blob: 84c565d4f56b503527927709ff19a454d422fccb [file] [log] [blame]
Doug Thompson2bc65412009-05-04 20:11:14 +02001#include "amd64_edac.h"
Andreas Herrmann23ac4ae2010-09-17 18:03:43 +02002#include <asm/amd_nb.h>
Doug Thompson2bc65412009-05-04 20:11:14 +02003
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
Tejun Heoa29d8b82010-02-02 14:39:15 +090016static struct msr __percpu *msrs;
Borislav Petkov50542252009-12-11 18:14:40 +010017
Doug Thompson2bc65412009-05-04 20:11:14 +020018/* Lookup table for all possible MC control instances */
19struct amd64_pvt;
Borislav Petkov3011b202009-09-21 13:23:34 +020020static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
21static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
Doug Thompson2bc65412009-05-04 20:11:14 +020022
23/*
Borislav Petkov1433eb92009-10-21 13:44:36 +020024 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
25 * later.
Borislav Petkovb70ef012009-06-25 19:32:38 +020026 */
Borislav Petkov1433eb92009-10-21 13:44:36 +020027static int ddr2_dbam_revCG[] = {
28 [0] = 32,
29 [1] = 64,
30 [2] = 128,
31 [3] = 256,
32 [4] = 512,
33 [5] = 1024,
34 [6] = 2048,
35};
36
37static int ddr2_dbam_revD[] = {
38 [0] = 32,
39 [1] = 64,
40 [2 ... 3] = 128,
41 [4] = 256,
42 [5] = 512,
43 [6] = 256,
44 [7] = 512,
45 [8 ... 9] = 1024,
46 [10] = 2048,
47};
48
49static int ddr2_dbam[] = { [0] = 128,
50 [1] = 256,
51 [2 ... 4] = 512,
52 [5 ... 6] = 1024,
53 [7 ... 8] = 2048,
54 [9 ... 10] = 4096,
55 [11] = 8192,
56};
57
58static int ddr3_dbam[] = { [0] = -1,
59 [1] = 256,
60 [2] = 512,
61 [3 ... 4] = -1,
62 [5 ... 6] = 1024,
63 [7 ... 8] = 2048,
64 [9 ... 10] = 4096,
Borislav Petkov24f9a7f2010-10-07 18:29:15 +020065 [11] = 8192,
Borislav Petkovb70ef012009-06-25 19:32:38 +020066};
67
68/*
69 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
70 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
71 * or higher value'.
72 *
73 *FIXME: Produce a better mapping/linearisation.
74 */
75
76struct scrubrate scrubrates[] = {
77 { 0x01, 1600000000UL},
78 { 0x02, 800000000UL},
79 { 0x03, 400000000UL},
80 { 0x04, 200000000UL},
81 { 0x05, 100000000UL},
82 { 0x06, 50000000UL},
83 { 0x07, 25000000UL},
84 { 0x08, 12284069UL},
85 { 0x09, 6274509UL},
86 { 0x0A, 3121951UL},
87 { 0x0B, 1560975UL},
88 { 0x0C, 781440UL},
89 { 0x0D, 390720UL},
90 { 0x0E, 195300UL},
91 { 0x0F, 97650UL},
92 { 0x10, 48854UL},
93 { 0x11, 24427UL},
94 { 0x12, 12213UL},
95 { 0x13, 6101UL},
96 { 0x14, 3051UL},
97 { 0x15, 1523UL},
98 { 0x16, 761UL},
99 { 0x00, 0UL}, /* scrubbing off */
100};
101
102/*
Doug Thompson2bc65412009-05-04 20:11:14 +0200103 * Memory scrubber control interface. For K8, memory scrubbing is handled by
104 * hardware and can involve L2 cache, dcache as well as the main memory. With
105 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
106 * functionality.
107 *
108 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
109 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
110 * bytes/sec for the setting.
111 *
112 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
113 * other archs, we might not have access to the caches directly.
114 */
115
116/*
117 * scan the scrub rate mapping table for a close or matching bandwidth value to
118 * issue. If requested is too big, then use last maximum value found.
119 */
Borislav Petkov395ae782010-10-01 18:38:19 +0200120static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
Doug Thompson2bc65412009-05-04 20:11:14 +0200121{
122 u32 scrubval;
123 int i;
124
125 /*
126 * map the configured rate (new_bw) to a value specific to the AMD64
127 * memory controller and apply to register. Search for the first
128 * bandwidth entry that is greater or equal than the setting requested
129 * and program that. If at last entry, turn off DRAM scrubbing.
130 */
131 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
132 /*
133 * skip scrub rates which aren't recommended
134 * (see F10 BKDG, F3x58)
135 */
Borislav Petkov395ae782010-10-01 18:38:19 +0200136 if (scrubrates[i].scrubval < min_rate)
Doug Thompson2bc65412009-05-04 20:11:14 +0200137 continue;
138
139 if (scrubrates[i].bandwidth <= new_bw)
140 break;
141
142 /*
143 * if no suitable bandwidth found, turn off DRAM scrubbing
144 * entirely by falling back to the last element in the
145 * scrubrates array.
146 */
147 }
148
149 scrubval = scrubrates[i].scrubval;
150 if (scrubval)
Borislav Petkov24f9a7f2010-10-07 18:29:15 +0200151 amd64_info("Setting scrub rate bandwidth: %u\n",
152 scrubrates[i].bandwidth);
Doug Thompson2bc65412009-05-04 20:11:14 +0200153 else
Borislav Petkov24f9a7f2010-10-07 18:29:15 +0200154 amd64_info("Turning scrubbing off.\n");
Doug Thompson2bc65412009-05-04 20:11:14 +0200155
156 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
157
158 return 0;
159}
160
Borislav Petkov395ae782010-10-01 18:38:19 +0200161static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
Doug Thompson2bc65412009-05-04 20:11:14 +0200162{
163 struct amd64_pvt *pvt = mci->pvt_info;
Doug Thompson2bc65412009-05-04 20:11:14 +0200164
Borislav Petkov8d5b5d92010-10-01 20:11:07 +0200165 return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
Doug Thompson2bc65412009-05-04 20:11:14 +0200166}
167
168static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
169{
170 struct amd64_pvt *pvt = mci->pvt_info;
171 u32 scrubval = 0;
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200172 int status = -1, i;
Doug Thompson2bc65412009-05-04 20:11:14 +0200173
Borislav Petkov8d5b5d92010-10-01 20:11:07 +0200174 amd64_read_pci_cfg(pvt->F3, K8_SCRCTRL, &scrubval);
Doug Thompson2bc65412009-05-04 20:11:14 +0200175
176 scrubval = scrubval & 0x001F;
177
Borislav Petkov24f9a7f2010-10-07 18:29:15 +0200178 amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
Doug Thompson2bc65412009-05-04 20:11:14 +0200179
Roel Kluin926311f2010-01-11 20:58:21 +0100180 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
Doug Thompson2bc65412009-05-04 20:11:14 +0200181 if (scrubrates[i].scrubval == scrubval) {
182 *bw = scrubrates[i].bandwidth;
183 status = 0;
184 break;
185 }
186 }
187
188 return status;
189}
190
Doug Thompson67757632009-04-27 15:53:22 +0200191/* Map from a CSROW entry to the mask entry that operates on it */
192static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
193{
Borislav Petkov1433eb92009-10-21 13:44:36 +0200194 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200195 return csrow;
196 else
197 return csrow >> 1;
Doug Thompson67757632009-04-27 15:53:22 +0200198}
199
200/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
201static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
202{
203 if (dct == 0)
204 return pvt->dcsb0[csrow];
205 else
206 return pvt->dcsb1[csrow];
207}
208
209/*
210 * Return the 'mask' address the i'th CS entry. This function is needed because
211 * there number of DCSM registers on Rev E and prior vs Rev F and later is
212 * different.
213 */
214static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
215{
216 if (dct == 0)
217 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
218 else
219 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
220}
221
222
223/*
224 * In *base and *limit, pass back the full 40-bit base and limit physical
225 * addresses for the node given by node_id. This information is obtained from
226 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
227 * base and limit addresses are of type SysAddr, as defined at the start of
228 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
229 * in the address range they represent.
230 */
231static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
232 u64 *base, u64 *limit)
233{
234 *base = pvt->dram_base[node_id];
235 *limit = pvt->dram_limit[node_id];
236}
237
238/*
239 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
240 * with node_id
241 */
242static int amd64_base_limit_match(struct amd64_pvt *pvt,
243 u64 sys_addr, int node_id)
244{
245 u64 base, limit, addr;
246
247 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
248
249 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
250 * all ones if the most significant implemented address bit is 1.
251 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
252 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
253 * Application Programming.
254 */
255 addr = sys_addr & 0x000000ffffffffffull;
256
257 return (addr >= base) && (addr <= limit);
258}
259
260/*
261 * Attempt to map a SysAddr to a node. On success, return a pointer to the
262 * mem_ctl_info structure for the node that the SysAddr maps to.
263 *
264 * On failure, return NULL.
265 */
266static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
267 u64 sys_addr)
268{
269 struct amd64_pvt *pvt;
270 int node_id;
271 u32 intlv_en, bits;
272
273 /*
274 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
275 * 3.4.4.2) registers to map the SysAddr to a node ID.
276 */
277 pvt = mci->pvt_info;
278
279 /*
280 * The value of this field should be the same for all DRAM Base
281 * registers. Therefore we arbitrarily choose to read it from the
282 * register for node 0.
283 */
284 intlv_en = pvt->dram_IntlvEn[0];
285
286 if (intlv_en == 0) {
Borislav Petkov8edc5442009-09-18 12:39:19 +0200287 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
Doug Thompson67757632009-04-27 15:53:22 +0200288 if (amd64_base_limit_match(pvt, sys_addr, node_id))
Borislav Petkov8edc5442009-09-18 12:39:19 +0200289 goto found;
Doug Thompson67757632009-04-27 15:53:22 +0200290 }
Borislav Petkov8edc5442009-09-18 12:39:19 +0200291 goto err_no_match;
Doug Thompson67757632009-04-27 15:53:22 +0200292 }
293
Borislav Petkov72f158f2009-09-18 12:27:27 +0200294 if (unlikely((intlv_en != 0x01) &&
295 (intlv_en != 0x03) &&
296 (intlv_en != 0x07))) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +0200297 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
Doug Thompson67757632009-04-27 15:53:22 +0200298 return NULL;
299 }
300
301 bits = (((u32) sys_addr) >> 12) & intlv_en;
302
303 for (node_id = 0; ; ) {
Borislav Petkov8edc5442009-09-18 12:39:19 +0200304 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
Doug Thompson67757632009-04-27 15:53:22 +0200305 break; /* intlv_sel field matches */
306
307 if (++node_id >= DRAM_REG_COUNT)
308 goto err_no_match;
309 }
310
311 /* sanity test for sys_addr */
312 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +0200313 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
314 "range for node %d with node interleaving enabled.\n",
315 __func__, sys_addr, node_id);
Doug Thompson67757632009-04-27 15:53:22 +0200316 return NULL;
317 }
318
319found:
320 return edac_mc_find(node_id);
321
322err_no_match:
323 debugf2("sys_addr 0x%lx doesn't match any node\n",
324 (unsigned long)sys_addr);
325
326 return NULL;
327}
Doug Thompsone2ce7252009-04-27 15:57:12 +0200328
329/*
330 * Extract the DRAM CS base address from selected csrow register.
331 */
332static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
333{
334 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
335 pvt->dcs_shift;
336}
337
338/*
339 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
340 */
341static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
342{
343 u64 dcsm_bits, other_bits;
344 u64 mask;
345
346 /* Extract bits from DRAM CS Mask. */
347 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
348
349 other_bits = pvt->dcsm_mask;
350 other_bits = ~(other_bits << pvt->dcs_shift);
351
352 /*
353 * The extracted bits from DCSM belong in the spaces represented by
354 * the cleared bits in other_bits.
355 */
356 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
357
358 return mask;
359}
360
361/*
362 * @input_addr is an InputAddr associated with the node given by mci. Return the
363 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
364 */
365static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
366{
367 struct amd64_pvt *pvt;
368 int csrow;
369 u64 base, mask;
370
371 pvt = mci->pvt_info;
372
373 /*
374 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
375 * base/mask register pair, test the condition shown near the start of
376 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
377 */
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200378 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
Doug Thompsone2ce7252009-04-27 15:57:12 +0200379
380 /* This DRAM chip select is disabled on this node */
381 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
382 continue;
383
384 base = base_from_dct_base(pvt, csrow);
385 mask = ~mask_from_dct_mask(pvt, csrow);
386
387 if ((input_addr & mask) == (base & mask)) {
388 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
389 (unsigned long)input_addr, csrow,
390 pvt->mc_node_id);
391
392 return csrow;
393 }
394 }
395
396 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
397 (unsigned long)input_addr, pvt->mc_node_id);
398
399 return -1;
400}
401
402/*
403 * Return the base value defined by the DRAM Base register for the node
404 * represented by mci. This function returns the full 40-bit value despite the
405 * fact that the register only stores bits 39-24 of the value. See section
406 * 3.4.4.1 (BKDG #26094, K8, revA-E)
407 */
408static inline u64 get_dram_base(struct mem_ctl_info *mci)
409{
410 struct amd64_pvt *pvt = mci->pvt_info;
411
412 return pvt->dram_base[pvt->mc_node_id];
413}
414
415/*
416 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
417 * for the node represented by mci. Info is passed back in *hole_base,
418 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
419 * info is invalid. Info may be invalid for either of the following reasons:
420 *
421 * - The revision of the node is not E or greater. In this case, the DRAM Hole
422 * Address Register does not exist.
423 *
424 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
425 * indicating that its contents are not valid.
426 *
427 * The values passed back in *hole_base, *hole_offset, and *hole_size are
428 * complete 32-bit values despite the fact that the bitfields in the DHAR
429 * only represent bits 31-24 of the base and offset values.
430 */
431int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
432 u64 *hole_offset, u64 *hole_size)
433{
434 struct amd64_pvt *pvt = mci->pvt_info;
435 u64 base;
436
437 /* only revE and later have the DRAM Hole Address Register */
Borislav Petkov1433eb92009-10-21 13:44:36 +0200438 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
Doug Thompsone2ce7252009-04-27 15:57:12 +0200439 debugf1(" revision %d for node %d does not support DHAR\n",
440 pvt->ext_model, pvt->mc_node_id);
441 return 1;
442 }
443
444 /* only valid for Fam10h */
445 if (boot_cpu_data.x86 == 0x10 &&
446 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
447 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
448 return 1;
449 }
450
451 if ((pvt->dhar & DHAR_VALID) == 0) {
452 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
453 pvt->mc_node_id);
454 return 1;
455 }
456
457 /* This node has Memory Hoisting */
458
459 /* +------------------+--------------------+--------------------+-----
460 * | memory | DRAM hole | relocated |
461 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
462 * | | | DRAM hole |
463 * | | | [0x100000000, |
464 * | | | (0x100000000+ |
465 * | | | (0xffffffff-x))] |
466 * +------------------+--------------------+--------------------+-----
467 *
468 * Above is a diagram of physical memory showing the DRAM hole and the
469 * relocated addresses from the DRAM hole. As shown, the DRAM hole
470 * starts at address x (the base address) and extends through address
471 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
472 * addresses in the hole so that they start at 0x100000000.
473 */
474
475 base = dhar_base(pvt->dhar);
476
477 *hole_base = base;
478 *hole_size = (0x1ull << 32) - base;
479
480 if (boot_cpu_data.x86 > 0xf)
481 *hole_offset = f10_dhar_offset(pvt->dhar);
482 else
483 *hole_offset = k8_dhar_offset(pvt->dhar);
484
485 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
486 pvt->mc_node_id, (unsigned long)*hole_base,
487 (unsigned long)*hole_offset, (unsigned long)*hole_size);
488
489 return 0;
490}
491EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
492
Doug Thompson93c2df52009-05-04 20:46:50 +0200493/*
494 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
495 * assumed that sys_addr maps to the node given by mci.
496 *
497 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
498 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
499 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
500 * then it is also involved in translating a SysAddr to a DramAddr. Sections
501 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
502 * These parts of the documentation are unclear. I interpret them as follows:
503 *
504 * When node n receives a SysAddr, it processes the SysAddr as follows:
505 *
506 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
507 * Limit registers for node n. If the SysAddr is not within the range
508 * specified by the base and limit values, then node n ignores the Sysaddr
509 * (since it does not map to node n). Otherwise continue to step 2 below.
510 *
511 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
512 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
513 * the range of relocated addresses (starting at 0x100000000) from the DRAM
514 * hole. If not, skip to step 3 below. Else get the value of the
515 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
516 * offset defined by this value from the SysAddr.
517 *
518 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
519 * Base register for node n. To obtain the DramAddr, subtract the base
520 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
521 */
522static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
523{
524 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
525 int ret = 0;
526
527 dram_base = get_dram_base(mci);
528
529 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
530 &hole_size);
531 if (!ret) {
532 if ((sys_addr >= (1ull << 32)) &&
533 (sys_addr < ((1ull << 32) + hole_size))) {
534 /* use DHAR to translate SysAddr to DramAddr */
535 dram_addr = sys_addr - hole_offset;
536
537 debugf2("using DHAR to translate SysAddr 0x%lx to "
538 "DramAddr 0x%lx\n",
539 (unsigned long)sys_addr,
540 (unsigned long)dram_addr);
541
542 return dram_addr;
543 }
544 }
545
546 /*
547 * Translate the SysAddr to a DramAddr as shown near the start of
548 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
549 * only deals with 40-bit values. Therefore we discard bits 63-40 of
550 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
551 * discard are all 1s. Otherwise the bits we discard are all 0s. See
552 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
553 * Programmer's Manual Volume 1 Application Programming.
554 */
555 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
556
557 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
558 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
559 (unsigned long)dram_addr);
560 return dram_addr;
561}
562
563/*
564 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
565 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
566 * for node interleaving.
567 */
568static int num_node_interleave_bits(unsigned intlv_en)
569{
570 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
571 int n;
572
573 BUG_ON(intlv_en > 7);
574 n = intlv_shift_table[intlv_en];
575 return n;
576}
577
578/* Translate the DramAddr given by @dram_addr to an InputAddr. */
579static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
580{
581 struct amd64_pvt *pvt;
582 int intlv_shift;
583 u64 input_addr;
584
585 pvt = mci->pvt_info;
586
587 /*
588 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
589 * concerning translating a DramAddr to an InputAddr.
590 */
591 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
592 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
593 (dram_addr & 0xfff);
594
595 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
596 intlv_shift, (unsigned long)dram_addr,
597 (unsigned long)input_addr);
598
599 return input_addr;
600}
601
602/*
603 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
604 * assumed that @sys_addr maps to the node given by mci.
605 */
606static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
607{
608 u64 input_addr;
609
610 input_addr =
611 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
612
613 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
614 (unsigned long)sys_addr, (unsigned long)input_addr);
615
616 return input_addr;
617}
618
619
620/*
621 * @input_addr is an InputAddr associated with the node represented by mci.
622 * Translate @input_addr to a DramAddr and return the result.
623 */
624static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
625{
626 struct amd64_pvt *pvt;
627 int node_id, intlv_shift;
628 u64 bits, dram_addr;
629 u32 intlv_sel;
630
631 /*
632 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
633 * shows how to translate a DramAddr to an InputAddr. Here we reverse
634 * this procedure. When translating from a DramAddr to an InputAddr, the
635 * bits used for node interleaving are discarded. Here we recover these
636 * bits from the IntlvSel field of the DRAM Limit register (section
637 * 3.4.4.2) for the node that input_addr is associated with.
638 */
639 pvt = mci->pvt_info;
640 node_id = pvt->mc_node_id;
641 BUG_ON((node_id < 0) || (node_id > 7));
642
643 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
644
645 if (intlv_shift == 0) {
646 debugf1(" InputAddr 0x%lx translates to DramAddr of "
647 "same value\n", (unsigned long)input_addr);
648
649 return input_addr;
650 }
651
652 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
653 (input_addr & 0xfff);
654
655 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
656 dram_addr = bits + (intlv_sel << 12);
657
658 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
659 "(%d node interleave bits)\n", (unsigned long)input_addr,
660 (unsigned long)dram_addr, intlv_shift);
661
662 return dram_addr;
663}
664
665/*
666 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
667 * @dram_addr to a SysAddr.
668 */
669static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
670{
671 struct amd64_pvt *pvt = mci->pvt_info;
672 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
673 int ret = 0;
674
675 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
676 &hole_size);
677 if (!ret) {
678 if ((dram_addr >= hole_base) &&
679 (dram_addr < (hole_base + hole_size))) {
680 sys_addr = dram_addr + hole_offset;
681
682 debugf1("using DHAR to translate DramAddr 0x%lx to "
683 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
684 (unsigned long)sys_addr);
685
686 return sys_addr;
687 }
688 }
689
690 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
691 sys_addr = dram_addr + base;
692
693 /*
694 * The sys_addr we have computed up to this point is a 40-bit value
695 * because the k8 deals with 40-bit values. However, the value we are
696 * supposed to return is a full 64-bit physical address. The AMD
697 * x86-64 architecture specifies that the most significant implemented
698 * address bit through bit 63 of a physical address must be either all
699 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
700 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
701 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
702 * Programming.
703 */
704 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
705
706 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
707 pvt->mc_node_id, (unsigned long)dram_addr,
708 (unsigned long)sys_addr);
709
710 return sys_addr;
711}
712
713/*
714 * @input_addr is an InputAddr associated with the node given by mci. Translate
715 * @input_addr to a SysAddr.
716 */
717static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
718 u64 input_addr)
719{
720 return dram_addr_to_sys_addr(mci,
721 input_addr_to_dram_addr(mci, input_addr));
722}
723
724/*
725 * Find the minimum and maximum InputAddr values that map to the given @csrow.
726 * Pass back these values in *input_addr_min and *input_addr_max.
727 */
728static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
729 u64 *input_addr_min, u64 *input_addr_max)
730{
731 struct amd64_pvt *pvt;
732 u64 base, mask;
733
734 pvt = mci->pvt_info;
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200735 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
Doug Thompson93c2df52009-05-04 20:46:50 +0200736
737 base = base_from_dct_base(pvt, csrow);
738 mask = mask_from_dct_mask(pvt, csrow);
739
740 *input_addr_min = base & ~mask;
741 *input_addr_max = base | mask | pvt->dcs_mask_notused;
742}
743
Doug Thompson93c2df52009-05-04 20:46:50 +0200744/* Map the Error address to a PAGE and PAGE OFFSET. */
745static inline void error_address_to_page_and_offset(u64 error_address,
746 u32 *page, u32 *offset)
747{
748 *page = (u32) (error_address >> PAGE_SHIFT);
749 *offset = ((u32) error_address) & ~PAGE_MASK;
750}
751
752/*
753 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
754 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
755 * of a node that detected an ECC memory error. mci represents the node that
756 * the error address maps to (possibly different from the node that detected
757 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
758 * error.
759 */
760static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
761{
762 int csrow;
763
764 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
765
766 if (csrow == -1)
Borislav Petkov24f9a7f2010-10-07 18:29:15 +0200767 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
768 "address 0x%lx\n", (unsigned long)sys_addr);
Doug Thompson93c2df52009-05-04 20:46:50 +0200769 return csrow;
770}
Doug Thompsone2ce7252009-04-27 15:57:12 +0200771
Borislav Petkovbfc04ae2009-11-12 19:05:07 +0100772static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
Doug Thompson2da11652009-04-27 16:09:09 +0200773
Borislav Petkovad6a32e2010-03-09 12:46:00 +0100774static u16 extract_syndrome(struct err_regs *err)
775{
776 return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
777}
778
Doug Thompson2da11652009-04-27 16:09:09 +0200779/*
780 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
781 * are ECC capable.
782 */
783static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
784{
785 int bit;
Borislav Petkov584fcff2009-06-10 18:29:54 +0200786 enum dev_type edac_cap = EDAC_FLAG_NONE;
Doug Thompson2da11652009-04-27 16:09:09 +0200787
Borislav Petkov1433eb92009-10-21 13:44:36 +0200788 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
Doug Thompson2da11652009-04-27 16:09:09 +0200789 ? 19
790 : 17;
791
Borislav Petkov584fcff2009-06-10 18:29:54 +0200792 if (pvt->dclr0 & BIT(bit))
Doug Thompson2da11652009-04-27 16:09:09 +0200793 edac_cap = EDAC_FLAG_SECDED;
794
795 return edac_cap;
796}
797
798
Borislav Petkov8566c4d2009-10-16 13:48:28 +0200799static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
Doug Thompson2da11652009-04-27 16:09:09 +0200800
Borislav Petkov68798e12009-11-03 16:18:33 +0100801static void amd64_dump_dramcfg_low(u32 dclr, int chan)
802{
803 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
804
805 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
806 (dclr & BIT(16)) ? "un" : "",
807 (dclr & BIT(19)) ? "yes" : "no");
808
809 debugf1(" PAR/ERR parity: %s\n",
810 (dclr & BIT(8)) ? "enabled" : "disabled");
811
812 debugf1(" DCT 128bit mode width: %s\n",
813 (dclr & BIT(11)) ? "128b" : "64b");
814
815 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
816 (dclr & BIT(12)) ? "yes" : "no",
817 (dclr & BIT(13)) ? "yes" : "no",
818 (dclr & BIT(14)) ? "yes" : "no",
819 (dclr & BIT(15)) ? "yes" : "no");
820}
821
Doug Thompson2da11652009-04-27 16:09:09 +0200822/* Display and decode various NB registers for debug purposes. */
823static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
824{
825 int ganged;
826
Borislav Petkov68798e12009-11-03 16:18:33 +0100827 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
Doug Thompson2da11652009-04-27 16:09:09 +0200828
Borislav Petkov68798e12009-11-03 16:18:33 +0100829 debugf1(" NB two channel DRAM capable: %s\n",
830 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
831
832 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
833 (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
834 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
835
836 amd64_dump_dramcfg_low(pvt->dclr0, 0);
Doug Thompson2da11652009-04-27 16:09:09 +0200837
Borislav Petkov8de1d912009-10-16 13:39:30 +0200838 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
Doug Thompson2da11652009-04-27 16:09:09 +0200839
Borislav Petkov8de1d912009-10-16 13:39:30 +0200840 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
841 "offset: 0x%08x\n",
842 pvt->dhar,
843 dhar_base(pvt->dhar),
844 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
845 : f10_dhar_offset(pvt->dhar));
Doug Thompson2da11652009-04-27 16:09:09 +0200846
Borislav Petkov8de1d912009-10-16 13:39:30 +0200847 debugf1(" DramHoleValid: %s\n",
848 (pvt->dhar & DHAR_VALID) ? "yes" : "no");
Doug Thompson2da11652009-04-27 16:09:09 +0200849
Borislav Petkov8de1d912009-10-16 13:39:30 +0200850 /* everything below this point is Fam10h and above */
Borislav Petkov8566c4d2009-10-16 13:48:28 +0200851 if (boot_cpu_data.x86 == 0xf) {
852 amd64_debug_display_dimm_sizes(0, pvt);
Doug Thompson2da11652009-04-27 16:09:09 +0200853 return;
Borislav Petkov8566c4d2009-10-16 13:48:28 +0200854 }
Doug Thompson2da11652009-04-27 16:09:09 +0200855
Borislav Petkov24f9a7f2010-10-07 18:29:15 +0200856 amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
Borislav Petkovad6a32e2010-03-09 12:46:00 +0100857
Borislav Petkov8de1d912009-10-16 13:39:30 +0200858 /* Only if NOT ganged does dclr1 have valid info */
Borislav Petkov68798e12009-11-03 16:18:33 +0100859 if (!dct_ganging_enabled(pvt))
860 amd64_dump_dramcfg_low(pvt->dclr1, 1);
Doug Thompson2da11652009-04-27 16:09:09 +0200861
862 /*
863 * Determine if ganged and then dump memory sizes for first controller,
864 * and if NOT ganged dump info for 2nd controller.
865 */
866 ganged = dct_ganging_enabled(pvt);
867
Borislav Petkov8566c4d2009-10-16 13:48:28 +0200868 amd64_debug_display_dimm_sizes(0, pvt);
Doug Thompson2da11652009-04-27 16:09:09 +0200869
870 if (!ganged)
Borislav Petkov8566c4d2009-10-16 13:48:28 +0200871 amd64_debug_display_dimm_sizes(1, pvt);
Doug Thompson2da11652009-04-27 16:09:09 +0200872}
873
874/* Read in both of DBAM registers */
875static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
876{
Borislav Petkov8d5b5d92010-10-01 20:11:07 +0200877 amd64_read_pci_cfg(pvt->F2, DBAM0, &pvt->dbam0);
Doug Thompson2da11652009-04-27 16:09:09 +0200878
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200879 if (boot_cpu_data.x86 >= 0x10)
Borislav Petkov8d5b5d92010-10-01 20:11:07 +0200880 amd64_read_pci_cfg(pvt->F2, DBAM1, &pvt->dbam1);
Doug Thompson2da11652009-04-27 16:09:09 +0200881}
882
Doug Thompson94be4bf2009-04-27 16:12:00 +0200883/*
884 * NOTE: CPU Revision Dependent code: Rev E and Rev F
885 *
886 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
887 * set the shift factor for the DCSB and DCSM values.
888 *
889 * ->dcs_mask_notused, RevE:
890 *
891 * To find the max InputAddr for the csrow, start with the base address and set
892 * all bits that are "don't care" bits in the test at the start of section
893 * 3.5.4 (p. 84).
894 *
895 * The "don't care" bits are all set bits in the mask and all bits in the gaps
896 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
897 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
898 * gaps.
899 *
900 * ->dcs_mask_notused, RevF and later:
901 *
902 * To find the max InputAddr for the csrow, start with the base address and set
903 * all bits that are "don't care" bits in the test at the start of NPT section
904 * 4.5.4 (p. 87).
905 *
906 * The "don't care" bits are all set bits in the mask and all bits in the gaps
907 * between bit ranges [36:27] and [21:13].
908 *
909 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
910 * which are all bits in the above-mentioned gaps.
911 */
912static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
913{
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200914
Borislav Petkov1433eb92009-10-21 13:44:36 +0200915 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200916 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
917 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
918 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
919 pvt->dcs_shift = REV_E_DCS_SHIFT;
920 pvt->cs_count = 8;
921 pvt->num_dcsm = 8;
922 } else {
Doug Thompson94be4bf2009-04-27 16:12:00 +0200923 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
924 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
925 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
926 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
Borislav Petkov3ab0e7d2010-10-01 18:19:06 +0200927 pvt->cs_count = 8;
928 pvt->num_dcsm = 4;
Doug Thompson94be4bf2009-04-27 16:12:00 +0200929 }
930}
931
932/*
933 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
934 */
935static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
936{
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200937 int cs, reg;
Doug Thompson94be4bf2009-04-27 16:12:00 +0200938
939 amd64_set_dct_base_and_mask(pvt);
940
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200941 for (cs = 0; cs < pvt->cs_count; cs++) {
Doug Thompson94be4bf2009-04-27 16:12:00 +0200942 reg = K8_DCSB0 + (cs * 4);
Borislav Petkov8d5b5d92010-10-01 20:11:07 +0200943 if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsb0[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +0200944 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
945 cs, pvt->dcsb0[cs], reg);
946
947 /* If DCT are NOT ganged, then read in DCT1's base */
948 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
949 reg = F10_DCSB1 + (cs * 4);
Borislav Petkov8d5b5d92010-10-01 20:11:07 +0200950 if (!amd64_read_pci_cfg(pvt->F2, reg,
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200951 &pvt->dcsb1[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +0200952 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
953 cs, pvt->dcsb1[cs], reg);
954 } else {
955 pvt->dcsb1[cs] = 0;
956 }
957 }
958
959 for (cs = 0; cs < pvt->num_dcsm; cs++) {
Wan Wei4afcd2d2009-07-27 14:34:15 +0200960 reg = K8_DCSM0 + (cs * 4);
Borislav Petkov8d5b5d92010-10-01 20:11:07 +0200961 if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsm0[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +0200962 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
963 cs, pvt->dcsm0[cs], reg);
964
965 /* If DCT are NOT ganged, then read in DCT1's mask */
966 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
967 reg = F10_DCSM1 + (cs * 4);
Borislav Petkov8d5b5d92010-10-01 20:11:07 +0200968 if (!amd64_read_pci_cfg(pvt->F2, reg,
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200969 &pvt->dcsm1[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +0200970 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
971 cs, pvt->dcsm1[cs], reg);
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200972 } else {
Doug Thompson94be4bf2009-04-27 16:12:00 +0200973 pvt->dcsm1[cs] = 0;
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200974 }
Doug Thompson94be4bf2009-04-27 16:12:00 +0200975 }
976}
977
Borislav Petkov24f9a7f2010-10-07 18:29:15 +0200978static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
Doug Thompson94be4bf2009-04-27 16:12:00 +0200979{
980 enum mem_type type;
981
Borislav Petkov1433eb92009-10-21 13:44:36 +0200982 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
Borislav Petkov6b4c0bd2009-11-12 15:37:57 +0100983 if (pvt->dchr0 & DDR3_MODE)
984 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
985 else
986 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
Doug Thompson94be4bf2009-04-27 16:12:00 +0200987 } else {
Doug Thompson94be4bf2009-04-27 16:12:00 +0200988 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
989 }
990
Borislav Petkov24f9a7f2010-10-07 18:29:15 +0200991 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
Doug Thompson94be4bf2009-04-27 16:12:00 +0200992
993 return type;
994}
995
Doug Thompsonddff8762009-04-27 16:14:52 +0200996/*
997 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
998 * and the later RevF memory controllers (DDR vs DDR2)
999 *
1000 * Return:
1001 * number of memory channels in operation
1002 * Pass back:
1003 * contents of the DCL0_LOW register
1004 */
1005static int k8_early_channel_count(struct amd64_pvt *pvt)
1006{
1007 int flag, err = 0;
1008
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001009 err = amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
Doug Thompsonddff8762009-04-27 16:14:52 +02001010 if (err)
1011 return err;
1012
Borislav Petkov9f56da02010-10-01 19:44:53 +02001013 if (pvt->ext_model >= K8_REV_F)
Doug Thompsonddff8762009-04-27 16:14:52 +02001014 /* RevF (NPT) and later */
1015 flag = pvt->dclr0 & F10_WIDTH_128;
Borislav Petkov9f56da02010-10-01 19:44:53 +02001016 else
Doug Thompsonddff8762009-04-27 16:14:52 +02001017 /* RevE and earlier */
1018 flag = pvt->dclr0 & REVE_WIDTH_128;
Doug Thompsonddff8762009-04-27 16:14:52 +02001019
1020 /* not used */
1021 pvt->dclr1 = 0;
1022
1023 return (flag) ? 2 : 1;
1024}
1025
1026/* extract the ERROR ADDRESS for the K8 CPUs */
1027static u64 k8_get_error_address(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001028 struct err_regs *info)
Doug Thompsonddff8762009-04-27 16:14:52 +02001029{
1030 return (((u64) (info->nbeah & 0xff)) << 32) +
1031 (info->nbeal & ~0x03);
1032}
1033
1034/*
1035 * Read the Base and Limit registers for K8 based Memory controllers; extract
1036 * fields from the 'raw' reg into separate data fields
1037 *
1038 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1039 */
1040static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1041{
1042 u32 low;
1043 u32 off = dram << 3; /* 8 bytes between DRAM entries */
Doug Thompsonddff8762009-04-27 16:14:52 +02001044
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001045 amd64_read_pci_cfg(pvt->F1, K8_DRAM_BASE_LOW + off, &low);
Doug Thompsonddff8762009-04-27 16:14:52 +02001046
1047 /* Extract parts into separate data entries */
Borislav Petkov49978112009-10-12 17:23:03 +02001048 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
Doug Thompsonddff8762009-04-27 16:14:52 +02001049 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1050 pvt->dram_rw_en[dram] = (low & 0x3);
1051
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001052 amd64_read_pci_cfg(pvt->F1, K8_DRAM_LIMIT_LOW + off, &low);
Doug Thompsonddff8762009-04-27 16:14:52 +02001053
1054 /*
1055 * Extract parts into separate data entries. Limit is the HIGHEST memory
1056 * location of the region, so lower 24 bits need to be all ones
1057 */
Borislav Petkov49978112009-10-12 17:23:03 +02001058 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
Doug Thompsonddff8762009-04-27 16:14:52 +02001059 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1060 pvt->dram_DstNode[dram] = (low & 0x7);
1061}
1062
1063static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001064 struct err_regs *err_info, u64 sys_addr)
Doug Thompsonddff8762009-04-27 16:14:52 +02001065{
1066 struct mem_ctl_info *src_mci;
Doug Thompsonddff8762009-04-27 16:14:52 +02001067 int channel, csrow;
1068 u32 page, offset;
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001069 u16 syndrome;
Doug Thompsonddff8762009-04-27 16:14:52 +02001070
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001071 syndrome = extract_syndrome(err_info);
Doug Thompsonddff8762009-04-27 16:14:52 +02001072
1073 /* CHIPKILL enabled */
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001074 if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001075 channel = get_channel_from_ecc_syndrome(mci, syndrome);
Doug Thompsonddff8762009-04-27 16:14:52 +02001076 if (channel < 0) {
1077 /*
1078 * Syndrome didn't map, so we don't know which of the
1079 * 2 DIMMs is in error. So we need to ID 'both' of them
1080 * as suspect.
1081 */
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001082 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1083 "error reporting race\n", syndrome);
Doug Thompsonddff8762009-04-27 16:14:52 +02001084 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1085 return;
1086 }
1087 } else {
1088 /*
1089 * non-chipkill ecc mode
1090 *
1091 * The k8 documentation is unclear about how to determine the
1092 * channel number when using non-chipkill memory. This method
1093 * was obtained from email communication with someone at AMD.
1094 * (Wish the email was placed in this comment - norsk)
1095 */
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001096 channel = ((sys_addr & BIT(3)) != 0);
Doug Thompsonddff8762009-04-27 16:14:52 +02001097 }
1098
1099 /*
1100 * Find out which node the error address belongs to. This may be
1101 * different from the node that detected the error.
1102 */
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001103 src_mci = find_mc_by_sys_addr(mci, sys_addr);
Keith Mannthey2cff18c2009-09-18 14:35:23 +02001104 if (!src_mci) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001105 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001106 (unsigned long)sys_addr);
Doug Thompsonddff8762009-04-27 16:14:52 +02001107 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1108 return;
1109 }
1110
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001111 /* Now map the sys_addr to a CSROW */
1112 csrow = sys_addr_to_csrow(src_mci, sys_addr);
Doug Thompsonddff8762009-04-27 16:14:52 +02001113 if (csrow < 0) {
1114 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1115 } else {
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001116 error_address_to_page_and_offset(sys_addr, &page, &offset);
Doug Thompsonddff8762009-04-27 16:14:52 +02001117
1118 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1119 channel, EDAC_MOD_STR);
1120 }
1121}
1122
Borislav Petkov1433eb92009-10-21 13:44:36 +02001123static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
Doug Thompsonddff8762009-04-27 16:14:52 +02001124{
Borislav Petkov1433eb92009-10-21 13:44:36 +02001125 int *dbam_map;
Doug Thompsonddff8762009-04-27 16:14:52 +02001126
Borislav Petkov1433eb92009-10-21 13:44:36 +02001127 if (pvt->ext_model >= K8_REV_F)
1128 dbam_map = ddr2_dbam;
1129 else if (pvt->ext_model >= K8_REV_D)
1130 dbam_map = ddr2_dbam_revD;
1131 else
1132 dbam_map = ddr2_dbam_revCG;
Doug Thompsonddff8762009-04-27 16:14:52 +02001133
Borislav Petkov1433eb92009-10-21 13:44:36 +02001134 return dbam_map[cs_mode];
Doug Thompsonddff8762009-04-27 16:14:52 +02001135}
1136
Doug Thompson1afd3c92009-04-27 16:16:50 +02001137/*
1138 * Get the number of DCT channels in use.
1139 *
1140 * Return:
1141 * number of Memory Channels in operation
1142 * Pass back:
1143 * contents of the DCL0_LOW register
1144 */
1145static int f10_early_channel_count(struct amd64_pvt *pvt)
1146{
Wan Wei57a30852009-08-07 17:04:49 +02001147 int dbams[] = { DBAM0, DBAM1 };
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001148 int i, j, channels = 0;
Doug Thompson1afd3c92009-04-27 16:16:50 +02001149 u32 dbam;
Doug Thompsonddff8762009-04-27 16:14:52 +02001150
Doug Thompson1afd3c92009-04-27 16:16:50 +02001151 /* If we are in 128 bit mode, then we are using 2 channels */
1152 if (pvt->dclr0 & F10_WIDTH_128) {
Doug Thompson1afd3c92009-04-27 16:16:50 +02001153 channels = 2;
1154 return channels;
1155 }
1156
1157 /*
Borislav Petkovd16149e2009-10-16 19:55:49 +02001158 * Need to check if in unganged mode: In such, there are 2 channels,
1159 * but they are not in 128 bit mode and thus the above 'dclr0' status
1160 * bit will be OFF.
Doug Thompson1afd3c92009-04-27 16:16:50 +02001161 *
1162 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1163 * their CSEnable bit on. If so, then SINGLE DIMM case.
1164 */
Borislav Petkovd16149e2009-10-16 19:55:49 +02001165 debugf0("Data width is not 128 bits - need more decoding\n");
Doug Thompson1afd3c92009-04-27 16:16:50 +02001166
1167 /*
1168 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1169 * is more than just one DIMM present in unganged mode. Need to check
1170 * both controllers since DIMMs can be placed in either one.
1171 */
Wan Wei57a30852009-08-07 17:04:49 +02001172 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001173 if (amd64_read_pci_cfg(pvt->F2, dbams[i], &dbam))
Doug Thompson1afd3c92009-04-27 16:16:50 +02001174 goto err_reg;
1175
Wan Wei57a30852009-08-07 17:04:49 +02001176 for (j = 0; j < 4; j++) {
1177 if (DBAM_DIMM(j, dbam) > 0) {
1178 channels++;
1179 break;
1180 }
1181 }
Doug Thompson1afd3c92009-04-27 16:16:50 +02001182 }
1183
Borislav Petkovd16149e2009-10-16 19:55:49 +02001184 if (channels > 2)
1185 channels = 2;
1186
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001187 amd64_info("MCT channel count: %d\n", channels);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001188
1189 return channels;
1190
1191err_reg:
1192 return -1;
1193
1194}
1195
Borislav Petkov1433eb92009-10-21 13:44:36 +02001196static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
Doug Thompson1afd3c92009-04-27 16:16:50 +02001197{
Borislav Petkov1433eb92009-10-21 13:44:36 +02001198 int *dbam_map;
1199
1200 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1201 dbam_map = ddr3_dbam;
1202 else
1203 dbam_map = ddr2_dbam;
1204
1205 return dbam_map[cs_mode];
Doug Thompson1afd3c92009-04-27 16:16:50 +02001206}
1207
1208/* Enable extended configuration access via 0xCF8 feature */
1209static void amd64_setup(struct amd64_pvt *pvt)
1210{
1211 u32 reg;
1212
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001213 amd64_read_pci_cfg(pvt->F3, F10_NB_CFG_HIGH, &reg);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001214
1215 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1216 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001217 pci_write_config_dword(pvt->F3, F10_NB_CFG_HIGH, reg);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001218}
1219
1220/* Restore the extended configuration access via 0xCF8 feature */
1221static void amd64_teardown(struct amd64_pvt *pvt)
1222{
1223 u32 reg;
1224
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001225 amd64_read_pci_cfg(pvt->F3, F10_NB_CFG_HIGH, &reg);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001226
1227 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1228 if (pvt->flags.cf8_extcfg)
1229 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001230 pci_write_config_dword(pvt->F3, F10_NB_CFG_HIGH, reg);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001231}
1232
1233static u64 f10_get_error_address(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001234 struct err_regs *info)
Doug Thompson1afd3c92009-04-27 16:16:50 +02001235{
1236 return (((u64) (info->nbeah & 0xffff)) << 32) +
1237 (info->nbeal & ~0x01);
1238}
1239
1240/*
1241 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1242 * fields from the 'raw' reg into separate data fields.
1243 *
1244 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1245 */
1246static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1247{
1248 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1249
1250 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1251 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1252
1253 /* read the 'raw' DRAM BASE Address register */
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001254 amd64_read_pci_cfg(pvt->F1, low_offset, &low_base);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001255
1256 /* Read from the ECS data register */
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001257 amd64_read_pci_cfg(pvt->F1, high_offset, &high_base);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001258
1259 /* Extract parts into separate data entries */
1260 pvt->dram_rw_en[dram] = (low_base & 0x3);
1261
1262 if (pvt->dram_rw_en[dram] == 0)
1263 return;
1264
1265 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1266
Borislav Petkov66216a72009-09-22 16:48:37 +02001267 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
Borislav Petkov49978112009-10-12 17:23:03 +02001268 (((u64)low_base & 0xFFFF0000) << 8);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001269
1270 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1271 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1272
1273 /* read the 'raw' LIMIT registers */
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001274 amd64_read_pci_cfg(pvt->F1, low_offset, &low_limit);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001275
1276 /* Read from the ECS data register for the HIGH portion */
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001277 amd64_read_pci_cfg(pvt->F1, high_offset, &high_limit);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001278
Doug Thompson1afd3c92009-04-27 16:16:50 +02001279 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1280 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1281
1282 /*
1283 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1284 * memory location of the region, so low 24 bits need to be all ones.
1285 */
Borislav Petkov66216a72009-09-22 16:48:37 +02001286 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
Borislav Petkov49978112009-10-12 17:23:03 +02001287 (((u64) low_limit & 0xFFFF0000) << 8) |
Borislav Petkov66216a72009-09-22 16:48:37 +02001288 0x00FFFFFF;
Doug Thompson1afd3c92009-04-27 16:16:50 +02001289}
Doug Thompson6163b5d2009-04-27 16:20:17 +02001290
1291static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1292{
Doug Thompson6163b5d2009-04-27 16:20:17 +02001293
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001294 if (!amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_LOW,
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001295 &pvt->dram_ctl_select_low)) {
Borislav Petkov72381bd2009-10-09 19:14:43 +02001296 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1297 "High range addresses at: 0x%x\n",
1298 pvt->dram_ctl_select_low,
1299 dct_sel_baseaddr(pvt));
Doug Thompson6163b5d2009-04-27 16:20:17 +02001300
Borislav Petkov72381bd2009-10-09 19:14:43 +02001301 debugf0(" DCT mode: %s, All DCTs on: %s\n",
1302 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1303 (dct_dram_enabled(pvt) ? "yes" : "no"));
Doug Thompson6163b5d2009-04-27 16:20:17 +02001304
Borislav Petkov72381bd2009-10-09 19:14:43 +02001305 if (!dct_ganging_enabled(pvt))
1306 debugf0(" Address range split per DCT: %s\n",
1307 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1308
1309 debugf0(" DCT data interleave for ECC: %s, "
1310 "DRAM cleared since last warm reset: %s\n",
1311 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1312 (dct_memory_cleared(pvt) ? "yes" : "no"));
1313
1314 debugf0(" DCT channel interleave: %s, "
1315 "DCT interleave bits selector: 0x%x\n",
1316 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
Doug Thompson6163b5d2009-04-27 16:20:17 +02001317 dct_sel_interleave_addr(pvt));
1318 }
1319
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001320 amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_HIGH,
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001321 &pvt->dram_ctl_select_high);
Doug Thompson6163b5d2009-04-27 16:20:17 +02001322}
1323
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001324/*
1325 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1326 * Interleaving Modes.
1327 */
Doug Thompson6163b5d2009-04-27 16:20:17 +02001328static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1329 int hi_range_sel, u32 intlv_en)
1330{
1331 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1332
1333 if (dct_ganging_enabled(pvt))
1334 cs = 0;
1335 else if (hi_range_sel)
1336 cs = dct_sel_high;
1337 else if (dct_interleave_enabled(pvt)) {
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001338 /*
1339 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1340 */
Doug Thompson6163b5d2009-04-27 16:20:17 +02001341 if (dct_sel_interleave_addr(pvt) == 0)
1342 cs = sys_addr >> 6 & 1;
1343 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1344 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1345
1346 if (dct_sel_interleave_addr(pvt) & 1)
1347 cs = (sys_addr >> 9 & 1) ^ temp;
1348 else
1349 cs = (sys_addr >> 6 & 1) ^ temp;
1350 } else if (intlv_en & 4)
1351 cs = sys_addr >> 15 & 1;
1352 else if (intlv_en & 2)
1353 cs = sys_addr >> 14 & 1;
1354 else if (intlv_en & 1)
1355 cs = sys_addr >> 13 & 1;
1356 else
1357 cs = sys_addr >> 12 & 1;
1358 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1359 cs = ~dct_sel_high & 1;
1360 else
1361 cs = 0;
1362
1363 return cs;
1364}
1365
1366static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1367{
1368 if (intlv_en == 1)
1369 return 1;
1370 else if (intlv_en == 3)
1371 return 2;
1372 else if (intlv_en == 7)
1373 return 3;
1374
1375 return 0;
1376}
1377
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001378/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1379static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
Doug Thompson6163b5d2009-04-27 16:20:17 +02001380 u32 dct_sel_base_addr,
1381 u64 dct_sel_base_off,
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001382 u32 hole_valid, u32 hole_off,
Doug Thompson6163b5d2009-04-27 16:20:17 +02001383 u64 dram_base)
1384{
1385 u64 chan_off;
1386
1387 if (hi_range_sel) {
Borislav Petkov9975a5f2010-03-08 18:29:35 +01001388 if (!(dct_sel_base_addr & 0xFFFF0000) &&
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001389 hole_valid && (sys_addr >= 0x100000000ULL))
Doug Thompson6163b5d2009-04-27 16:20:17 +02001390 chan_off = hole_off << 16;
1391 else
1392 chan_off = dct_sel_base_off;
1393 } else {
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001394 if (hole_valid && (sys_addr >= 0x100000000ULL))
Doug Thompson6163b5d2009-04-27 16:20:17 +02001395 chan_off = hole_off << 16;
1396 else
1397 chan_off = dram_base & 0xFFFFF8000000ULL;
1398 }
1399
1400 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1401 (chan_off & 0x0000FFFFFF800000ULL);
1402}
1403
1404/* Hack for the time being - Can we get this from BIOS?? */
1405#define CH0SPARE_RANK 0
1406#define CH1SPARE_RANK 1
1407
1408/*
1409 * checks if the csrow passed in is marked as SPARED, if so returns the new
1410 * spare row
1411 */
1412static inline int f10_process_possible_spare(int csrow,
1413 u32 cs, struct amd64_pvt *pvt)
1414{
1415 u32 swap_done;
1416 u32 bad_dram_cs;
1417
1418 /* Depending on channel, isolate respective SPARING info */
1419 if (cs) {
1420 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1421 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1422 if (swap_done && (csrow == bad_dram_cs))
1423 csrow = CH1SPARE_RANK;
1424 } else {
1425 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1426 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1427 if (swap_done && (csrow == bad_dram_cs))
1428 csrow = CH0SPARE_RANK;
1429 }
1430 return csrow;
1431}
1432
1433/*
1434 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1435 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1436 *
1437 * Return:
1438 * -EINVAL: NOT FOUND
1439 * 0..csrow = Chip-Select Row
1440 */
1441static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1442{
1443 struct mem_ctl_info *mci;
1444 struct amd64_pvt *pvt;
1445 u32 cs_base, cs_mask;
1446 int cs_found = -EINVAL;
1447 int csrow;
1448
1449 mci = mci_lookup[nid];
1450 if (!mci)
1451 return cs_found;
1452
1453 pvt = mci->pvt_info;
1454
1455 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1456
Borislav Petkov9d858bb2009-09-21 14:35:51 +02001457 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
Doug Thompson6163b5d2009-04-27 16:20:17 +02001458
1459 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1460 if (!(cs_base & K8_DCSB_CS_ENABLE))
1461 continue;
1462
1463 /*
1464 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1465 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1466 * of the actual address.
1467 */
1468 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1469
1470 /*
1471 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1472 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1473 */
1474 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1475
1476 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1477 csrow, cs_base, cs_mask);
1478
1479 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1480
1481 debugf1(" Final CSMask=0x%x\n", cs_mask);
1482 debugf1(" (InputAddr & ~CSMask)=0x%x "
1483 "(CSBase & ~CSMask)=0x%x\n",
1484 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1485
1486 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1487 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1488
1489 debugf1(" MATCH csrow=%d\n", cs_found);
1490 break;
1491 }
1492 }
1493 return cs_found;
1494}
1495
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001496/* For a given @dram_range, check if @sys_addr falls within it. */
1497static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1498 u64 sys_addr, int *nid, int *chan_sel)
1499{
1500 int node_id, cs_found = -EINVAL, high_range = 0;
1501 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1502 u32 hole_valid, tmp, dct_sel_base, channel;
1503 u64 dram_base, chan_addr, dct_sel_base_off;
1504
1505 dram_base = pvt->dram_base[dram_range];
1506 intlv_en = pvt->dram_IntlvEn[dram_range];
1507
1508 node_id = pvt->dram_DstNode[dram_range];
1509 intlv_sel = pvt->dram_IntlvSel[dram_range];
1510
1511 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1512 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1513
1514 /*
1515 * This assumes that one node's DHAR is the same as all the other
1516 * nodes' DHAR.
1517 */
1518 hole_off = (pvt->dhar & 0x0000FF80);
1519 hole_valid = (pvt->dhar & 0x1);
1520 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1521
1522 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1523 hole_off, hole_valid, intlv_sel);
1524
Borislav Petkove726f3c2010-12-06 16:20:25 +01001525 if (intlv_en &&
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001526 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1527 return -EINVAL;
1528
1529 dct_sel_base = dct_sel_baseaddr(pvt);
1530
1531 /*
1532 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1533 * select between DCT0 and DCT1.
1534 */
1535 if (dct_high_range_enabled(pvt) &&
1536 !dct_ganging_enabled(pvt) &&
1537 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1538 high_range = 1;
1539
1540 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1541
1542 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1543 dct_sel_base_off, hole_valid,
1544 hole_off, dram_base);
1545
1546 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1547
1548 /* remove Node ID (in case of memory interleaving) */
1549 tmp = chan_addr & 0xFC0;
1550
1551 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1552
1553 /* remove channel interleave and hash */
1554 if (dct_interleave_enabled(pvt) &&
1555 !dct_high_range_enabled(pvt) &&
1556 !dct_ganging_enabled(pvt)) {
1557 if (dct_sel_interleave_addr(pvt) != 1)
1558 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1559 else {
1560 tmp = chan_addr & 0xFC0;
1561 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1562 | tmp;
1563 }
1564 }
1565
1566 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1567 chan_addr, (u32)(chan_addr >> 8));
1568
1569 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1570
1571 if (cs_found >= 0) {
1572 *nid = node_id;
1573 *chan_sel = channel;
1574 }
1575 return cs_found;
1576}
1577
1578static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1579 int *node, int *chan_sel)
1580{
1581 int dram_range, cs_found = -EINVAL;
1582 u64 dram_base, dram_limit;
1583
1584 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1585
1586 if (!pvt->dram_rw_en[dram_range])
1587 continue;
1588
1589 dram_base = pvt->dram_base[dram_range];
1590 dram_limit = pvt->dram_limit[dram_range];
1591
1592 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1593
1594 cs_found = f10_match_to_this_node(pvt, dram_range,
1595 sys_addr, node,
1596 chan_sel);
1597 if (cs_found >= 0)
1598 break;
1599 }
1600 }
1601 return cs_found;
1602}
1603
1604/*
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001605 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1606 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001607 *
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001608 * The @sys_addr is usually an error address received from the hardware
1609 * (MCX_ADDR).
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001610 */
1611static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001612 struct err_regs *err_info,
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001613 u64 sys_addr)
1614{
1615 struct amd64_pvt *pvt = mci->pvt_info;
1616 u32 page, offset;
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001617 int nid, csrow, chan = 0;
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001618 u16 syndrome;
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001619
1620 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1621
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001622 if (csrow < 0) {
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001623 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001624 return;
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001625 }
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001626
1627 error_address_to_page_and_offset(sys_addr, &page, &offset);
1628
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001629 syndrome = extract_syndrome(err_info);
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001630
1631 /*
1632 * We need the syndromes for channel detection only when we're
1633 * ganged. Otherwise @chan should already contain the channel at
1634 * this point.
1635 */
Borislav Petkov962b70a2010-08-03 16:51:28 +02001636 if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001637 chan = get_channel_from_ecc_syndrome(mci, syndrome);
1638
1639 if (chan >= 0)
1640 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1641 EDAC_MOD_STR);
1642 else
1643 /*
1644 * Channel unknown, report all channels on this CSROW as failed.
1645 */
1646 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1647 edac_mc_handle_ce(mci, page, offset, syndrome,
1648 csrow, chan, EDAC_MOD_STR);
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001649}
1650
1651/*
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001652 * debug routine to display the memory sizes of all logical DIMMs and its
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001653 * CSROWs as well
1654 */
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001655static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001656{
Borislav Petkov603adaf2009-12-21 14:52:53 +01001657 int dimm, size0, size1, factor = 0;
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001658 u32 dbam;
1659 u32 *dcsb;
1660
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001661 if (boot_cpu_data.x86 == 0xf) {
Borislav Petkov603adaf2009-12-21 14:52:53 +01001662 if (pvt->dclr0 & F10_WIDTH_128)
1663 factor = 1;
1664
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001665 /* K8 families < revF not supported yet */
Borislav Petkov1433eb92009-10-21 13:44:36 +02001666 if (pvt->ext_model < K8_REV_F)
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001667 return;
1668 else
1669 WARN_ON(ctrl != 0);
1670 }
1671
1672 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1673 ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001674
1675 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1676 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1677
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001678 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1679
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001680 /* Dump memory sizes for DIMM and its CSROWs */
1681 for (dimm = 0; dimm < 4; dimm++) {
1682
1683 size0 = 0;
1684 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
Borislav Petkov1433eb92009-10-21 13:44:36 +02001685 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001686
1687 size1 = 0;
1688 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
Borislav Petkov1433eb92009-10-21 13:44:36 +02001689 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001690
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001691 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1692 dimm * 2, size0 << factor,
1693 dimm * 2 + 1, size1 << factor);
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001694 }
1695}
1696
Doug Thompson4d376072009-04-27 16:25:05 +02001697static struct amd64_family_type amd64_family_types[] = {
1698 [K8_CPUS] = {
Borislav Petkov0092b202010-10-01 19:20:05 +02001699 .ctl_name = "K8",
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001700 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1701 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
Doug Thompson4d376072009-04-27 16:25:05 +02001702 .ops = {
Borislav Petkov1433eb92009-10-21 13:44:36 +02001703 .early_channel_count = k8_early_channel_count,
1704 .get_error_address = k8_get_error_address,
1705 .read_dram_base_limit = k8_read_dram_base_limit,
1706 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1707 .dbam_to_cs = k8_dbam_to_chip_select,
Doug Thompson4d376072009-04-27 16:25:05 +02001708 }
1709 },
1710 [F10_CPUS] = {
Borislav Petkov0092b202010-10-01 19:20:05 +02001711 .ctl_name = "F10h",
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02001712 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1713 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
Doug Thompson4d376072009-04-27 16:25:05 +02001714 .ops = {
Borislav Petkov1433eb92009-10-21 13:44:36 +02001715 .early_channel_count = f10_early_channel_count,
1716 .get_error_address = f10_get_error_address,
1717 .read_dram_base_limit = f10_read_dram_base_limit,
1718 .read_dram_ctl_register = f10_read_dram_ctl_register,
1719 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1720 .dbam_to_cs = f10_dbam_to_chip_select,
Doug Thompson4d376072009-04-27 16:25:05 +02001721 }
1722 },
Doug Thompson4d376072009-04-27 16:25:05 +02001723};
1724
1725static struct pci_dev *pci_get_related_function(unsigned int vendor,
1726 unsigned int device,
1727 struct pci_dev *related)
1728{
1729 struct pci_dev *dev = NULL;
1730
1731 dev = pci_get_device(vendor, device, dev);
1732 while (dev) {
1733 if ((dev->bus->number == related->bus->number) &&
1734 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1735 break;
1736 dev = pci_get_device(vendor, device, dev);
1737 }
1738
1739 return dev;
1740}
1741
Doug Thompsonb1289d62009-04-27 16:37:05 +02001742/*
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001743 * These are tables of eigenvectors (one per line) which can be used for the
1744 * construction of the syndrome tables. The modified syndrome search algorithm
1745 * uses those to find the symbol in error and thus the DIMM.
Doug Thompsonb1289d62009-04-27 16:37:05 +02001746 *
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001747 * Algorithm courtesy of Ross LaFetra from AMD.
Doug Thompsonb1289d62009-04-27 16:37:05 +02001748 */
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001749static u16 x4_vectors[] = {
1750 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1751 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1752 0x0001, 0x0002, 0x0004, 0x0008,
1753 0x1013, 0x3032, 0x4044, 0x8088,
1754 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1755 0x4857, 0xc4fe, 0x13cc, 0x3288,
1756 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1757 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1758 0x15c1, 0x2a42, 0x89ac, 0x4758,
1759 0x2b03, 0x1602, 0x4f0c, 0xca08,
1760 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1761 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1762 0x2b87, 0x164e, 0x642c, 0xdc18,
1763 0x40b9, 0x80de, 0x1094, 0x20e8,
1764 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1765 0x11c1, 0x2242, 0x84ac, 0x4c58,
1766 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1767 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1768 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1769 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1770 0x16b3, 0x3d62, 0x4f34, 0x8518,
1771 0x1e2f, 0x391a, 0x5cac, 0xf858,
1772 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1773 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1774 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1775 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1776 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1777 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1778 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1779 0x185d, 0x2ca6, 0x7914, 0x9e28,
1780 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1781 0x4199, 0x82ee, 0x19f4, 0x2e58,
1782 0x4807, 0xc40e, 0x130c, 0x3208,
1783 0x1905, 0x2e0a, 0x5804, 0xac08,
1784 0x213f, 0x132a, 0xadfc, 0x5ba8,
1785 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
Doug Thompsonb1289d62009-04-27 16:37:05 +02001786};
1787
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001788static u16 x8_vectors[] = {
1789 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1790 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1791 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1792 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1793 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1794 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1795 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1796 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1797 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1798 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1799 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1800 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1801 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1802 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1803 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1804 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1805 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1806 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1807 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1808};
1809
1810static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001811 int v_dim)
Doug Thompsonb1289d62009-04-27 16:37:05 +02001812{
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001813 unsigned int i, err_sym;
Doug Thompsonb1289d62009-04-27 16:37:05 +02001814
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001815 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1816 u16 s = syndrome;
1817 int v_idx = err_sym * v_dim;
1818 int v_end = (err_sym + 1) * v_dim;
Doug Thompsonb1289d62009-04-27 16:37:05 +02001819
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001820 /* walk over all 16 bits of the syndrome */
1821 for (i = 1; i < (1U << 16); i <<= 1) {
1822
1823 /* if bit is set in that eigenvector... */
1824 if (v_idx < v_end && vectors[v_idx] & i) {
1825 u16 ev_comp = vectors[v_idx++];
1826
1827 /* ... and bit set in the modified syndrome, */
1828 if (s & i) {
1829 /* remove it. */
1830 s ^= ev_comp;
1831
1832 if (!s)
1833 return err_sym;
1834 }
1835
1836 } else if (s & i)
1837 /* can't get to zero, move to next symbol */
1838 break;
1839 }
Doug Thompsonb1289d62009-04-27 16:37:05 +02001840 }
1841
1842 debugf0("syndrome(%x) not found\n", syndrome);
1843 return -1;
1844}
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001845
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001846static int map_err_sym_to_channel(int err_sym, int sym_size)
1847{
1848 if (sym_size == 4)
1849 switch (err_sym) {
1850 case 0x20:
1851 case 0x21:
1852 return 0;
1853 break;
1854 case 0x22:
1855 case 0x23:
1856 return 1;
1857 break;
1858 default:
1859 return err_sym >> 4;
1860 break;
1861 }
1862 /* x8 symbols */
1863 else
1864 switch (err_sym) {
1865 /* imaginary bits not in a DIMM */
1866 case 0x10:
1867 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1868 err_sym);
1869 return -1;
1870 break;
1871
1872 case 0x11:
1873 return 0;
1874 break;
1875 case 0x12:
1876 return 1;
1877 break;
1878 default:
1879 return err_sym >> 3;
1880 break;
1881 }
1882 return -1;
1883}
1884
1885static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1886{
1887 struct amd64_pvt *pvt = mci->pvt_info;
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001888 int err_sym = -1;
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001889
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001890 if (pvt->syn_type == 8)
1891 err_sym = decode_syndrome(syndrome, x8_vectors,
1892 ARRAY_SIZE(x8_vectors),
1893 pvt->syn_type);
1894 else if (pvt->syn_type == 4)
1895 err_sym = decode_syndrome(syndrome, x4_vectors,
1896 ARRAY_SIZE(x4_vectors),
1897 pvt->syn_type);
1898 else {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001899 amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001900 return err_sym;
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001901 }
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001902
1903 return map_err_sym_to_channel(err_sym, pvt->syn_type);
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001904}
1905
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001906/*
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001907 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1908 * ADDRESS and process.
1909 */
1910static void amd64_handle_ce(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001911 struct err_regs *info)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001912{
1913 struct amd64_pvt *pvt = mci->pvt_info;
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001914 u64 sys_addr;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001915
1916 /* Ensure that the Error Address is VALID */
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001917 if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
1918 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001919 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1920 return;
1921 }
1922
Borislav Petkov1f6bcee2009-11-13 14:02:57 +01001923 sys_addr = pvt->ops->get_error_address(mci, info);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001924
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001925 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001926
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001927 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001928}
1929
1930/* Handle any Un-correctable Errors (UEs) */
1931static void amd64_handle_ue(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001932 struct err_regs *info)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001933{
Borislav Petkov1f6bcee2009-11-13 14:02:57 +01001934 struct amd64_pvt *pvt = mci->pvt_info;
1935 struct mem_ctl_info *log_mci, *src_mci = NULL;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001936 int csrow;
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001937 u64 sys_addr;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001938 u32 page, offset;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001939
1940 log_mci = mci;
1941
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001942 if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
1943 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001944 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1945 return;
1946 }
1947
Borislav Petkov1f6bcee2009-11-13 14:02:57 +01001948 sys_addr = pvt->ops->get_error_address(mci, info);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001949
1950 /*
1951 * Find out which node the error address belongs to. This may be
1952 * different from the node that detected the error.
1953 */
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001954 src_mci = find_mc_by_sys_addr(mci, sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001955 if (!src_mci) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001956 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1957 (unsigned long)sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001958 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1959 return;
1960 }
1961
1962 log_mci = src_mci;
1963
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001964 csrow = sys_addr_to_csrow(log_mci, sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001965 if (csrow < 0) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02001966 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1967 (unsigned long)sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001968 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1969 } else {
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001970 error_address_to_page_and_offset(sys_addr, &page, &offset);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001971 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1972 }
1973}
1974
Borislav Petkov549d0422009-07-24 13:51:42 +02001975static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
Borislav Petkovb69b29d2009-07-27 16:21:14 +02001976 struct err_regs *info)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001977{
Borislav Petkovb70ef012009-06-25 19:32:38 +02001978 u32 ec = ERROR_CODE(info->nbsl);
1979 u32 xec = EXT_ERROR_CODE(info->nbsl);
Borislav Petkov17adea02009-11-04 14:04:06 +01001980 int ecc_type = (info->nbsh >> 13) & 0x3;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001981
Borislav Petkovb70ef012009-06-25 19:32:38 +02001982 /* Bail early out if this was an 'observed' error */
1983 if (PP(ec) == K8_NBSL_PP_OBS)
1984 return;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001985
Borislav Petkovecaf5602009-07-23 16:32:01 +02001986 /* Do only ECC errors */
1987 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001988 return;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001989
Borislav Petkovecaf5602009-07-23 16:32:01 +02001990 if (ecc_type == 2)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001991 amd64_handle_ce(mci, info);
Borislav Petkovecaf5602009-07-23 16:32:01 +02001992 else if (ecc_type == 1)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001993 amd64_handle_ue(mci, info);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001994}
1995
Borislav Petkov7cfd4a82010-09-01 14:45:20 +02001996void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001997{
Borislav Petkov549d0422009-07-24 13:51:42 +02001998 struct mem_ctl_info *mci = mci_lookup[node_id];
Borislav Petkov7cfd4a82010-09-01 14:45:20 +02001999 struct err_regs regs;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002000
Borislav Petkov7cfd4a82010-09-01 14:45:20 +02002001 regs.nbsl = (u32) m->status;
2002 regs.nbsh = (u32)(m->status >> 32);
2003 regs.nbeal = (u32) m->addr;
2004 regs.nbeah = (u32)(m->addr >> 32);
2005 regs.nbcfg = nbcfg;
2006
2007 __amd64_decode_bus_error(mci, &regs);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002008
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002009 /*
2010 * Check the UE bit of the NB status high register, if set generate some
2011 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2012 * If it was a GART error, skip that process.
Borislav Petkov549d0422009-07-24 13:51:42 +02002013 *
2014 * FIXME: this should go somewhere else, if at all.
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002015 */
Borislav Petkov7cfd4a82010-09-01 14:45:20 +02002016 if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
Borislav Petkov5110dbd2009-06-25 19:51:04 +02002017 edac_mc_handle_ue_no_info(mci, "UE bit is set");
Borislav Petkov549d0422009-07-24 13:51:42 +02002018
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002019}
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002020
Doug Thompson0ec449e2009-04-27 19:41:25 +02002021/*
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002022 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
Borislav Petkovbbd0c1f2010-10-01 19:27:58 +02002023 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
Doug Thompson0ec449e2009-04-27 19:41:25 +02002024 */
Borislav Petkovbbd0c1f2010-10-01 19:27:58 +02002025static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, u16 f1_id,
2026 u16 f3_id)
Doug Thompson0ec449e2009-04-27 19:41:25 +02002027{
Doug Thompson0ec449e2009-04-27 19:41:25 +02002028 /* Reserve the ADDRESS MAP Device */
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002029 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
2030 if (!pvt->F1) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002031 amd64_err("error address map device not found: "
2032 "vendor %x device 0x%x (broken BIOS?)\n",
2033 PCI_VENDOR_ID_AMD, f1_id);
Borislav Petkovbbd0c1f2010-10-01 19:27:58 +02002034 return -ENODEV;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002035 }
2036
2037 /* Reserve the MISC Device */
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002038 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2039 if (!pvt->F3) {
2040 pci_dev_put(pvt->F1);
2041 pvt->F1 = NULL;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002042
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002043 amd64_err("error F3 device not found: "
2044 "vendor %x device 0x%x (broken BIOS?)\n",
2045 PCI_VENDOR_ID_AMD, f3_id);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002046
Borislav Petkovbbd0c1f2010-10-01 19:27:58 +02002047 return -ENODEV;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002048 }
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002049 debugf1("F1: %s\n", pci_name(pvt->F1));
2050 debugf1("F2: %s\n", pci_name(pvt->F2));
2051 debugf1("F3: %s\n", pci_name(pvt->F3));
Doug Thompson0ec449e2009-04-27 19:41:25 +02002052
2053 return 0;
2054}
2055
2056static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2057{
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002058 pci_dev_put(pvt->F1);
2059 pci_dev_put(pvt->F3);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002060}
2061
2062/*
2063 * Retrieve the hardware registers of the memory controller (this includes the
2064 * 'Address Map' and 'Misc' device regs)
2065 */
2066static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2067{
2068 u64 msr_val;
Borislav Petkovad6a32e2010-03-09 12:46:00 +01002069 u32 tmp;
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002070 int dram;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002071
2072 /*
2073 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2074 * those are Read-As-Zero
2075 */
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002076 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2077 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002078
2079 /* check first whether TOP_MEM2 is enabled */
2080 rdmsrl(MSR_K8_SYSCFG, msr_val);
2081 if (msr_val & (1U << 21)) {
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002082 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2083 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002084 } else
2085 debugf0(" TOP_MEM2 disabled.\n");
2086
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002087 amd64_read_pci_cfg(pvt->F3, K8_NBCAP, &pvt->nbcap);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002088
2089 if (pvt->ops->read_dram_ctl_register)
2090 pvt->ops->read_dram_ctl_register(pvt);
2091
2092 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2093 /*
2094 * Call CPU specific READ function to get the DRAM Base and
2095 * Limit values from the DCT.
2096 */
2097 pvt->ops->read_dram_base_limit(pvt, dram);
2098
2099 /*
2100 * Only print out debug info on rows with both R and W Enabled.
2101 * Normal processing, compiler should optimize this whole 'if'
2102 * debug output block away.
2103 */
2104 if (pvt->dram_rw_en[dram] != 0) {
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002105 debugf1(" DRAM-BASE[%d]: 0x%016llx "
2106 "DRAM-LIMIT: 0x%016llx\n",
Doug Thompson0ec449e2009-04-27 19:41:25 +02002107 dram,
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002108 pvt->dram_base[dram],
2109 pvt->dram_limit[dram]);
2110
Doug Thompson0ec449e2009-04-27 19:41:25 +02002111 debugf1(" IntlvEn=%s %s %s "
2112 "IntlvSel=%d DstNode=%d\n",
2113 pvt->dram_IntlvEn[dram] ?
2114 "Enabled" : "Disabled",
2115 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2116 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2117 pvt->dram_IntlvSel[dram],
2118 pvt->dram_DstNode[dram]);
2119 }
2120 }
2121
2122 amd64_read_dct_base_mask(pvt);
2123
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002124 amd64_read_pci_cfg(pvt->F1, K8_DHAR, &pvt->dhar);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002125 amd64_read_dbam_reg(pvt);
2126
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002127 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002128
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002129 amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
2130 amd64_read_pci_cfg(pvt->F2, F10_DCHR_0, &pvt->dchr0);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002131
Borislav Petkovad6a32e2010-03-09 12:46:00 +01002132 if (boot_cpu_data.x86 >= 0x10) {
2133 if (!dct_ganging_enabled(pvt)) {
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002134 amd64_read_pci_cfg(pvt->F2, F10_DCLR_1, &pvt->dclr1);
2135 amd64_read_pci_cfg(pvt->F2, F10_DCHR_1, &pvt->dchr1);
Borislav Petkovad6a32e2010-03-09 12:46:00 +01002136 }
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002137 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002138 }
Borislav Petkovad6a32e2010-03-09 12:46:00 +01002139
2140 if (boot_cpu_data.x86 == 0x10 &&
2141 boot_cpu_data.x86_model > 7 &&
2142 /* F3x180[EccSymbolSize]=1 => x8 symbols */
2143 tmp & BIT(25))
2144 pvt->syn_type = 8;
2145 else
2146 pvt->syn_type = 4;
2147
Doug Thompson0ec449e2009-04-27 19:41:25 +02002148 amd64_dump_misc_regs(pvt);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002149}
2150
2151/*
2152 * NOTE: CPU Revision Dependent code
2153 *
2154 * Input:
Borislav Petkov9d858bb2009-09-21 14:35:51 +02002155 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
Doug Thompson0ec449e2009-04-27 19:41:25 +02002156 * k8 private pointer to -->
2157 * DRAM Bank Address mapping register
2158 * node_id
2159 * DCL register where dual_channel_active is
2160 *
2161 * The DBAM register consists of 4 sets of 4 bits each definitions:
2162 *
2163 * Bits: CSROWs
2164 * 0-3 CSROWs 0 and 1
2165 * 4-7 CSROWs 2 and 3
2166 * 8-11 CSROWs 4 and 5
2167 * 12-15 CSROWs 6 and 7
2168 *
2169 * Values range from: 0 to 15
2170 * The meaning of the values depends on CPU revision and dual-channel state,
2171 * see relevant BKDG more info.
2172 *
2173 * The memory controller provides for total of only 8 CSROWs in its current
2174 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2175 * single channel or two (2) DIMMs in dual channel mode.
2176 *
2177 * The following code logic collapses the various tables for CSROW based on CPU
2178 * revision.
2179 *
2180 * Returns:
2181 * The number of PAGE_SIZE pages on the specified CSROW number it
2182 * encompasses
2183 *
2184 */
2185static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2186{
Borislav Petkov1433eb92009-10-21 13:44:36 +02002187 u32 cs_mode, nr_pages;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002188
2189 /*
2190 * The math on this doesn't look right on the surface because x/2*4 can
2191 * be simplified to x*2 but this expression makes use of the fact that
2192 * it is integral math where 1/2=0. This intermediate value becomes the
2193 * number of bits to shift the DBAM register to extract the proper CSROW
2194 * field.
2195 */
Borislav Petkov1433eb92009-10-21 13:44:36 +02002196 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002197
Borislav Petkov1433eb92009-10-21 13:44:36 +02002198 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002199
2200 /*
2201 * If dual channel then double the memory size of single channel.
2202 * Channel count is 1 or 2
2203 */
2204 nr_pages <<= (pvt->channel_count - 1);
2205
Borislav Petkov1433eb92009-10-21 13:44:36 +02002206 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002207 debugf0(" nr_pages= %u channel-count = %d\n",
2208 nr_pages, pvt->channel_count);
2209
2210 return nr_pages;
2211}
2212
2213/*
2214 * Initialize the array of csrow attribute instances, based on the values
2215 * from pci config hardware registers.
2216 */
2217static int amd64_init_csrows(struct mem_ctl_info *mci)
2218{
2219 struct csrow_info *csrow;
2220 struct amd64_pvt *pvt;
2221 u64 input_addr_min, input_addr_max, sys_addr;
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002222 int i, empty = 1;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002223
2224 pvt = mci->pvt_info;
2225
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002226 amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &pvt->nbcfg);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002227
2228 debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2229 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2230 (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2231 );
2232
Borislav Petkov9d858bb2009-09-21 14:35:51 +02002233 for (i = 0; i < pvt->cs_count; i++) {
Doug Thompson0ec449e2009-04-27 19:41:25 +02002234 csrow = &mci->csrows[i];
2235
2236 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2237 debugf1("----CSROW %d EMPTY for node %d\n", i,
2238 pvt->mc_node_id);
2239 continue;
2240 }
2241
2242 debugf1("----CSROW %d VALID for MC node %d\n",
2243 i, pvt->mc_node_id);
2244
2245 empty = 0;
2246 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2247 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2248 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2249 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2250 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2251 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2252 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2253 /* 8 bytes of resolution */
2254
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002255 csrow->mtype = amd64_determine_memory_type(pvt, i);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002256
2257 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2258 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2259 (unsigned long)input_addr_min,
2260 (unsigned long)input_addr_max);
2261 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2262 (unsigned long)sys_addr, csrow->page_mask);
2263 debugf1(" nr_pages: %u first_page: 0x%lx "
2264 "last_page: 0x%lx\n",
2265 (unsigned)csrow->nr_pages,
2266 csrow->first_page, csrow->last_page);
2267
2268 /*
2269 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2270 */
2271 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2272 csrow->edac_mode =
2273 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2274 EDAC_S4ECD4ED : EDAC_SECDED;
2275 else
2276 csrow->edac_mode = EDAC_NONE;
2277 }
2278
2279 return empty;
2280}
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002281
Borislav Petkov06724532009-09-16 13:05:46 +02002282/* get all cores on this DCT */
Rusty Russellba578cb2009-11-03 14:56:35 +10302283static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
Doug Thompsonf9431992009-04-27 19:46:08 +02002284{
Borislav Petkov06724532009-09-16 13:05:46 +02002285 int cpu;
Doug Thompsonf9431992009-04-27 19:46:08 +02002286
Borislav Petkov06724532009-09-16 13:05:46 +02002287 for_each_online_cpu(cpu)
2288 if (amd_get_nb_id(cpu) == nid)
2289 cpumask_set_cpu(cpu, mask);
Doug Thompsonf9431992009-04-27 19:46:08 +02002290}
2291
2292/* check MCG_CTL on all the cpus on this node */
Borislav Petkov06724532009-09-16 13:05:46 +02002293static bool amd64_nb_mce_bank_enabled_on_node(int nid)
Doug Thompsonf9431992009-04-27 19:46:08 +02002294{
Rusty Russellba578cb2009-11-03 14:56:35 +10302295 cpumask_var_t mask;
Borislav Petkov50542252009-12-11 18:14:40 +01002296 int cpu, nbe;
Borislav Petkov06724532009-09-16 13:05:46 +02002297 bool ret = false;
Doug Thompsonf9431992009-04-27 19:46:08 +02002298
Rusty Russellba578cb2009-11-03 14:56:35 +10302299 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002300 amd64_warn("%s: Error allocating mask\n", __func__);
Rusty Russellba578cb2009-11-03 14:56:35 +10302301 return false;
2302 }
Borislav Petkov06724532009-09-16 13:05:46 +02002303
Rusty Russellba578cb2009-11-03 14:56:35 +10302304 get_cpus_on_this_dct_cpumask(mask, nid);
Borislav Petkov06724532009-09-16 13:05:46 +02002305
Rusty Russellba578cb2009-11-03 14:56:35 +10302306 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
Borislav Petkov06724532009-09-16 13:05:46 +02002307
Rusty Russellba578cb2009-11-03 14:56:35 +10302308 for_each_cpu(cpu, mask) {
Borislav Petkov50542252009-12-11 18:14:40 +01002309 struct msr *reg = per_cpu_ptr(msrs, cpu);
2310 nbe = reg->l & K8_MSR_MCGCTL_NBE;
Borislav Petkov06724532009-09-16 13:05:46 +02002311
2312 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
Borislav Petkov50542252009-12-11 18:14:40 +01002313 cpu, reg->q,
Borislav Petkov06724532009-09-16 13:05:46 +02002314 (nbe ? "enabled" : "disabled"));
2315
2316 if (!nbe)
2317 goto out;
Borislav Petkov06724532009-09-16 13:05:46 +02002318 }
2319 ret = true;
2320
2321out:
Rusty Russellba578cb2009-11-03 14:56:35 +10302322 free_cpumask_var(mask);
Doug Thompsonf9431992009-04-27 19:46:08 +02002323 return ret;
2324}
2325
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002326static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
2327{
2328 cpumask_var_t cmask;
Borislav Petkov50542252009-12-11 18:14:40 +01002329 int cpu;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002330
2331 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002332 amd64_warn("%s: error allocating mask\n", __func__);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002333 return false;
2334 }
2335
2336 get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
2337
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002338 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2339
2340 for_each_cpu(cpu, cmask) {
2341
Borislav Petkov50542252009-12-11 18:14:40 +01002342 struct msr *reg = per_cpu_ptr(msrs, cpu);
2343
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002344 if (on) {
Borislav Petkov50542252009-12-11 18:14:40 +01002345 if (reg->l & K8_MSR_MCGCTL_NBE)
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002346 pvt->flags.nb_mce_enable = 1;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002347
Borislav Petkov50542252009-12-11 18:14:40 +01002348 reg->l |= K8_MSR_MCGCTL_NBE;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002349 } else {
2350 /*
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002351 * Turn off NB MCE reporting only when it was off before
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002352 */
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002353 if (!pvt->flags.nb_mce_enable)
Borislav Petkov50542252009-12-11 18:14:40 +01002354 reg->l &= ~K8_MSR_MCGCTL_NBE;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002355 }
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002356 }
2357 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2358
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002359 free_cpumask_var(cmask);
2360
2361 return 0;
2362}
2363
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002364static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2365{
2366 struct amd64_pvt *pvt = mci->pvt_info;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002367 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2368
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002369 amd64_read_pci_cfg(pvt->F3, K8_NBCTL, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002370
2371 /* turn on UECCn and CECCEn bits */
2372 pvt->old_nbctl = value & mask;
2373 pvt->nbctl_mcgctl_saved = 1;
2374
2375 value |= mask;
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002376 pci_write_config_dword(pvt->F3, K8_NBCTL, value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002377
2378 if (amd64_toggle_ecc_err_reporting(pvt, ON))
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002379 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002380
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002381 amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002382
2383 debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2384 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2385 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2386
2387 if (!(value & K8_NBCFG_ECC_ENABLE)) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002388 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002389
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002390 pvt->flags.nb_ecc_prev = 0;
2391
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002392 /* Attempt to turn on DRAM ECC Enable */
2393 value |= K8_NBCFG_ECC_ENABLE;
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002394 pci_write_config_dword(pvt->F3, K8_NBCFG, value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002395
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002396 amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002397
2398 if (!(value & K8_NBCFG_ECC_ENABLE)) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002399 amd64_warn("Hardware rejected DRAM ECC enable,"
2400 "check memory DIMM configuration.\n");
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002401 } else {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002402 amd64_info("Hardware accepted DRAM ECC Enable\n");
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002403 }
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002404 } else {
2405 pvt->flags.nb_ecc_prev = 1;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002406 }
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002407
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002408 debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2409 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2410 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2411
2412 pvt->ctl_error_info.nbcfg = value;
2413}
2414
2415static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2416{
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002417 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2418
2419 if (!pvt->nbctl_mcgctl_saved)
2420 return;
2421
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002422 amd64_read_pci_cfg(pvt->F3, K8_NBCTL, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002423 value &= ~mask;
2424 value |= pvt->old_nbctl;
2425
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002426 pci_write_config_dword(pvt->F3, K8_NBCTL, value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002427
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002428 /* restore previous BIOS DRAM ECC "off" setting which we force-enabled */
2429 if (!pvt->flags.nb_ecc_prev) {
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002430 amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &value);
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002431 value &= ~K8_NBCFG_ECC_ENABLE;
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002432 pci_write_config_dword(pvt->F3, K8_NBCFG, value);
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002433 }
2434
2435 /* restore the NB Enable MCGCTL bit */
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002436 if (amd64_toggle_ecc_err_reporting(pvt, OFF))
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002437 amd64_warn("Error restoring NB MCGCTL settings!\n");
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002438}
2439
Doug Thompsonf9431992009-04-27 19:46:08 +02002440/*
2441 * EDAC requires that the BIOS have ECC enabled before taking over the
2442 * processing of ECC errors. This is because the BIOS can properly initialize
2443 * the memory system completely. A command line option allows to force-enable
2444 * hardware ECC later in amd64_enable_ecc_error_reporting().
2445 */
Borislav Petkovcab4d272010-02-11 17:15:57 +01002446static const char *ecc_msg =
2447 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2448 " Either enable ECC checking or force module loading by setting "
2449 "'ecc_enable_override'.\n"
2450 " (Note that use of the override may cause unknown side effects.)\n";
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002451
Doug Thompsonf9431992009-04-27 19:46:08 +02002452static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2453{
2454 u32 value;
Borislav Petkov06724532009-09-16 13:05:46 +02002455 u8 ecc_enabled = 0;
2456 bool nb_mce_en = false;
Doug Thompsonf9431992009-04-27 19:46:08 +02002457
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002458 amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &value);
Doug Thompsonf9431992009-04-27 19:46:08 +02002459
2460 ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002461 amd64_info("DRAM ECC %s.\n", (ecc_enabled ? "enabled" : "disabled"));
Doug Thompsonf9431992009-04-27 19:46:08 +02002462
Borislav Petkov06724532009-09-16 13:05:46 +02002463 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
2464 if (!nb_mce_en)
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002465 amd64_notice("NB MCE bank disabled, "
2466 "set MSR 0x%08x[4] on node %d to enable.\n",
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002467 MSR_IA32_MCG_CTL, pvt->mc_node_id);
Doug Thompsonf9431992009-04-27 19:46:08 +02002468
Borislav Petkov06724532009-09-16 13:05:46 +02002469 if (!ecc_enabled || !nb_mce_en) {
Doug Thompsonf9431992009-04-27 19:46:08 +02002470 if (!ecc_enable_override) {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002471 amd64_notice("%s", ecc_msg);
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002472 return -ENODEV;
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002473 } else {
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002474 amd64_warn("Forcing ECC on!\n");
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002475 }
Borislav Petkov43f5e682009-12-21 18:55:18 +01002476 }
Doug Thompsonf9431992009-04-27 19:46:08 +02002477
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002478 return 0;
Doug Thompsonf9431992009-04-27 19:46:08 +02002479}
2480
Doug Thompson7d6034d2009-04-27 20:01:01 +02002481struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2482 ARRAY_SIZE(amd64_inj_attrs) +
2483 1];
2484
2485struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2486
2487static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2488{
2489 unsigned int i = 0, j = 0;
2490
2491 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2492 sysfs_attrs[i] = amd64_dbg_attrs[i];
2493
2494 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2495 sysfs_attrs[i] = amd64_inj_attrs[j];
2496
2497 sysfs_attrs[i] = terminator;
2498
2499 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2500}
2501
2502static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
2503{
2504 struct amd64_pvt *pvt = mci->pvt_info;
2505
2506 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2507 mci->edac_ctl_cap = EDAC_FLAG_NONE;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002508
2509 if (pvt->nbcap & K8_NBCAP_SECDED)
2510 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2511
2512 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2513 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2514
2515 mci->edac_cap = amd64_determine_edac_cap(pvt);
2516 mci->mod_name = EDAC_MOD_STR;
2517 mci->mod_ver = EDAC_AMD64_VERSION;
Borislav Petkov0092b202010-10-01 19:20:05 +02002518 mci->ctl_name = pvt->ctl_name;
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002519 mci->dev_name = pci_name(pvt->F2);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002520 mci->ctl_page_to_phys = NULL;
2521
Doug Thompson7d6034d2009-04-27 20:01:01 +02002522 /* memory scrubber interface */
2523 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2524 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2525}
2526
Borislav Petkov0092b202010-10-01 19:20:05 +02002527/*
2528 * returns a pointer to the family descriptor on success, NULL otherwise.
2529 */
2530static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
Borislav Petkov395ae782010-10-01 18:38:19 +02002531{
Borislav Petkov0092b202010-10-01 19:20:05 +02002532 u8 fam = boot_cpu_data.x86;
2533 struct amd64_family_type *fam_type = NULL;
2534
2535 switch (fam) {
Borislav Petkov395ae782010-10-01 18:38:19 +02002536 case 0xf:
Borislav Petkov0092b202010-10-01 19:20:05 +02002537 fam_type = &amd64_family_types[K8_CPUS];
Borislav Petkovb8cfa022010-10-01 19:35:38 +02002538 pvt->ops = &amd64_family_types[K8_CPUS].ops;
Borislav Petkov0092b202010-10-01 19:20:05 +02002539 pvt->ctl_name = fam_type->ctl_name;
2540 pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
Borislav Petkov395ae782010-10-01 18:38:19 +02002541 break;
2542 case 0x10:
Borislav Petkov0092b202010-10-01 19:20:05 +02002543 fam_type = &amd64_family_types[F10_CPUS];
Borislav Petkovb8cfa022010-10-01 19:35:38 +02002544 pvt->ops = &amd64_family_types[F10_CPUS].ops;
Borislav Petkov0092b202010-10-01 19:20:05 +02002545 pvt->ctl_name = fam_type->ctl_name;
2546 pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
Borislav Petkov395ae782010-10-01 18:38:19 +02002547 break;
2548
2549 default:
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002550 amd64_err("Unsupported family!\n");
Borislav Petkov0092b202010-10-01 19:20:05 +02002551 return NULL;
Borislav Petkov395ae782010-10-01 18:38:19 +02002552 }
Borislav Petkov0092b202010-10-01 19:20:05 +02002553
Borislav Petkovb8cfa022010-10-01 19:35:38 +02002554 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2555
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002556 amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
Borislav Petkov0092b202010-10-01 19:20:05 +02002557 (fam == 0xf ?
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002558 (pvt->ext_model >= K8_REV_F ? "revF or later "
2559 : "revE or earlier ")
2560 : ""), pvt->mc_node_id);
Borislav Petkov0092b202010-10-01 19:20:05 +02002561 return fam_type;
Borislav Petkov395ae782010-10-01 18:38:19 +02002562}
2563
Doug Thompson7d6034d2009-04-27 20:01:01 +02002564/*
2565 * Init stuff for this DRAM Controller device.
2566 *
2567 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
2568 * Space feature MUST be enabled on ALL Processors prior to actually reading
2569 * from the ECS registers. Since the loading of the module can occur on any
2570 * 'core', and cores don't 'see' all the other processors ECS data when the
2571 * others are NOT enabled. Our solution is to first enable ECS access in this
2572 * routine on all processors, gather some data in a amd64_pvt structure and
2573 * later come back in a finish-setup function to perform that final
2574 * initialization. See also amd64_init_2nd_stage() for that.
2575 */
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002576static int amd64_probe_one_instance(struct pci_dev *F2)
Doug Thompson7d6034d2009-04-27 20:01:01 +02002577{
2578 struct amd64_pvt *pvt = NULL;
Borislav Petkov0092b202010-10-01 19:20:05 +02002579 struct amd64_family_type *fam_type = NULL;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002580 int err = 0, ret;
2581
2582 ret = -ENOMEM;
2583 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2584 if (!pvt)
2585 goto err_exit;
2586
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002587 pvt->mc_node_id = get_node_id(F2);
2588 pvt->F2 = F2;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002589
Borislav Petkov395ae782010-10-01 18:38:19 +02002590 ret = -EINVAL;
Borislav Petkov0092b202010-10-01 19:20:05 +02002591 fam_type = amd64_per_family_init(pvt);
2592 if (!fam_type)
Borislav Petkov395ae782010-10-01 18:38:19 +02002593 goto err_free;
2594
Doug Thompson7d6034d2009-04-27 20:01:01 +02002595 ret = -ENODEV;
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002596 err = amd64_reserve_mc_sibling_devices(pvt, fam_type->f1_id,
2597 fam_type->f3_id);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002598 if (err)
2599 goto err_free;
2600
2601 ret = -EINVAL;
2602 err = amd64_check_ecc_enabled(pvt);
2603 if (err)
2604 goto err_put;
2605
2606 /*
2607 * Key operation here: setup of HW prior to performing ops on it. Some
2608 * setup is required to access ECS data. After this is performed, the
2609 * 'teardown' function must be called upon error and normal exit paths.
2610 */
2611 if (boot_cpu_data.x86 >= 0x10)
2612 amd64_setup(pvt);
2613
2614 /*
2615 * Save the pointer to the private data for use in 2nd initialization
2616 * stage
2617 */
2618 pvt_lookup[pvt->mc_node_id] = pvt;
2619
2620 return 0;
2621
2622err_put:
2623 amd64_free_mc_sibling_devices(pvt);
2624
2625err_free:
2626 kfree(pvt);
2627
2628err_exit:
2629 return ret;
2630}
2631
2632/*
2633 * This is the finishing stage of the init code. Needs to be performed after all
2634 * MCs' hardware have been prepped for accessing extended config space.
2635 */
2636static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
2637{
2638 int node_id = pvt->mc_node_id;
2639 struct mem_ctl_info *mci;
Andrew Morton18ba54a2009-12-07 19:04:23 +01002640 int ret = -ENODEV;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002641
2642 amd64_read_mc_registers(pvt);
2643
Doug Thompson7d6034d2009-04-27 20:01:01 +02002644 /*
2645 * We need to determine how many memory channels there are. Then use
2646 * that information for calculating the size of the dynamic instance
2647 * tables in the 'mci' structure
2648 */
2649 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2650 if (pvt->channel_count < 0)
2651 goto err_exit;
2652
2653 ret = -ENOMEM;
Borislav Petkov9d858bb2009-09-21 14:35:51 +02002654 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002655 if (!mci)
2656 goto err_exit;
2657
2658 mci->pvt_info = pvt;
2659
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002660 mci->dev = &pvt->F2->dev;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002661 amd64_setup_mci_misc_attributes(mci);
2662
2663 if (amd64_init_csrows(mci))
2664 mci->edac_cap = EDAC_FLAG_NONE;
2665
2666 amd64_enable_ecc_error_reporting(mci);
2667 amd64_set_mc_sysfs_attributes(mci);
2668
2669 ret = -ENODEV;
2670 if (edac_mc_add_mc(mci)) {
2671 debugf1("failed edac_mc_add_mc()\n");
2672 goto err_add_mc;
2673 }
2674
2675 mci_lookup[node_id] = mci;
2676 pvt_lookup[node_id] = NULL;
Borislav Petkov549d0422009-07-24 13:51:42 +02002677
2678 /* register stuff with EDAC MCE */
2679 if (report_gart_errors)
2680 amd_report_gart_errors(true);
2681
2682 amd_register_ecc_decoder(amd64_decode_bus_error);
2683
Doug Thompson7d6034d2009-04-27 20:01:01 +02002684 return 0;
2685
2686err_add_mc:
2687 edac_mc_free(mci);
2688
2689err_exit:
2690 debugf0("failure to init 2nd stage: ret=%d\n", ret);
2691
2692 amd64_restore_ecc_error_reporting(pvt);
2693
2694 if (boot_cpu_data.x86 > 0xf)
2695 amd64_teardown(pvt);
2696
2697 amd64_free_mc_sibling_devices(pvt);
2698
2699 kfree(pvt_lookup[pvt->mc_node_id]);
2700 pvt_lookup[node_id] = NULL;
2701
2702 return ret;
2703}
2704
2705
2706static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
Borislav Petkovb8cfa022010-10-01 19:35:38 +02002707 const struct pci_device_id *mc_type)
Doug Thompson7d6034d2009-04-27 20:01:01 +02002708{
2709 int ret = 0;
2710
Doug Thompson7d6034d2009-04-27 20:01:01 +02002711 ret = pci_enable_device(pdev);
Borislav Petkovb8cfa022010-10-01 19:35:38 +02002712 if (ret < 0) {
Doug Thompson7d6034d2009-04-27 20:01:01 +02002713 debugf0("ret=%d\n", ret);
Borislav Petkovb8cfa022010-10-01 19:35:38 +02002714 return -EIO;
2715 }
2716
2717 ret = amd64_probe_one_instance(pdev);
2718 if (ret < 0)
Borislav Petkov24f9a7f2010-10-07 18:29:15 +02002719 amd64_err("Error probing instance: %d\n", get_node_id(pdev));
Doug Thompson7d6034d2009-04-27 20:01:01 +02002720
2721 return ret;
2722}
2723
2724static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2725{
2726 struct mem_ctl_info *mci;
2727 struct amd64_pvt *pvt;
2728
2729 /* Remove from EDAC CORE tracking list */
2730 mci = edac_mc_del_mc(&pdev->dev);
2731 if (!mci)
2732 return;
2733
2734 pvt = mci->pvt_info;
2735
2736 amd64_restore_ecc_error_reporting(pvt);
2737
2738 if (boot_cpu_data.x86 > 0xf)
2739 amd64_teardown(pvt);
2740
2741 amd64_free_mc_sibling_devices(pvt);
2742
Borislav Petkov549d0422009-07-24 13:51:42 +02002743 /* unregister from EDAC MCE */
2744 amd_report_gart_errors(false);
2745 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2746
Doug Thompson7d6034d2009-04-27 20:01:01 +02002747 /* Free the EDAC CORE resources */
Borislav Petkov8f68ed92009-12-21 15:15:59 +01002748 mci->pvt_info = NULL;
2749 mci_lookup[pvt->mc_node_id] = NULL;
2750
2751 kfree(pvt);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002752 edac_mc_free(mci);
2753}
2754
2755/*
2756 * This table is part of the interface for loading drivers for PCI devices. The
2757 * PCI core identifies what devices are on a system during boot, and then
2758 * inquiry this table to see if this driver is for a given device found.
2759 */
2760static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2761 {
2762 .vendor = PCI_VENDOR_ID_AMD,
2763 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2764 .subvendor = PCI_ANY_ID,
2765 .subdevice = PCI_ANY_ID,
2766 .class = 0,
2767 .class_mask = 0,
Doug Thompson7d6034d2009-04-27 20:01:01 +02002768 },
2769 {
2770 .vendor = PCI_VENDOR_ID_AMD,
2771 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2772 .subvendor = PCI_ANY_ID,
2773 .subdevice = PCI_ANY_ID,
2774 .class = 0,
2775 .class_mask = 0,
Doug Thompson7d6034d2009-04-27 20:01:01 +02002776 },
Doug Thompson7d6034d2009-04-27 20:01:01 +02002777 {0, }
2778};
2779MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2780
2781static struct pci_driver amd64_pci_driver = {
2782 .name = EDAC_MOD_STR,
2783 .probe = amd64_init_one_instance,
2784 .remove = __devexit_p(amd64_remove_one_instance),
2785 .id_table = amd64_pci_table,
2786};
2787
2788static void amd64_setup_pci_device(void)
2789{
2790 struct mem_ctl_info *mci;
2791 struct amd64_pvt *pvt;
2792
2793 if (amd64_ctl_pci)
2794 return;
2795
2796 mci = mci_lookup[0];
2797 if (mci) {
2798
2799 pvt = mci->pvt_info;
2800 amd64_ctl_pci =
Borislav Petkov8d5b5d92010-10-01 20:11:07 +02002801 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002802
2803 if (!amd64_ctl_pci) {
2804 pr_warning("%s(): Unable to create PCI control\n",
2805 __func__);
2806
2807 pr_warning("%s(): PCI error report via EDAC not set\n",
2808 __func__);
2809 }
2810 }
2811}
2812
2813static int __init amd64_edac_init(void)
2814{
2815 int nb, err = -ENODEV;
Borislav Petkov56b34b92009-12-21 18:13:01 +01002816 bool load_ok = false;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002817
2818 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2819
2820 opstate_init();
2821
Hans Rosenfeld9653a5c2010-10-29 17:14:31 +02002822 if (amd_cache_northbridges() < 0)
Borislav Petkov56b34b92009-12-21 18:13:01 +01002823 goto err_ret;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002824
Borislav Petkov50542252009-12-11 18:14:40 +01002825 msrs = msrs_alloc();
Borislav Petkov56b34b92009-12-21 18:13:01 +01002826 if (!msrs)
2827 goto err_ret;
Borislav Petkov50542252009-12-11 18:14:40 +01002828
Doug Thompson7d6034d2009-04-27 20:01:01 +02002829 err = pci_register_driver(&amd64_pci_driver);
2830 if (err)
Borislav Petkov56b34b92009-12-21 18:13:01 +01002831 goto err_pci;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002832
2833 /*
2834 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
2835 * amd64_pvt structs. These will be used in the 2nd stage init function
2836 * to finish initialization of the MC instances.
2837 */
Borislav Petkov56b34b92009-12-21 18:13:01 +01002838 err = -ENODEV;
Hans Rosenfeld9653a5c2010-10-29 17:14:31 +02002839 for (nb = 0; nb < amd_nb_num(); nb++) {
Doug Thompson7d6034d2009-04-27 20:01:01 +02002840 if (!pvt_lookup[nb])
2841 continue;
2842
2843 err = amd64_init_2nd_stage(pvt_lookup[nb]);
2844 if (err)
Borislav Petkov37da0452009-06-10 17:36:57 +02002845 goto err_2nd_stage;
Borislav Petkov56b34b92009-12-21 18:13:01 +01002846
2847 load_ok = true;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002848 }
2849
Borislav Petkov56b34b92009-12-21 18:13:01 +01002850 if (load_ok) {
2851 amd64_setup_pci_device();
2852 return 0;
2853 }
Doug Thompson7d6034d2009-04-27 20:01:01 +02002854
Borislav Petkov37da0452009-06-10 17:36:57 +02002855err_2nd_stage:
Doug Thompson7d6034d2009-04-27 20:01:01 +02002856 pci_unregister_driver(&amd64_pci_driver);
Borislav Petkov56b34b92009-12-21 18:13:01 +01002857err_pci:
2858 msrs_free(msrs);
2859 msrs = NULL;
2860err_ret:
Doug Thompson7d6034d2009-04-27 20:01:01 +02002861 return err;
2862}
2863
2864static void __exit amd64_edac_exit(void)
2865{
2866 if (amd64_ctl_pci)
2867 edac_pci_release_generic_ctl(amd64_ctl_pci);
2868
2869 pci_unregister_driver(&amd64_pci_driver);
Borislav Petkov50542252009-12-11 18:14:40 +01002870
2871 msrs_free(msrs);
2872 msrs = NULL;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002873}
2874
2875module_init(amd64_edac_init);
2876module_exit(amd64_edac_exit);
2877
2878MODULE_LICENSE("GPL");
2879MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2880 "Dave Peterson, Thayne Harbaugh");
2881MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2882 EDAC_AMD64_VERSION);
2883
2884module_param(edac_op_state, int, 0444);
2885MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");