Rik Snel | c494e07 | 2006-11-29 18:59:44 +1100 | [diff] [blame] | 1 | /* gf128mul.c - GF(2^128) multiplication functions |
| 2 | * |
| 3 | * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. |
| 4 | * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org> |
| 5 | * |
| 6 | * Based on Dr Brian Gladman's (GPL'd) work published at |
Adrian-Ken Rueegsegger | 8c882f6 | 2009-03-04 14:43:52 +0800 | [diff] [blame] | 7 | * http://gladman.plushost.co.uk/oldsite/cryptography_technology/index.php |
Rik Snel | c494e07 | 2006-11-29 18:59:44 +1100 | [diff] [blame] | 8 | * See the original copyright notice below. |
| 9 | * |
| 10 | * This program is free software; you can redistribute it and/or modify it |
| 11 | * under the terms of the GNU General Public License as published by the Free |
| 12 | * Software Foundation; either version 2 of the License, or (at your option) |
| 13 | * any later version. |
| 14 | */ |
| 15 | |
| 16 | /* |
| 17 | --------------------------------------------------------------------------- |
| 18 | Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved. |
| 19 | |
| 20 | LICENSE TERMS |
| 21 | |
| 22 | The free distribution and use of this software in both source and binary |
| 23 | form is allowed (with or without changes) provided that: |
| 24 | |
| 25 | 1. distributions of this source code include the above copyright |
| 26 | notice, this list of conditions and the following disclaimer; |
| 27 | |
| 28 | 2. distributions in binary form include the above copyright |
| 29 | notice, this list of conditions and the following disclaimer |
| 30 | in the documentation and/or other associated materials; |
| 31 | |
| 32 | 3. the copyright holder's name is not used to endorse products |
| 33 | built using this software without specific written permission. |
| 34 | |
| 35 | ALTERNATIVELY, provided that this notice is retained in full, this product |
| 36 | may be distributed under the terms of the GNU General Public License (GPL), |
| 37 | in which case the provisions of the GPL apply INSTEAD OF those given above. |
| 38 | |
| 39 | DISCLAIMER |
| 40 | |
| 41 | This software is provided 'as is' with no explicit or implied warranties |
| 42 | in respect of its properties, including, but not limited to, correctness |
| 43 | and/or fitness for purpose. |
| 44 | --------------------------------------------------------------------------- |
| 45 | Issue 31/01/2006 |
| 46 | |
| 47 | This file provides fast multiplication in GF(128) as required by several |
| 48 | cryptographic authentication modes |
| 49 | */ |
| 50 | |
| 51 | #include <crypto/gf128mul.h> |
| 52 | #include <linux/kernel.h> |
| 53 | #include <linux/module.h> |
| 54 | #include <linux/slab.h> |
| 55 | |
| 56 | #define gf128mul_dat(q) { \ |
| 57 | q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\ |
| 58 | q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\ |
| 59 | q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\ |
| 60 | q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\ |
| 61 | q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\ |
| 62 | q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\ |
| 63 | q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\ |
| 64 | q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\ |
| 65 | q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\ |
| 66 | q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\ |
| 67 | q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\ |
| 68 | q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\ |
| 69 | q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\ |
| 70 | q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\ |
| 71 | q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\ |
| 72 | q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\ |
| 73 | q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\ |
| 74 | q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\ |
| 75 | q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\ |
| 76 | q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\ |
| 77 | q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\ |
| 78 | q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\ |
| 79 | q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\ |
| 80 | q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\ |
| 81 | q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\ |
| 82 | q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\ |
| 83 | q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\ |
| 84 | q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\ |
| 85 | q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\ |
| 86 | q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\ |
| 87 | q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\ |
| 88 | q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \ |
| 89 | } |
| 90 | |
| 91 | /* Given the value i in 0..255 as the byte overflow when a field element |
Lucas De Marchi | 25985ed | 2011-03-30 22:57:33 -0300 | [diff] [blame^] | 92 | in GHASH is multiplied by x^8, this function will return the values that |
Rik Snel | c494e07 | 2006-11-29 18:59:44 +1100 | [diff] [blame] | 93 | are generated in the lo 16-bit word of the field value by applying the |
| 94 | modular polynomial. The values lo_byte and hi_byte are returned via the |
| 95 | macro xp_fun(lo_byte, hi_byte) so that the values can be assembled into |
| 96 | memory as required by a suitable definition of this macro operating on |
| 97 | the table above |
| 98 | */ |
| 99 | |
| 100 | #define xx(p, q) 0x##p##q |
| 101 | |
| 102 | #define xda_bbe(i) ( \ |
| 103 | (i & 0x80 ? xx(43, 80) : 0) ^ (i & 0x40 ? xx(21, c0) : 0) ^ \ |
| 104 | (i & 0x20 ? xx(10, e0) : 0) ^ (i & 0x10 ? xx(08, 70) : 0) ^ \ |
| 105 | (i & 0x08 ? xx(04, 38) : 0) ^ (i & 0x04 ? xx(02, 1c) : 0) ^ \ |
| 106 | (i & 0x02 ? xx(01, 0e) : 0) ^ (i & 0x01 ? xx(00, 87) : 0) \ |
| 107 | ) |
| 108 | |
| 109 | #define xda_lle(i) ( \ |
| 110 | (i & 0x80 ? xx(e1, 00) : 0) ^ (i & 0x40 ? xx(70, 80) : 0) ^ \ |
| 111 | (i & 0x20 ? xx(38, 40) : 0) ^ (i & 0x10 ? xx(1c, 20) : 0) ^ \ |
| 112 | (i & 0x08 ? xx(0e, 10) : 0) ^ (i & 0x04 ? xx(07, 08) : 0) ^ \ |
| 113 | (i & 0x02 ? xx(03, 84) : 0) ^ (i & 0x01 ? xx(01, c2) : 0) \ |
| 114 | ) |
| 115 | |
| 116 | static const u16 gf128mul_table_lle[256] = gf128mul_dat(xda_lle); |
| 117 | static const u16 gf128mul_table_bbe[256] = gf128mul_dat(xda_bbe); |
| 118 | |
| 119 | /* These functions multiply a field element by x, by x^4 and by x^8 |
| 120 | * in the polynomial field representation. It uses 32-bit word operations |
| 121 | * to gain speed but compensates for machine endianess and hence works |
| 122 | * correctly on both styles of machine. |
| 123 | */ |
| 124 | |
| 125 | static void gf128mul_x_lle(be128 *r, const be128 *x) |
| 126 | { |
| 127 | u64 a = be64_to_cpu(x->a); |
| 128 | u64 b = be64_to_cpu(x->b); |
| 129 | u64 _tt = gf128mul_table_lle[(b << 7) & 0xff]; |
| 130 | |
| 131 | r->b = cpu_to_be64((b >> 1) | (a << 63)); |
| 132 | r->a = cpu_to_be64((a >> 1) ^ (_tt << 48)); |
| 133 | } |
| 134 | |
| 135 | static void gf128mul_x_bbe(be128 *r, const be128 *x) |
| 136 | { |
| 137 | u64 a = be64_to_cpu(x->a); |
| 138 | u64 b = be64_to_cpu(x->b); |
| 139 | u64 _tt = gf128mul_table_bbe[a >> 63]; |
| 140 | |
| 141 | r->a = cpu_to_be64((a << 1) | (b >> 63)); |
| 142 | r->b = cpu_to_be64((b << 1) ^ _tt); |
| 143 | } |
| 144 | |
Rik Snel | f19f511 | 2007-09-19 20:23:13 +0800 | [diff] [blame] | 145 | void gf128mul_x_ble(be128 *r, const be128 *x) |
| 146 | { |
| 147 | u64 a = le64_to_cpu(x->a); |
| 148 | u64 b = le64_to_cpu(x->b); |
| 149 | u64 _tt = gf128mul_table_bbe[b >> 63]; |
| 150 | |
| 151 | r->a = cpu_to_le64((a << 1) ^ _tt); |
| 152 | r->b = cpu_to_le64((b << 1) | (a >> 63)); |
| 153 | } |
| 154 | EXPORT_SYMBOL(gf128mul_x_ble); |
| 155 | |
Rik Snel | c494e07 | 2006-11-29 18:59:44 +1100 | [diff] [blame] | 156 | static void gf128mul_x8_lle(be128 *x) |
| 157 | { |
| 158 | u64 a = be64_to_cpu(x->a); |
| 159 | u64 b = be64_to_cpu(x->b); |
| 160 | u64 _tt = gf128mul_table_lle[b & 0xff]; |
| 161 | |
| 162 | x->b = cpu_to_be64((b >> 8) | (a << 56)); |
| 163 | x->a = cpu_to_be64((a >> 8) ^ (_tt << 48)); |
| 164 | } |
| 165 | |
| 166 | static void gf128mul_x8_bbe(be128 *x) |
| 167 | { |
| 168 | u64 a = be64_to_cpu(x->a); |
| 169 | u64 b = be64_to_cpu(x->b); |
| 170 | u64 _tt = gf128mul_table_bbe[a >> 56]; |
| 171 | |
| 172 | x->a = cpu_to_be64((a << 8) | (b >> 56)); |
| 173 | x->b = cpu_to_be64((b << 8) ^ _tt); |
| 174 | } |
| 175 | |
| 176 | void gf128mul_lle(be128 *r, const be128 *b) |
| 177 | { |
| 178 | be128 p[8]; |
| 179 | int i; |
| 180 | |
| 181 | p[0] = *r; |
| 182 | for (i = 0; i < 7; ++i) |
| 183 | gf128mul_x_lle(&p[i + 1], &p[i]); |
| 184 | |
| 185 | memset(r, 0, sizeof(r)); |
| 186 | for (i = 0;;) { |
| 187 | u8 ch = ((u8 *)b)[15 - i]; |
| 188 | |
| 189 | if (ch & 0x80) |
| 190 | be128_xor(r, r, &p[0]); |
| 191 | if (ch & 0x40) |
| 192 | be128_xor(r, r, &p[1]); |
| 193 | if (ch & 0x20) |
| 194 | be128_xor(r, r, &p[2]); |
| 195 | if (ch & 0x10) |
| 196 | be128_xor(r, r, &p[3]); |
| 197 | if (ch & 0x08) |
| 198 | be128_xor(r, r, &p[4]); |
| 199 | if (ch & 0x04) |
| 200 | be128_xor(r, r, &p[5]); |
| 201 | if (ch & 0x02) |
| 202 | be128_xor(r, r, &p[6]); |
| 203 | if (ch & 0x01) |
| 204 | be128_xor(r, r, &p[7]); |
| 205 | |
| 206 | if (++i >= 16) |
| 207 | break; |
| 208 | |
| 209 | gf128mul_x8_lle(r); |
| 210 | } |
| 211 | } |
| 212 | EXPORT_SYMBOL(gf128mul_lle); |
| 213 | |
| 214 | void gf128mul_bbe(be128 *r, const be128 *b) |
| 215 | { |
| 216 | be128 p[8]; |
| 217 | int i; |
| 218 | |
| 219 | p[0] = *r; |
| 220 | for (i = 0; i < 7; ++i) |
| 221 | gf128mul_x_bbe(&p[i + 1], &p[i]); |
| 222 | |
| 223 | memset(r, 0, sizeof(r)); |
| 224 | for (i = 0;;) { |
| 225 | u8 ch = ((u8 *)b)[i]; |
| 226 | |
| 227 | if (ch & 0x80) |
| 228 | be128_xor(r, r, &p[7]); |
| 229 | if (ch & 0x40) |
| 230 | be128_xor(r, r, &p[6]); |
| 231 | if (ch & 0x20) |
| 232 | be128_xor(r, r, &p[5]); |
| 233 | if (ch & 0x10) |
| 234 | be128_xor(r, r, &p[4]); |
| 235 | if (ch & 0x08) |
| 236 | be128_xor(r, r, &p[3]); |
| 237 | if (ch & 0x04) |
| 238 | be128_xor(r, r, &p[2]); |
| 239 | if (ch & 0x02) |
| 240 | be128_xor(r, r, &p[1]); |
| 241 | if (ch & 0x01) |
| 242 | be128_xor(r, r, &p[0]); |
| 243 | |
| 244 | if (++i >= 16) |
| 245 | break; |
| 246 | |
| 247 | gf128mul_x8_bbe(r); |
| 248 | } |
| 249 | } |
| 250 | EXPORT_SYMBOL(gf128mul_bbe); |
| 251 | |
| 252 | /* This version uses 64k bytes of table space. |
| 253 | A 16 byte buffer has to be multiplied by a 16 byte key |
| 254 | value in GF(128). If we consider a GF(128) value in |
| 255 | the buffer's lowest byte, we can construct a table of |
| 256 | the 256 16 byte values that result from the 256 values |
| 257 | of this byte. This requires 4096 bytes. But we also |
| 258 | need tables for each of the 16 higher bytes in the |
| 259 | buffer as well, which makes 64 kbytes in total. |
| 260 | */ |
| 261 | /* additional explanation |
| 262 | * t[0][BYTE] contains g*BYTE |
| 263 | * t[1][BYTE] contains g*x^8*BYTE |
| 264 | * .. |
| 265 | * t[15][BYTE] contains g*x^120*BYTE */ |
| 266 | struct gf128mul_64k *gf128mul_init_64k_lle(const be128 *g) |
| 267 | { |
| 268 | struct gf128mul_64k *t; |
| 269 | int i, j, k; |
| 270 | |
| 271 | t = kzalloc(sizeof(*t), GFP_KERNEL); |
| 272 | if (!t) |
| 273 | goto out; |
| 274 | |
| 275 | for (i = 0; i < 16; i++) { |
| 276 | t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL); |
| 277 | if (!t->t[i]) { |
| 278 | gf128mul_free_64k(t); |
| 279 | t = NULL; |
| 280 | goto out; |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | t->t[0]->t[128] = *g; |
| 285 | for (j = 64; j > 0; j >>= 1) |
| 286 | gf128mul_x_lle(&t->t[0]->t[j], &t->t[0]->t[j + j]); |
| 287 | |
| 288 | for (i = 0;;) { |
| 289 | for (j = 2; j < 256; j += j) |
| 290 | for (k = 1; k < j; ++k) |
| 291 | be128_xor(&t->t[i]->t[j + k], |
| 292 | &t->t[i]->t[j], &t->t[i]->t[k]); |
| 293 | |
| 294 | if (++i >= 16) |
| 295 | break; |
| 296 | |
| 297 | for (j = 128; j > 0; j >>= 1) { |
| 298 | t->t[i]->t[j] = t->t[i - 1]->t[j]; |
| 299 | gf128mul_x8_lle(&t->t[i]->t[j]); |
| 300 | } |
| 301 | } |
| 302 | |
| 303 | out: |
| 304 | return t; |
| 305 | } |
| 306 | EXPORT_SYMBOL(gf128mul_init_64k_lle); |
| 307 | |
| 308 | struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g) |
| 309 | { |
| 310 | struct gf128mul_64k *t; |
| 311 | int i, j, k; |
| 312 | |
| 313 | t = kzalloc(sizeof(*t), GFP_KERNEL); |
| 314 | if (!t) |
| 315 | goto out; |
| 316 | |
| 317 | for (i = 0; i < 16; i++) { |
| 318 | t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL); |
| 319 | if (!t->t[i]) { |
| 320 | gf128mul_free_64k(t); |
| 321 | t = NULL; |
| 322 | goto out; |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | t->t[0]->t[1] = *g; |
| 327 | for (j = 1; j <= 64; j <<= 1) |
| 328 | gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]); |
| 329 | |
| 330 | for (i = 0;;) { |
| 331 | for (j = 2; j < 256; j += j) |
| 332 | for (k = 1; k < j; ++k) |
| 333 | be128_xor(&t->t[i]->t[j + k], |
| 334 | &t->t[i]->t[j], &t->t[i]->t[k]); |
| 335 | |
| 336 | if (++i >= 16) |
| 337 | break; |
| 338 | |
| 339 | for (j = 128; j > 0; j >>= 1) { |
| 340 | t->t[i]->t[j] = t->t[i - 1]->t[j]; |
| 341 | gf128mul_x8_bbe(&t->t[i]->t[j]); |
| 342 | } |
| 343 | } |
| 344 | |
| 345 | out: |
| 346 | return t; |
| 347 | } |
| 348 | EXPORT_SYMBOL(gf128mul_init_64k_bbe); |
| 349 | |
| 350 | void gf128mul_free_64k(struct gf128mul_64k *t) |
| 351 | { |
| 352 | int i; |
| 353 | |
| 354 | for (i = 0; i < 16; i++) |
| 355 | kfree(t->t[i]); |
| 356 | kfree(t); |
| 357 | } |
| 358 | EXPORT_SYMBOL(gf128mul_free_64k); |
| 359 | |
| 360 | void gf128mul_64k_lle(be128 *a, struct gf128mul_64k *t) |
| 361 | { |
| 362 | u8 *ap = (u8 *)a; |
| 363 | be128 r[1]; |
| 364 | int i; |
| 365 | |
| 366 | *r = t->t[0]->t[ap[0]]; |
| 367 | for (i = 1; i < 16; ++i) |
| 368 | be128_xor(r, r, &t->t[i]->t[ap[i]]); |
| 369 | *a = *r; |
| 370 | } |
| 371 | EXPORT_SYMBOL(gf128mul_64k_lle); |
| 372 | |
| 373 | void gf128mul_64k_bbe(be128 *a, struct gf128mul_64k *t) |
| 374 | { |
| 375 | u8 *ap = (u8 *)a; |
| 376 | be128 r[1]; |
| 377 | int i; |
| 378 | |
| 379 | *r = t->t[0]->t[ap[15]]; |
| 380 | for (i = 1; i < 16; ++i) |
| 381 | be128_xor(r, r, &t->t[i]->t[ap[15 - i]]); |
| 382 | *a = *r; |
| 383 | } |
| 384 | EXPORT_SYMBOL(gf128mul_64k_bbe); |
| 385 | |
| 386 | /* This version uses 4k bytes of table space. |
| 387 | A 16 byte buffer has to be multiplied by a 16 byte key |
| 388 | value in GF(128). If we consider a GF(128) value in a |
| 389 | single byte, we can construct a table of the 256 16 byte |
| 390 | values that result from the 256 values of this byte. |
| 391 | This requires 4096 bytes. If we take the highest byte in |
| 392 | the buffer and use this table to get the result, we then |
| 393 | have to multiply by x^120 to get the final value. For the |
| 394 | next highest byte the result has to be multiplied by x^112 |
| 395 | and so on. But we can do this by accumulating the result |
| 396 | in an accumulator starting with the result for the top |
| 397 | byte. We repeatedly multiply the accumulator value by |
| 398 | x^8 and then add in (i.e. xor) the 16 bytes of the next |
| 399 | lower byte in the buffer, stopping when we reach the |
| 400 | lowest byte. This requires a 4096 byte table. |
| 401 | */ |
| 402 | struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g) |
| 403 | { |
| 404 | struct gf128mul_4k *t; |
| 405 | int j, k; |
| 406 | |
| 407 | t = kzalloc(sizeof(*t), GFP_KERNEL); |
| 408 | if (!t) |
| 409 | goto out; |
| 410 | |
| 411 | t->t[128] = *g; |
| 412 | for (j = 64; j > 0; j >>= 1) |
| 413 | gf128mul_x_lle(&t->t[j], &t->t[j+j]); |
| 414 | |
| 415 | for (j = 2; j < 256; j += j) |
| 416 | for (k = 1; k < j; ++k) |
| 417 | be128_xor(&t->t[j + k], &t->t[j], &t->t[k]); |
| 418 | |
| 419 | out: |
| 420 | return t; |
| 421 | } |
| 422 | EXPORT_SYMBOL(gf128mul_init_4k_lle); |
| 423 | |
| 424 | struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g) |
| 425 | { |
| 426 | struct gf128mul_4k *t; |
| 427 | int j, k; |
| 428 | |
| 429 | t = kzalloc(sizeof(*t), GFP_KERNEL); |
| 430 | if (!t) |
| 431 | goto out; |
| 432 | |
| 433 | t->t[1] = *g; |
| 434 | for (j = 1; j <= 64; j <<= 1) |
| 435 | gf128mul_x_bbe(&t->t[j + j], &t->t[j]); |
| 436 | |
| 437 | for (j = 2; j < 256; j += j) |
| 438 | for (k = 1; k < j; ++k) |
| 439 | be128_xor(&t->t[j + k], &t->t[j], &t->t[k]); |
| 440 | |
| 441 | out: |
| 442 | return t; |
| 443 | } |
| 444 | EXPORT_SYMBOL(gf128mul_init_4k_bbe); |
| 445 | |
| 446 | void gf128mul_4k_lle(be128 *a, struct gf128mul_4k *t) |
| 447 | { |
| 448 | u8 *ap = (u8 *)a; |
| 449 | be128 r[1]; |
| 450 | int i = 15; |
| 451 | |
| 452 | *r = t->t[ap[15]]; |
| 453 | while (i--) { |
| 454 | gf128mul_x8_lle(r); |
| 455 | be128_xor(r, r, &t->t[ap[i]]); |
| 456 | } |
| 457 | *a = *r; |
| 458 | } |
| 459 | EXPORT_SYMBOL(gf128mul_4k_lle); |
| 460 | |
| 461 | void gf128mul_4k_bbe(be128 *a, struct gf128mul_4k *t) |
| 462 | { |
| 463 | u8 *ap = (u8 *)a; |
| 464 | be128 r[1]; |
| 465 | int i = 0; |
| 466 | |
| 467 | *r = t->t[ap[0]]; |
| 468 | while (++i < 16) { |
| 469 | gf128mul_x8_bbe(r); |
| 470 | be128_xor(r, r, &t->t[ap[i]]); |
| 471 | } |
| 472 | *a = *r; |
| 473 | } |
| 474 | EXPORT_SYMBOL(gf128mul_4k_bbe); |
| 475 | |
| 476 | MODULE_LICENSE("GPL"); |
| 477 | MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)"); |