Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * mm/rmap.c - physical to virtual reverse mappings |
| 3 | * |
| 4 | * Copyright 2001, Rik van Riel <riel@conectiva.com.br> |
| 5 | * Released under the General Public License (GPL). |
| 6 | * |
| 7 | * Simple, low overhead reverse mapping scheme. |
| 8 | * Please try to keep this thing as modular as possible. |
| 9 | * |
| 10 | * Provides methods for unmapping each kind of mapped page: |
| 11 | * the anon methods track anonymous pages, and |
| 12 | * the file methods track pages belonging to an inode. |
| 13 | * |
| 14 | * Original design by Rik van Riel <riel@conectiva.com.br> 2001 |
| 15 | * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 |
| 16 | * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 |
| 17 | * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004 |
| 18 | */ |
| 19 | |
| 20 | /* |
| 21 | * Lock ordering in mm: |
| 22 | * |
| 23 | * inode->i_sem (while writing or truncating, not reading or faulting) |
| 24 | * inode->i_alloc_sem |
| 25 | * |
| 26 | * When a page fault occurs in writing from user to file, down_read |
| 27 | * of mmap_sem nests within i_sem; in sys_msync, i_sem nests within |
| 28 | * down_read of mmap_sem; i_sem and down_write of mmap_sem are never |
| 29 | * taken together; in truncation, i_sem is taken outermost. |
| 30 | * |
| 31 | * mm->mmap_sem |
| 32 | * page->flags PG_locked (lock_page) |
| 33 | * mapping->i_mmap_lock |
| 34 | * anon_vma->lock |
| 35 | * mm->page_table_lock |
| 36 | * zone->lru_lock (in mark_page_accessed) |
| 37 | * swap_list_lock (in swap_free etc's swap_info_get) |
| 38 | * mmlist_lock (in mmput, drain_mmlist and others) |
| 39 | * swap_device_lock (in swap_duplicate, swap_info_get) |
| 40 | * mapping->private_lock (in __set_page_dirty_buffers) |
| 41 | * inode_lock (in set_page_dirty's __mark_inode_dirty) |
| 42 | * sb_lock (within inode_lock in fs/fs-writeback.c) |
| 43 | * mapping->tree_lock (widely used, in set_page_dirty, |
| 44 | * in arch-dependent flush_dcache_mmap_lock, |
| 45 | * within inode_lock in __sync_single_inode) |
| 46 | */ |
| 47 | |
| 48 | #include <linux/mm.h> |
| 49 | #include <linux/pagemap.h> |
| 50 | #include <linux/swap.h> |
| 51 | #include <linux/swapops.h> |
| 52 | #include <linux/slab.h> |
| 53 | #include <linux/init.h> |
| 54 | #include <linux/rmap.h> |
| 55 | #include <linux/rcupdate.h> |
| 56 | |
| 57 | #include <asm/tlbflush.h> |
| 58 | |
| 59 | //#define RMAP_DEBUG /* can be enabled only for debugging */ |
| 60 | |
| 61 | kmem_cache_t *anon_vma_cachep; |
| 62 | |
| 63 | static inline void validate_anon_vma(struct vm_area_struct *find_vma) |
| 64 | { |
| 65 | #ifdef RMAP_DEBUG |
| 66 | struct anon_vma *anon_vma = find_vma->anon_vma; |
| 67 | struct vm_area_struct *vma; |
| 68 | unsigned int mapcount = 0; |
| 69 | int found = 0; |
| 70 | |
| 71 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { |
| 72 | mapcount++; |
| 73 | BUG_ON(mapcount > 100000); |
| 74 | if (vma == find_vma) |
| 75 | found = 1; |
| 76 | } |
| 77 | BUG_ON(!found); |
| 78 | #endif |
| 79 | } |
| 80 | |
| 81 | /* This must be called under the mmap_sem. */ |
| 82 | int anon_vma_prepare(struct vm_area_struct *vma) |
| 83 | { |
| 84 | struct anon_vma *anon_vma = vma->anon_vma; |
| 85 | |
| 86 | might_sleep(); |
| 87 | if (unlikely(!anon_vma)) { |
| 88 | struct mm_struct *mm = vma->vm_mm; |
| 89 | struct anon_vma *allocated, *locked; |
| 90 | |
| 91 | anon_vma = find_mergeable_anon_vma(vma); |
| 92 | if (anon_vma) { |
| 93 | allocated = NULL; |
| 94 | locked = anon_vma; |
| 95 | spin_lock(&locked->lock); |
| 96 | } else { |
| 97 | anon_vma = anon_vma_alloc(); |
| 98 | if (unlikely(!anon_vma)) |
| 99 | return -ENOMEM; |
| 100 | allocated = anon_vma; |
| 101 | locked = NULL; |
| 102 | } |
| 103 | |
| 104 | /* page_table_lock to protect against threads */ |
| 105 | spin_lock(&mm->page_table_lock); |
| 106 | if (likely(!vma->anon_vma)) { |
| 107 | vma->anon_vma = anon_vma; |
| 108 | list_add(&vma->anon_vma_node, &anon_vma->head); |
| 109 | allocated = NULL; |
| 110 | } |
| 111 | spin_unlock(&mm->page_table_lock); |
| 112 | |
| 113 | if (locked) |
| 114 | spin_unlock(&locked->lock); |
| 115 | if (unlikely(allocated)) |
| 116 | anon_vma_free(allocated); |
| 117 | } |
| 118 | return 0; |
| 119 | } |
| 120 | |
| 121 | void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) |
| 122 | { |
| 123 | BUG_ON(vma->anon_vma != next->anon_vma); |
| 124 | list_del(&next->anon_vma_node); |
| 125 | } |
| 126 | |
| 127 | void __anon_vma_link(struct vm_area_struct *vma) |
| 128 | { |
| 129 | struct anon_vma *anon_vma = vma->anon_vma; |
| 130 | |
| 131 | if (anon_vma) { |
| 132 | list_add(&vma->anon_vma_node, &anon_vma->head); |
| 133 | validate_anon_vma(vma); |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | void anon_vma_link(struct vm_area_struct *vma) |
| 138 | { |
| 139 | struct anon_vma *anon_vma = vma->anon_vma; |
| 140 | |
| 141 | if (anon_vma) { |
| 142 | spin_lock(&anon_vma->lock); |
| 143 | list_add(&vma->anon_vma_node, &anon_vma->head); |
| 144 | validate_anon_vma(vma); |
| 145 | spin_unlock(&anon_vma->lock); |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | void anon_vma_unlink(struct vm_area_struct *vma) |
| 150 | { |
| 151 | struct anon_vma *anon_vma = vma->anon_vma; |
| 152 | int empty; |
| 153 | |
| 154 | if (!anon_vma) |
| 155 | return; |
| 156 | |
| 157 | spin_lock(&anon_vma->lock); |
| 158 | validate_anon_vma(vma); |
| 159 | list_del(&vma->anon_vma_node); |
| 160 | |
| 161 | /* We must garbage collect the anon_vma if it's empty */ |
| 162 | empty = list_empty(&anon_vma->head); |
| 163 | spin_unlock(&anon_vma->lock); |
| 164 | |
| 165 | if (empty) |
| 166 | anon_vma_free(anon_vma); |
| 167 | } |
| 168 | |
| 169 | static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags) |
| 170 | { |
| 171 | if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == |
| 172 | SLAB_CTOR_CONSTRUCTOR) { |
| 173 | struct anon_vma *anon_vma = data; |
| 174 | |
| 175 | spin_lock_init(&anon_vma->lock); |
| 176 | INIT_LIST_HEAD(&anon_vma->head); |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | void __init anon_vma_init(void) |
| 181 | { |
| 182 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), |
| 183 | 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL); |
| 184 | } |
| 185 | |
| 186 | /* |
| 187 | * Getting a lock on a stable anon_vma from a page off the LRU is |
| 188 | * tricky: page_lock_anon_vma rely on RCU to guard against the races. |
| 189 | */ |
| 190 | static struct anon_vma *page_lock_anon_vma(struct page *page) |
| 191 | { |
| 192 | struct anon_vma *anon_vma = NULL; |
| 193 | unsigned long anon_mapping; |
| 194 | |
| 195 | rcu_read_lock(); |
| 196 | anon_mapping = (unsigned long) page->mapping; |
| 197 | if (!(anon_mapping & PAGE_MAPPING_ANON)) |
| 198 | goto out; |
| 199 | if (!page_mapped(page)) |
| 200 | goto out; |
| 201 | |
| 202 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); |
| 203 | spin_lock(&anon_vma->lock); |
| 204 | out: |
| 205 | rcu_read_unlock(); |
| 206 | return anon_vma; |
| 207 | } |
| 208 | |
| 209 | /* |
| 210 | * At what user virtual address is page expected in vma? |
| 211 | */ |
| 212 | static inline unsigned long |
| 213 | vma_address(struct page *page, struct vm_area_struct *vma) |
| 214 | { |
| 215 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
| 216 | unsigned long address; |
| 217 | |
| 218 | address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); |
| 219 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { |
| 220 | /* page should be within any vma from prio_tree_next */ |
| 221 | BUG_ON(!PageAnon(page)); |
| 222 | return -EFAULT; |
| 223 | } |
| 224 | return address; |
| 225 | } |
| 226 | |
| 227 | /* |
| 228 | * At what user virtual address is page expected in vma? checking that the |
| 229 | * page matches the vma: currently only used by unuse_process, on anon pages. |
| 230 | */ |
| 231 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) |
| 232 | { |
| 233 | if (PageAnon(page)) { |
| 234 | if ((void *)vma->anon_vma != |
| 235 | (void *)page->mapping - PAGE_MAPPING_ANON) |
| 236 | return -EFAULT; |
| 237 | } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { |
| 238 | if (vma->vm_file->f_mapping != page->mapping) |
| 239 | return -EFAULT; |
| 240 | } else |
| 241 | return -EFAULT; |
| 242 | return vma_address(page, vma); |
| 243 | } |
| 244 | |
| 245 | /* |
| 246 | * Subfunctions of page_referenced: page_referenced_one called |
| 247 | * repeatedly from either page_referenced_anon or page_referenced_file. |
| 248 | */ |
| 249 | static int page_referenced_one(struct page *page, |
| 250 | struct vm_area_struct *vma, unsigned int *mapcount, int ignore_token) |
| 251 | { |
| 252 | struct mm_struct *mm = vma->vm_mm; |
| 253 | unsigned long address; |
| 254 | pgd_t *pgd; |
| 255 | pud_t *pud; |
| 256 | pmd_t *pmd; |
| 257 | pte_t *pte; |
| 258 | int referenced = 0; |
| 259 | |
| 260 | if (!get_mm_counter(mm, rss)) |
| 261 | goto out; |
| 262 | address = vma_address(page, vma); |
| 263 | if (address == -EFAULT) |
| 264 | goto out; |
| 265 | |
| 266 | spin_lock(&mm->page_table_lock); |
| 267 | |
| 268 | pgd = pgd_offset(mm, address); |
| 269 | if (!pgd_present(*pgd)) |
| 270 | goto out_unlock; |
| 271 | |
| 272 | pud = pud_offset(pgd, address); |
| 273 | if (!pud_present(*pud)) |
| 274 | goto out_unlock; |
| 275 | |
| 276 | pmd = pmd_offset(pud, address); |
| 277 | if (!pmd_present(*pmd)) |
| 278 | goto out_unlock; |
| 279 | |
| 280 | pte = pte_offset_map(pmd, address); |
| 281 | if (!pte_present(*pte)) |
| 282 | goto out_unmap; |
| 283 | |
| 284 | if (page_to_pfn(page) != pte_pfn(*pte)) |
| 285 | goto out_unmap; |
| 286 | |
| 287 | if (ptep_clear_flush_young(vma, address, pte)) |
| 288 | referenced++; |
| 289 | |
| 290 | if (mm != current->mm && !ignore_token && has_swap_token(mm)) |
| 291 | referenced++; |
| 292 | |
| 293 | (*mapcount)--; |
| 294 | |
| 295 | out_unmap: |
| 296 | pte_unmap(pte); |
| 297 | out_unlock: |
| 298 | spin_unlock(&mm->page_table_lock); |
| 299 | out: |
| 300 | return referenced; |
| 301 | } |
| 302 | |
| 303 | static int page_referenced_anon(struct page *page, int ignore_token) |
| 304 | { |
| 305 | unsigned int mapcount; |
| 306 | struct anon_vma *anon_vma; |
| 307 | struct vm_area_struct *vma; |
| 308 | int referenced = 0; |
| 309 | |
| 310 | anon_vma = page_lock_anon_vma(page); |
| 311 | if (!anon_vma) |
| 312 | return referenced; |
| 313 | |
| 314 | mapcount = page_mapcount(page); |
| 315 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { |
| 316 | referenced += page_referenced_one(page, vma, &mapcount, |
| 317 | ignore_token); |
| 318 | if (!mapcount) |
| 319 | break; |
| 320 | } |
| 321 | spin_unlock(&anon_vma->lock); |
| 322 | return referenced; |
| 323 | } |
| 324 | |
| 325 | /** |
| 326 | * page_referenced_file - referenced check for object-based rmap |
| 327 | * @page: the page we're checking references on. |
| 328 | * |
| 329 | * For an object-based mapped page, find all the places it is mapped and |
| 330 | * check/clear the referenced flag. This is done by following the page->mapping |
| 331 | * pointer, then walking the chain of vmas it holds. It returns the number |
| 332 | * of references it found. |
| 333 | * |
| 334 | * This function is only called from page_referenced for object-based pages. |
| 335 | */ |
| 336 | static int page_referenced_file(struct page *page, int ignore_token) |
| 337 | { |
| 338 | unsigned int mapcount; |
| 339 | struct address_space *mapping = page->mapping; |
| 340 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
| 341 | struct vm_area_struct *vma; |
| 342 | struct prio_tree_iter iter; |
| 343 | int referenced = 0; |
| 344 | |
| 345 | /* |
| 346 | * The caller's checks on page->mapping and !PageAnon have made |
| 347 | * sure that this is a file page: the check for page->mapping |
| 348 | * excludes the case just before it gets set on an anon page. |
| 349 | */ |
| 350 | BUG_ON(PageAnon(page)); |
| 351 | |
| 352 | /* |
| 353 | * The page lock not only makes sure that page->mapping cannot |
| 354 | * suddenly be NULLified by truncation, it makes sure that the |
| 355 | * structure at mapping cannot be freed and reused yet, |
| 356 | * so we can safely take mapping->i_mmap_lock. |
| 357 | */ |
| 358 | BUG_ON(!PageLocked(page)); |
| 359 | |
| 360 | spin_lock(&mapping->i_mmap_lock); |
| 361 | |
| 362 | /* |
| 363 | * i_mmap_lock does not stabilize mapcount at all, but mapcount |
| 364 | * is more likely to be accurate if we note it after spinning. |
| 365 | */ |
| 366 | mapcount = page_mapcount(page); |
| 367 | |
| 368 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { |
| 369 | if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE)) |
| 370 | == (VM_LOCKED|VM_MAYSHARE)) { |
| 371 | referenced++; |
| 372 | break; |
| 373 | } |
| 374 | referenced += page_referenced_one(page, vma, &mapcount, |
| 375 | ignore_token); |
| 376 | if (!mapcount) |
| 377 | break; |
| 378 | } |
| 379 | |
| 380 | spin_unlock(&mapping->i_mmap_lock); |
| 381 | return referenced; |
| 382 | } |
| 383 | |
| 384 | /** |
| 385 | * page_referenced - test if the page was referenced |
| 386 | * @page: the page to test |
| 387 | * @is_locked: caller holds lock on the page |
| 388 | * |
| 389 | * Quick test_and_clear_referenced for all mappings to a page, |
| 390 | * returns the number of ptes which referenced the page. |
| 391 | */ |
| 392 | int page_referenced(struct page *page, int is_locked, int ignore_token) |
| 393 | { |
| 394 | int referenced = 0; |
| 395 | |
| 396 | if (!swap_token_default_timeout) |
| 397 | ignore_token = 1; |
| 398 | |
| 399 | if (page_test_and_clear_young(page)) |
| 400 | referenced++; |
| 401 | |
| 402 | if (TestClearPageReferenced(page)) |
| 403 | referenced++; |
| 404 | |
| 405 | if (page_mapped(page) && page->mapping) { |
| 406 | if (PageAnon(page)) |
| 407 | referenced += page_referenced_anon(page, ignore_token); |
| 408 | else if (is_locked) |
| 409 | referenced += page_referenced_file(page, ignore_token); |
| 410 | else if (TestSetPageLocked(page)) |
| 411 | referenced++; |
| 412 | else { |
| 413 | if (page->mapping) |
| 414 | referenced += page_referenced_file(page, |
| 415 | ignore_token); |
| 416 | unlock_page(page); |
| 417 | } |
| 418 | } |
| 419 | return referenced; |
| 420 | } |
| 421 | |
| 422 | /** |
| 423 | * page_add_anon_rmap - add pte mapping to an anonymous page |
| 424 | * @page: the page to add the mapping to |
| 425 | * @vma: the vm area in which the mapping is added |
| 426 | * @address: the user virtual address mapped |
| 427 | * |
| 428 | * The caller needs to hold the mm->page_table_lock. |
| 429 | */ |
| 430 | void page_add_anon_rmap(struct page *page, |
| 431 | struct vm_area_struct *vma, unsigned long address) |
| 432 | { |
| 433 | struct anon_vma *anon_vma = vma->anon_vma; |
| 434 | pgoff_t index; |
| 435 | |
| 436 | BUG_ON(PageReserved(page)); |
| 437 | BUG_ON(!anon_vma); |
| 438 | |
| 439 | inc_mm_counter(vma->vm_mm, anon_rss); |
| 440 | |
| 441 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
| 442 | index = (address - vma->vm_start) >> PAGE_SHIFT; |
| 443 | index += vma->vm_pgoff; |
| 444 | index >>= PAGE_CACHE_SHIFT - PAGE_SHIFT; |
| 445 | |
| 446 | if (atomic_inc_and_test(&page->_mapcount)) { |
| 447 | page->index = index; |
| 448 | page->mapping = (struct address_space *) anon_vma; |
| 449 | inc_page_state(nr_mapped); |
| 450 | } |
| 451 | /* else checking page index and mapping is racy */ |
| 452 | } |
| 453 | |
| 454 | /** |
| 455 | * page_add_file_rmap - add pte mapping to a file page |
| 456 | * @page: the page to add the mapping to |
| 457 | * |
| 458 | * The caller needs to hold the mm->page_table_lock. |
| 459 | */ |
| 460 | void page_add_file_rmap(struct page *page) |
| 461 | { |
| 462 | BUG_ON(PageAnon(page)); |
| 463 | if (!pfn_valid(page_to_pfn(page)) || PageReserved(page)) |
| 464 | return; |
| 465 | |
| 466 | if (atomic_inc_and_test(&page->_mapcount)) |
| 467 | inc_page_state(nr_mapped); |
| 468 | } |
| 469 | |
| 470 | /** |
| 471 | * page_remove_rmap - take down pte mapping from a page |
| 472 | * @page: page to remove mapping from |
| 473 | * |
| 474 | * Caller needs to hold the mm->page_table_lock. |
| 475 | */ |
| 476 | void page_remove_rmap(struct page *page) |
| 477 | { |
| 478 | BUG_ON(PageReserved(page)); |
| 479 | |
| 480 | if (atomic_add_negative(-1, &page->_mapcount)) { |
| 481 | BUG_ON(page_mapcount(page) < 0); |
| 482 | /* |
| 483 | * It would be tidy to reset the PageAnon mapping here, |
| 484 | * but that might overwrite a racing page_add_anon_rmap |
| 485 | * which increments mapcount after us but sets mapping |
| 486 | * before us: so leave the reset to free_hot_cold_page, |
| 487 | * and remember that it's only reliable while mapped. |
| 488 | * Leaving it set also helps swapoff to reinstate ptes |
| 489 | * faster for those pages still in swapcache. |
| 490 | */ |
| 491 | if (page_test_and_clear_dirty(page)) |
| 492 | set_page_dirty(page); |
| 493 | dec_page_state(nr_mapped); |
| 494 | } |
| 495 | } |
| 496 | |
| 497 | /* |
| 498 | * Subfunctions of try_to_unmap: try_to_unmap_one called |
| 499 | * repeatedly from either try_to_unmap_anon or try_to_unmap_file. |
| 500 | */ |
| 501 | static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma) |
| 502 | { |
| 503 | struct mm_struct *mm = vma->vm_mm; |
| 504 | unsigned long address; |
| 505 | pgd_t *pgd; |
| 506 | pud_t *pud; |
| 507 | pmd_t *pmd; |
| 508 | pte_t *pte; |
| 509 | pte_t pteval; |
| 510 | int ret = SWAP_AGAIN; |
| 511 | |
| 512 | if (!get_mm_counter(mm, rss)) |
| 513 | goto out; |
| 514 | address = vma_address(page, vma); |
| 515 | if (address == -EFAULT) |
| 516 | goto out; |
| 517 | |
| 518 | /* |
| 519 | * We need the page_table_lock to protect us from page faults, |
| 520 | * munmap, fork, etc... |
| 521 | */ |
| 522 | spin_lock(&mm->page_table_lock); |
| 523 | |
| 524 | pgd = pgd_offset(mm, address); |
| 525 | if (!pgd_present(*pgd)) |
| 526 | goto out_unlock; |
| 527 | |
| 528 | pud = pud_offset(pgd, address); |
| 529 | if (!pud_present(*pud)) |
| 530 | goto out_unlock; |
| 531 | |
| 532 | pmd = pmd_offset(pud, address); |
| 533 | if (!pmd_present(*pmd)) |
| 534 | goto out_unlock; |
| 535 | |
| 536 | pte = pte_offset_map(pmd, address); |
| 537 | if (!pte_present(*pte)) |
| 538 | goto out_unmap; |
| 539 | |
| 540 | if (page_to_pfn(page) != pte_pfn(*pte)) |
| 541 | goto out_unmap; |
| 542 | |
| 543 | /* |
| 544 | * If the page is mlock()d, we cannot swap it out. |
| 545 | * If it's recently referenced (perhaps page_referenced |
| 546 | * skipped over this mm) then we should reactivate it. |
| 547 | */ |
| 548 | if ((vma->vm_flags & (VM_LOCKED|VM_RESERVED)) || |
| 549 | ptep_clear_flush_young(vma, address, pte)) { |
| 550 | ret = SWAP_FAIL; |
| 551 | goto out_unmap; |
| 552 | } |
| 553 | |
| 554 | /* |
| 555 | * Don't pull an anonymous page out from under get_user_pages. |
| 556 | * GUP carefully breaks COW and raises page count (while holding |
| 557 | * page_table_lock, as we have here) to make sure that the page |
| 558 | * cannot be freed. If we unmap that page here, a user write |
| 559 | * access to the virtual address will bring back the page, but |
| 560 | * its raised count will (ironically) be taken to mean it's not |
| 561 | * an exclusive swap page, do_wp_page will replace it by a copy |
| 562 | * page, and the user never get to see the data GUP was holding |
| 563 | * the original page for. |
| 564 | * |
| 565 | * This test is also useful for when swapoff (unuse_process) has |
| 566 | * to drop page lock: its reference to the page stops existing |
| 567 | * ptes from being unmapped, so swapoff can make progress. |
| 568 | */ |
| 569 | if (PageSwapCache(page) && |
| 570 | page_count(page) != page_mapcount(page) + 2) { |
| 571 | ret = SWAP_FAIL; |
| 572 | goto out_unmap; |
| 573 | } |
| 574 | |
| 575 | /* Nuke the page table entry. */ |
| 576 | flush_cache_page(vma, address, page_to_pfn(page)); |
| 577 | pteval = ptep_clear_flush(vma, address, pte); |
| 578 | |
| 579 | /* Move the dirty bit to the physical page now the pte is gone. */ |
| 580 | if (pte_dirty(pteval)) |
| 581 | set_page_dirty(page); |
| 582 | |
| 583 | if (PageAnon(page)) { |
| 584 | swp_entry_t entry = { .val = page->private }; |
| 585 | /* |
| 586 | * Store the swap location in the pte. |
| 587 | * See handle_pte_fault() ... |
| 588 | */ |
| 589 | BUG_ON(!PageSwapCache(page)); |
| 590 | swap_duplicate(entry); |
| 591 | if (list_empty(&mm->mmlist)) { |
| 592 | spin_lock(&mmlist_lock); |
| 593 | list_add(&mm->mmlist, &init_mm.mmlist); |
| 594 | spin_unlock(&mmlist_lock); |
| 595 | } |
| 596 | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); |
| 597 | BUG_ON(pte_file(*pte)); |
| 598 | dec_mm_counter(mm, anon_rss); |
| 599 | } |
| 600 | |
| 601 | inc_mm_counter(mm, rss); |
| 602 | page_remove_rmap(page); |
| 603 | page_cache_release(page); |
| 604 | |
| 605 | out_unmap: |
| 606 | pte_unmap(pte); |
| 607 | out_unlock: |
| 608 | spin_unlock(&mm->page_table_lock); |
| 609 | out: |
| 610 | return ret; |
| 611 | } |
| 612 | |
| 613 | /* |
| 614 | * objrmap doesn't work for nonlinear VMAs because the assumption that |
| 615 | * offset-into-file correlates with offset-into-virtual-addresses does not hold. |
| 616 | * Consequently, given a particular page and its ->index, we cannot locate the |
| 617 | * ptes which are mapping that page without an exhaustive linear search. |
| 618 | * |
| 619 | * So what this code does is a mini "virtual scan" of each nonlinear VMA which |
| 620 | * maps the file to which the target page belongs. The ->vm_private_data field |
| 621 | * holds the current cursor into that scan. Successive searches will circulate |
| 622 | * around the vma's virtual address space. |
| 623 | * |
| 624 | * So as more replacement pressure is applied to the pages in a nonlinear VMA, |
| 625 | * more scanning pressure is placed against them as well. Eventually pages |
| 626 | * will become fully unmapped and are eligible for eviction. |
| 627 | * |
| 628 | * For very sparsely populated VMAs this is a little inefficient - chances are |
| 629 | * there there won't be many ptes located within the scan cluster. In this case |
| 630 | * maybe we could scan further - to the end of the pte page, perhaps. |
| 631 | */ |
| 632 | #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) |
| 633 | #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) |
| 634 | |
| 635 | static void try_to_unmap_cluster(unsigned long cursor, |
| 636 | unsigned int *mapcount, struct vm_area_struct *vma) |
| 637 | { |
| 638 | struct mm_struct *mm = vma->vm_mm; |
| 639 | pgd_t *pgd; |
| 640 | pud_t *pud; |
| 641 | pmd_t *pmd; |
| 642 | pte_t *pte; |
| 643 | pte_t pteval; |
| 644 | struct page *page; |
| 645 | unsigned long address; |
| 646 | unsigned long end; |
| 647 | unsigned long pfn; |
| 648 | |
| 649 | /* |
| 650 | * We need the page_table_lock to protect us from page faults, |
| 651 | * munmap, fork, etc... |
| 652 | */ |
| 653 | spin_lock(&mm->page_table_lock); |
| 654 | |
| 655 | address = (vma->vm_start + cursor) & CLUSTER_MASK; |
| 656 | end = address + CLUSTER_SIZE; |
| 657 | if (address < vma->vm_start) |
| 658 | address = vma->vm_start; |
| 659 | if (end > vma->vm_end) |
| 660 | end = vma->vm_end; |
| 661 | |
| 662 | pgd = pgd_offset(mm, address); |
| 663 | if (!pgd_present(*pgd)) |
| 664 | goto out_unlock; |
| 665 | |
| 666 | pud = pud_offset(pgd, address); |
| 667 | if (!pud_present(*pud)) |
| 668 | goto out_unlock; |
| 669 | |
| 670 | pmd = pmd_offset(pud, address); |
| 671 | if (!pmd_present(*pmd)) |
| 672 | goto out_unlock; |
| 673 | |
| 674 | for (pte = pte_offset_map(pmd, address); |
| 675 | address < end; pte++, address += PAGE_SIZE) { |
| 676 | |
| 677 | if (!pte_present(*pte)) |
| 678 | continue; |
| 679 | |
| 680 | pfn = pte_pfn(*pte); |
| 681 | if (!pfn_valid(pfn)) |
| 682 | continue; |
| 683 | |
| 684 | page = pfn_to_page(pfn); |
| 685 | BUG_ON(PageAnon(page)); |
| 686 | if (PageReserved(page)) |
| 687 | continue; |
| 688 | |
| 689 | if (ptep_clear_flush_young(vma, address, pte)) |
| 690 | continue; |
| 691 | |
| 692 | /* Nuke the page table entry. */ |
| 693 | flush_cache_page(vma, address, pfn); |
| 694 | pteval = ptep_clear_flush(vma, address, pte); |
| 695 | |
| 696 | /* If nonlinear, store the file page offset in the pte. */ |
| 697 | if (page->index != linear_page_index(vma, address)) |
| 698 | set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); |
| 699 | |
| 700 | /* Move the dirty bit to the physical page now the pte is gone. */ |
| 701 | if (pte_dirty(pteval)) |
| 702 | set_page_dirty(page); |
| 703 | |
| 704 | page_remove_rmap(page); |
| 705 | page_cache_release(page); |
| 706 | dec_mm_counter(mm, rss); |
| 707 | (*mapcount)--; |
| 708 | } |
| 709 | |
| 710 | pte_unmap(pte); |
| 711 | |
| 712 | out_unlock: |
| 713 | spin_unlock(&mm->page_table_lock); |
| 714 | } |
| 715 | |
| 716 | static int try_to_unmap_anon(struct page *page) |
| 717 | { |
| 718 | struct anon_vma *anon_vma; |
| 719 | struct vm_area_struct *vma; |
| 720 | int ret = SWAP_AGAIN; |
| 721 | |
| 722 | anon_vma = page_lock_anon_vma(page); |
| 723 | if (!anon_vma) |
| 724 | return ret; |
| 725 | |
| 726 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { |
| 727 | ret = try_to_unmap_one(page, vma); |
| 728 | if (ret == SWAP_FAIL || !page_mapped(page)) |
| 729 | break; |
| 730 | } |
| 731 | spin_unlock(&anon_vma->lock); |
| 732 | return ret; |
| 733 | } |
| 734 | |
| 735 | /** |
| 736 | * try_to_unmap_file - unmap file page using the object-based rmap method |
| 737 | * @page: the page to unmap |
| 738 | * |
| 739 | * Find all the mappings of a page using the mapping pointer and the vma chains |
| 740 | * contained in the address_space struct it points to. |
| 741 | * |
| 742 | * This function is only called from try_to_unmap for object-based pages. |
| 743 | */ |
| 744 | static int try_to_unmap_file(struct page *page) |
| 745 | { |
| 746 | struct address_space *mapping = page->mapping; |
| 747 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
| 748 | struct vm_area_struct *vma; |
| 749 | struct prio_tree_iter iter; |
| 750 | int ret = SWAP_AGAIN; |
| 751 | unsigned long cursor; |
| 752 | unsigned long max_nl_cursor = 0; |
| 753 | unsigned long max_nl_size = 0; |
| 754 | unsigned int mapcount; |
| 755 | |
| 756 | spin_lock(&mapping->i_mmap_lock); |
| 757 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { |
| 758 | ret = try_to_unmap_one(page, vma); |
| 759 | if (ret == SWAP_FAIL || !page_mapped(page)) |
| 760 | goto out; |
| 761 | } |
| 762 | |
| 763 | if (list_empty(&mapping->i_mmap_nonlinear)) |
| 764 | goto out; |
| 765 | |
| 766 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, |
| 767 | shared.vm_set.list) { |
| 768 | if (vma->vm_flags & (VM_LOCKED|VM_RESERVED)) |
| 769 | continue; |
| 770 | cursor = (unsigned long) vma->vm_private_data; |
| 771 | if (cursor > max_nl_cursor) |
| 772 | max_nl_cursor = cursor; |
| 773 | cursor = vma->vm_end - vma->vm_start; |
| 774 | if (cursor > max_nl_size) |
| 775 | max_nl_size = cursor; |
| 776 | } |
| 777 | |
| 778 | if (max_nl_size == 0) { /* any nonlinears locked or reserved */ |
| 779 | ret = SWAP_FAIL; |
| 780 | goto out; |
| 781 | } |
| 782 | |
| 783 | /* |
| 784 | * We don't try to search for this page in the nonlinear vmas, |
| 785 | * and page_referenced wouldn't have found it anyway. Instead |
| 786 | * just walk the nonlinear vmas trying to age and unmap some. |
| 787 | * The mapcount of the page we came in with is irrelevant, |
| 788 | * but even so use it as a guide to how hard we should try? |
| 789 | */ |
| 790 | mapcount = page_mapcount(page); |
| 791 | if (!mapcount) |
| 792 | goto out; |
| 793 | cond_resched_lock(&mapping->i_mmap_lock); |
| 794 | |
| 795 | max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; |
| 796 | if (max_nl_cursor == 0) |
| 797 | max_nl_cursor = CLUSTER_SIZE; |
| 798 | |
| 799 | do { |
| 800 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, |
| 801 | shared.vm_set.list) { |
| 802 | if (vma->vm_flags & (VM_LOCKED|VM_RESERVED)) |
| 803 | continue; |
| 804 | cursor = (unsigned long) vma->vm_private_data; |
| 805 | while (get_mm_counter(vma->vm_mm, rss) && |
| 806 | cursor < max_nl_cursor && |
| 807 | cursor < vma->vm_end - vma->vm_start) { |
| 808 | try_to_unmap_cluster(cursor, &mapcount, vma); |
| 809 | cursor += CLUSTER_SIZE; |
| 810 | vma->vm_private_data = (void *) cursor; |
| 811 | if ((int)mapcount <= 0) |
| 812 | goto out; |
| 813 | } |
| 814 | vma->vm_private_data = (void *) max_nl_cursor; |
| 815 | } |
| 816 | cond_resched_lock(&mapping->i_mmap_lock); |
| 817 | max_nl_cursor += CLUSTER_SIZE; |
| 818 | } while (max_nl_cursor <= max_nl_size); |
| 819 | |
| 820 | /* |
| 821 | * Don't loop forever (perhaps all the remaining pages are |
| 822 | * in locked vmas). Reset cursor on all unreserved nonlinear |
| 823 | * vmas, now forgetting on which ones it had fallen behind. |
| 824 | */ |
| 825 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, |
| 826 | shared.vm_set.list) { |
| 827 | if (!(vma->vm_flags & VM_RESERVED)) |
| 828 | vma->vm_private_data = NULL; |
| 829 | } |
| 830 | out: |
| 831 | spin_unlock(&mapping->i_mmap_lock); |
| 832 | return ret; |
| 833 | } |
| 834 | |
| 835 | /** |
| 836 | * try_to_unmap - try to remove all page table mappings to a page |
| 837 | * @page: the page to get unmapped |
| 838 | * |
| 839 | * Tries to remove all the page table entries which are mapping this |
| 840 | * page, used in the pageout path. Caller must hold the page lock. |
| 841 | * Return values are: |
| 842 | * |
| 843 | * SWAP_SUCCESS - we succeeded in removing all mappings |
| 844 | * SWAP_AGAIN - we missed a mapping, try again later |
| 845 | * SWAP_FAIL - the page is unswappable |
| 846 | */ |
| 847 | int try_to_unmap(struct page *page) |
| 848 | { |
| 849 | int ret; |
| 850 | |
| 851 | BUG_ON(PageReserved(page)); |
| 852 | BUG_ON(!PageLocked(page)); |
| 853 | |
| 854 | if (PageAnon(page)) |
| 855 | ret = try_to_unmap_anon(page); |
| 856 | else |
| 857 | ret = try_to_unmap_file(page); |
| 858 | |
| 859 | if (!page_mapped(page)) |
| 860 | ret = SWAP_SUCCESS; |
| 861 | return ret; |
| 862 | } |