volatile"); |
| 1183 | break; |
| 1184 | case BTF_KIND_CONST: |
| 1185 | btf_dump_printf(d, " const"); |
| 1186 | break; |
| 1187 | case BTF_KIND_RESTRICT: |
| 1188 | btf_dump_printf(d, " restrict"); |
| 1189 | break; |
| 1190 | case BTF_KIND_ARRAY: { |
| 1191 | const struct btf_array *a = (void *)(t + 1); |
| 1192 | const struct btf_type *next_t; |
| 1193 | __u32 next_id; |
| 1194 | bool multidim; |
| 1195 | /* |
| 1196 | * GCC has a bug |
| 1197 | * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354) |
| 1198 | * which causes it to emit extra const/volatile |
| 1199 | * modifiers for an array, if array's element type has |
| 1200 | * const/volatile modifiers. Clang doesn't do that. |
| 1201 | * In general, it doesn't seem very meaningful to have |
| 1202 | * a const/volatile modifier for array, so we are |
| 1203 | * going to silently skip them here. |
| 1204 | */ |
| 1205 | while (decls->cnt) { |
| 1206 | next_id = decls->ids[decls->cnt - 1]; |
| 1207 | if (btf_is_mod_kind(d->btf, next_id)) |
| 1208 | decls->cnt--; |
| 1209 | else |
| 1210 | break; |
| 1211 | } |
| 1212 | |
| 1213 | if (decls->cnt == 0) { |
| 1214 | btf_dump_emit_name(d, fname, last_was_ptr); |
| 1215 | btf_dump_printf(d, "[%u]", a->nelems); |
| 1216 | return; |
| 1217 | } |
| 1218 | |
| 1219 | next_t = btf__type_by_id(d->btf, next_id); |
| 1220 | multidim = btf_kind_of(next_t) == BTF_KIND_ARRAY; |
| 1221 | /* we need space if we have named non-pointer */ |
| 1222 | if (fname[0] && !last_was_ptr) |
| 1223 | btf_dump_printf(d, " "); |
| 1224 | /* no parentheses for multi-dimensional array */ |
| 1225 | if (!multidim) |
| 1226 | btf_dump_printf(d, "("); |
| 1227 | btf_dump_emit_type_chain(d, decls, fname, lvl); |
| 1228 | if (!multidim) |
| 1229 | btf_dump_printf(d, ")"); |
| 1230 | btf_dump_printf(d, "[%u]", a->nelems); |
| 1231 | return; |
| 1232 | } |
| 1233 | case BTF_KIND_FUNC_PROTO: { |
| 1234 | const struct btf_param *p = (void *)(t + 1); |
| 1235 | __u16 vlen = btf_vlen_of(t); |
| 1236 | int i; |
| 1237 | |
| 1238 | btf_dump_emit_mods(d, decls); |
| 1239 | if (decls->cnt) { |
| 1240 | btf_dump_printf(d, " ("); |
| 1241 | btf_dump_emit_type_chain(d, decls, fname, lvl); |
| 1242 | btf_dump_printf(d, ")"); |
| 1243 | } else { |
| 1244 | btf_dump_emit_name(d, fname, last_was_ptr); |
| 1245 | } |
| 1246 | btf_dump_printf(d, "("); |
| 1247 | /* |
| 1248 | * Clang for BPF target generates func_proto with no |
| 1249 | * args as a func_proto with a single void arg (e.g., |
| 1250 | * `int (*f)(void)` vs just `int (*f)()`). We are |
| 1251 | * going to pretend there are no args for such case. |
| 1252 | */ |
| 1253 | if (vlen == 1 && p->type == 0) { |
| 1254 | btf_dump_printf(d, ")"); |
| 1255 | return; |
| 1256 | } |
| 1257 | |
| 1258 | for (i = 0; i < vlen; i++, p++) { |
| 1259 | if (i > 0) |
| 1260 | btf_dump_printf(d, ", "); |
| 1261 | |
| 1262 | /* last arg of type void is vararg */ |
| 1263 | if (i == vlen - 1 && p->type == 0) { |
| 1264 | btf_dump_printf(d, "..."); |
| 1265 | break; |
| 1266 | } |
| 1267 | |
| 1268 | name = btf_name_of(d, p->name_off); |
| 1269 | btf_dump_emit_type_decl(d, p->type, name, lvl); |
| 1270 | } |
| 1271 | |
| 1272 | btf_dump_printf(d, ")"); |
| 1273 | return; |
| 1274 | } |
| 1275 | default: |
| 1276 | pr_warning("unexpected type in decl chain, kind:%u, id:[%u]\n", |
| 1277 | kind, id); |
| 1278 | return; |
| 1279 | } |
| 1280 | |
| 1281 | last_was_ptr = kind == BTF_KIND_PTR; |
| 1282 | } |
| 1283 | |
| 1284 | btf_dump_emit_name(d, fname, last_was_ptr); |
| 1285 | } |
| 1286 | |
| 1287 | /* return number of duplicates (occurrences) of a given name */ |
| 1288 | static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, |
| 1289 | const char *orig_name) |
| 1290 | { |
| 1291 | size_t dup_cnt = 0; |
| 1292 | |
| 1293 | hashmap__find(name_map, orig_name, (void **)&dup_cnt); |
| 1294 | dup_cnt++; |
| 1295 | hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL); |
| 1296 | |
| 1297 | return dup_cnt; |
| 1298 | } |
| 1299 | |
| 1300 | static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id, |
| 1301 | struct hashmap *name_map) |
| 1302 | { |
| 1303 | struct btf_dump_type_aux_state *s = &d->type_states[id]; |
| 1304 | const struct btf_type *t = btf__type_by_id(d->btf, id); |
| 1305 | const char *orig_name = btf_name_of(d, t->name_off); |
| 1306 | const char **cached_name = &d->cached_names[id]; |
| 1307 | size_t dup_cnt; |
| 1308 | |
| 1309 | if (t->name_off == 0) |
| 1310 | return ""; |
| 1311 | |
| 1312 | if (s->name_resolved) |
| 1313 | return *cached_name ? *cached_name : orig_name; |
| 1314 | |
| 1315 | dup_cnt = btf_dump_name_dups(d, name_map, orig_name); |
| 1316 | if (dup_cnt > 1) { |
| 1317 | const size_t max_len = 256; |
| 1318 | char new_name[max_len]; |
| 1319 | |
| 1320 | snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt); |
| 1321 | *cached_name = strdup(new_name); |
| 1322 | } |
| 1323 | |
| 1324 | s->name_resolved = 1; |
| 1325 | return *cached_name ? *cached_name : orig_name; |
| 1326 | } |
| 1327 | |
| 1328 | static const char *btf_dump_type_name(struct btf_dump *d, __u32 id) |
| 1329 | { |
| 1330 | return btf_dump_resolve_name(d, id, d->type_names); |
| 1331 | } |
| 1332 | |
| 1333 | static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id) |
| 1334 | { |
| 1335 | return btf_dump_resolve_name(d, id, d->ident_names); |
| 1336 | } |